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Abstract

Listeners experience speech as a sequence of discrete words. However, the real input is a
continuously varying acoustic signal that blends words and phonemes into one another. Here we
recorded two-hour magnetoencephalograms from 21 subjects listening to stories, in order to in-
vestigate how the brain concurrently solves three competing demands: 1) processing overlapping
acoustic-phonetic information while 2) keeping track of the relative order of phonemic units and
3) maintaining individuated phonetic information until successful word recognition. We show
that the human brain transforms speech input, roughly at the rate of phoneme duration, along
a temporally-defined representational trajectory. These representations, absent from the acous-
tic signal, are active earlier when phonemes are predictable than when they are surprising, and
are sustained until lexical ambiguity is resolved. The results reveal how phoneme sequences in
natural speech are represented and how they interface with stored lexical items.
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One sentence summary
The human brain keeps track of the relative order of speech sound sequences by jointly encoding
content and elapsed processing time
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Speech comprehension involves mapping non-stationary, highly variable and continuous1

acoustic signals onto discrete linguistic representations [1]. Although the human experience is2

typically one of effortless understanding, the computational infrastructure underpinning speech3

processing remains a major challenge for neuroscience [2] and artificial intelligence systems [3]4

alike.5

Existing cognitive models primarily serve to explain the recognition of words in isolation6

[4, 5, 6]. Predictions of these models have gained empirical support in terms of neural encoding7

of phonetic features [7, 8, 9, 10], and interactions between phonetic and (sub)lexical units of8

representation [11, 12, 13, 14, 15]. What is not well understood, and what such models largely9

ignore, however, is how sequences of acoustic-phonetic signals (e.g. the phonemes k-a-t) are10

mapped to lexical items (e.g. cat) during comprehension of naturalistic continuous speech.11

One substantial challenge is that naturalistic language does not come pre-parsed: there are,12

e.g. no reliable cues for word boundaries, and adjacent speech sounds (phonemes) acoustically13

overlap both within and across words due to co-articulation [1]. In addition, the same sequence14

of phonemes can form completely different words (e.g. pets versus pest), so preserving phoneme15

order is critical. Furthermore, phonemes elicit a cascade of neural responses, which long surpass16

the duration of the phonemes themselves [16, 17, 9]). This means, concretely, that a given17

phonemei is still present in both the acoustic and neural signals while subsequent phonemes18

stimulate the cochlea. Such signal complexity presents serious challenges for the key goals of19

achieving invariance and perceptual constancy in spoken language comprehension.20

Based on decoding analyses of acoustic and neural data we show how the brain orchestrates21

these overlapping inputs and overlapping neural processes, without confusing either the content22

or order of the phoneme sequences. We address how the language system (i) simultaneously23

processes acoustic-phonetic information of overlapping inputs; (ii) keeps track of the relative24

order of those inputs; and (iii) maintains information sufficiently long enough to interface with25

(sub)lexical representations.26

1. Results27

Neural responses were recorded with magnetoencephalography (MEG) while 21 participants28

listened to four short stories. Each subject completed two one-hour recording sessions, yielding29

brain responses to ∼50,000 phonemes, ∼10,000 words and ∼1,000 sentences per subject (see30

Figure 1A).31

1.1. Phonetic feature encoding in acoustic and neural signals32

First we tested when and how linguistic features of the speech input are encoded in acoustic33

(spectro-temporal) and neural (MEG) signals. To this aim, we fit a ridge regression to decode34

14 phonetic features (one-hot encoding of three distinctive features place, manner and voicing),35

either from 50 frequency bands of the acoustic spectrogram (acoustic analysis) or from the 20836

MEG channels (neural analysis). Using a 25-split cross validation loop, the model was trained37

on responses to all phonemes from the training set, and then tested as a function of their relative38

position in the words.39

Figure 1B shows the outcome of these analyses. Although the average phoneme duration is40

less than 80 ms (mean duration = 78 ms; SD = 34 ms), phonetic features (averaged over position)41

can be decoded from the acoustic signal between 0-300 ms (p < .001; t̂ = 9.56), and between42

50-300 ms in the neural signal (p < .001; t̂ = 3.61). This confirms that featural cues extend43
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to neighbouring phonemes. The ability to decode such phonetic features from the spectrum of44

the acoustics shows the existence of putatively invariant acoustic cues, which sufficiently gener-45

alise across phoneme locations [18, 19]. Furthermore, phonetic features that were more strongly46

encoded in the acoustic signal were also better decoded from the neural signal (Spearman corre-47

lation r = .59; p = .032; note that the large difference in decoding accuracy between acoustic and48

brain signals is expected given the signal-to-noise ratio of single-trial MEG recordings).49

Figure 1: Experimental design and acoustic-phonetic analysis. A: Example sentence from the stories, with the parse
into phonological units superimposed on the acoustic waveform. Colours of the segments at the top half of the waveform
indicate the phoneme’s distance from the beginning of a word (darker red at word onset). The spectrogram of the same
sentence appears below the waveform. Five example sensor time-courses are shown below, indicating that all recordings
of the continuous stories were recorded with continuous concurrent MEG. B: Time-course of phonetic-feature decoding
accuracy. Black lines show accuracy of decoding features from the acoustic spectrogram. Coloured lines show results
when decoding the same features from the MEG sensors. Shading in the neural data corresponds to the standard error
of the mean across subjects. Results are plotted separately for 10 different phoneme positions, where P1:P5 indicates
distance from word onset and P-1:P-5 distance from word offset. All plots share the same y-axis scales, which are
different for neural and acoustic analyses (top right). C: The same neural decoding data are here overlaid, relative to
the average duration between one phoneme and the next (around 80 ms). Multiple phonemes can be read out from the
neural signal at the same time. D: Results of the temporal generalisation (TG) analysis on the acoustic data. The y-axis
corresponds to the time that the decoder was trained, relative to phoneme onset; the x-axis corresponds to the time that
the decoder was tested, relative to phoneme onset. The results are shown separately for three different phoneme positions.
Contours represent 95% and 90% percentile decoding accuracy. E: Results of the same TG analysis applied to the MEG
data, showing a very different dynamic profile from the acoustic analysis. Contours represent 95% and 90% percentile
decoding accuracy.

1.2. Rapidly evolving neural representations50

On average, phonetic features were linearly decodable for three times longer than the duration51

of the phoneme itself. This suggests that, at any one time, three phonemes are being processed52

concurrently (Figure 1C). How does the brain implement this set of parallel computations and53

prevent interference between the resulting content?54

We tested whether the pattern of neural activity (from the MEG analysis) or the combination55

of spectro-temporal features (from the acoustic analysis) remained stable with respect to discrim-56

inability using temporal generalisation analysis [20]. This reveals whether a given representation57

evolves or is transformed during processing.58
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For the acoustic analysis (Figure 1D), there was significant generalisation, leading to no sta-59

tistical differences between the accuracy time-course of a single decoder, as compared to inde-60

pendent decoders at each time sample (p = .51; t̂ = -.67). This ‘square’ temporal generalisation61

suggests that although the acoustic signals are transient and dynamic, they contain stationary62

cues for acoustic-phonetic features. By contrast, the underlying representations of neural in-63

formation evolved rapidly over time (Figure 1E). Concretely, any particular topographic pattern64

was informative to read out a phonetic feature for around 80 ms, whereas the duration of the65

entire dynamic process lasted around 300 ms. This was confirmed using an independent samples66

t-test, comparing diagonal and horizontal decoding performance (p < .001; t̂ = 7.54). Neural and67

acoustic dynamics did not change as a function of phoneme position.68

Practically speaking, that the neural responses show a diagonal rather than square generali-69

sation pattern means the underlying activations are evolving over time: activity supporting the70

processing of a particular phonetic feature is either moving across cortical regions or evolving or71

transforming within a particular cortical region.72

Figure 2: Phonetic feature processing across the sequence. Temporal generalisation (TG) results superimposed for 10
phoneme positions. From word onset (P1, dark red), and from word offset (P-1, dark blue). The result for each phoneme
position is shifted by the average duration from one phoneme to the next. The y-axis corresponds to the time that the
decoder was trained, relative to phoneme onset. The x-axis corresponds to the time that the decoder was tested, relative
to (superimposed) word onset. Contours represent a t-value threshold of 4 (darker lines) and 3.5 (lighter lines). The panel
at the top shows the t-values for each phoneme at a training time of 200 ms, showing that there is no representational
overlap between neighbouring phonemes. The panel on the right shows a slice of time at 500 ms after the onset of the
first phoneme. This shows that at a single moment relative to input time, multiple (at least three) phonemes can be read
out of the neural responses.
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1.3. Phonetic sequence processing73

The above results show that while multiple phonemes are represented simultaneously in the74

brain, their dynamic encoding scheme may minimise the overlap between neighbouring repre-75

sentations. To test this hypothesis, we aligned the temporal generalisation matrices relative to the76

average latency between two adjacent phonemes. For example, relative to word onset, phoneme77

P1 is plot at t=0, P2 at t=80, P3 at t=160, etc. We extracted the time-samples that exceeded a p <78

.05 threshold, Bonferroni-corrected across the 201 time-samples of a single processing time. We79

then computed the relative overlap between the time-samples of one phonemic unit and another.80

As shown in Figure 2, there is virtually no overlap when the data are examined at a particular81

processing time (horizontal axis). Crucially, this suggests that although multiple phonemes are82

processed in parallel, any given pattern of neural activity only represents one phoneme at a time,83

allowing each phoneme an individuated representation.84

1.4. Representations are stable for the phoneme duration85

Although the results show a clear evolution of representational format, each underlying neu-86

ral pattern remained stable for ∼80 ms, i.e. average phoneme duration. To test whether this87

maintenance scales with phoneme duration, we grouped trials into quartiles, and analysed brain88

responses to the shortest and longest phonemes (∼4500 trials in each bin; mean duration 45 and89

135 ms). Phoneme duration correlated with the duration of temporal generalisation across train-90

ing time: longer phonemes generalised for an average 56 ms longer than shorter phonemes (p =91

.005; t̂ = -2.6) (Figure 3A).92

1.5. Representations are shared across phoneme positions: invariance93

Next we tested whether the same representational transformation is applied regardless of94

phoneme position. For this, we trained a classifier on the phonetic features of word onset95

phonemes and then tested this decoder on responses to the second, third and last phonemes96

(Figure 3B). We could read out the features of all three phoneme positions from 20-270 ms (p <97

.001; t̂ = 3.3), with comparable performance, thus supporting the position-invariant encoding of98

phonetic features.99

1.6. Phonetic processing is modulated by word boundaries100

How does the brain interface phonemic sequences with (sub)lexical representations (mor-101

phemes or words)? To address this issue, we evaluated decoding performance at word bound-102

aries: word onset (position P1) and word offset (position P-1) separately for each family of103

phonetic features (place of articulation, manner, and voicing) (Figure 3C).104

Phonetic features were decodable earlier at word onset then offset, yielding a significant105

difference during the first 250 ms (place: p = .03, t̂ = 2.77, 84-112 ms; p < .001, t̂ = -2.8, 156-106

240 ms; manner p < .001, t̂ = 3.03, 72-196 ms; p = .004, t̂ = 2.75, 220-300ms). The latency107

between average neural and acoustic maximum accuracy was 136 ms (SD = 13 ms) at word onset108

and 4 ms (SD = 13 ms) at word offset (see Figure 1B), leading to a significant difference between109

onset and offset phonemes averaged over phonetic features (t = -3.08; p = .002). Furthermore,110

place and voicing features were sustained in the neural signal significantly longer for phonemes111

at the beginning of words as compared to the end (place: p = .009, t̂ = -3.05, 302-418 ms;112

voicing: p < .001, t̂ = -3.76, 328-428 ms). This was also true when averaging over all features (p113

< .001, t̂ = -3.79, 328-396 ms) (see Figures 1B and 2).114
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Figure 3: Elucidating sequence dynamics. A: TG analysis median split into short (average 45 ms) and long (average
135 ms) phonemes. Contour inlay represents the borders of the significant clusters at p < .001. Waveforms represent
a horizontal slice at 140 ms (shown as a dashed line in the contour plot). B: Decoding performance when training on
responses to word onset, and evaluating on second, third and last phoneme in the word. Lines represent against-chance
temporal clusters exceeding p < .001 for the three phoneme positions. C: Analysing responses along the diagonal plane
for phonemes at word onset (dark red) and offset (dark blue) and their subtraction (black), split into the three families
of phonetic features. Coloured shading corresponds to significant clusters found using applying a temporal cluster test
to the difference wave. D: Analysis on all non-onset phonemes split into median surprisal, along the diagonal plane
(slice shown in contour plot). Highlighted areas show significant temporal clusters between low and high surprisal.
E: Analysis on all non-onset phonemes split into median cohort entropy, also along the diagonal plane. Highlighted
areas show significant temporal clusters between low and high entropy. Shading on the waveform of all plots represents
standard error of the mean across subjects. * = p < .05; ** = p < .01; *** = p < .001.

1.7. Predictable phonemes are processed earlier115

We hypothesised that the latency shift observed at word boundaries may be due to the pre-116

dictability of each phoneme. Specifically, we tested whether expected phonemes could be de-117
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coded earlier from the neural signal than surprising ones. To control for co-linearity between118

word-boundaries and surprisal, we selected all phonemes that were not at word onset, and tested119

decoding accuracy as a function of quartile phoneme surprisal (see Methods for details on how120

this variable was computed). Each analysis bin contained ∼4500 trials, with a mean surprisal of121

0.12, 1.38, 2.8 and 5.16 bits.122

There was a systematic latency shift as a function of non-onset phoneme surprisal (Figure123

3D): more predictable phonemes were decoded earlier than less predictable ones, leading to a124

significant difference between low and high surprisal from 120-132 ms (p = .007). Surprisal did125

not significantly modulate peak decoding accuracy (all uncorrected p-values > .2).126

1.8. Phonetic features are maintained until lexical identification127

Finally, to investigate whether phonetic representations are maintained until word recogni-128

tion, we test two hypotheses: (i) phonetic features are maintained until the identification of a129

word boundary; or (ii) they are maintained until certainty about word identity surpasses a partic-130

ular threshold. We evaluated whether decoding performance between 300-420 ms (the window131

that showed the word onset/offset effect) was better explained by word length or by word cer-132

tainty (entropy over possible lexical candidates).133

For (i), we compared decoding performance of word-onset phonemes, grouped into me-134

dian word length (shorter mean length = 2.54 phonemes; 4058 trials; longer mean length =135

5.2 phonemes; 2841 trials). No significant differences between groups were found (all clusters p136

> .2, duration < 2 ms). For (ii), we grouped trials based on non-onset cohort entropy, and ran the137

analysis on all phonemes that did not occur at word onset (∼4500 trials per bin, mean values of138

0.03, 0.77, 2.04 and 4.48 bits). In the window of interest, higher entropy phonemes we decoded139

with significantly higher performance (304-328 ms, p = .002, t̂ = -2.12) (see Figure 3E). This140

suggests that phonetic information is maintained for longer in cases of higher lexical uncertainty.141

2. Discussion142

How is the rapidly unfolding speech signal transformed into a sequence of discrete linguistic143

units? We analysed MEG responses to continuous speech, as a function of phonetic features144

and position in the phoneme sequence. Our results show that although both acoustic cues and145

neural processes overlap in time (lasting around 300 ms), the underlying representation evolves146

at the phonemic unit rate (around 80 ms), thus ensuring non-overlapping representations to avoid147

interference. Furthermore, we demonstrate that features are processed earlier when the phoneme148

is predictable – and then maintained until lexical identity is resolved. Taken together, our results149

show that a highly dynamic and adaptive language system underpins phonological and lexical150

processing during naturalistic listening.151

The stationarity of the acoustic signal versus the dynamics of the corresponding neural rep-152

resentations highlight that speech driven-responses are more than just a reflection of the acoustic153

signals [21]. These dynamical representations allow the brain to process multiple (at least three)154

successive phonemes simultaneously, without blending them within a common activity pattern.155

This grants two computational advantages. First, it serves to avoid interference between phonetic156

units, by ensuring an orthogonal format in processing space. This answers the key question of157

how overlapping sequences are maintained without confusing the content of the signal. Second,158

relative position is implicitly coded in the representational format of each phoneme at a given159

input time. This allows the system to keep track of the order of speech sounds, i.e. to know that160

you were asked to teach and not cheat, or that you are eating melons and not lemons.161

7

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 5, 2020. ; https://doi.org/10.1101/2020.04.04.025684doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.04.025684
http://creativecommons.org/licenses/by-nc-nd/4.0/


Building on this observation, we found that the representational trajectory is consistent across162

phoneme positions, thus leading to significant generalisation from one phoneme position to an-163

other, with comparable magnitude. Although a simple result, this rules out a number of compet-164

ing hypotheses. First, it is hard to reconcile these results with an explicit sequence representation.165

For example, if the brain represents a sequence of all elapsed phonemes, the representation of166

phoneme X at word onset would generalise poorly to third position ABX and even worse to sixth167

position ABCDEX. Second, under the same logic, this result rules out the idea that phonemes have168

a context-dependent encoding scheme, such as being represented along with their co-articulatory169

neighbours [22]. In that case, phoneme X would have a different representation in the context170

AXB and VXY. Finally, generalisability is inconsistent with position-specific encoding accounts,171

such as edge-based schemes [23, 24], which would posit that X is encoded differently in ABX and172

XBC. Instead, our results support a context-independent account, which encodes distance from173

phoneme onset, regardless of lexical edges.174

If all phonemes follow a common representational trajectory relative to phoneme onset, how175

can we describe the transformational space? One possibility links to articulatory phonology176

[25]. Although we showed the input acoustic space to be (surprisingly) static, the articulatory177

gestures which produce those acoustics are inherently dynamic [26]. It is plausible, therefore,178

that speech sounds are processed via articulatory commands, which are believed to jointly encode179

both the sound being produced and the temporal delay relative to articulatory onset. This idea180

of joint content-temporal coding resonates with recent findings of sequence encoding – finding181

evidence for dedicated temporal codes in rat hippocampus [27]. Future work will need to further182

delineate the temporal code used for phonological processing, and how the spatial location of183

these responses changes as a function of processing time.184

A critical finding is that the representational trajectory gets systematically delayed as a func-185

tion of phonological uncertainty (surprisal) and systematically sustained as a function of lexical186

uncertainty (cohort entropy). This suggests that the language system continuously adapts its187

processes based on information across multiple levels of linguistic description simultaneously.188

The latency shift for more predictable phonemes straightforwardly aligns with models of189

predictive coding [28, 29] and analysis-by-synthesis [30]: when predictability for a phoneme is190

strong, processes can be initiated earlier (perhaps in some cases before the sensory input) than191

when the phoneme identity is unknown. Although previous work has shown that processing of192

the speech signal is sensitive to phoneme probability within a word [31, 11, 13, 14, 32], this is193

the first study quantifying the consequences this has for encoding the content of those phonemes.194

Interestingly, we did not observe an effect of predictability on overall decoding performance,195

suggesting that processing delays may serve as a compensatory mechanism to allow more in-196

formation to be accumulated in order to reach the same strength of encoding [33]. Future work197

should test whether this local (within-word) predictability metric has similar consequences to198

global (across-word) metrics.199

The finding that phonetic features are maintained longer in the face of lexical ambiguity is200

a critical piece of the puzzle for understanding the interface between acoustic-phonetic repre-201

sentations and the mental lexicon. This result not only highlights the adaptivity of the speech202

processing system but also demonstrates the online bi-directional interaction between hierarchi-203

cal levels of processing. Our results suggest that acoustic-phonetic information is maintained204

until the (sub)lexical identity reaches a confidence threshold. To our knowledge, this is the first205

evidence for active maintenance of phonetic information until statistically-defined boundaries,206

and has clear processing advantages in the face of phonological ambiguity and lexical revision207

[15].208
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Overall, our results reveal that the brain implements an elegant computational solution to209

the processing of rapid, overlapping phoneme sequences. Namely, that the phonetic content of210

the unfolding speech signal is jointly encoded with elapsed processing time. Future work will211

need to assess the generality of this computational framework, and whether it subserves sequence212

processing across other modalities and domains.213

3. Method214

3.1. Participants215

Twenty-one native English participants were recruited from the NYU Abu Dhabi community216

(13 female; age: M=24.8, SD=6.4). All provided their informed consent and were compensated217

for their time. Participants reported having normal hearing and no history of neurological disor-218

ders. Each subject participated in the experiment twice. Time between sessions ranged from 1219

day to 2 months.220

3.2. Stimulus development221

Four fictional stories were selected from the Open American National Corpus: Cable spool222

boy (about two bothers playing in the woods); LW1 (sci-fi story about an alien spaceship trying223

to find home); Black willow (about an author struggling with writer’s block); Easy money (about224

two old friends using magic to make money).225

Stimuli were annotated for phoneme boundaries and labels using the ‘gentle aligner’ from226

the Python module lowerquality. Some prior testing provided better results than the Penn Forced227

Aligner.228

Each of the stories were synthesised using the Mac OSX text-to-speech application. Three229

synthetic voices were used (Ava, Samantha, Allison). Voices changed every 5-20 sentences. The230

speech rate of the voices ranged from 145-205 words per minute, which also changed every 5-20231

sentences. The silence between sentences randomly varied between 0-1000 ms.232

3.3. Procedure233

Before the experiment proper, the participant was exposed to 20 seconds of each speaker234

explaining the structure of the experiment. This was designed to help the participants attune to235

the synthetic voices.236

The order of stories was fully crossed using a Latin-square design. Participants heard the237

stories in the same order during both the first and second sessions.238

Participants answered a two-choice question on the story content every ∼3 minutes. For ex-239

ample, one of the questions was “what was the location of the bank that they robbed”? The240

purpose of the questions was to keep participants attentive and to have a formal measure of en-241

gagement. All participants performed this task at ceiling, with an accuracy of 98%. Participants242

responded with a button press.243

Stimuli were presented binaurally to participants though tube earphones (Aero Technolo-244

gies), at a mean level of 70 dB SPL. The stories ranged from 8-25 minutes, with a total running245

time of ∼1 hour.246
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3.4. MEG acquisition247

Marker coils were placed at five positions to localise each participant’s skull relative to the248

sensors. These marker measurements were recorded just before and after the experiment in order249

to track the degree of movement during the recording.250

MEG data were recorded continuously using a 208 channel axial gradiometer system (Kanazawa251

Institute of Technology, Kanazawa, Japan), with a sampling rate of 1000 Hz and applying an on-252

line low-pass filter of 200 Hz.253

3.5. Preprocessing MEG254

The raw MEG data were noise reduced using the Continuously Adjusted Least Squares255

Method (CALM: (Adachi et al., 2001)), with MEG160 software (Yokohawa Electric Corporation256

and Eagle Technology Corporation, Tokyo, Japan).257

The data were bandpass-filtered between 0.1 and 50 Hz using MNE-Python’s default param-258

eters with firwin design [34] and downsampled to 250 Hz. Epochs were segmented from 200259

ms pre-phoneme onset to 600 ms post-phoneme onset. No baseline correction was applied. No260

other data cleaning was performed.261

3.6. Preprocessing auditory signals262

We computed a time-frequency decomposition of the auditory signals by applying a 100-263

sample Hamming window to the auditory waveform. This resulted in a power estimate at each of264

50 linearly spaced frequency bands from 1-11250 Hz. These data were then also downsampled265

to 250 Hz, and segmented from 200-600 ms in order to match the dimensionality and size of the266

MEG epochs.267

3.7. Modeled features268

We investigated whether single-trial sensor responses varied as a function of fourteen binary269

phonetic features, as derived from the multi-value feature system reported in [35]. Note that270

this feature system is sparse relative to the full set of distinctive features that can be identified271

in English; however, it serves as a reasonable approximation of the phonemic inventory for our272

purposes.273

Voicing. This refers to whether the vocal chords vibrate during production. For example, this is274

the difference between b versus p and z versus s.275

Manner of articulation. Manner refers to the way by which air is allowed to pass through the276

articulators during production. Here we tested five manner features: fricative, nasal, plosive,277

approximant, and vowel.278

Place of articulation. Place refers to where the articulators (teeth, tongue, lips) are positioned279

during production. For vowels, this consists of: central vowel, low vowel, mid vowel, high280

vowel. For consonants, this consists of: coronal, glottal, labial and velar.281

Nuisance variables. In the same model, we also accounted for variance explained by ‘nuisance282

variables’ – i.e. structural and statistical co-variates of the phonemes. Though we were not283

interested in interpreting the results of these features, we included them in the model to be sure284

that they did not account for our main analysis on the phonetic features. These features included:285

primary stress, secondary stress, frequency of the sequence, suffix onset, prefix onset, root onset,286

syllable location in the word, and syllable onset. These features were extracted from the English287

Lexicon Project [36].288
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Subset variables. Throughout the analysis, we subset trials based on their relationship to: word289

onset, word offset, surprisal, entropy, distance from onset, distance from offset.290

Surprisal is given as:291

P(w|C) =
f (w)∑

w∈C
f (w)

(1)

and cohort entropy is given as:292

−
∑
w∈C

P(w|C)log2P(w|C) (2)

where C is the set of all words consistent with the heard sequence of phonemes thus far, and293

f (w) is the frequency of the word w. Measures of spoken word frequency were extracted from294

the English Lexicon Project [36].295

3.8. Decoding296

Decoding analyses were performed separately on the acoustic signal and on the neural signal.297

For the acoustic decoding, the input features were the power estimates at each of the 50 frequency298

bands from 1-1125 Hz. For the neural decoding, the input features were the magnitude of activity299

at each of the 208 MEG sensors. This approach allows us to decode from multiple, potentially300

overlapping, neural representations, without relying on gross modulations in activation strength301

[37].302

Because some of the features in our analysis are correlated with one another, we need to303

jointly evaluate the accuracy of each decoding model relative to its performance in predicting304

all modelled features, not just the target feature of interest. This is because, if evaluating each305

feature independently, we will not be able to dissociate the decoding of feature f from the de-306

coding of the correlated feature f̂ . The necessity to use decoding over encoding models here,307

though (which, do not suffer so harshly from the problem of co-variance in the stimulus space)308

is one of signal to noise: we expect any signal related to linguistic processes to be contained in309

low-amplitude responses that are distributed over multiple sensors. Our chances of uncovering310

reliable responses to these features is boosted by using multi-variate models [37].311

To overcome the issue of co-variance, but still to capitalise on the advantages of decoding312

approaches, we implement a back-to-back ridge regression model [38]. This involves a two313

stage process. First, a ridge regression model was fit on a random (shuffled) half of the data,314

at a single time-point. The mapping was learnt between the multivariate input (either activity315

across sensors or power over frequency bands) and the univariate stimulus feature (one of the 31316

features described above). All decoders were provided with data normalised by the mean and317

standard deviation in the training set:318

argmin
β

∑
i

(yiβ
T Xi)2 + α‖β‖2 (3)

where yi ∈ {±1} is the feature to be decoded at trial i and Xi is the multivariate acoustic or neural319

measure. The l2 regularisation parameter α was also fit, testing 20 log-spaced values from 1−5 to320

15. This was implemented using the RidgeCV function in scikit-learn [39].321

Then, we use the other half of the acoustic or neural responses to generate a prediction for322

each of the 31 features corresponding to the test set. However, because the predictions are cor-323

related, we need to jointly-evaluate the accuracy of decoding each feature, to take into account324

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 5, 2020. ; https://doi.org/10.1101/2020.04.04.025684doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.04.025684
http://creativecommons.org/licenses/by-nc-nd/4.0/


the variance explained by correlated non-target features. To do this, we fit another ridge regres-325

sion model, this time learning the beta coefficients that map the matrix of true feature values to326

predicted feature values:327

argmin
β

∑
i

(yiβ
T Ŷi)2 + α‖β‖2 (4)

where yi ∈ {±1} is the ground truth of a particular stimulus feature at trial i and Ŷi is the prediction328

for all stimulus features. A new regularisation parameter αwas learnt for this stage. By including329

all stimulus features in the model, this accounts for the correlation between the feature of interest330

and the other features. From this, we use the beta-coefficients that map the true stimulus feature331

to the predicted stimulus feature.332

The train/test split was performed 100 times, and the beta-coefficients were averaged across333

iterations. This circumvents the issue of unstable coefficients when modelling correlated vari-334

ables. These steps were applied to each subject independently.335

3.9. Temporal generalisation decoding336

Temporal generalization (TG) consists of testing whether a temporal decoder fit on a training337

set at time t can decode a testing set at time t′ [20]. This means that rather than evaluating338

decoding accuracy just at the time sample that the model was trained on, we evaluate its accuracy339

across all possible train/testing time combinations.340

TG can be summarised with a square training time × testing time decoding matrix. To quan-341

tify the stability of neural representations, we measured the duration of above-chance generaliza-342

tion of each temporal decoder. To quantify the dynamics of neural representations, we compared343

the mean duration of above-chance generalization across temporal decoders to the duration of344

above-chance temporal decoding (i.e. the diagonal of the matrix versus its rows). These two345

metrics were assessed within each subject and tested with second-level statistics across subjects.346

3.10. Comparing decoding performance between trial subsets347

We apply analyses that rely on comparing decoding performance for different subsets of348

trials (e.g. between high/low surprisal, or beginning/end of word). We conduct this analysis349

by first training our decoding models on responses to all phonemes, thus yielding a set of fit350

model weights (a topographic pattern) at each millisecond relative to phoneme onset. We then351

separately evaluate the performance of these decoders on the subset trials of interest. This yields352

a time-course or generalisation matrix for each group of trials that we evaluate on.353

3.11. Group statistics354

In order to evaluate whether decoding performance is better than chance, we perform second-355

order statistics. This involves testing whether the distribution of beta coefficients across subjects356

significantly differs from chance (zero) across time using a one-sample permutation cluster test357

with default parameters specified in the MNE-Python package [34].358
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