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Abstract
In this paper, we present a novel model of the primary visual cortex (V1) based on
orientation, frequency, and phase selective behavior of V1 simple cells. We start from
the first-level mechanisms of visual perception, receptive profiles. The model
interprets V1 as a fiber bundle over the two-dimensional retinal plane by introducing
orientation, frequency, and phase as intrinsic variables. Each receptive profile on the
fiber is mathematically interpreted as rotated, frequency modulated, and phase
shifted Gabor function. We start from the Gabor function and show that it induces in
a natural way the model geometry and the associated horizontal connectivity
modeling of the neural connectivity patterns in V1. We provide an image
enhancement algorithm employing the model framework. The algorithm is capable
of exploiting not only orientation but also frequency and phase information existing
intrinsically in a two-dimensional input image. We provide the experimental results
corresponding to the enhancement algorithm.

Keywords: Sub-Riemannian geometry; Neurogeometry; Differential geometry;
Gabor functions; Visual cortex; Image enhancement

1 Introduction
The question of how we perceive has been an intriguing topic for different disciplines. One
of the first schools that faced the problem is the Berlin school of experimental psychology,
called Gestalt psychology school [68, 69, 103], which formulates precise laws explaining
visual perception. The Gestalt psychology is a theory for understanding the principles
underlying the emergence of perceptual units as the result of a grouping process. The
main idea is that perception is a global phenomenon, which considers the scene as a whole
and is much more than the pure sum of local perception. The first perceptual laws are of
qualitative type, based on similarity, closure, good continuation, and alignment.

After that, there have been many psychophysical studies that attempted to provide a
quantitative version of the grouping process. With the development of neuroscience stud-
ies, researchers started to look for cortical implementation of Gestalt laws, with a partic-
ular attention to neural architectures of the visual cortex. A particularly important one
for our study is the pioneering work of Field et al. [43], which models Gestalt principles
of good continuation and alignment. They experimentally proved that fragments aligned
along a curvilinear path can be perceived as a unique perceptual unit much better than
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fragments with rapidly changing orientations. The results of their experiments were sum-
marized in a representation, called association fields, which represent a complete set of
paths with fixed initial position and orientation, which can be perceived as perceptual
units.

The visual cortex is a part of the mammalian brain responsible for the first-level pro-
cessing tasks of perceptual organization of local visual features in a visual stimulus (two-
dimensional image). It is known from neurophysiological experiments that the visual
cortex contains neurons (simple cells) that are locally sensitive to several visual fea-
tures, namely, orientation [54–56, 58], spatial frequency [59–61, 77, 89, 90, 97, 98], phase
[30, 72, 80, 86], scale [10], and ocular dominance [61, 71, 95].

The simple cells are organized in a hypercolumnar architecture, which was first discov-
ered by Hubel and Wiesel [57]. In this architecture, a hypercolumn is assigned to each
point (x, y) of the retinal plane M � R

2 (if we disregard the isomorphic cortical mapping
between retinal and cortical planes), and the hypercolumn contains all the simple cells
sensitive to a particular value of the same feature type. The simple cells are able to locally
detect features of the visual stimulus, and neural connectivity between the simple cells
integrates them in a coherent global unity. Those two mechanisms, the feature detection
and the neural connectivity, comprise the functional geometry of V1.

1.1 Previous models and applications
Several models were proposed for the functional geometry of V1 associated with the sim-
ple cells that were only orientation sensitive. Early models date back to the 1980s. Koen-
derink and van Doorn [66, 67] revealed the similarity between Gaussian derivative func-
tions and simple cell receptive profiles. They proposed visual models based on the func-
tions of Gaussian derivatives as mathematical representations of the receptive profiles.
Their findings indeed encouraged many studies relying on the choice of a family of Gaus-
sian derivative functions and Gaussian kernels, among which we would like to mention
the works of Young [104] and Lindeberg [74, 76].

A different modeling approach from the mentioned ones was employing Gabor func-
tions as mathematical representations of the orientation-sensitive simple cell receptive
profiles. The motivation for this choice was relying on an uncertainty principle as was
elaborated by Daugman [29] through a generalization of the hypothesis of Marĉelja [78]
(see also [62], where Jones and Palmer compared statistically the results obtained via Ga-
bor functions and the neurophysiological results collected from V1 of a cat). Furthermore,
Hoffman [51, 52] proposed to model the hypercolumnar architecture of V1 as a fiber bun-
dle. Following the second school (which uses the Gabor functions) and further developing
the model proposed by Petitot and Tondut [84] (see also Petitot [82, 83]), where hyper-
columnar architecture was interpreted as a fiber bundle associated with a contact geome-
try, Citti and Sarti [25] introduced a group-based approach. They proposed a new model
of the functional geometry of V1, which considered the sub-Riemannian geometry of the
rototranslation group (SE(2)) as a suitable model geometry. The main reason for employ-
ing SE(2) geometry was due to that the corresponding Lie algebra to SE(2) was providing
a good model of the actual neural connectivity in V1. The model proposed in [25] has
been extended to other visual features in addition to orientation, such as scale by Sarti et
al. [92], and to other cell types such as complex cells sensitive to velocity and movement
direction by Barbieri et al. [2] and Cocci et al. [27].
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Furthermore, image processing applications employing Gabor transform to extract vi-
sual features from medical images were proposed by Duits et al. [38] (see also [94], where
the phase of complex-valued outputs obtained from a multiscale orientation decomposi-
tion represented in a similarity group). In [38] an image enhancement together with an
inpainting procedure was explained. Their method performs a multifrequency and multi-
phase Gabor transform on a two-dimensional image. The result of the transform is repre-
sented in the five-dimensional sub-Riemannian geometry of a reduced Heisenberg group.
A combination of preprocessing via left-invariant diffusion and left-invariant convection–
diffusion is applied for processing the lifted images to the Heisenberg group geometry. The
convection provides sharpening of the image. Evolving phase of the diffused Gabor coef-
ficients is handled via phase-covariant left-invariant convection–diffusion procedure by
taking advantage of a Gabor transform. This Gabor transform takes into account spatial
frequencies along both horizontal and vertical axes, differently from our case, where we
consider spatial frequencies perpendicular to a single reference axis and provide a fre-
quency decomposition along this axis for each orientation. Their procedure deals with
the diffusion taking place in both phase and frequency dimensions, and it is applied to the
detection of the cardiac wall deformations in MRI-tagging images. Our framework differs
from this setting in two points. First of all, our geometry is derived from the receptive
profile, Gabor function. The geometry is a natural result of the choice of the receptive
profile. In other words, it is not assigned to the result of the Gabor transform as in [38].
Secondly, the model geometry we propose is not restricted to image processing. The im-
age enhancement application we propose uses multifrequency channels. Its performance
is comparable to multiscale methods and provides an improvement in comparison to a
single-frequency method using a projected version of our model geometry. It uses pure
Laplace–Beltrami evolution without any combination of pre/post-processing techniques
or any additional nonlinear procedure. The motivation of the algorithm we propose is
rather showing the importance of inclusion of frequency in cortical modeling and its po-
tential to be an alternative framework to the multiscale image enhancement settings.

Other applications in medical image analysis employing scale and orientation informa-
tion can be found in [18] and [63], where the Gabor transform is employed for the detec-
tion of local frequencies in tagging MRI (magnetic resonance imaging) images and thus for
the computation of local frequency deformations in those images. The interested reader
can also refer to [42] for different applications of geometric approach in computer vision
and robotics. Additionally to those studies, the models in terms of cortical orientation and
orientation-frequency selectivity, provided by Bressloff and Cowan [16, 17], can be useful
references for the reader. We refer to [26] for a review of several cortical models including
many mentioned ones.

We would like to address the reader to [14, 79], and [105] for some other both theoret-
ical and practical aspects provided for sub-Riemannian image reconstruction/inpainting
techniques. Moreover, such aspects are also provided and used in optimal control theory;
see, for example, [13, 34]. The reader can refer to [19, 20] for image denoising approaches
based on total-variation flows and to [21] for optimization approach used in image denois-
ing and deblurring. Finally, we refer to [15] for a curvature-based approach, which can be
applied to image denoising and inpainting.
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1.2 Neurophysiological motivation
The theoretical criterion underpinning the modeling we propose in this paper relies on
the so-called neurogeometrical approach described by Citti and Sarti [25], Petitot and
Tondut [84], and Sarti et al. [92]. Following this approach, processing capabilities of sen-
sorial cortices and in particular of the visual cortex are modeled based on the geometrical
structure of cortical neural connectivity. Global and local symmetries of the visual stim-
uli are captured by the cortical structure, which is invariant under those symmetries (see
Sanguinetti et al. [91]). We follow a similar framework and will start from the first-level
perceptual tasks performed by the simple cells from local feature extraction. This starting
point will lead us to the model geometry of V1 associated with the simple cells sensitive
to orientation, spatial frequency, and phase information at each position in a given two-
dimensional image.

At the level of Gestalt organization, the neurogeometrical architecture in SE(2) [25]
implements the psychophysical law of good continuation. The architecture in the affine
group [92] implements good continuation and ladder (parallel chain of contours). The
architecture in the Galilean group [2, 27] implements common fate. Finally, the architec-
ture we consider here in a Gabor-based sub-Riemannian geometry implements similarity
between textures/patterns and contains all the previous models employing the neurogeo-
metrical approach.

It is known that the simple cells are selective not only to orientation but also to spatial
frequency and the adjacent cells may have different phases. It was experimentally shown
in [77] that the cortical architecture of a cat regarding spatial frequency of the stimulus
is complementary to the hypercolumnar architecture associated with orientation. It was
reported in [77] that the cortical neurons have the same preferred orientation but a variety
of spatial frequency values along the electrode penetrations perpendicular to the cortical
surface (i.e., along columns) and vice versa was valid for the penetrations parallel to the
surface.

Deoxyglucose uptake increases in the regions of the brain where the neural activity in-
creases. It was reported in [101] that the cats that were exposed to visual patterns contain-
ing a single spatial frequency and all orientations show columns of increased deoxyglucose
uptake extending through all cortical layers. On the other hand, a stimulus containing all
spatial frequencies and all orientations does not result in any difference in columnar den-
sity. Similar columnar organizations were reported in [96] and [12]. In [11], it was dis-
covered that frequency preference maps were organized in frequency pinwheels around
which all possible preferred frequency values are represented in an analogous way to the
orientation pinwheels. In addition to those, it was shown in [61] that a wide range of fre-
quency values were represented continuously in V1. Domains of different preferred fre-
quency values were separated by 3/4 mm (as in the case of hypercolumnar organization
of orientation selectivity) at the extremes of the frequency continuum. Those frequency
extremes were found mostly at the pinwheels. Finally, in [31], it was shown that the sim-
ple cells that are locally within the same cortical region respond to different frequencies.
The range of the preferred frequency values of a cell does not overlap with the values of
another nearby located one in the same cortical region. Those studies suggest a similar or-
ganization of frequencies to the orientation organization discovered by Hubel and Wiesel
[55, 56].
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Moreover, in [31] the simple cells were shown to be phase selective via a procedure
based on the Enroth-Cugell–Robson null phase test [41] for spatial summation. The cell
fires, does not respond, or performs inhibition on the grating pattern depending on the
spatial position of the pattern with respect to the receptive field of the cell. Furthermore,
Pollen and Ronner [87, 88] reported from their experiments that the adjacent simple cells
in cat V1 that have a common preference for orientation and spatial frequency differ in
spatial phase from each other by approximately π/2. This result is in coherence with that
the receptive fields are conjugate pairs, that is, one even symmetric pair and one odd sym-
metric pair located around the same axis. Those experimental results support our choice
of Gabor functions in such a way that adjacent simple cells can be interpreted as paired
sine and cosine filters or Gabor functions. Finally, those aforementioned studies provide
a neurophysiological basis for our choice of modeling the cortical architecture associated
with frequency and phase selectivity in a similar columnar fashion as in the orientation
selectivity case.

1.3 Choice of receptive profile
Once the light reflects from a visual stimulus and arrives at the retina, it evokes some
spikes, which are transmitted along the neural pathways to the simple cells in V1. Each
simple cell gives a response called a receptive profile to those spikes. In other words, a
receptive profile is the impulse response of a simple cell. The simple cells extract the in-
formation of local visual features by using their receptive profiles, and it is possible to
represent the extracted features mathematically in a higher-dimensional space than in the
given two-dimensional image plane. We call this space the lifted space or the lifted geom-
etry. We will use an extended Gabor function as the receptive profile of the simple cells.
We will see that this choice naturally induces the corresponding Lie algebra of the sub-
Riemannian structure, which is the corresponding lifted geometry to our model. The Lie
algebra and its integral curves model neural connectivity between the simple cells. More-
over, since some pairs of the algebra are not commutative, it is possible to formulate an
uncertainty principle, and this principle is satisfied by the extended Gabor function. That
is, the extended Gabor function minimizes uncertainties arising from simultaneous de-
tection of frequency-phase and simultaneous detection of position-orientation (see also
[33, Sect. 7.5], [1, 3, 4], and [94] for similar phenomena in different frameworks).

Concerning the question of which family of functions to use as receptive profiles, let us
recall that receptive field models consisting of cascades of linear filters and static nonlin-
earities may be adequate to account for responses to simple stimuli such as gratings and
random checkerboards, but their predictions of responses to complicated stimuli (such as
natural scenes) are correct only approximately. A variety of mechanisms such as response
normalization, gain controls, cross-orientation suppression, and intracortical modulation
can intervene to change radically the shape of the profile. Then any static and linear model
for the receptive profiles has to be considered just as a very first approximation of the com-
plex behavior of a real dynamic receptive profile, which is not perfectly described by any
of the static wavelet frames.

For example, the derivatives or differences of Gaussian functions are suitable approxi-
mations of the behavior of classical receptive profiles of the simple cells. Lindeberg [75, 76]
starts from certain symmetry properties of the surrounding world and derives axiomat-
ically the functions of Gaussian derivatives obtained from the extension of the family of
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rotationally symmetric Gaussian kernels to the family of affine Gaussian kernels, and pro-
poses to model the simple cell receptive fields in terms of those Gaussian derivatives (see
also Koenderink [66, 67], Young [104], and Landy and Movshon [70]). Indeed, Gaussian
functions are good models of the receptive profiles if we restrict ourselves to the visual fea-
tures except for frequency and phase. They provide good results for orientation and scale
detection as shown by the scale-space school (see, e.g., the works of Lindeberg [73, 74, 76],
Florack [44], ter Haar Romeny [99, 100], and Hannink et al. [50]). However, we are in-
terested here in two-dimensional visual perception based on orientation, frequency, and
phase-sensitive simple cells. Differently from the case with orientation-scale sensitive sim-
ple cells, frequency-phase sensitive simple cells cannot be modeled in a straightforward
way by Gaussian derivative functions. A different order Gaussian derivative must be used
for the extraction of each frequency component of a given image. This requires the use
of different functions, each corresponding to a certain frequency and thus to a certain-
order derivative. In other words, the frequency is not a parameter as in the case of scale,
but each frequency corresponds to a different function. It is not possible to derive a nat-
ural geometry starting from the derivatives of the Gaussian, and it is rather required to
assign an adequate geometric setting to the set of extracted feature values by the Gaussian
derivatives to represent those values.

At this point, a Gabor function seems to be a good candidate for the detection of differ-
ent orientation, frequency, and phase values in a two-dimensional image, since orienta-
tion, frequency, and phase are parameters of the Gabor function. In other words, instead of
using different functions, we can use a single Gabor function corresponding to a set of pa-
rameter values to detect different feature values. In this way, we obtain a sub-Riemannian
model geometry as the natural geometry induced directly by the Gabor function (i.e., by
the receptive profile itself ).

Moreover, the Gabor function is able to model both asymmetric simple cells and
even/odd symmetric simple cells thanks to its phase offset term appearing in its wave
content, whereas the functions of the Gaussian derivatives account only for the symmet-
ric simple cells.

We take into account those aforementioned points and propose to use a Gabor function
with frequency and phase parameters as the receptive profile model. The Gabor function
allows us to extend the model provided in [25] to the true distribution of the profiles in
V1 (including the asymmetric receptive profiles with phase shifts) in a straightforward
way. Finally, we would like to refer to Duits and Franken [35–37], Franken and Duits [47],
Sharma and Duits [94], Zhang et al. [106], and Bekkers et al. [9] for information about
applications that employ other wavelets corresponding to unitary transforms for feature
extraction.

Finally, the studies on group convolutional neural networks (G-CNN) are to be men-
tioned. A particularly relevant one to SE(2) sub-Riemannian geometry is explained by
Bekkers [8]. Those neural networks use several neural layers for extraction and repre-
sentation of the features necessary to perform proper high-level visual tasks such as ob-
ject recognition. Feature extraction and the representation of the extracted features take
advantage of the lifting of the image to a proper sub-Riemannian geometry (e.g., SE(2)
geometry). Differently from the aforementioned approaches using a model function as a
receptive profile, G-CNN learns the receptive profile through a feedback mechanism up-
dating an initial arbitrary kernel by comparing the outputs of the whole network with the
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objects in the input image. The outputs are recognized objects by the neural network. We
refer to [40] and [8] for a recent overview.

1.4 Novelties
Here we consider the model framework provided in [25] as the departure point of our
study. We extend this model from orientation selective framework to an orientation, fre-
quency, and phase selective framework. Furthermore, we provide the neural connectivity
among the simple cells not only orientation selective but also frequency selective with
different phases. Thanks to the use of all frequency components of the Gabor functions,
the Gabor transform can be followed by an exact inverse Gabor transform, which was not
the case in the model presented in [25] since a single frequency component of the Gabor
function was used. The projection of our generalized model onto SE(2) can be considered
as equivalent to the model provided in [25]. The procedure we use to obtain the extended
framework can be employed for the extension to a model associated with orientation-scale
selective simple cells as well (see [7]).

We provide an image enhancement algorithm based on the Laplace–Beltrami procedure
applied on all frequency channels in a reduced version of the model geometry. The reduced
framework isolates each frequency and eliminates the activity propagation between dif-
ferent frequencies and phases. The Laplace–Beltrami procedure is then applied separately
in each frequency channel and at a single phase, since in the reduced framework, each
phase corresponds to a rotated version of the same image. It is an approximation of the
Laplace–Beltrami procedure taking advantage of the full model geometry, and it partially
employs the model geometry. In turn, it removes the excessive diffusion, which may de-
stroy object boundaries and elongated structures in the image. Furthermore, it allows us to
perform a three-dimensional Laplace–Beltrami procedure at every frequency instead of a
five-dimensional Laplace–Beltrami in the full geometry, avoiding high computational and
memory load, which is considerably heavy in the full five-dimensional model geometry.
Finally, it provides the flexibility to process only the significant frequencies without alter-
ing the other frequency channels, which can be important in some texture images. This
algorithm is inspired by the enhancement technique explained in [64], and it is different on
three main points. The first point is that the technique in [64] relies on a Riemannian ge-
ometry and thus a Riemannian metric structure. We work in a sub-Riemannian geometry
endowed with a sub-Riemannian metric. This results in that the sub-Riemannian differen-
tial operators are degenerate, that is, they perform in a subspace of the tangent space. The
second point is that the technique presented in [64] employs a multiscale Gabor trans-
form with fixed frequency and employs the scale as the additional feature to the orienta-
tion, whereas we employ a multifrequency Gabor transform with fixed scale and use the
frequency as the additional feature for the enhancement. This results in that we can use
exact the inverse Gabor transform when we project the processed lifted image in G to the
two-dimensional image plane. The final point is the use of color. We study only grayscale
images, but our approach has the potential to be extended to color images. Moreover,
our sub-Riemannian model geometry is neurally inspired and induced by the receptive
profiles. This is not the case in [64], where a proper Riemannian geometry is chosen for
the image enhancement task, and it is not biologically motivated. Finally, we remark that
the approach we use here for the construction of the model geometry is generic, and it
provides a coherent way to derive the natural model geometry arising from the model
function of the receptive profile.
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1.5 Outline
We will see in Sect. 2 the model structure. We will show how the model geometry with
the associated horizontal connectivity can be derived starting from the receptive profile
model, that is, from the Gabor function. Then in Sect. 3, we will provide explicit expres-
sions of the horizontal integral curves with constant coefficients, which are considered
as the models of the association fields in V1. Finally, in Sect. 4, we provide an image en-
hancement algorithm using the model framework together with the results obtained by
applying a discrete version of the algorithm on some test images. We provide a conclusion
in Sect. 5.

2 The model
The model is based on two mechanisms. The first one is the linear feature extraction
mechanism. The second mechanism is the horizontal connectivity, which models the neu-
ral connectivity in V1. We describe the model by using those two mechanisms in terms of
both group and sub-Riemannian structures.

2.1 Feature extraction and representation
2.1.1 Receptive profiles, symplectic structure, and contact form
Inspired by the receptive profile models proposed in [25] for the orientation selective be-
havior and in [2, 28, 32] for the spatio-temporal behavior of the simple cells, we propose
to represent the receptive profile of a simple cell in our setting with the Gabor functions
of the type

Ψα(x, y, s) := e–i(r·(x–q1,y–q2)–v(s–φ))e–|x–q1|2–|y–q2|2 (1)

with spatial frequencya ω > 0 and r = (r1, r2) = (–ω sin θ ,ω cos θ ), where we represent a
point in a six-dimensional space N with α = (q1, q2,φ, r1, r2, v) ∈ R

6. The complex expo-
nential is the wave content, and it is the main component detecting orientation, frequency,
and phase of the objects in the given two-dimensional image. The second exponential is
the Gaussian window. It provides the spatial localization around the point (q1, q2). The
frequency ω determines how many wave peaks are found within the localizing window
scaled by the Gaussian. The higher the number of wave peaks, the finer the structures
that the Gabor can detect. The orientation θ determines how much the axis along which
the waves lie deviate from the horizontal axis. It coincides with the orientation to which
the simple cell associated with the Gabor function is sensitive. The parameter φ is the ref-
erence phase value, and it introduces a phase shift in the waves of the Gabor function as
it varies. In the case of V1 motion sensitive cells with spatio-temporal dynamics, the term
v represents the velocity of a two-dimensional plane wave propagation (see Barbieri et al.
[2] for details). In our framework, we interpret s – φ as the phase centered at φ in a static
sense. We are not interested in any temporal behavior or in motion sensitivity. Therefore
we will fix v to a finite number.

Note that the coordinate variables are (x, y, θ ,ω, s). Here (q1, q2) and φ should be con-
sidered as fixed parameter values since they are the reference spatial position and phase
values.

We may express α as a complex number α = (q1, q2,φ) + i(r1, r2, v) ∈ C
3 and write the

symplectic structure defined on the complex structure C
3 (in which α is a fixed point) as
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follows [2, 45]:

Ω = dΘ = ω(cos θ dx + sin θ dy) ∧ dθ + (sin θ dx – cos θ dy) ∧ dω – dv ∧ ds.

The standard Liouville form follows from the symplectic structure by definition as

Θ̃ = r1 dx + r2 dy – v ds.

As was mentioned previously, we may fix v to a finite number in our static case. We
choose v = 1 for simplicity.

In this way, we obtain the five-dimensional space

M = R
2 × S1 ×R

+ × S1 � α = {q1, q2, θ ,ω,φ} = (q, z), (2)

where z denotes the feature variables (θ ,ω,φ) ∈ S1 × R
+ × S1. Then we may write the

associated Gabor function centered at q ∈ M and sensitive to feature values z by using (1)
as follows:

Ψ(q,z)(x, y, s) := e–i(ω(– sin θ ,cos θ )·(x–q1,y–q2)–(s–φ))e–|x–q1|2–|y–q2|2 . (3)

The standard Liouville form r1 dx + r2 dy – v ds reduces to

Θ(θ ,ω) = r1 dx + r2 dy – ds = –ω sin θ dx + ω cos θ dy – ds. (4)

Indeed, Θ is a contact form since

Θ ∧ dΘ ∧ dΘ = ω dx ∧ dy ∧ dθ ∧ dω ∧ ds (5)

is a volume form. In other words, it is maximally nondegenerate and does not vanish at
any point on the manifold M.

The features which we would like to measure are embedded in the receptive profile.
Those features manifest themselves as the plane waves corresponding to the Gabor func-
tions in our model framework. Those plane waves describe the orthogonal directions to
the simple cell connectivity. In other words, those plane waves are in orthogonal direction
to the horizontal vector fields of the associated geometry, and their relation to the hor-
izontal vector fields are found through the Liouville form. We may associate a Liouville
form with each Gabor function given by (1). We write the Liouville form by following the
coupling relations between the differential variables appearing in the wave content of the
Gabor function. The considered differential variables in the Liouville form are not inde-
pendent, but they are related to each other through a differential relation. The vanishing
of the Liouville form expresses this differential constraint, and hence it reduces the dimen-
sion of free variables on the tangent space. This defines the horizontal tangent space and
thus the horizontal vector fields.
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2.1.2 Set of receptive profiles
An important property of Gabor functions is that they are invariant under certain sym-
metries. Therefore any Gabor function can be obtained from a reference Gabor function
(mother Gabor function) up to a certain transformation law.

Let us denote the origin for the layer of a frequency ω by 0ω = (0, 0,ω, 0) ∈ M. Then a
suitable choice of the mother Gabor function with frequency ω is

Ψ0ω (x, y, s) = e–i(ωy–s)e–x2–y2
. (6)

We set

A(q,θ ,φ)(x̃, ỹ, s̃) =

⎛
⎜⎝

q1

q2

φ

⎞
⎟⎠ +

⎛
⎜⎝

cos θ – sin θ 0
sin θ cos θ 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

x̃
ỹ
s̃

⎞
⎟⎠ = (x, y, s), (7)

which describes at each frequency the relation between a generic receptive profile cen-
tered at z = (q, θ ,ω,φ) and the mother Gabor function through

Ψ(q,z)(x, y, s) = Ψ0ω

(
A–1

(q,θ ,φ)(x, y, s)
)
. (8)

The set of all receptive profiles obtained from the mother Gabor function with all possi-
ble combinations of feature values at each possible frequency is called the set of receptive
profiles.

2.1.3 Output of a simple cell
We obtain the output response of a simple cell (which is located at the point q = (q1, q2) ∈
M � R

2 and sensitive to the feature values z = (θ ,φ,ω)) to a generic image I : M → R as a
convolution with Gabor filter banks:

OI(q, z) =
∫

M
I(x, y)Ψ(q,z)(x, y, 0) dx dy. (9)

We apply the convolution for all feature values z at every point q to obtain the output
responses of all receptive profiles in the set of receptive profiles. It is equivalent to applying
a multifrequency Gabor transform on the given two-dimensional image. Since we use all
frequency components of the transform, we can employ the exact inverse Gabor transform
to obtain the initial image:

I(q) =
∫
M

OI(x, y, z)Ψ̄(x,y,z)(q, 0) dx dy dz (10)

with Ψ̄ denoting the complex conjugate. We will call the output response lifted image and
the Gabor transform lifting.

Note that the theory provided in [38] takes into account the complex-valued functions
resulting from the Gabor transform and explains a proper way to apply image enhance-
ment and inpainting on the complex structure. Differently from this example, cortical
models have employed the real part, imaginary part, or the absolute value of the output
responses resulting from the convolution with corresponding Gabor filters so far (see,
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e.g., [25, 92, 93]). In other words, they have not taken into account half of the information
they obtained from an image. Furthermore, the inverse Gabor transform was not possible
in the previous models of the visual cortex given in [25, 92, 93] since in those models a
single-frequency Gabor transform was employed to obtain the output responses.

We remark that we consider the whole complex structure of the result of the convolu-
tion (9) as the output response of a simple cell and use the exact inverse Gabor transform
(10) for the reconstruction of the image. This formula is adapted from [38, Sect. 2] as ex-
plained in [5, Chap. 8] (see also [36] for explanations of wavelet reconstruction formulas,
in particular, in the case of so-called cake wavelets).

2.2 Horizontal vector fields and connectivity
Horizontal vector fields are defined as the elements of

kerΘ =
{

X ∈ TM : Θ(X) = 0
}

, (11)

where TM denotes the tangent bundle of the five-dimensional manifold M. They are
naturally induced by the 1-form Θ given in (4). The horizontal vector fields are found
explicitly as

X1 = cos θ∂x + sin θ∂y, X2 = ∂θ ,

X3 = – sin θ∂x + cos θ∂y + ω∂s, X4 = ∂ω.
(12)

The corresponding horizontal distribution is therefore as follows:

DM = span(X1, X2, X3, X4). (13)

All nonzero commutators related to the horizontal vector fields given in (12) are as fol-
lows:

[X1, X2] = sin θ∂x – cos θ∂y,

[X2, X3] = – cos θ∂x – sin θ∂y,

[X3, X4] = –∂s.

(14)

Note that the horizontal vector fields are bracket generating since

TαM = span
(
X1, X2, X3, X4, [X1, X2]

)
(α) (15)

for all α ∈M, where TαM denotes the tangent space ofM at α. Obviously, (15) shows that
the horizontal vector fields fulfill the Hörmander condition [53], and consequently they
provide the connectivity of any two points on M through the horizontal integral curves
defined on M due to the Chow–Rashevski theorem [23]. This connectivity property is
particularly important since it guarantees that any two points in V1 can be connected via
the horizontal integral curves, which are the models of the neural connectivity patterns in
V1.
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2.3 Functional architecture of the visual cortex
2.3.1 The architecture as a Lie group
Receptive profiles evoke a group structure at each frequency ω ∈ R

+. We can describe the
group structure underlying the set of receptive profiles by using the transformation law
given in (7).

First, we notice that the elements (q, θ ,φ) induce the group given by

Gω � {
A(q,θ ,φ) : (q, θ ,φ) ∈ M × S1 × S1}, (16)

which is indeed a Lie group associated with fixed frequency ω.
Then using (7), we write the group multiplication law for two elements

g =
(
qg , θ1,φ1

)
, h =

(
qh, θ2,φ2

)
, g, h ∈ Gω, (17)

as

gh =

((
qg

1

qg
2

)
+ Rθ1+θ2

(
qh

1

qh
2

)
, θ1 + θ2,φ1 + φ2

)
. (18)

The differential Lg∗ of the left-translation

Lg : Gω → Gω,

h �→ gh
(19)

is given by

Lg∗ =

⎛
⎜⎜⎜⎝

cos(θ ) 0 – sin(θ ) 0
sin(θ ) 0 cos(θ ) 0

0 1 0 0
0 0 ω 0

⎞
⎟⎟⎟⎠ . (20)

The vector fields X1, X2, and X3 are bracket generating due to that

span
(
X1, X2, X3, [X1, X2]

)
(g) = TgGω (21)

for every g ∈ Gω . Hence X1, X2, and X3 generate the Lie algebra corresponding to Gω .

2.3.2 The architecture as a sub-Riemannian structure
The functional geometry is associated with a sub-Riemannian structure at each frequency
ω. We denote by Gω the submanifold of M with points h = (q, θ ,φ,ω) = (q, z) restricted to
a fixed ω. In this case the horizontal distribution is found by

DGω = span(X1, X2, X3). (22)

Furthermore the induced metric (gij)Gω

h : DGω ×DGω →R is defined onDGω and at every
point h ∈ Gω makes X1, X2, X3 orthonormal.
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Finally, the associated sub-Riemannian structure with frequency ω is written as the triple

(
Gω,DGω , (gij)Gω

h
)
. (23)

3 Horizontal integral curves
The lifting mechanism leaves each lifted point isolated from each other since there is no
connection between the lifted points. Horizontal vector fields endow the model with an
integration mechanism that provides an integrated form of the local feature vectors ob-
tained from the lifted image at each point on M.

Once a simple cell is stimulated, its activation propagates between the simple cells along
certain patterns, which can be considered as the integrated forms of the local feature vec-
tors. This propagation machinery is closely related to the association fields [43], which
are the neural connectivity patterns between the simple cells residing in different hyper-
columns (long-range horizontal connections) within V1. The association fields coincide
with the anisotropic layout of the long-range horizontal connections at the psychophysi-
cal level. In the classical framework of [25], those association fields were modeled as the
horizontal integral curves of SE(2). We follow a similar approach and propose to model
the association fields in our model framework as the horizontal integral curves associ-
ated with the five-dimensional sub-Riemannian geometry of M. We conjecture that those
horizontal integral curves coincide with the long-range horizontal connections between
orientation, frequency, and phase selective simple cells in V1.

We denote a time interval by I = [0, T] with 0 < T < ∞ and then consider a horizontal
integral curve (q1, q2, θ ,ω,φ) = γ : I → M associated with the horizontal vector fields
given in (12) and starting from an initial point α̂ = (q̂1, q̂2, θ̂ , ω̂, φ̂). Let us denote the velocity
of γ by γ ′. At each time t ∈ I the velocity is a vector γ ′(t) ∈ span(X1, X2, X3, X4)(γ (t)) at
γ (t) = (q1(t), q2(t), θ (t),ω(t),φ(t)) ∈M. To compute the horizontal integral curves, we first
consider the vector field γ ′ given by

γ ′(t) = X
(
γ (t)

)
= (c1X1 + c2X2 + c3X3 + c4X4)

(
γ (t)

)
, t ∈ I , (24)

with coefficients ci (which are not necessarily constants), i ∈ {1, 2, 3, 4}. Then we can write
each component of γ ′(t) as follows:

q′
1(t) = c1 cos

(
θ (t)

)
– c3 sin

(
θ (t)

)
,

q′
2(t) = c1 sin

(
θ (t)

)
+ c3 cos

(
θ (t)

)
,

θ ′(t) = c2,

ω′(t) = c4,

φ′(t) = c3ω(t).

(25)

In the case where the coefficients ci are real constants and c2 �= 0, we solve the system
of ordinary differential equations (25) of t with initial condition α̂ and find the following
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solution:

q1(t) = q̂1 +
1
c2

(
–c3 cos(θ̂ ) + c3 cos(c2t + θ̂ ) – c1 sin(θ̂ ) + c1 sin(c2t + θ̂ )

)
,

q2(t) = q̂2 +
1
c2

(
c1 cos(θ̂ ) – c1 cos(c2t + θ̂ ) – c3 sin(θ̂ ) + c3 sin(c2t + θ̂ )

)
,

θ (t) = c2t + θ̂ ,

ω(t) = c4t + ω̂,

φ(t) =
1
2
(
c3c4t2 + 2tc3ω̂ + 2φ̂

)
.

(26)

If c2 = 0, then the solution becomes

q1(t) = q̂1 + t
(
c1 cos(θ̂ ) – c3 sin(θ̂ )

)
,

q2(t) = q̂2 + t
(
c3 cos(θ̂ ) + c1 sin(θ̂ )

)
,

θ (t) = θ̂ ,

ω(t) = c4t + ω̂,

φ(t) =
1
2
(
c3c4t2 + 2tc3ω̂ + 2φ̂

)
.

(27)

Note that (26) and (27) describe a family of horizontal integral curves described by the
horizontal distribution

DM =
⋃

ω∈R+

DGω = span(X1, X2, X3, X4).

We are interested rather in two specific subfamilies corresponding to the horizontal vector
fields that reside in one of the two orthogonal DM

α subspaces defined at every point α =
(q, θ ,ω,φ) ∈M as

S1DM
α = span(X1, X2)(α), S2DM

α = span(X3, X4)(α), (28)

satisfying

DM
α = S1DM

α ⊕ S2DM
α . (29)

Figure 1 gives an illustration of the orthogonal layout of S1DM
α and S2DM

α at points α on
an orientation fiber, that is, on a horizontal integral curve along X1 + X2 corresponding
to some fixed ω and φ. See also Fig. 2, where the integral curves along the vector fields
X1 + c2X2 and X3 + c4X4 with varied c2 and c4 values, respectively, are presented.

We remark that S1DM
α is the horizontal tangent space T(q,θ )SE(2) of SE(2) at the point α

once the frequency ω and phase φ are fixed. In other words, at each point α = (q, θ ,ω,φ)
with ω and φ fixed on M, we find the submanifold SE(2), which is the classical sub-
Riemannian geometry corresponding to the model given in [25]. This property allows the
simple cell activity to be propagated in each subspace corresponding to a frequency-phase
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Figure 1 An integral curve along the vector field X1 + X2. It represents an orientation fiber once ω and φ are
fixed. The tangent planes spanned by X1, X2 (left) and X3, X4 (right) are shown at six points on the curve

Figure 2 Integral curve fans corresponding to X1 + c2X2 (left) and X3 + c4X4 (right) where c2 and c4 are varied,
respectively

pair separately, and it will be important for image enhancement applications employing
our model framework.

Finally, we note that the notion of horizontal curves is mathematically more general
than that we consider in our model framework. It refers to the integral curves that are
everywhere tangent to the horizontal tangent space. Therefore the coefficients may be
time varying as well.

4 Enhancement
Image enhancement refers to smoothing a given input image by reducing the noise and
at the same time preserving the geometric structures (edges, corners, textures, etc.). We
perform our image enhancement procedure on the output responses instead of those on
the input image. Since the output responses encode the local feature values of orientation,
frequency, and phase, this allows us to exploit the additional information obtained from
those features. Our enhancement procedure is based on an iterative Laplace–Beltrami
procedure on the simple cell output responses in the five-dimensional sub-Riemannian
geometry M, and it results in a mean curvature flow in the geometry.
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4.1 Laplace–Beltrami procedure
An anisotropic metric on the space M of simple cell output responses defines the sub-
Riemannian Laplacian in the sub-Riemannian space generated by the simple cells:

�0u =
4∑

i=1

ciXiXiu, (30)

where the coefficients ci are nonnegative constants representing the weights of the second-
order horizontal vector fields given in (12). The weights are used to adjust the operator to
the sub-Riemannian homogeneity of M. They are particularly important in the discrete
case, where different dimensions of the space need not necessarily be sampled in the same
way.

It has been proved by Franceschiello et al. [46] that the output induces a metric on the
space of the model geometry proposed in [25] and the metric elicits certain visual illusions.
Franceschiello et al. [46] used a simplified diagonal metric. On the other hand, following
the approach of Kimmel et al. [64, 65], we choose the metric induced by the output OI(q, z)
on M and use a simplified version of this metric for applications.

The metric (gij) induced by the output responses is defined as follows.

Definition 1

(gij) =

⎛
⎜⎜⎜⎝

1 + c1(X1u)2 √c1c2X1uX2u √c1c3X1uX3u √c1c4X1uX4u√c1c2X2uX1u 1 + c2(X2u)2 √c2c3X2uX3u √c2c4X2uX4u√c1c3X3uX1u √c2c3X3uX2u 1 + c3(X3u)2 √c3c4X3uX4u√c1c4X4uX1u √c2c4X4uX2u √c3c4X4uX3u 1 + c4(X4u)2

⎞
⎟⎟⎟⎠ (31)

with constants c1, c2, c3, c4 ≥ 0.

We denote the inverse metric by (gij) and its elements by gij.
The mean curvature flow provides an adapted enhancement to the surface underlying

the image function I since the flow is restricted to the evolving level sets of the image.
The Laplace–Beltrami procedure is a generalization of Laplacian from flat spaces to man-
ifolds. It restricts the diffusion of a function to the manifold on which the function is de-
fined thanks to the metric given in Definition 1. Metrics of type (1) are commonly used
on Riemannian manifolds where the induced metric is found in terms of the vector fields
spanning the whole tangent space at each point on the manifold. In the sub-Riemannian
setting in our model, the metric is composed by the horizontal vector fields. Those vec-
tor fields span the horizontal subset of the whole tangent space at each point. Therefore
the model geometry is degenerate. Moreover, the horizontal vector fields are noncom-
mutative, and this results in some diffusion taking place in orthogonal directions to the
manifold. Such a diffusion should be kept small; otherwise, it might result in excessive
blurring, which destroys contextual information (contours, object boundaries, etc.) in the
image. This is one of the reasons for us to use a reduced version of the metric given in
Definition 1. Yet, the noncommutative nature of the vector fields provides the full con-
nectivity of the geometry through the horizontal integral curves due to the Hörmander
condition and Chow–Rashevski theorem.
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The coefficients c1, c2, c3, c4 can be chosen suitably to determine the amount of diffusion
in the orthogonal direction. The Laplace–Beltrami operator is written as

Lu =
4∑

i,j=1

1√
det(gij)

Xi
(√

det(gij)gijXju
)
, (32)

where det(gij) is the determinant of the induced metric. The Laplace–Beltrami operator
can be considered as the linearization of the motion by curvature explained in [6]. It per-
forms a more adaptive (and restricted) diffusion to the surface in comparison to the hori-
zontal diffusion characterized by (30).

For practical reasons, we will use the Laplace–Beltrami process with operator (32) as-
sociated with a reduced version of the metric provided in Definition 1. It is equivalent
to consider each frequency channel as a separate space. It provides the freedom to work
on a Laplace–Beltrami procedure separately in each frequency subspace differently from
a nonlinear diffusion in a single-frequency channel. We refer to [24] for an example of a
single-frequency Laplace–Beltrami procedure restricted to the sub-Riemannian metric of
SE(2) and its application to image inpainting and enhancement. In addition to a Laplace–
Beltrami procedure, other procedures based on total-variation flows in sub-Riemannian
geometries for successful image processing can be found in [22, 24]. Finally, we address
the reader to [39] for some generalizations of total-variation and mean curvature flows to
SE(d) �R

3
�Sd–1 and their applications in the higher-dimensional sub-Riemannian space

of SE(3).
The evolution equation for the enhancement via a sub-Riemannian Laplace–Beltrami

procedure is written as

⎧⎨
⎩

∂tu = Lu,

u|t=0 = OI(q, p),
(33)

for all (q, p) ∈M and 0 < t ≤ T . Here the operator L depends on the metric evolving at each
time instant due to the evolving output responses. This evolution equation models the
neural activity propagation between simple cells along the neural connections modeled
via the horizontal connectivity in our framework.

4.1.1 Reduced equation
It is possible to perform the Laplace–Beltrami procedure in each frequency and phase
subspace separately in a reduced framework. In that case, we choose c1, c2 > 0 and c3 = c4 =
0. In this way, we apply the evolution equation on surfaces in each frequency and phase
subspace, that is, on each SE(2)(ω,φ) manifold, which is the submanifold with elements (q, θ )
representing the points (q, θ ,ω,φ) ∈ M with fixed ω and φ. In this framework the metric
(gij) boils down to

(gij) =

(
1 + c1(X1u)2 √c1c2X1uX2u√c1c2X2uX1u 1 + c2(X2u)2

)
. (34)

We choose c1 and c2 suitably by regarding the fixed ω values.
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There are two reasons for employing the reduced setting. First, we would like to avoid,
by choosing c3 = 0, excessive diffusion in the direction of the vector field – sin θ∂x +cos θ∂y,
which is the first part of X3. We already have sufficient diffusion in this direction due to the
commutator [X1, X2]. Direct application of X3 introduces excessive diffusion in orthogo-
nal directions to the object boundaries, which is not desired since it may destroy object
boundaries and contour structures in the input image. Moreover, the diffusion in phase
results in multiplication of the evolving output responses by a constant since (see (1) and
(9))

∂sOI(q, z) = vOI(q, z),

where v = 1 for all output responses (see [38]). Second, we eliminate the use of X4 by fix-
ing c4 = 0 to reduce the computational load. We perform in this way a Laplace–Beltrami
procedure in each frequency channel by avoiding any interaction between different fre-
quency channels. It is an approximation of the exact flow. Yet, it captures the frequency
content of the input image. This provides a diffusion where the dominant frequency com-
ponents determine the resultant image in an analogous way to the multiscale left-invariant
diffusion procedures presented in [36, 37, 47]. It is thanks to the lifting representing dom-
inant frequency components with large output response values in M. This reduced ver-
sion results in multiple Laplace–Beltrami procedures applied in the three-dimensional
sub-Riemannian geometry SE(2)(ω,φ) at each frequency ω instead of the five-dimensional
sub-Riemannian geometry M. Finally, the vector fields X3 and X4 play a role rather in
image inpainting (where the diffusion in X1 and X2 directions is not desired) than image
enhancement.

Although in the present study we provide no results related to the image inpainting task
of the Laplace–Beltrami procedure, we would like to mention a few related points. The
use of the vector field X3 becomes important in texture image inpainting. In that case, on
the contrary to the enhancement, we would like to have information flow in orthogonal
directions to the object boundaries and reduce the flow along the boundaries. In that case,
since also the spatial frequency of the texture patterns have a great importance, we would
like to keep the track of the frequency and phase of the evolving output responses. This
requires fixing c1 and c2 to zero instead of c3 and c4 in that case.

4.2 Implementation of the algorithm
4.2.1 The algorithm
We present the steps of our algorithm based on (33) by starting from the initial image
function I : R2 � M →R at q ∈ M.

1. Lift the image I(q) to OI(q, p) by using (9). Choose this output as the initial value u|t=0

of the solution to (33) at time t = 0.
2. Denote the discrete step in time by �t. At the kth iteration (i.e., t = k�t), compute

the result of the discretized version L̄ (of the operator L) applied on the current value
of u at time instant t as L̄u(t) and update the solution and the value of u(t) by using
(33) as follows:

u(t + �t) = u(t) + �tL̄u(t).

3. Repeat step 2 until the final time T = (number of iterations) × �t is achieved.
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4. Apply the inverse Gabor transform given by (10) on u(T).

4.2.2 Discrete simple cell output responses
We discretize the image function I on a uniform spatial grid as

I[i, j] = I(i�x, j�y) (35)

with i, j ∈ {1, 2, . . . , N} (N is the number of samples in spatial dimensions) and �x,�y ∈
R

+ denoting the pixel width (in general, we use square images as input image, and we
fix �x = �y = 1 in terms of pixel unit). Furthermore, the discretized simple cell re-
sponse OI(q1,i, q2,j, θk ,ωl,φm) of I[i, j] on uniform orientation, frequency, and phase grids
with points θk = k�θ , ωl = l�ω, and φm = m�s (k ∈ {1, 2, . . . , K}, l ∈ {1, 2, . . . , L}, m ∈
{1, 2, . . . , M} (where we denote the number of samples in the orientation dimension by K ,
in the frequency dimension by L, and in the phase dimension by M, and the distances be-
tween adjacent samples in the orientation dimension by �θ , in the frequency dimensions
by �ω, and in the phase dimension by �s) is denoted by

OI[i, j, k, l, m] = OI(q1,i, q2,j, θk ,ωl,φm), (36)

where q1,i = i�x and q2,j = j�y.
In this case the discrete version of the Gabor function given by (8) is written as

Ψ[i,j,k,l,m][ĩ, j̃, ñ] = Ψ(q1,i ,q2,j ,θk ,ωl ,φm)(x̃ĩ, ỹj̃, s̃ñ), (37)

where ĩ, j̃ ∈ {1, 2, . . . , Ñ}, k̃ ∈ {1, 2, . . . , K̃}, ñ ∈ {1, 2, . . . , M̃}. Then we fix sñ = 0 (i.e., ñ = 0)
in the reduced framework (which was explained in Sect. 4.1.1) and write the discrete cell
response obtained from the image I[i, j] via the discrete Gabor transform as follows:

OI[i, j, k, l, m] =
∑

ĩ,j̃

Ψ[i,j,k,l,m][ĩ, j̃, 0]I[ĩ, j̃]. (38)

The time correspondence in the discrete case is represented by the time index hp, where
the time interval is discretized by P ∈ N

+ samples, and hp represents the time instant hp =
p�t with �t satisfying T = P�t and p ∈ {1, 2, . . . , P}. In this case the discretized Gabor
coefficient is written as

OI,hp [i, j, k, l, m] = OI,hp (q1,i, q2,j, θk ,ωl,φm) = u(p�t). (39)

4.2.3 Explicit scheme with finite differences
Here we provide the discrete scheme related to the numerical approximation of the algo-
rithm. We propose an explicit finite difference scheme to iterate the evolution equation
(33). The reason for choosing an explicit scheme is that an implicit scheme requires large
memory in our four-dimensional (reduced) anisotropic framework.

We obtain the explicit scheme first by writing (33) in terms of the horizontal vector fields
X1, X2, X3, and X4 given in (12). Then following Unser [102] and Franken [49], we imple-
ment the horizontal vector fields by using central finite differences that are interpolated
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by B-splines on a uniform spatial sample grid. Note that B-spline interpolation is required
since not all horizontal vectors are aligned with the spatial sample grid.

The interpolation is achieved by determining the coefficients b(i, j) in

s(x, y) =
∑
i,j∈Z

b(i, j)ρ(x – i, y – j) (40)

in such a way that the spline polynomial s(x, y) with the B-spline basis functions ρ(x –
i, y – j) coincides with the horizontal derivatives of the output OI at the grid points. For
example, in the case of the first horizontal derivative X1OI , the condition s(i�x, j�y) =
X1OI[i, j, k, l, m] must hold if we consider a discrete output as explained in Sect. 4.2.2. We
refer to the explanations of Unser [102] for details.

We fix �x = �y = 1 and define

ek
ξ :=

(
�x cos(θk),�y sin(θk)

)
,

ek
η :=

(
–�x sin(θk),�y cos(θk)

)
.

(41)

See Fig. 3 for an illustration of those vectors. We write the central finite differences of the
first-order horizontal derivatives as

X1OI,hp [i, j, k, l, m] ≈ 1
2�x

(
OI,hp

(
q + ek

ξ , θk ,ωl,φm
)

– OI,hp
(
q – ek

ξ , θk ,ωl,φm
))

,

X2OI,hp [i, j, k, l, m] ≈ 1
2�θ

(
OI,hp (q, θk+1,ωl,φm) – OI,hp (q, θk–1,ωl,φm)

)
,

(42)

and of the second-order horizontal derivatives we use as

X1X1OI,hp [i, j, k, l, m] ≈ 1
(�x)2

(
OI,hp

(
q + ek

ξ , θk ,ωl,φm
)

– 2OI,hp (q, θk ,ωl,φm)

+ OI,hp
(
q – ek

ξ , θk ,ωl,φm
))

,

X2X2OI,hp [i, j, k, l, m] ≈ 1
(�θ )2

(
OI,hp (q, θk+1,ωl,φm) – 2OI,hp (q, θk ,ωl,φm)

+ OI,hp (q, θk–1,ωl,φm)
)
.

(43)

Then the numerical iteration (discretized from step 2 of the algorithm provided in
Sect. 4.2.1) with a time step �t > 0 is written as follows:

OI,hp+1 [i, j, k, l, m] = OI,hp+1 (qi,1, qj,2, θk ,ωl,φm)

= OI,hp (qi,1, qj,2, θk ,ωl,φm) + �tL̄OI,hp (qi,1, qj,2, θk ,ωl,φm),
(44)

where L̄ represents the discretized version of L given in (32) (with coefficients c = {c1 >
0, c2 > 0, c3 = 0, c4 = 0}) in terms of the central finite differences.

4.2.4 Stability analysis
We must consider two points for the stability of our finite discrete scheme:

1. Suitable choice of the time step size �t,
2. Preserving the space homogeneity during the Laplace–Beltrami evolution.



Baspinar et al. Journal of Mathematical Neuroscience           (2020) 10:11 Page 21 of 31

Figure 3 (Adapted from Franken [48]) Illustration of the vectors ekξ and ekη at (0, 0) with �x =�y = 1

The stability analysis for the SE(2) case is explained in [36, 47, 49], and [39] based on
Gershgorin theory. We adapt the analysis to our reduced framework and find the upper
limit for the time step �t as

�t ≤ 4s2
θ

c1
c2

1 + 2
√

2sθ

√
c1
c2

+ 3s2
θ

c1
c2

– |1 – s2
θ

c1
c2

|
, (45)

where sθ = 2π
K is the sampling distance between adjacent orientation samples. In our ex-

periments the worst case corresponds to c1/c2 = 0.25. In that case, �t = 0.1 ≤ 0.87, which
is in accordance with the upper bound given in (45).

The second point is due to that we sample each dimension by using a different number
of samples. To perform sub-Riemannian diffusion by regarding the sample unit coherency,
we must choose the parameters c1, c2 of the operator L in such a way that the space ho-
mogeneity of M is preserved. For this reason, we choose c1 = 1 and c2 = β2.

4.3 Experiments
We first show the effects of the numbers of frequency and orientation samples. Then we
present our simulation results together with the results presented in [64] and [47] for a
comparison. The method in [64] lifts a two-dimensional image to a four-dimensional ge-
ometry, where the orientation and scale of the image is represented explicitly, and then it
applies on the lifted image a multiscale Laplace–Beltrami procedure with a Riemannian
metric. In [47] the two-dimensional image is lifted to the sub-Riemannian geometry of
SE(2) via a so-called cake wavelet transform. In the lifted geometry the orientation cor-
responding to each point on the two-dimensional image is represented explicitly. Then
a left-invariant coherence-enhancing and crossing-preserving diffusion (which is named
CED-OS in [47]) is applied on the lifted image. It is a nonlinear adaptive diffusion proce-
dure, which uses the local features curvature, deviation from horizontality, and orientation
confidence.

4.3.1 Gabor transform
The delicate point related to the lifting and inversion process is that the Gabor functions
Ψ(q,θ ,ω,φ)(x, y, s) must be sampled (in orientation θ , frequency ω, and phase φ dimensions)
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Figure 4 Examples of reconstructed images via transform and inverse transform procedure with Gabor
functions, and the effect of number of orientation samples

Figure 5 Examples of the Gabor filters used in the lifting procedure of Fig. 4. Top: Even parts of the Gabor
functions with frequencies ω = 2, 3. Bottom: Odd parts of the same Gabor functions

in such a way that they cover all the spectral domain (i.e., they must fulfill the Plancherel
formula [85]).

We present some results on the Gabor transform-inverse transform procedure asso-
ciated with our setting and the effects of the number of samples in the orientation di-
mension in Fig. 4. We use the Gabor filter banks obtained from (6) and (8) with scale
value of 2 pixels (the total filter size is 24 pixels) to lift the test images (see Fig. 5 for
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Figure 6 Top: Real part of a Gabor function (left) and its rotated version (middle right) together with their
counterparts in the spectral domain in the same order (right and middle right). Orange arrows highlight the
rotation angle. Middle: Set of rotated Gabor functions (in the spectral domain) corresponding to the
frequency values ω = 1, 2, 3 in the same order from left to right. Bottom: The set of rotated Gabor functions in
the spectral domain where the number of orientation samples are 8 and 16 rotation angles

some examples of those Gabor functions). On the top row, we see the results related
to an artificial 64 × 64 test image (left), and at the bottom, we see the results related
to a real 64 × 64 test image (left) taken from Kimmel et al. [64] We see in the mid-
dle and right columns those two images now transformed and then inverse transformed
with different numbers of orientation samples. We sample the space at frequencies ω ∈
{0.25, 0.5, . . . , 1.25, 1.375, . . . , 2.25, 2.3125, . . . , 3.25}, orientations θ ∈ { 2π

32 , 4π
32 , . . . , 62π

32 } (mid-
dle) and θ ∈ {0, 2π

8 , . . . , 14π
8 } (right), and phases φ ∈ {0, π

8 , . . . , 15π
8 }. We observe that the

decrease in the number of orientation samples reduces the quality of the transformation
procedure noticeably in both test images.

Discrete orientation and frequency sampling of the Gabor functions used in the Gabor
transform must be done in such a way that the Fourier transform of the filter bank must
cover the whole spectral domain (due to the Parseval–Plancherel identity [81, 85]). This is
essential for the reconstructability (see (10)) of the transformed signal. See Fig. 6 for the ef-
fect of discretization in orientation and frequency on the coverage of the Gabor transform
in the spectral domain.

Discrete orientation and frequency sampling of the Gabor functions used in the Gabor
transform must be done in such a way that the Fourier transform of the filter bank must
cover the whole spectral domain (due to the Parseval–Plancherel identity [81, 85]). This
is essential for the reconstructability (see (10)) of the transformed signal. See Fig. 6, where
we show the effects of changing frequency and orientation of the Gabor functions and
their effects on the spectral domain coverage. As the number of frequency and orientation



Baspinar et al. Journal of Mathematical Neuroscience           (2020) 10:11 Page 24 of 31

Figure 7 Top: The original 64× 64 image (left) and the noisy version (right). Bottom: The results of the
Laplace–Beltrami procedure

samples decreases, the coverage becomes weaker, resulting in a degenerate reconstruction
from the Gabor transform (see Figs. 4 and 11).

4.3.2 Enhancement
The lifting procedure is performed by the Gabor filters of the type given by (6) and (8)
with scale = 2 pixels (the filter size is 12 × scale = 24 pixels) and time step �t = 0.1 in the
experiments.

In Fig. 7, we see the results of the enhancement procedure applied on an artificially
produced 64 × 64 grayscale test image with white noise. The lifting is achieved with fre-
quency samples ω ∈ {0.25, 0.5, . . . , 1, 1.125, . . . , 2.25}, phase samples φ = {0, π

8 , . . . , π
2 }, and

orientation samples θ ∈ {0, 2π
16 , 4π

16 , . . . , 30π
16 }. Note that number of orientations = 16, and

thus β = number of orientations
image size = 0.25. To fulfill physical unit coherency, we choose c1 = 1 and

c2 = β2. The experiments are done with 15 and 30 iterations.
We continue with Fig. 8, where we apply our procedure on a real 128 × 128 image taken

from Kimmel et al. [64], who use a multiscale Laplace–Beltrami procedure with fixed fre-
quency. We use the same phase and orientation samples as in the case of Fig. 7, but we em-
ploy the frequency samples ω ∈ {0.25, 0.5, . . . , 1, 1.125, . . . , 2.25, 2.3125, . . . , 3} for the lifting.
Here the coefficients c1, c2 are chosen as in the case of Fig. 7. We perform the experiments
with 30 and 50 iterations.

In Fig. 9, we show the results related to our Laplace–Beltrami procedure applied on an-
other real image, with dimensions 64 × 64, taken from Kimmel et al. [64]. We use the
same sampling parameters as in the previous case of Fig. 8 for the lifting. We perform our
Laplace–Beltrami procedure with 6 and 15 iterations. The results are presented together
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Figure 8 Top: The initial image taken from [64]. Middle: The results obtained by Kimmel et al. [64]. Bottom:
The results of our Laplace–Beltrami procedure

with the multiscale Laplace–Beltrami results obtained by Kimmel et al. [64] for a qual-
itative comparison. In Figs. 8 and 9, we highlight with a red dashed curve a few details
related to contextual structures, particularly related to the frequency feature: Our algo-
rithm (bottom right) takes advantage of different frequencies present in the images and
therefore can preserve texture structures and preserves these structures better than that
of Kimmel et al. [64] (middle right).

We compare our technique to the enhancement method provided in [47], where non-
linear adaptivity mechanisms are combined with a left-invariant diffusion procedure per-
forming in the sub-Riemannian geometry of SE(2). In Fig. 10, we provide the results
of our algorithm applied with different numbers of iterations on a 256 × 256 grayscale
image taken from [47]. We use the Gabor filter banks obtained from (6) and (8) with
scale value of 2 pixels (total filter size is 48 pixels) to lift the test images. We sample
the space at frequencies ω ∈ {1.45, 1.51, 1.58, 1.66, 1.74, 1.82, 1.91, 2, 2.09, 2.19} and orien-
tations θ ∈ { 2π

16 , 4π
16 , . . . , 32π

16 }. We use c1 = 1 and c2 = β2 as before and choose the time step
�t = 0.1. Here we note that CED-OS algorithm presented in [47] performs an adaptive
diffusion in the three-dimensional sub-Riemannian geometry where only the orientation
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Figure 9 Top: The initial image taken from [65]. Middle: The results obtained by Kimmel et al. [65]. Bottom:
The results of our Laplace–Beltrami procedure

feature is represented explicitly. Despite the fact that it does not perform a multiscale or
multifrequency wavelet transform, it provides good enhancement results thanks to the
nonlinear adaptation mechanisms taking into account the local features curvature, devi-
ation from horizontality, and orientation confidence. Our results are comparable to those
of CED-OS when such nonlinear adaptive mechanisms are not used (see the bottom left
and bottom right in comparison to the middle left of Fig. 10). At this point, we remark
that the reduced model framework is flexible in the sense that it contains already SE(2)
at each frequency separately. Hence SE(2) can be considered as a particular case of our
model framework. There is no obstacle to employing nonlinear operators in this setting
(as long as they are adequately used in SE(2)) as in the case of CED-OS algorithm explained
in [47] or as in the case of diffusion-concentration procedure presented in [25]. We can
choose the desired frequency channel in our model framework and apply such nonlinear
algorithms in the corresponding SE(2) to that frequency channel.

Finally, we see in Fig. 11 a comparison of our multifrequency procedure to its single-
frequency counterpart. The procedure and simulation parameters are the same as given
in the case of Fig. 10. We observe that the single-frequency Laplace–Beltrami procedure
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Figure 10 Top: The original image taken from [47] (left); the results obtained by our method via 75 and 200
iterations (middle and right, respectively). Bottom: The results of CED-OS taken from [47]. The result with
deviation from horizontality and without deviation from horizontality are given on the left and right,
respectively

results in a lower quality enhancement in comparison to the multifrequency Laplace–
Beltrami procedure.

5 Conclusion
In this paper, we have shown that the multifeature selective simple cells and the associ-
ated V1 functional geometry can be modeled starting from a suitably chosen receptive
profile, which in our framewor kwas the extended Gabor function. We have derived the
whole model sub-Riemannian geometry and the corresponding horizontal connectivity
directly from the receptive profile. In addition to this construction of the model, we have
also provided an image processing application employing our model framework, image
enhancement via a sub-Riemannian Laplace–Beltrami procedure. We have provided the
algorithm and its discretization explicitly as well as some experimental results. We have
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Figure 11 Left: The result of our multifrequency Laplace–Beltrami procedure applied on an image taken from
[47] (see also Fig. 10). Middle: The result of the single-frequency Laplace–Beltrami procedure with ω = 1.91.
Right: The result of the single frequency Laplace–Beltrami procedure with ω = 2.19

also mentioned that, in fact, the enhancement procedure could be switched to an image
inpainting procedure via a modification of the reduced metric used for the enhancement.

As far as the complexity and the richness of the visual semantics are considered, it is
natural to think that the visual system samples all features once it is given a visual input
to find a unique correspondence between the visual input and output. The necessity of
handling such a variety of images results in a suitable compromise in rendering the visual
features. This compromise manifests itself as the visual system being restricted to a psy-
chophysically and neurophysiologically relevant architecture. As such, the visual system
is limited in highly specialized tasks, which are used in several domains such as medical
image analysis, image processing, radar imaging, and computer and robotic vision.

Our model is not particularly for image processing. It is not motivated by image pro-
cessing problems and it should not be interpreted as an image processing model. Firstly,
image processing models are specialized on specific visual tasks, which are required gen-
erally for a certain category of images (medical images, radar images, etc.). They are not
necessarily restricted to psychophysical and neurophysiological findings providing infor-
mation about the architecture of the visual system. Secondly, they can make use of several
nonlinear mechanisms, which need not be motivated by any biological reasoning. Our
model is motivated biologically, and it relies on the psychophysically and neurophysio-
logically relevant cortical architecture. It is a phenomenological model, and it provides
a geometrical explanation for the cortical architecture, which is compatible with the ar-
chitecture. Finally, the application of the model to image enhancement was provided to
show effects of the use of spatial frequency by comparing it qualitatively to some other
image enhancement algorithms.
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