
HAL Id: hal-03091395
https://hal.science/hal-03091395

Preprint submitted on 31 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantitative Corner Case Feature Analysis of Hybrid
Automata with ForFET-SMT

Antonio Anastasio Bruto da Costa, Pallab Dasgupta, Nikolaos Kekatos

To cite this version:
Antonio Anastasio Bruto da Costa, Pallab Dasgupta, Nikolaos Kekatos. Quantitative Corner Case
Feature Analysis of Hybrid Automata with ForFET-SMT. 2020. �hal-03091395�

https://hal.science/hal-03091395
https://hal.archives-ouvertes.fr


Quantitative Corner Case Feature Analysis of

Hybrid Automata with ForFET
SMT

Antonio Anastasio Bruto da Costa1, Pallab Dasgupta1, and Nikolaos Kekatos2

1 Dept. of Comp. Sci. and Engg., Indian Institute of Technology Kharagpur, India
2 Verimag, Univ. Grenoble Alpes, France

Abstract. The analysis and verification of hybrid automata (HA) mod-
els against rich formal properties can be a challenging task. Existing
methods and tools can mainly reason whether a given property is sat-
isfied or violated. However, such qualitative answers might not provide
sufficient information about the model behaviors. This paper presents
the ForFETSMT tool which can be used to reason quantitatively about
such properties. It employs feature automata and can evaluate quanti-
tative property corners of HA. ForFETSMT uses two third-party formal
verification tools as its backbone: the SpaceEx reachability tool and the
SMT solver dReach/dReal. Herein, we describe the design and imple-
mentation of ForFETSMT and present its functionalities and modules.
To improve the usability of the tool for non-expert users, we also provide
a list of quantitative property templates.

1 Introduction
Formal verification techniques can provide guarantees of correctness and perfor-
mance for hybrid and cyber-physical systems (CPS). There are several robust
verification tools for CPS, e.g. SpaceEx [12], dReal/dReach [13] and their goal
is to guarantee that specifications are satisfied through a rigorous mathemati-
cal analysis of the system. An appropriate modeling formalism for the design
of such systems is Hybrid Automata [2] (HA). HA can exhibit nondeterministic
behaviors and have been used to model control systems and analog mixed-signal
(AMS) circuit designs [4, 9].

Despite the progress made on formal verification algorithms, it is not easy
to formalize specifications of hybrid automata such that they can be verified
automatically. One main reason concerns the semantic mismatch between in-
dustrial requirements and formal requirements. Typically, formal specifications
are expressed in a formal language, like temporal logic, whereas industrial re-
quirements are described in natural language. Much literature exists on tem-
poral logic especially on Linear Temporal Logic (LTL) [19]. Languages such as
MITL [3], STL [17] and its extensions such as xSTL [18] have been used for
specifying specifications involving continuous signals. Robustness measures have
also been defined over properties written in these languages [10]. Robustness
metrics defined for an STL/MITL property measure the distance of runs of the
system from unsafe regions defined by the property. These metrics may be lever-
aged to express quantitative measures such as overshoot, settling time, or other



timing and value quantities. The parameterized version of STL (PSTL) allows
temporal and predicate constants to be parameterized, transforming the quanti-
tative analysis into parameter learning. These languages are primarily designed
to express specification correctness, and it can be tedious to use them to express
quantitative measures. Unlike temporal logics like MITL, STL (or PSTL), the
language of features [1] is designed to explicitly specify quantitative measures.
The quantity is expressed as a computation resulting from matching a specified
behaviour.

While standard analysis tools [12] support answering reachability questions,
they do not implicitly handle features. This is typically overcome by constructing
monitor automata for the property and taking its product with the HA [11,
15]. The resulting automaton can be large resulting in long analysis times and
scalability issues. ForFET [6] is a tool for computing an over-approximation
for features, where the evaluation of a feature, written in the Feature Indented
Assertion (FIA) language, over runs of a HA is automated.

Features assume urgent match semantics. This is reflected in the product
construction of a feature monitor automaton and HA. However, specifications
contain mixed urgent and non-urgent semantics. For instance, reaction-time, de-
fined as "the time elapse, after q is true, from a time-point when p becomes false
to the first time-point when s is false", contains an enabling action q, the source
from which measurement starts p (non-urgent) which can occur multiple times
in the trace, and the next s (urgent). Furthermore, developing formal specifica-
tions requires expertise and investment of time and effort. Having a library of
standard feature specification templates would facilitate formulating quantities
to evaluate the design. In a quantitative analysis, knowledge of the stimulus that
produces the best and worst-case quantity (minimum or maximum) provides in-
sight into the system and on how to modify the design to more robustly adhere
to specifications.

The tool ForFETSMT addresses the needs described above, extending For-
FET, with the following:
– Feature corner analysis using SMT.
– Support for parameterized features and an extended language for features

having mixed urgent and non-urgent semantics.
– Library of standard feature specification patterns.
– Usability and support: i) two translators, written in Matlab and Octave,

for converting models from SpaceEx formalism to ForFET’s modeling lan-
guage, ii) richer interaction environment, iii) support for custom paths for
workspace, models, and third-party tools.

2 ForFETSMT Tool Design
ForFETSMT is a corner case feature evaluation tool3 for hybrid automata. Fea-
tures are quantitative measures computed over runs of a HA, providing more
information than properties by explicitly indicating the robustness of the sys-
tem in the context of a design quantity. Additionally, ForFETSMT can provide

3Available at the repository https://github.com/antoniobruto/ForFET2



Model
Library

Feature
Library

Model Transformation

Phase

Choice

of Model

Choice

of Feature

Model Parameters

New Design

Model Feature Set

ForFET

H

F

Parameters

Update Model Meets

Spec?

[Fmin , Fmax]
Feature Range

Designer Intervention (Manual)

Extreme
Trace

F⇤
min

SMT
Search

Tracemin

F⇤
max

Tracemax

ForFET
CORE

ANALYSIS

FEATURE

CASE

CORNER

dReach

dReal
+

Fig. 1: Methodology Outline – Feature Corner Case Analysis
a concrete trace for each corner of the quantity. ForFETSMT is developed in
C and uses reachability analysis tool SpaceEx [12], model language translator
Hyst [5] and SMT analysis tool dReal [13]. The tool ForFETSMT is outlined in
Figure 1.
2.1 Translators from SpaceEx to HASLAC

The SpaceEx modeling language has become the quasi-standard interchange
format for defining and describing HA in the formal verification community [4].
It offers a graphical user interface, respects the SX grammar and the models are
written as XML files [8]. ForFETSMT accepts HA models written in HASLAC.
To bridge this mismatch and facilitate the use of ForFETSMT with existing
SpaceEx models and HA benchmarks, we provide two translators, written in
MATLAB and Octave respectively. The translators require a SpaceEx model
(necessary) and a configuration file (optional). They come with an XML parser
(partly written in Java) and perform syntactic translation while also handling
modeling differences.
2.2 Mixed Urgent/Non-Urgent Semantics

ForFET assumes urgent semantics when deciding matches of feature compo-
nents. We add the keyword first_match to the FIA syntax to explicitly indicate
urgent semantic interpretations. This enables features having mixed urgent and
non-urgent interpretations to be expressed. The usefulness of including mixed
semantics is demonstrated through the standard feature specification patterns4.
2.3 Standard Feature Specification Patterns

In [16, 14, 11], the authors provide specification templates (also called pattern
templates) to describe commonly used natural language specifications. Using
such templates could assist experts and non-experts when translating properties
into formal specifications. As such, we provide a library of feature specifications
based on the notion of standard patterns for real-time systems [16]. These fea-
tures are parameterized. For a new design, it is straightforward to generate an
instance of the feature, for which ForFETSMT automates the translation into
monitors, formally defined as feature automata. These feature automata are in-

4See attached tool manual for ForFETSMT



Feature SpaceEx/

PHAVer

dReach

1Model
(H)

Feature
(F)

Transformed
Model
(Hf )

2

3

[Fmin,Fmax]
Feature Range

Reachable
Region

Extreme Trace

Search Tool

4

Search
Loop

Update Goal

Reachable
(Trace) Not ReachableF

⇤
min F

⇤
max

Tracemin Tracemax

++

5

6
7 7

1
Construction

Product

(a) Functional Overview

Fmin FmaxF
⇤
min F

⇤
max

(b) SMT Feature Refinement

f⇤

M
2M4M

8M

W

2
W

4
W

8 W

Expand

Bisection

frfl

(c) Computing the left corner

Fig. 2: ForFETSMT : Corner Case Analysis
tegrated with the HA model under study via parallel composition and then used
for formal analysis.

ForFETSMT includes templates for standard timing features4 for invariance,
absence/manifestation, response, reaction, duration, and separation. The quan-
tities representing the feature evaluation is an indication of the behaviour of the
system. We can use this evaluation in the following two ways: (i) the condition of
“no-match" for a feature can indicate when a specification is satisfied, (ii) while
on the other hand, the upper or lower bound of the feature range can indicate
failures of a specification.

2.4 Corner Case Analysis

A functional overview of ForFETSMT is shown in Figure 2. The user should pro-
vide two inputs (step 1): a hybrid automaton model H and a feature specification
F (single or a set of features), ForFETSMT computes the product automaton
(Step 2) according to [7]. Step 3 involves using SpaceEx [12] to compute reach-
sets for the transformed model HF . This results in a feature range [fmin, fmax]
computed as an evaluation of the feature expression on the runs matching the
feature sequence-expression (Step 4). The feature range is refined iteratively
through a search using an SMT solver (Steps 4 to 7). HyST [5] converter is
used internally to translate the model Hf into an acceptable format for use with
dReach. In each interaction, called a query, between our tool and dReach, a goal
statement is constructed to direct dReach to prove the existence/non-existence
of a feature value in a given domain. Each query in Step 5 includes the model
description for Hf , a goal statement, and a maximum transition hop count K,
which is translated by dReach into SMT clauses. The response of the SMT solver
(Step 6) is unsatisfiable or a single timed trace of the hybrid automaton if sat-
isfiable. dReal generates a trace as a JSON file with time-stamped valuations
for the variables of the automaton, which is parsed to identify the feature val-
ues for the trace. The search concludes in Step 7 with a refined feature range
[f⇤

min, f
⇤
max] as well as a trace corresponding to each feature range corner value.



(a) Time to compute feature range (b) Feature range

Fig. 3: Computing features using SpaceEx and dReach/dReal in ForFETSMT

Challenges using dReal: In general, HA use urgent locations to represent
ordered discrete transformations. In a trace, dReal provides a series of indexed
time-ordered tuples representing a trace satisfying the query. In our experience,
when the model Hf contains urgent locations, dReal generates a NULL tuple
representing a visit to an urgent location. Visualization tools provided by the
authors of dReal do not support drawing traces containing a NULL tuple. To en-
able visualization for all traces generated by the tool, ForFETSMT post-processes
traces generated by dReal. It eliminates all NULL tuples and re-indexes them to
be consistent with the syntax expected by the visualization tool.

3 Tool Evaluation
In this Section, we present selected results on three case studies, i.e. a battery
charger, a cruise control, and a buck regulator. We have tested a wide variety of
features, capturing state-dependent, time-dependent, sequential-properties and
combinations of them. Some of these properties can also be encoded as control
specifications, e.g. overshoot or settling time. More details about the models,
specifications, features, and analysis results can be found in the tool manual at-
tached. Fig. 3 describes the analysis results obtained from ForFETSMT . Fig. 3a
displays the computational time when using reachability analysis and SMT solv-
ing. The feature range is computed first using SpaceEx and is then refined using
SMT. In most cases, reachability analysis and SMT require similar time to com-
pute the expected feature range. However, in models with a lot of switching like
the Buck Regulator, SMT might be more vulnerable to the state-space explosion.
For the settling time feature, the analysis timed out after 4 hours. However, the
additional computation overhead leads to tighter feature ranges. In Fig. 3b, we
present the resulting feature ranges after using both SpaceEx and dReach/dReal.

4 Conclusion
In this paper, we have presented the ForFETSMT tool, that is a formal feature
evaluation tool for hybrid automata, emphasizing on its architecture and utili-
ties. Features form a promising and practical research direction as they can be
used on top of or alongside standard monitoring and hybrid reachability tools to
provide quantitative measures about HA behaviors. ForFETSMT makes use of
the HASLAC language for writing HA models and is linked to SpaceEx reacha-
bility tool and dReal/dReach SMT solver. Using such an SMT solver to compute



features can produce concrete traces for feature corner points and lead to the
generation of tighter feature ranges.

Acknowledgement
The authors acknowledge the support of Semiconductor Research Corporation
(SRC) through task 2740.001.

References
1. Ain, A., Bruto da Costa, A., Dasgupta, P.: Feature indented assertions for analog

and mixed-signal validation. IEEE TCAD PP(99), 1–1 (2016)
2. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theoretical Computer

Science 138, 3–34 (1995)
3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM

43(1), 116–146 (Jan 1996)
4. ARCH, A.: Benchmarks for continuous and hybrid system verification (2015),

http://cps-vo.org/group/ARCH/benchmarks

5. Bak, S., et al.: HyST: A source transformation and translation tool for hybrid
automaton models. In: HSCC. ACM, Seattle, Washington (Apr 2015)

6. Bruto da Costa, A.A., Dasgupta, P.: ForFET: A Formal Feature Evaluation Tool
for Hybrid Systems. In: Proc. of ATVA. pp. 437–445 (2017)

7. Bruto da Costa, A.A., Frehse, G., Dasgupta, P.: Formal feature interpretation of
hybrid systems. IEEE TCAD 37(11), 2474–2484 (2018)

8. Cotton, S., Frehse, G., Lebeltel, O.: The spaceex modeling language (2010)
9. Dang, T., et al.: Verification of analog and mixed-signal circuits using hybrid system

techniques. In: FMCAD, pp. 21–36 (2004)
10. Deshmukh, J.V., et al.: Robust online monitoring of signal temporal logic. Formal

Methods in System Design 51(1), 5–30 (2017)
11. Frehse, G., et al.: A toolchain for verifying safety properties of hybrid automata

via pattern templates. In: ACC. pp. 2384–2391 (June 2018)
12. Frehse, G., et al.: SpaceEx: Scalable Verification of Hybrid Systems. In: CAV (2011)
13. Gao, S., et al.: dreal: An SMT solver for nonlinear theories over the reals. In:

CADE. pp. 208–214 (2013)
14. Kapinski, J., et al.: St-lib: A library for specifying and classifying model behaviors.

In: SAE Technical Paper. SAE International (04 2016)
15. Kekatos, N.: Formal Verification of Cyber-Physical Systems in the Industrial

Model-Based Design Process. Ph.D. thesis (2018)
16. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: ICSE. pp. 372–

381. ICSE ’05, ACM (2005)
17. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:

FORMATS-FTRTFT. pp. 152–166. Springer (2004)
18. Nickovic, D., et al.: AMT 2.0: Qualitative and quantitative trace analysis with

extended signal temporal logic. In: TACAS. pp. 303–319 (2018)
19. Pnueli, A.: The temporal logic of programs. In: FOCS. pp. 46–57. IEEE Computer

Society (1977)


