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10.7. Phylogeographic patterns of the Southern Ocean crinoids (Crinoidea: 
Echinodermata)
Marc Eléaume, Lenaïg G. Hemery, Nadia Améziane, Michel Roux

Muséum national d’Histoire naturelle, Département Milieux et Peuplements Aquatiques, UMR 7208-BOREA MNHN-CNRS-UPMC-IRD, Paris, France

1. Introduction
Crinoids are well represented in the Southern Ocean. They locally may con-
stitute one of the major mega-epibenthic components and therefore play a 
crucial role in the functioning of some ecosystems. Because some species 
are very abundant and well distributed over the whole Southern Ocean (Elé-
aume 2006; Hemery 2011; Eléaume et al. Chapter 5.25, this volume), they 
have been recognised as model organisms for studying the spatial variance of 
genetic diversity in the Southern Ocean.

The main hypothesis that explains the patterns of distribution of Antarctic 
benthic genetic diversity is linked to the cyclical advance of ice sheets on the 
Antarctic continental shelf. In this hypothesis, the Antarctic shelf ecosystems 
have undergone cyclical disturbance events during the last 35 My (see review 
in Turner et al. 2009), including as many as 38 sedimentary cycles of ice sheet 
advance during the last 5 My (Naish et al. 2009). It is thought that ice advance 
has regularly eradicated the benthic shelf fauna. Thatje et al. (2005, 2008) 
suggested that the benthic fauna now flourishing on the shelf arose from ref-
uges either in areas left free of ice on the shelf (e.g. polynyas or areas not im-
pacted by ice advance), on the adjacent slopes and deep-sea floor, or on the 
shelves of sub-Antarctic islands. Allcock & Strugnell (2012) summarised the 
expected molecular patterns for each of these hypotheses. As a result, widely 
distributed populations were fragmented into smaller populations that have 
diverged, and sometimes developed barriers to reproduction. This may have 
been followed by range expansion and, in the case of broadcast spawners, 
rapid recolonisation of habitats left free of ice, and secondary contact of refu-
gial populations. Benthic taxa lacking a dispersal phase are often structured 
in haplogroups segregated in narrow geographical ranges (Rogers 2007). 
Clarke & Crame (1992, 2010) proposed that the cyclical nature of the vicari-
ance events that may have resulted in genetic divergence and sometimes in 
allopatric speciation enhanced the Antarctic “biodiversity pump” that resulted 
from “the regular pulses of migration in and out of Antarctica driven by climate 
variability” (Clarke & Crame 1992, p. 299). Cycles of ice extension and retreat 
are often seen as catastrophic disturbance events leading to large-scale en-
vironmental instability, leading in turn to large-scale benthic eradication. How-
ever, the megabenthic fauna on the Antarctic shelf is thriving and seems to 
have rapidly recovered from the cyclical disturbance events, the latest being 
the Last Glacial Maximum (LGM) some 20,000 years ago. Variation of food 
availability (which may be linked to ice concentration but also to other factors 
such as current velocity), interspecific competition for space and food, pelagic 
larval duration or larval mortality, may also have contributed to the observed 
patterns, and should receive greater attention in the future. Here we explore, 
using the Cytochrome c Oxydase subunit I (COI) mitochondrial DNA, the spa-
tial variance of the genetic diversity of the most common Southern Ocean 
crinoid species, which include broadcast spawners as well as brooders, and 
examine congruence with predictions of the biodiversity pump hypothesis. 

2. Datasets used
The datasets analysed here are already available from previous publica-
tions and registered in GenBank and BOLD (accession numbers are given 
in each publication). The sequences used for the phylogenetic reconstruction 
are available through Hemery et al. (2013a) and comprise data from COI, 
16S, 18S and 28S genes. DNA extraction, gene amplification techniques and 
sequences used for the phylogenetic and phylogeographic analyses are de-
scribed in Wilson et al. (2007), Eléaume et al. (2011), Hemery (2011), Hemery 
et al. (2012), Hemery et al. (2013a) and Hemery et al. (2013b).

3. Antarctic crinoids in context
Hemery et al. (2013a) published a phylogenetic study based on a high-resolu-
tion taxon sampling, which serves as the basis for this study. Here, we use the 
same DNA markers, the same sampling effort, and the same reconstruction 
techniques. Hemery et al. (2013a) used four mitochondrial and nuclear genes 
and 105 taxa, which are differently presented here (Fig. 1). The classifica-
tion and a nomenclature of extant crinoids used here predate the molecular 
analyses, and are mainly based on Roux et al. (2002) for stalked crinoids, and 
Messing (1997) for comatulids. The position of Antarctic species is highlighted 
in the tree to clearly demonstrate their phylogenetic context. 

Antarctic crinoids are polyphyletic (see blue taxa in Fig. 1). They do not 
constitute a single clade that could have originated from a single ancestor, but 
are found scattered in the tree in most of the major clades (e.g. clades A, B1, 
B2, B3, B4, see Hemery et al. 2013a for details). This suggests that crinoids 
have colonised the Southern Ocean several times at different periods, or that 
crinoids have colonised the Southern Ocean independently from different 
ocean basins at roughly the same time. Within the Hyocrinidae, Antarctic and 
sub-Antarctic taxa are not monophyletic and are found associated with North 

and South Pacific, and North Atlantic species. Within the Pentametrocrinidae, 
one Pentametrocrinus and one Thaumatocrinus species (see Eléaume et al. 
Chapter 5.25, this volume) are known from the Antarctic and sub-Antarctic re-
gions. Thaumatocrinus has representatives in the North Atlantic, and Pentam-
etrocrinus is found in the Indo-West Pacific and North Atlantic deep basins. In 
addition, Rouse et al. (2013) have demonstrated that the Indo-Pacific stalked 
crinoid genera Guillecrinus and Vityazicrinus are closely related to Pentam-
etrocrinus. Within Bathycrinidae, a clade composed of Antarctic Bathycrinus 
australis and an Indo-West Pacific Monachocrinus sp. (both stalked) is sister 
to Atelecrinidae, a widespread bathyal family of feather stars. The Antarctic 
brooding genera Eumorphometra, Eometra and Isometra are related to North-
Atlantic and Indo-West Pacific species (clade Antedonidae #1). Heliometrinae, 
a subfamily of Antedonidae that includes numerous Antarctic species, returns 
as two separate clades (see Eléaume 2006 for morphological arguments). 
Heliometrinae #1 is purely Antarctic and may result from in situ diversification 
events. Heliometrinae #2 comprises one Caribbean species, East Pacific and 
Arctic taxa, and at least one true Antarctic species, Anthometrina adriani.

Antarctic crinoids seem to have originated from ancestors from various 
ocean basins, including the Southern Ocean. Some taxa seem to have colo-
nised the Southern Ocean repeatedly (e.g. Hyocrinidae, Pentametrocrinidae), 
other taxa seem to have radiated in situ (e.g. Heliometrinae #1, Notocrinidae, 
Isometrainae, and the hyocrinid genus Dumetocrinus). 

Figure 1  Cladogram of extant crinoids (modified from Hemery et al. 2013a) using 
molecular markers (COI, 16S, 18S and 28S). A total of 105 taxa are included and 3848 
base positions were analysed. Maximum Likelihood (ML) and Bayesian Inference (BI) 
were performed on the four genes combined as an unlinked-partition dataset. For ML 
analyses, the model GTR+Γ (General Time Reversible) was used for each unlinked-
partition, and bootstrapping was carried out with 1000 replicates using the same mod-
el. For BI analyses, the model GTR+I+Γ was used for each unlinked-partition. Two 
iterations of fifty million generations were run with eight chains, sampling every 1000 
generations. ML and BI tree topologies were identical. Bayesian posterior probabilities 
values are given close to nodes; family and subfamily names are in bold; numbers in 
brackets indicate number of genera, species and specimens, respectively, included 
in the clade; names of clades discussed in Hemery et al. (2013) are given at nodes; 
Antarctic taxa are highlighted in blue; arrows indicate taxa that contain Southern Ocean 
species; stars indicate brooding species; HN = Holopus + Neogymnocrinus; CAP = 
Calometridae + Asterometridae + Ptilometridae; ZHMC = Zygometridae + Himerom-
etridae + Mariametridae + Colobometridae.
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4. Phylogeographic patterns and demographic history
Only a subset of the Southern Ocean species collected and presented in the 
cladogram above were represented by a sufficient number of individuals to 
be suitable for further phylogeographic analyses. These species, the number 
of sequences analysed, and their reproductive strategies are as follows: An-
thometrina adriani (146, broadcast spawner), Feracrinus heinzelleri (34, pos-
sibly a broadcast spawner), Florometra mawsoni (513, broadcast spawner), 
Isometra graminea (47, brooder), Notocrinus virilis (175, brooder), Promacho-
crinus kerguelensis (1429, broadcast spawner), and Ptilocrinus amezianeae 
(66, possibly a broadcast spawner). The sampling method was opportunis-
tic and dependent on ship-based and station-based operations in Antarctica. 
Many areas of interest have not been sampled yet because of ice conditions 
or remoteness of these areas. Many spatial gaps remain, even though the 
sampling effort used here is unprecedented and in most cases is likely to en-
compass the whole distribution range of species under study. 

Defining a population is not trivial (Avise 2000). Here we define a popula-
tion as a group of sequences collected in the same area, typically separated 

from neighboring population by several hundred nautical miles. Ten different 
populations have been identified: Amundsen Sea (AS), Burdwood Bank (BB), 
Bouvet Island (BI), Davis Sea (DS), Dumont d’Urville Sea (DDU), Eastern 
Weddell Sea (EWS), Kerguelen Plateau (KP), Ross Sea (RS), Admiralty and 
Scott Island Seamounts (ASIS), Scotia Arc (SA), West Antarctic Peninsula 
(WAP). In the case of P. kerguelensis for which enough specimens are avail-
able, the Scotia Arc area has been separated into four distinct populations: 
South Shetland Islands (SSh), South Orkney Islands (SO), South Sandwich 
Islands (SSa), and South Georgia (SG). Hemery et al. (2012) described 
the methods used to estimate population diversity and the genealogical re-
lationships among haplotypes. COI sequences were aligned using BioEdit 
Sequence Alignment Editor v7.0.9.0 (Hall 1999); haplotype networks were 
constructed using Network software (version 4.5.0.0; http://www.fluxus engi-
neering.com); TCS1.21 (Clément et al. 2000) was used to test the connection 
threshold at which groups of haplotypes disconnect. Population diversity indi-
ces (Hd, haplotype diversity; π, nucleotidic diversity; Fu’s FS) were calculated 
using ARLEQUIN v.3.5.1.2 (Excoffier & Lischer 2010) and are given in Table 1.

Species/ phylogroup Population N An Hd π Fu’s FS p

Promachocrinus kerguelensis A

KP 113 16 0.7162 0.0019 -18.519 ***

DS 1 1 — — —

DDU 32 6 0.6855 0.0043 -1.397

RS 86 9 0.6621 0.0048 -3.256

SSh 26 2 0.6092 0.0040 1.349

SSa 15 3 0.7619 0.0018 -2.841 **

SG 2 2 — — —

BI 36 2 0.1619 0.0002 -2.590 ***

EWS1 3 2 — — —

Promachocrinus kerguelensis B

DS 1 1 — — —  

DDU 54 4 0.6988 0.0017 -3.221 *

RS 40 1 0.5859 0.0015 -0.935

SSh 9 0 0.2222 0.0004 -0.263

EWS1 2 2 — — —

EWS2 1 1 — — —  

Promachocrinus kerguelensis C

DS 54 2 0.6108 0.0013 -0.987

DDU 179 9 0.7423 0.0040 -2.056

RS 10 0 0.3778 0.0020 0.683

AS 3 1 — — —

WAP 18 4 0.8301 0.0040 -2.202

SSh 13 2 0.6923 0.0016 -2.036 *

SSa 35 6 0.5664 0.0013 -6.758 ***

SO 34 1 0.4688 0.0010 -0.920

EWS2 30 0 0.6644 0.0027 0.430

EWS1 71 11 0.8072 0.0059 -3.258  

Promachocrinus kerguelensis D

DS 38 2 0.6088 0.0031 -0.660

DDU 82 5 0.6197 0.0044 -1.706

RS 53 7 0.8694 0.0074 -0.261

AS 13 2 0.7308 0.0029 0.514

WAP 10 1 0.5333 0.0047 1.176

SSh 18 7 0.8497 0.0083 -1.623

EWS1 13 3 0.8590 0.0054 -2.291

EWS2 8 0 0.4643 0.0035 1.493  

Promachocrinus kerguelensis E1

DDU 11 0 0.0000 0.0000 —

RS 8 0 0.0000 0.0000 —

SSh 5 0 0.0000 0.0000 —

SO 25 6 0.4300 0.0012 -4.900 ***

SG 6 0 0.0000 0.0000 —

EWS1 1 1 — — —  

Promachocrinus kerguelensis E2

DS 22 0 0.0000 0.0000 —

DDU 51 3 0.1153 0.0002 -4.339 ***

RS 68 1 0.0294 0.0001 -1.894 ***

WAP 2 1 — — —

EWS1 22 2 0.7056 0.0016 -0.184

EWS2 2 2 — — —

Table 1  Diversity indices for seven species largely distributed in the Southern Ocean. An = number of haplotypes; Fu’s FS = result of the Fu’s FS test; Hd = haplotype diversity; N 
= number of specimens; π = nucleotidic diversity ; p = significance level of the Fu’s FS with * = p<0.05, ** = p<0.01, *** = p<0.005. AS = Amundsen Sea; ASIS = Admiralty and Scott 
Island Seamounts; BB = Burdwood Bank; BI = Bouvet Island; DDU = Dumont d’Urville Sea; DS = Davis Sea; EWS = Eastern Weddell Sea; HEA = Heard Island; KP = Kerguelen 
Plateau; RS = Ross Sea, and SA = Scotia Arc, the latter divided for Promachocrinus kerguelensis into SSa = South Sandwich Islands, SSh = South Shetland Islands, SO = South 
Orkney Islands, SG = South Georgia, and WAP = West Antarctic Peninsula.
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Patterns – Haplotype networks exhibit different topological patterns 
across all species (Fig. 2). Promachocrinus kerguelensis is composed of sev-
en groups of haplotypes (A, B, C, D, E1, E2, F), each displaying a star-like 
topology, with one central and common (ancestral) haplotype surrounded by a 
crown of a varying number of derived secondary and less frequent haplotypes 
or singletons. Florometra mawsoni, which displays a star-like topology as well, 
connects to this network at a larger distance (Fig. 2A). Hemery et al. (2012) 
interpreted this pattern as congruent with the hypothesis of multiple refugia 
on the high-Antarctic and sub-Antarctic islands shelves during past glacia-
tions, followed by population expansion, rapid recolonisation and secondary 
contact. Nuclear marker networks (Hemery et al. 2012) display two distinct 
lineages that indicate that the divergence in the mitochondrial genes was not 
found in the nuclear genes. These results have been interpreted as congruent 
with a single or two different species in Promachocrinus.

Anthometrina adriani displays a very different, much simpler, pattern 
with two major haplotypes surrounded by a crown of derived less frequent 
haplotypes and singletons (Fig. 2B). Anthometrina adriani is only found on 
the high-Antarctic shelf (Eléaume et al. Chapter 5.25, this volume). This less 
complex phylogeographic pattern is in agreement with the interpretation that 
this species is well mixed today or survived the LGM in fewer refugia on the 
High Antarctic shelf.

Isometra graminea, Notocrinus virilis, and Ptilocrinus amezianeae exhibit 
clear geographical structure. Isometra graminea is divided in three distant 
haplogroups (Fig. 2D), one restricted to the Ross Sea, a second to the Du-
mont d’Urville Sea, and the third to the West Antarctic Peninsula (Marguerite 
Bay). Notocrinus virilis also is divided into five distant haplogroups (Fig. 2C): 
two very distinct from each other restricted to the Eastern Weddell Sea, anoth-
er two very distinct restricted to the Scotia Arc, and one restricted to a larger 
area comprising the Ross, Dumont d’Urville and Davis seas. The haplogroups 
containing more than one haplotype consist of one or two central haplotypes 
surrounded by a small number of singletons. Ptilocrinus amezianeae displays 
a dumbbell-shape topology with two haplogroups separated by nine unsam-
pled haplotypes. One haplogroup is restricted to the Kerguelen Plateau and 
the second to the Admiralty and Scott Island Seamounts and Scotia Arc (Fig. 
2E). Populations in the first two areas display a star-like topology, with one 
central and common (ancestral) haplotype surrounded by a crown of derived 

singletons. The recent discovery of P. amezianeae on the Kerguelen Plateau 
and Scotia Arc, in addition to the population known from the Admiralty and 
Scott Island Seamounts (Bowden et al. 2011; Eléaume et al. 2011), seems to 
suggest that this species may be well-distributed in the Southern Ocean and 
that the gap observed between the two haplogroups may be due to a sampling 
bias. 

A fourth type of haplotype network pattern is the bush-like topology dis-
played by Feracrinus heinzelleri (Fig. 2F) which is a deep-sea, more-or-less 
eurybathic species. The genetic pattern observed could be a signature of a 
slope-dwelling species that may have found refuge during glacial periods in 
the deep basins around the continental shelf.

Demography – Based on the number of samples available, a total of 
seven species and up to ten populations within a species were analysed (Ta-
ble 1). Most of the populations display medium to high haplotype diversity and 
medium to high nucleotidic diversity, indicating an overall rather high within- 
and among-sequences diversity. Within P. kerguelensis, phylogroups A, C and 
D are composed of generally highly diverse populations showing signatures of 
a bottleneck (or genetic sweep) followed by population expansion. A reduced 
gene flow between several populations also characterises these phylogroups. 
Other phylogroups are less diverse and show no sign of expansion, and some 
level of connectivity between populations is suspected (Fig. 7 in Hemery et 
al. 2012). Within each phylogroup, the populations seem to have either been 
variously impacted or reacted differently to past glaciations. The DS, RS, SA, 
and WAP populations of F. mawsoni, and DDU and RS populations of N. viri-
lis, display a low haplotype diversity and low nucleotidic diversity suggesting 
a recent bottleneck or genetic sweep. In addition, significant negative Fu’s Fs 
results support the idea that Anthometrina adriani DDU and RS populations, 
and Florometra mawsoni DDU, DS, KP, RS and SA populations have under-
gone a recent expansion, purifying selection or selective sweep. If the recent 
expansion hypothesis is confirmed, these results would suggest that DS, RS 
and WAP populations may be recovering from benthic eradication due to one 
of many glaciation events, as previously observed for P. kerguelensis (Hemery 
et al. 2012). Other populations seem to have recovered from more diverse and 
less impacted populations. Anthometrina adriani DS and EWS populations 
appear stable with a smaller number of singleton haplotypes, suggesting that 
these populations have been less impacted by, for example, past glaciation 

Species/ phylogroup Population N An Hd π Fu’s FS p

Promachocrinus kerguelensis F

DS 68 1 0.5083 0.0009 0.580  

DDU 9 0 0.0000 0.0000 —

RS 4 1 — — —

AS 1 1 — — —

WAP 9 0 0.0000 0.0000 —

SSh 1 1 — — —

SO 2 1 — — —

SSa 1 1 — — —

EWS1 8 1 0.6071 0.0014 -0.224  

Anthometrina adriani

DS 45 7 0.7636 0.002104 -1.606

DDU 33 7 0.6818 0.001716 -2.781 *

RS 50 8 0.6833 0.001627 -3.461 *

EWS 18 4 0.6078 0.001314 -0.841

Florometra mawsoni

KP 62 20 0.7039 0.0020 -21.957 ***

DS 90 9 0.2844 0.000705 -8.394 ***

DDU 240 30 0.8009 0.003114 -22.585 ***

RS 27 5 0.4416 0.000879 -2.709 **

AS 3 1 — — —

WAP 12 2 0.1667 0.000605 0.432

SA 9 3 0.4167 0.0008 -1.081 *

BB 2 2 — — —

EWS 68 12 0.6817 0.003611 -2.966  

Notocrinus virilis A SA 1 1 — — —

EWS 35 5 0.2185 0.007143 -4.015 ***

Notocrinus virilis B

DS 5 1 — — —  

DDU 67 5 0.2687 0.011578 -1.973

RS 56 4 0.1052 0.00267 -4.521 ***

SA 6 1 — — —

EWS 5 1 — — —  

Isometra graminea

DDU 31 5 0.5441 0.001282 -1.61702

RS 13 2 0.5128 0.000968 1.1512

WAP 3 2 0.6667 0.001258 0.20067  

Feracrinus heinzelleri

DS 4 4 1.0000 0.007202 -0.61511

RS 28 12 0.8730 0.00674 -1.74279

AS 2 2 — — —  

Ptilocrinus amezianeae

KP 23 6 0.4585 0.001116 -3.23397 ***

ASIS 40 9 0.5026 0.000932 -7.74253 ***

SA 3 1 — — —  



Biogeographic Atlas of the Southern Ocean 451

events. Feracrinus heinzelleri displays stable population structure and no sign 
of population decrease or expansion, a result congruent with populations not 
impacted by drastic events, and capable of surviving glaciation periods on the 
slopes or deeper environnements.

5. Geographic distributions of haplogroups
The following maps show the distribution and haplotype composition of popu-
lations of Promachocrinus kerguelensis phylogroups A to F (Maps 1 to 7), Flo-
rometra mawsoni (Map 8), Anthometrina adriani (Map 9), Isometra graminea 
(Map 10), Notocrinus virilis haplogroups A and B (Maps 11, 12), Ptilocrinus 
amezianeae (Map 13) and Feracrinus heinzelleri (Map 14). On each map, 
each color represents a different haplotype and the pie size is proportionnal to 
the total number of specimens analysed per population.

6. Conclusion
Sample bias is only to be expected in the Southern Ocean, because of the 
logistic challenges that remoteness, ice and cold confer. However, we have 
tried to cover, as best as possible, the distributional range and habitat of se-
lected crinoid species. Still, deep-sea habitats are obviously undersampled, 
as well as a large area between the Eastern Weddell Sea and the Davis Sea, 
between the Ross Sea and the West Antarctic Peninsula, and the southern 
part of the Atlantic sector (i.e., Burdwood Bank, Bouvet Island). Unsampled 
haplotypes (see Fig. 2) from these regions, if added to our dataset, might 
change some of the conclusions drawn here.

Brooders and broadcast spawners showed strongly contrasting popu-
lation structures. As expected, brooders showed high levels of geographic 
structure, whereas broadcast spawners did not. This is probably due to their 
contrasting life history traits. Planktonic larvae are usually produced in larg-
er numbers and are able to cover longer distances. Among the brooders, I. 
graminea haplogroups have never been found sympatrically on the Antarctic 
shelf. This species seems to lack the ability to disperse and rapidly colonise 
new habitats. By contrast, Notocrinus virilis, another brooder, seems to be 
capable of larval dispersion (S. Schiaparelli, pers. com.). Among boadcast 
spawners, all phylogroups are found sympatrically except within P. kerguel-
ensis at Bouvet Island and on the Kerguelen Plateau, where only the clade A 
is present. 

Demographic approaches indicate that populations display contrasting 
histories, depending on the species or phylogroup. Population expansion after 
a bottleneck or genetic sweep can be detected, but not in all populations under 
study. Population expansion after a bottleneck is an expected signature after a 
drastic demographic event such as a large-scale benthic eradication resulting 
from grounded ice expansion during a glacial period. The “biodiversity pump” 
scenario, which states that population fragmentation and isolation in refugia 
during glacial periods may have induced allopatric speciation in Antarctic taxa, 
is therefore congruent with these results.
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Figure 2  Haplotype networks for seven of the most common species of crinoids in 
the Southern Ocean. Haplotypes are derived from COI sequences. The genealogical 
relationships among haplotypes were estimated using the median-joining algorithm, al-
lowing for the definition of clades (based on divergence up to 0.5%), and using statisti-
cal parsimony. A - Promachocrinus kerguelensis and Florometra mawsoni networks are 
shown as connected because F. mawsoni has been shown to be closely related to P. 
kerguelensis and may be considered another lineage within the P. kerguelensis com-
plex. All lineages are represented and indicated with an uppercase letter from A to F. B 
– Anthometrina adriani network showing two major haplotypes surrounded by second-
ary less frequent haplotypes. C - Notocrinus virilis network showing the relationship be-
tween haplogroups A and B. Haplogroup A displays one major haplotype in the Eastern 
Weddell Sea and 3 secondary ones found in the Eastern Weddell Sea and in the Scotia 
Arc. Haplogroup B is more diverse and distributed in both East and West Antarctica. 
These patterns are not typical of brooders and suggest some dispersal capabilities 
for this species. D – Isometra graminea network showing strict geographical segrega-
tion of all three haplogroups. This pattern is typical of a non-dispersive species, i.e., a 
brooder. E – Ptilocrinus amezianeae network showing two major haplotypes apparently 
geographically segregated but with gene exchange between the Scotia Arc and the 
Admiralty and Scott Island Seamounts some 5000 km away. F – Feracrinus heinzelleri 
network showing no particular spatial patterning. Pk = Promachocrinus kerguelensis; 
Fm = Florometra mawsoni; Nv-A = Notocrinus virilis haplogroup A; Nv-A = N. virilis hap-
logroup B. All circles reprsent a unique COI sequence (haplotype), and their diameter 
is proportionnal to the number of specimens sharing this haplotype. Numbers in red 
indicate the number of unsampled haplotypes between two closely related haplotypes.
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Phylogeography Crinoida Maps 1-4  Map 1  Promachocrinus kerguelensis clade A is well represented on the Kerguelen Plateau, East Antarctic Ross Sea and Dumont d’Urville Sea shelves, 
tip of the Peninsula and in the sub-Antarctic Islands but the number of haplotypes is higher on the east Antarctic Ross Sea and Dumont d’Urville Sea shelves. In contrast, this clade is rare on 
the shelves extending from the Weddell Sea to the Davis Sea. The haplotype composition of each population may be indicative of a past refuge on the Kerguelen Plateau, and subsequent 
recolonisation from different source haplotype in the East and West Antarctic. Map 2  Promachocrinus kerguelensis clade B is well represented on the East Antarctic Ross Sea and Dumont 
d’Urville Sea shelves. It is rare from other part of the Antarctic shelf, and absent from all sub-Antarctic islands. Map 3 Promachocrinus kerguelensis clade C is well represented on the high-
Antarctic shelves. It displays a higher number of haplotypes in the West Antarctic: Weddell Sea, Peninsula, South Orkney and South Shetland Islands. It is less diverse on the East Antarctic 
Ross Sea, Davis Sea and Dumont d’Urville Sea shelves and completely absent from other sub-Antarctic localities. Map 4 Promachocrinus kerguelensis clade D is well represented on the East 
Antarctic Dumont d’Urville Sea and Ross Sea shelves. It is completely absent from the sub-Antarctic Islands. Proportion of haplotypes in the East Antarctic Davis Sea and Dumont d’Urville 
Sea differs from elsewhere on the Antarctic shelf. 
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Promachocrinus kerguelensis clade B
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Map 3
Promachocrinus kerguelensis clade C
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Map 7
Promachocrinus kerguelensis clade F
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Phylogeography Crinoida Maps 5-8  Map 5 Promachocrinus kerguelensis clade E1 is rare overall with very low haplotype diversity. It is better represented with a higher diversity 
on the West Antarctic South Orkney shelf, and seems absent from the sub-Antarctic islands. Map 6 Promachocrinus kerguelensis clade E2, like E1, is also very rare with low 
haplotype diversity. It is only found on the high-Antarctic shelf and is absent from all sub-Antarctic islands. Map 7 Promachocrinus kerguelensis clade F is also rather rare and 
shows very reduced haplotype diversity. It is found on the high-Antarctic shelf and from the West Antarctic South Orkney and South Sandwich Islands. It is absent from other sub-
Antarctic islands. Map 8  Florometra mawsoni is closely related to P. kerguelensis. It is well represented on the East Antarctic shelf. It is found in lower abundance in the Peninsula, 
Scotia Arc, and Burdwood Bank. It seems to be absent from other sub-Antarctic localities except the Kerguelen Plateau. The Kerguelen, Dumont d’Urville Sea and Weddell Sea 
populations are composed of high numbers of different haplotypes and show high levels of diversity. As in the case of P. kerguelensis clade A, F. mawsoni may have found refuge 
on the Kerguelen Plateau during past glaciation, and recolonised high-Antarctic areas from there. 
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Map 9
Anthometrina adriani 
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Isometra graminea
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Map 11
Notocrinus virilis haplogroup A
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Map 12
Notocrinus virilis haplogroup B
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Phylogeography Crinoida Maps 9-12   Map 9 Anthometrina adriani is confined to the high-Antarctic shelf and is absent from the South Shetland Islands and the Scotia Arc as well 
as from the sub-Antarctic islands. The number of haplotypes is higher on the East Antarctic shelf. The number of specimens analysed is much smaller in the Antarctic Peninsula 
area. This is probably not a sampling bias; A. adriani populations from the Peninsula consist of fewer individuals (M. Eléaume, personal observations). Map 10 Isometra graminea 
is restricted to the high-Antarctic. The higher diversity detected on the East Antarctic Dumont d’Urville Sea shelf is probably linked to the greater number of specimens collected 
there. Each locality displays a set of endemic haplotypes, suggesting absence of gene flow in the past. However, the current situation remains unknown. It is possible that each 
of these populations represent a separate species. Map 11 Notocrinus virilis haplogroup A is restricted to the West Antarctic Weddell Sea and Scotia Arc. It shows a high level of 
geographic segregation with two populations displaying no haplotype in common. It is possible that the Weddell Sea and the South Shetland Islands populations may represent 
two distinct species. Map 12 Notocrinus virilis haplogroup B shows a high level of geographic segregation. The West and East Antarctic populations have no haplotypes in com-
mon. The East Antarctic populations display a reduced number of haplotypes in common, suggesting some degree of connectivity in the past. The current situation is unknown. It 
is, however, possible that the West and East Antarctic populations may represent two or three separate species. Colors and pies as in Map 1.
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Map 13
Ptilocrinus amezianeae
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Map 14
Feracrinus heinzelleri 
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Phylogeography Crinoida Maps 13-14  Map 13 The Kerguelen and Admiralty and Scott Island Seamounts Ptilocrinus amezianeae populations display no haplotype in common. 
The Ross Sea and South Sandwich populations have one haplotype in common, suggesting some degree of gene flow in the past. This pattern is suggestive of two disconnected 
populations that may have diverged into separate species. However, a detailed morphological analysis (Eléaume et al. 2011), and the fact that only a portion of the potential habitat 
of this species has been explored (sample bias), argue in favor of a single, undersampled species possibly a ring species. Map 14 Feracrinus heinzelleri shows a greater number 
of haplotypes in the Ross Sea population. This is probably due to the much greater number of specimens analysed in this population. New samples from the Kerguelen Plateau 
indicate that this species is also well represented there.
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AnT-ERA

THE BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN
Scope
Biogeographic information is of fundamental importance for discovering marine biodiversity hotspots, detecting and understanding impacts of environmental changes, predicting future 
distributions, monitoring biodiversity, or supporting conservation and sustainable management strategies.
The recent extensive exploration and assessment of biodiversity by the Census of Antarctic Marine Life (CAML), and the intense compilation and validation efforts of Southern Ocean 
biogeographic data by the SCAR Marine Biodiversity Information Network (SCAR-MarBIN / OBIS) provided a unique opportunity to assess and synthesise the current knowledge on Southern 
Ocean biogeography.
The scope of the Biogeographic Atlas of the Southern Ocean is to present a concise synopsis of the present state of knowledge of the distributional patterns of the major benthic and pelagic 
taxa and of the key communities, in the light of biotic and abiotic factors operating within an evolutionary framework. Each chapter has been written by the most pertinent experts in their 
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visualisation, modelling and prediction of biogeographic distributions.
A dynamic online version of the Biogeographic Atlas will be hosted on www.biodiversity.aq.
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The SCAR Marine Biodiversity Information Network (SCAR-MarBIN)
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by CAML) on Antarctic marine biodiversity by establishing and supporting a distributed system of interoperable databases, forming the Antarctic regional node of the Ocean Biogeographic 
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