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PRINCIPAL KINEMATIC FORMULAS FOR GERMS OF CLOSED
DEFINABLE SETS

NICOLAS DUTERTRE

ABSTRACT. We prove two principal kinematic formulas for germs of closed
definable sets in R"”, that generalize the Cauchy-Crofton formula for the density
due to Comte and the infinitesimal linear kinematic formula due to the author.
In this setting, we do not integrate on the space of euclidian motions SO(n) x
R™, but on the manifold SO(n) x S*~1.

1. INTRODUCTION

The search for kinematic formulas is one of the main goal of integral geometry.
Such formulas have been proved in various contexts by various authors, for instance:

- For convex bodies by Blaschke and Hadwiger (see [25]);

- For manifolds by Chern [7] and manifolds with boundary by Santald [35];

- For PL-sets by Cheeger, Miiller and Schrader [6];

For sets with positive reach by Federer [19, 20] (see also [34]);

- For subanalytic sets by Fu [22], and more generally for sets definable in an
o-minimal structure by Bernig, Brocker and Kuppe [4, 2, 3].

There are many other situations where kinematic formulas hold, but we cannot give
here a complete list of all the interesting papers published on this topics.

In this paper, we are interested in the case of definable sets in an o-minimal
structure. Definable sets are a generalization of semi-algebraic sets and globally
subanalytic sets, we refer the reader to classical references [37, 36, 10, 29, 33| for
basic definitions and results on this topics. The study of the geometric properties of
these objects was initiated by Fu [22], who developed integral geometry for compact
subanalytic sets. Using the technology of the normal cycle, he associated with every
compact subanalytic set X of R™ a sequence of curvature measures

Ao(X,—), ..., Ap (X, —),

called the Lipschitz-Killing measures, and he established several integral geom-
etry formulas. Among them, he proved the following kinematic formulas: for
k €{0,...,n}, we have

/ A(X N UNV)dyde = > e(p,q,n) Ay (X, U)Ay(X, V),
SO(n)xR™ ptg=k+n

where X and Y are two compact subanalytic subsets of R™ and U and V are
Borel subsets of X and Y respectively. We will state these formulas specifically
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2 NICOLAS DUTERTRE

in the next section. In [4] (see also [2, 3]), Brocker and Kuppe gave a geometric
characterization of these measures using stratified Morse theory, in the more general
setting of definable sets.

In [8] Comte started the study of real equisingularity by proving that the density
is continuous along the strata of a Verdier stratification of a subanalytic set (see also
[38]). The main tool to prove his result was a local Cauchy-Crofton formula for the
density. He continued this work with Merle in [9] where a similar continuity result
was established for the so-called local Lipschitz-Killing invariants (see also [32]).
The tools for proving this continuity property are local linear kinematic formulas
that generalize the Cauchy-Crofton formula for the density. These formulas will
be explained in Section 3 but, roughly speaking, they relate the so-called polar
invariants, which are mean-values of Fuler characteristics of real Milnor fibres of
generic projections, to the local Lipschitz-Killing invariants.

In [15] we also established an infinitesimal linear kinematic formula. It is slightly
different from the ones of Comte and Merle, because instead of using projections,
we make “infinitesimally small” translations of linear spaces. Let us recall it here
because it is our main inspiration. We will use the following notations:

e s is the volume of unit sphere S* of dimension % and by is the volume of
the unit ball B¥ of dimension k,

e for k € {0,...,n}, G* is the Grassmann manifold of k-dimension linear
spaces in R™ equipped with the O(n)-invariant Maurer-Cartan density (see
for instance [35], p.200), g* is its volume,

e if P is a linear subspace of R™ of dimension k, S’Ii_l is the unit sphere in P,

e in R", B”(z) is the closed ball of radius € centered at x and S*~!(z) is the
sphere of radius € centered at x, if x = 0, we simply write B? and S?~!.

Let (X,0) C (R™,0) be the germ of a closed definable set. We consider the following
limits:
lim o Me(X, X NBY)
A (X,0) = lgr(l) B
Let H € G"% k € {1,...,n}, and let v be an element in S’;{f. For § > 0, we
denote by H, s the (n — k)-dimensional affine space H + Jv and we set

Bo(H,v) = lim lim Ag(Hj, N X, Hs,, N X NBY),
e—=06—0

and
1
Bo(H) = Bo(H,v)dv.
8k71 Skll
H
In [15] Theorem 5.5, we proved that for k € {1,...,n}
; 1
A}clm(X7 O) = T k& / ﬁO(H)dH
gn Gk

In view of this formula and since it is possible to make “infinitesimally small”
translations of any definable set, the question that motivated us was the following;:
Is it possible to establish a kinematic formula for germs of closed definable sets or,
in other words, can we replace the (n—k)-plane H with any germ of closed definable
set? The goal of this paper is to provide a positive answer to this question.

Let us present the main results of the paper. Let (X,0) C (R™,0) be the germ of
a closed definable set. To such a germ, we associate two sequences of real numbers:
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the polar invariants oy (X,0), k = 0,...,n, and the above limits Ai™(X,0). Let
(Y,0) C (R™,0) be another germ of closed definable set and let

1
o(X,Y,0) = — / lim lim x (X N (Y + dv) NBY) dydv.
Sp—1 JSO(n)xsn—1 €050
Here SO(n) is equipped with the Haar measure dv, normalized in such a way
that the volume of SO(n) is s,_1, S"~! is equipped with the usual Riemanniann
measure (or density) dv and SO(n) x S"~! with the product measure dydv. Our
first infinitesimal principal kinematic formula takes the following form (Theorem
8.15):
o(X,Y,0) =Y A™(X,0) 0_i(Y,0).
i=0

When X and Y have complementary dimensions, this gives a Bezout type formula,
since the integrand of the left-hand side is a number of intersection points and
the right-hand side is the product of the densities of X and Y at the origin (see
Corollary 8.16). Then we set

AG™ (X, Y,0)
1
Sn—1 SO(n)xSn—1 e—05—0+

In Theorem 8.17, we establish our second infinitesimal principal kinematic for-

mula:
n

AG(X,Y,0) = D AP(X,0) - AR (Y, 0).
i=0
This formula is a corollary of Theorem 8.15 and the Gauss-Bonnet formula proved
in [15].
Throughout the paper, we will also use the following notations and conventions:
o for v € R”, the function v* : R® — R is defined by v*(y) = (v,y),
e for x € R", |z| denotes the usual Euclidean norm,
e if X C R", X is its topological closure, X its topological interior,
e when it makes sense, vol(X) means the volume of the set X and x.(X) its
Euler characteristic for Borel-Moore homology.

The paper is organized as follows. In Section 2, we recall the notion of strat-
ified critical points and the definition of the Lipschitz-Killing measures. We also
state kinematic formulas. In Section 3, we recall the Gauss-Bonnet formula for real
Milnor fibres proved by the author in [15], and the infinitesimal linear kinematic
formulas proved by Comte [8], Comte and Merle [9] and the author [15]. Section 4
contains several topological and geometrical lemmas that will be useful in the next
sections. In Section 5, we prove a new spherical kinematic formula for definable
sets. Combining this formula with Hardt’s theorem [24, 10, 37], we obtain a new
kinematic formula for definable subsets of the unit ball in Section 6. We apply
this formula in Section 7 to get our first principal kinematic formula for closed
conic definable sets. In Section 8, we prove our first principal kinematic formula
in the general case using the previous case and tangent cones, and then our sec-
ond principal kinematic formula. Finally Section 9 contains two other kinematic
formulas.
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2. STRATIFIED CRITICAL POINTS AND LIPSCHITZ-KILLING CURVATURES

2.1. Stratified critical points. Let X C R" be a compact definable set equipped
with a finite definable Whitney stratification S = {S,}qsca. The fact that such a
stratification exists is due to Loi [28] (see also [31]).

Let f: X — R be a definable function. We assume that f is the restriction to
X of a C? definable function F : U — R, where U is an open neighborhood of X
in R™. A point p in X is a (stratified) critical point of f if p is a critical point of
fis, where S is the stratum that contains p.

Definition 2.1. Let p € X be an isolated critical point of f : X — R. The index
of f at p is defined by

where 0 < § € e < 1. If p € X is not a critical point of f, we set ind(f, X,p) = 0.

Since we are in the definable setting, this index is well-defined thanks to Hardt’s
theorem [24, 10, 37].

Theorem 2.2. Assume that f : X — R has a finite number of critical points
{p1,...,ps}. Then the following equality holds:
X(X) =) ind(f, X, pi).
i=1
Proof. See Theorem 3.1 in [13]. When f is a Morse stratified function, this follows
from [23]. O

2.2. Lipchitz-Killing curvatures. In this subsection, we present the Lipschitz-
Killing measures of a definable set in an o-minimal structure. We describe Brocker
and Kuppe’s approach [4].

Let X C R™ be a compact definable set equipped with a finite definable Whitney
stratification S = {S, }aca-

Let us fix a stratum S. For k € {0,...,ds}, ds = dimS, let A\{ : S — R be
defined by

1 .
)\f(:c) = / indyor (v, X, x)0qg— (15 1) dv,
Sn—k—1 STJSL
where 11, , is the second fundamental form on S in the direction of v and where
0ds—k(I1; ) is the (ds — k)-th elementary symmetric function of its eigenvalues.

The index indye (v*, X, x) is defined as follows:
indpor (v, X, 2) = 1 — X(X AN, NB"(z) N {v* = v*(z) — 5}),

where 0 < § € € < 1 and N, is a normal (definable) slice to S at z in R™ . When
vl*X has a stratified Morse critical point at x, it coincides with the normal Morse
index at z of a function f : R"™ — R such that fix has a stratified Morse critical
point at z and Vf(z) = v. For k € {ds + 1,...,n}, we set A7 (z) = 0.

If S has dimension n then for all x € S, we put A5 (z) =--- = AJ_,(x) = 0 and
A (z) = 1. If S has dimension 0 then indpe, (v*, X, z) = ind(v*, X, ) and we set

1
/ ind(v*, X, z)dv,
§n—1

Sp—1

X (@) =

and A7 (z) = 0 if k > 0.
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Definition 2.3. For every Borel set U C X and for every k € {0,...,n}, we define
A(X,U) by

M) =3 / ASe (2)da.
i sanu

These measures Ay (X, —) are called the Lipschitz-Killing measures of X. Note
that for any Borel set U of X, we have

A1 (X, U) == A (X,U) =0,

and Ay(X,U) = Hq(U), where d is the dimension of X and Hg4 is the d-th dimen-
sional Hausdorff measure in R™. If X is smooth then for k € {0,...,d}, Ap(X,U)

is equal to
1

/ Kd,k(x)dx.,
Sn—k—-1 JU
where K;_j denotes the (d — k)-th Lipschitz-Killing curvature.
As in the smooth case, the measure Ag(X, —) satisfies an exchange formula (see

[4])-
Proposition 2.4. For every Borel set U C X, we have

1
Ao(X,U) = - 1/5 1 Zind(v*,X,x)dv.
n- " zeU

For U = X and by Theorem 2.2, we see that a special case of this exchange
formula is the Gauss-Bonnet formula Ag(X, X) = x(X).

The Lipschitz-Killing measures satisfy the kinematic formula (see [22, 4, 2, 3]).
We provide the group SO(n) x R™ of all euclideans motions of R™ with the prod-
uct measure dydzx, where the canonical Haar measure dvy is normalized such that

vol (SO(n)) = 1.

Proposition 2.5. Let X CR™ and Y C R™ be two compact definable sets and let
UCX andV CY be two Borel sets. For k € {0,...,n}, the following kinematic
formula holds:

/ A(X N UNV)dyde = > e(p,q,n) Ay (X, U)AL(X, V),
SO(n)xR™

p+q=k+n
where e(p,q,n) = 7‘@”2‘:’;:3".
For k = 0, the above formula is called the principal kinematic formula. A

particular case of the kinematic formula is the linear kinematic formula. Let A* be
the affine grassmannian of k-dimensional affine spaces in R™. It is a fibre bundle
over G* with fibre R*~%. We equip A* with the product measure denoted by dFE.

Proposition 2.6. Let X C R™ be a compact definabet set and let U C X be a
Borel set. For k € {0,...,n}, we have

1 1
ANy XU) = — ———— ANXNE, XNENU)IE.
k( ) gk e(k,n —k,n) /Ax:b ol )

In Section 5, we will consider definable subsets of the unit sphere S*~!. For such
sets, one can define spherical Lipschitz-Killing measures. These measure are defined
in [3], Section 3 (see also [14]). Their definition is very similar to the definition of
the above Lipschitz-Killing measures. For X € S" ! and k € {0,...,n—1}, we will
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denote by Aj(X,—) the k-th spherical Lispchitz-Killing measures. The spherical
Lipschitz-Killing measures satisfy a Gauss-Bonnet formula ([3], Theorem 1.2) and
a spherical kinematic formula ([3], Theorem 4.4).

3. SOME TOPOLOGICAL ANG GEOMETRICAL PROPERTIES OF DEFINABLE SETS

In this section, we review some results on the local topology and geometry of
closed definable sets. Let (X,0) be the germ of a closed definable set. For conve-
nience, we will work with a small representative that we denote by X as well. We
assume that this representative is included in a an open bounded neighborhood U
of 0.

3.1. The Gauss-Bonnet formula for real Milnor fibres. We can equip X
with a finite Whitney stratification S = {S, }ae such that 0 € S, (this is possible
taking a smaller representative if necessary).

Let p; : U = R, i = 1,2, be two continuous definable functions of class C?
on U \ {0}, such that p;*(0) = {0} and p;(x) > 0 for all z € X. Tt is well-
known that there exists ¢; > 0 such that for 0 < € < ¢, p; '(e) intersects X
transversally in the stratified sense (see [15] Lemma 2.1), and that the topological
type of p{l(e) N X does not depend on e. Moreover, as explained by Durfee in [11],
Lemma 1.8 and Corollary 3.6, there is a neighborhood €2 of 0 in R™ such that for
every stratum S of X, V(p1g) and V(pz5) do not point in opposite direction in
Q\ {0}. Applying Durfee’s argument ([11], Proposition 1.7 and Proposition 3.5),
we see that p; ' (€)NX,0 < e < ep,and p; ' (¢)NX, 0 < € < ey, are homeomorphic.
The link of X at 0, denoted by Lk(X), is the set X N p~1(e), 0 < ¢ < 1, where
p : U — R is a continuous definable function of class C? on U \ {0}, such that
p~1(0) = {0} and p(z) > 0 for all x € X. We will call such a function p a distance
function to the origin. By the above discussion, the topological type of Lk(X) does
not depend on the choice of the definable distance function to the origin (actually
to define the link, we do not need to assume that p is C? on U \ {0}, continuity is
enough).

Let f: (X,0) = (R,0) be the germ of a definable function. We assume that f
is the restriction to X of a C? definable function F : U — R. We denote by X/
the set f~1(0) and by [1, 27], we can equip X with a definable Thom stratification
V = {Vs}sep adapted to X/. This means that {Vz | V5 ¢ X/} is a Whitney
stratification of X \ X7/ and that for any pair of strata (Vz, V') with V3 ¢ X/ and
Vg C X/, the Thom condition is satisfied.

Note that if f : (X,0) — (R,0) has an isolated stratified critical point at 0,
where X is equipped with the above Whitney stratification S = {S }aca, then the
following stratification:

{Sa \ /7H(0), 8o N (F7H(0)\ {0}), {0} | & € A},

is a Thom stratification of X adapted to X/.

As explained above, there is €] > 0 such that for 0 < ¢ < €}, p;*(¢) intersects
X7 transversally. The Thom condition implies that there exists §. > 0 such that
for each & with 0 < § < 6., py*(e) intersects f~'(§) transversally as well. Hence
the set f~1(0) N {p1 < €} is a Whitney stratified set equipped with the following
stratification:

{(F71 O NVan{p <eh fHO)NVan{pr=e} | Vs € X7}
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Moreover, taking €} and . smaller if necessary, the topological types of f=1(§) N
{p1 <€} and f71(6) N {p1 = €} do not depend on the couple (¢,d). To see this, it
is enough to adapt the proof of Lemma 2.1 in [18] to the stratified case. The same
fact is true for negative values of f.

Of course, we can make the same construction with ps instead of p;. But as
above, there is a neighborhood Q' of 0 in R™ such that for every stratum W of
X/, V(p1w) and V(p2)y,) do not point in opposite direction. Let us choose ¢ > 0
and € > 0 such that {p2 < €} C {p1 <€} C Q. If¢, ¢ and § are sufficiently
small then, for every stratum V ¢ X7, V(p1vng-1(s5) and V(p2jynp-1(s) do not
point in opposite direction in {p1 < €} \ {p2 < €’}. Otherwise, by Thom (ay)-
condition, we would find a point p in X7 N ({p1 < €} \ {p2 < ¢}) such that
either V(/71|W)(JU) or V(P2|W)(p) vanish or V(Pl\W)(?) and V(P2|W)(p) point in
opposite direction, where W is the stratum of X/ that contains p (see the proof
of Lemma 3.7 in [15]). This is impossible if we are sufficiently close to the origin.
Applying Durfee’s argument mentioned above, we see that f=1(§) N {p; < €} is
homeomorphic to f=1(8) N {p2 < ¢} and that f~1(8) N {p1 = €} is homeomorphic
to f=1(d) N {p2 =€}

The positive (resp. negative) Milnor fibre of f is the set f=1(5) N {p < €} (resp.
F7H(=6)Nn{p < ¢€}), where 0 < § < ¢ < 1 and p is a distance function to the origin.
The set f~1(£8) N {p = €} is the boundary of the Milnor fibre. By the previous
discussion, the topological type of the positive (resp. negative) Milnor fibre and
the topological type of its boundary do not depend on the choice of the definable
distance function to the origin.

In [15], we considered a second definable function-germ g : (R™,0) — (R, 0) and
we assumed that ¢ was the restriction to X of a C? definable function G : U — R.
Moreover, we assumed that g satisfied the following two conditions:

e Condition (A): g: (X,0) — (R,0) has an isolated critical point at 0.
e Condition (B): the relative polar set

v,
Lfg= uVBgX_fI‘fZ = Uy,gxs {z € Vs | rank [V(fwﬁ)(a:),V(gWB)(xﬂ <2}
is a 1-dimensional C! definable set (possibly empty) in a neighborhood of
the origin.

We wrote 'y, = LL_,B;, where each B; is a definable connected curve, and we
considered the intersections points of 'y, with f~1(§) N B2

Trg N (f71(6) NBY) = ULyBiN (7 (0) NBY) = {p*, ... 02},

where 0 < |§] < € < 1. The points pf’e are exactly the critical points of g on
f71(8) NB~. Then we set

s

1(6,6,9) = Y _ind(g, f~'(8),p)),

i=1

s

1(67 €, 79) = Zlnd(igv fﬁl(a)?p?e%

i=1
and in [15], Theorem 3.10, we related I(d,¢,g) + I(d,€, —g), with 0 < |§] < € < 1,
to the topology of the Milnor fibre and its boundary.



8 NICOLAS DUTERTRE

Let us give now a new characterization of I(d,¢,g) and I1(J,¢, —g) independent
on 0 and e. Let us fix a connected component B of I'y ,. We can assume that f is
stricly increasing on B and we put BN f~1(5) = {p°} for § > 0.

Lemma 3.1. There exists 6o > 0 such that for 0 < § < dg, the function & —
ind(g, f~1(0), p°) is constant on ]0, ).

Proof. Let d : R™ — R be the distance function to B. It is a continuous definable
function on an open definable neighborhood O of B. Let

A={z € X | Ipe Bsuch that f(x) = f(p) and g(x) < g(p)}.

It is a definable subset of X. Let p : AN (O \ B) — R? be the mapping defined
by p(z) = (f(z),d(z)). By Hardt’s theorem [24, 10, 37|, there is a partition of
10, +00[x]0, +00[ into finitely many definable sets such that p is trivial over each of
this set. Let us denote by A the union of the members of this partition which have
dimension less than or equal to 1. By Hardt’s theorem again, the set
{v €]0,+o0] | AN ({r}x]0,+o0]) has dimension 1}

is finite. For v > 0, the function r(v) = inf{¢' | (v,€) € A} is definable and by
the previous remark, there is 4 > 0 such that r(v) > 0 for 0 < v < v;. Hence by
the Monotonicity Theorem (see [10], Theorem 2.1 or [37], 4.1), there is 0 < dp < 14
such that r is continuous, monotone and strictly positive on ]0, dp]. Moreover the
function (4,€') — x (AN{f =5} N{d=¢€})is constant on {(d,€') | 0 < § < dp,0 <
¢ < r(d)}. But, by Lemma 3.1 in [18] and the above discussion on the topology of
the link, we have

ind(g, f1(6),p°) =1 —x ({g < g} n{f=d}n{d=¢})
—1—x(An{f=6}n{d=¢}).
We conclude that the function & +— ind(g, f~1(6), p°) is constant on ]0, &y]. O

Of course, a similar result holds for negative values of f.

By the general Lojasiewicz inequality (see [4], Corollary 1.5.2), there exists a
continuous definable function ¢ : (R,0) — (R,0) such that |p| < ¥(f(p)) for p € B.
Moreover 1) is of class C? in an open neighborhood of 0 and 9 (u) > 0 for u > 0.
Let us fix € > 0 small. If 0 < § < ¢~ *(5) then |p| < £ for p € BN f71(4).

Since I'y, consists of a finite number of branches, we can conclude that for
€ > 0 there exists o > 0 such that for 0 < |6| < &g, ['gy N f71(8) C B, and
so Ty N (716 NB2) = Ty, N f1(5). With the above notation, this means
that p?’e =p)for 0 < |6 < e < landi € {1,...,r}. Fori e {1,...,7}, let
7;(g9) (resp. 7i(—g)) be the value that the function & + ind(g, f~1(d),p?) (resp.
ind(—g, f~1(6),p?)) takes close to the origin. We deduce the following relations:

ll_r}r(l)(slirg+ I1(0,e,9) + I(d,¢e,—g) = Z 7i(9) + 7 (—g),
i | f>0 on B;

lim lim I(§ 1(d,¢,—g) = i i\—Y)-

lim lim 1(3,¢,9) +1(3,¢,~g) if; BAT(gHT( 9)

Of course, the same study can be done with another definable distance func-
tion to the origin and so, the two limits lim._,g lims_,o+ 1(d,€,9) + I(d, ¢, —g) and
lime_,o limg_,o- I(d,€,9) + (5, €, —g) do not depend on the distance function to the
origin chosen to define the Milnor fibre of f.
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Applying this study to a linear form v*, where v is generic in S*~!, we established
in [15], Theorem 4.5, an infinitesimal Gauss-Bonnet formula for the Milnor fibre of
f- We will use only this formula for functions with an isolated stratified critical
point at 0. Namely if X is equipped with a Whitney stratification for which f :
(X,0) — (R,0) has an isolated stratified critical point at 0, then ([15], Corollary
4.6)

. . —1 —1 ny _ 1: . —1 n
lim lim Ao (f71(3), f1(0) NBY) = lim lim x (f~(9) N BY)

1 P ;
(éWJX(LkQX N {v* =0})) dv.

28n71
The proof of this Gauss-Bonnet formula relies on the following exchange formula:

. . —1 —1 n
151(1) 61412&10 Ao (f (5), f7(0) N B )

~ S (LK(X) -

1
= lim lim [I(3,€,v") + I(6,e, —v*)]dv.
sy o i, 160 4 160

But we have explained above that lime_,olimgs_ I(d,€,v*) + I(d, e, —v*) does not
depend on the choice of the distance function to the origin used to define the Milnor
fibre of f. Therefore the relations proved in [15], Theorem 4.5 and Corollary 4.6,
are also valid if we replace the usual euclidian distance function by any definable
distance function to the origin. This remark will be important in the next sections.

3.2. Linear kinematic formulas for germs of closed definable sets. Let us
recall the definition of the polar invariants [9]. Let k € {1,...,n} and let P € G*.
We denote by mp : X — P the orthogonal projection on P. For P generic in
GF, Comte and Merle established the existence of an open and dense definable
germ (KT 0) C (P,0) such that, if K = UfQ’le denotes its decomposition into
connected components, then the function

KP s xP=1lim lim x (75" (y) N X NBY)

e—0 yexl
y—0

is well-defined. Then they set the following definition:
Definition 3.2. Let k € {1,...,n}. The polar invariant oy (X, 0) is defined by

Np
1
9n JGE i=1

We set 0¢(X,0) = 1.

In [9] the authors defined another sequence of invariants attached to X, called
the local Lipschitz-Killing invariants.

Definition 3.3. Let k € {0,...,n}. The local Lipschitz-Killing invariant A}¢(X, 0)
is defined by

Ax(X B2, X NBY)
loc _ 1 k € €
A=t T e

We note that A°¢(X,0) = 1. Then Comte and Merle proved linear kinematic
formulas that relate the local Lipschitz-Killing invariants to the polar invariants.
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Theorem 3.4 ([9], Theorem 3.1). For any germ (X,0) C (R™,0) of definable closed
set, we have

1 m?2 ... m}
loc 1 1
AP(X,0) 0 1 ... my 01(X,0)
loc : : : . : : ’
An (X) O) 0 0 o 1 Un(X, 0)
where mz = b:jlb,; (Z) - b:j;_l,.,b,; (]:l); fori+1<j<n.
If dimX = d then 0411(X,0) = --- = 0,,(X,0) = 0 and one recovers the local

Cauchy-Crofton formula A¢(X,0) = o4(X,0), previously proved by Comte [8].
In [14], we also studied the asymptotic behavior of the Lipschitz-Killing measures.
For k =0,...,n, we considered the limits
; . A (X, X NBY)
lim o k 9 €
Ak (X7 0) T lgr(l) bkek

and we showed the following theorem:

Theorem 3.5 ([14], Theorem 5.1). For any germ (X,0) C (R™,0) of definable
closed set, we have

) 1 1
A (X,0) = 1= Jx(KCO) = oy [ (LK N E))E,
2 2gn " Jap
Furthermore for k € {1,...,n — 2}, we have
: 1
AP(X,0) = ———— / x(Lk(X N H))dH
2gn Gr—k-1
1
o= /zk“ X(Lk(X N L))dL,

and:

. 1
AP0 = o /G X(LK(X 0 H))dA,
n n

: 1
Alm(X,0) = 5T / x(Lk(X N H))dH.
9n G}

As a corollary, we obtained:

Corollary 3.6 ([14], Corollary 5.2). For any germ (X,0) C (R™,0) of definable
closed set, the equality 1 =", _  Ai™(X,0) holds.

We note that Ai™(X,0) differs from A¢(X,0), because the link of X does not
have any contribution in the computation of A{™(X,0).

In [15], we continued our study of the Lipschitz-Killing measures and established
a local linear kinematic formula for A{™(X,0), which was our inspiration for the
present work. Let H € Gn% k€ {1,...,n}, and let v be an element in S’;Ill. For
0 > 0, we denote by H, s the (n — k)-dimensional affine space H + Jv and we set

Bo(H,v) = lim lim Aq(Hs, N X, Hso N X NBY).

Then we set )
ﬂo(H) = B()(H,’U)dv.

Sp_ k—1
k—1 SHL
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Theorem 3.7 ([15], Theorem 5.5). For k € {1,...,n}, we have

Alm (X, 0) = nl_k/nikﬁo(H)dH

n Gy

We also proved local linear kinematic formulas that relate the limits A}gm(X ,0)
to the polar invariants.

Theorem 3.8 ([15], Theorem 5.6). For k € {0,...,n — 1}, we have
AP™(X,0) = ok (X,0) — 0311(X, 0).
Furthermore, we have ‘
Aiim(Xv 0) = 0, (X,0).
4. SOME PRELIMINARY TOPOLOGICAL AND GEOMETRICAL RESULTS

Let (X,0) and (Y, 0) be two germs of closed definable sets in R™. For convenience,
we will work with two representatives of these germs that we denote by X and Y
as well. We assume that these representatives X and Y are included in an open
neighborhood U of 0.

4.1. A Gauss-Bonnet formula. Let {S;}._, be a Whitney stratification of X,
where Sy = {0} and 0 € S for i € {1,...,1}. Similarly let {T;}7_, be a Whitney

stratification of Y, where Ty = {0} and 0 € T} for j = {1,...,m}. We assume each
stratum to be connected. We introduce the following condition:
e Condition (1): for ¢ € {1,...,1} and for j € {1,...,m}, S; and T} intersect
transversally (the case S; N T; = 0 is possible).
If X and Y satisfy Condition (1) then X N'Y admits a Whitney stratification
XNY =Uu;_,Ry, where Ry = {0} and each Ry is a connected component of an
intersection S; N Ty, (¢,7) € {1,...,1} x {1,...,m}.
Let X C R**! be the following definable set:
X ={(x,t) eR"™ |z € X}.

It is included and closed in U x R. Let v € S"~* and let Y, C R™! be the following
definable set:

Y, = {(y,t) e R | Iy €Y such that y =y +tv}.
It is included and closed in the open set

U, = {(u,t) e R"*" | 3’ € U such that u = v’ +tv}.
It is well-known (see [23]) that we can equip X with a Whitney stratification in the
following way: X = Lt OS where S; = {(x t) € R""‘l | € S;}. Similarly we can
consider the following partition of Y,: Y, = (W 0(T )» Where

(TJ)U ={(y,t) e R""" | 3y’ € T; such that y = ¢/ + tv}.
Lemma 4.1. The partition }//; = I_I;-’;O@ gives a Whitney stratification of 5//;

Proof. With obvious notations, the partition Y =um i Oj’\ induces a Whitney strat-
ification of Y. Let ¢ : U x R — U, be defined by ¢(u,t) = (u+ tv,t). Then ¢ is

a diffeomorphism, ¢(Y) = Y, and qS( i) = ( i) for j € {0,...,m}. This gives the
result for Whitney’s conditions are invariant by C 1—diffeomorphisms. (]
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From now on, we will focus on the definable set Xn i/; Let us denote if by Z,,.
It is included and closed in the open set (U x R) N U,. We introduce the following
second condition:

e Condition (2): fori € {0,...,1} and j € {0,...,m}, the strata S; and @,
intersect transversally outside (0, 0).
If v satisfies Condition (2) then Z, admits a Whitney stratlﬁcatlon Z, = Ul_,Q,
where each Ql is a co connected component of an intersection S; ﬁ( i )v. We note that
necessarly Sy N (To)v = {(0,0)} and that we can put Qo = {(0,0)}.
Lemma 4.2. Assume that X and Y satisfy Condition (1) and that v satisfies
Condition (2). Then the function
tiz, © Zv
(y:1)

has an isolated stratified critical point at (0,0).

- R
— t

Proof. Let Q be a stratum of Z, different from {(0,0)}. Since the critical pomts of
tio lie in {t = 0}, we can suppose that @ is a connected component of 5N (T v
with ¢ # 0 and j # 0. Let us prove that {t = 0} intersects S N (/T transversally.
If it is not ¢ the case, then there is a point p in S; N ( i) N {t = 0} such that

(S N ( i)v) C R™. But it is not difficult to check that {¢ = 0} intersects S;

and (T} ) transversally, so 1,,5; = T}, S; NR™ and 71 =1, (?7 N R™. Moreover,
S; and T} 1ntersect transversally and so T,(S; N T) = T,S, N T,T;. Similarly,

7,(S: N (T}),) = TSﬁT(j) We get that T,(S; N T;) = T,(S; N (T}),). This

is not possible, for dimS; = dimS; + 1, dlm( T;), = dimT; + 1 and these two
intersections are transverse in R" and R"‘H. O

We can apply Corollary 4.6 in [15] to ¢ and Z,,.

Corollary 4.3. Assume that X and Y satisfy Condition (1) and that v satisfies
Condition (2). Then we have
lim Tim Ao (Zon{t=10},Z,n{t =56} NBI)

e—=05—>+

= lim hm X(Z N{t=¢6}NB'")

e—=05—

—%X(Lk(XﬁY)) - / Y (LK(X 1Y A {u* = 0}) du
S’nfl

25p-1

Proof. We just have to show that

1 1
/ YIKXNY N {u* =0} du= — [ x(@k(XNY N {u* = 0})du
2851 Jgn—1 28p Jgn
But since X NY is included in R", the method given in the proof of Corollary 5.1
[12] applies here. O

Let us go back now to the sets X and Y. We denote the definable set XN (Y +dv)
by Z,s.

Lemma 4.4. There exists €g > 0 such that for 0 < € < €q, there exists §. > 0 such
that for 0 < 6 < 6., the topological type of Z, s "B does not depend on the choice
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of the couple (€,8). Moreover for 0 < § < e < 1, Z, sNBY and Z,N{t = 6} NB !
are homeomorphic.

Proof. Let p(z,t) = \/a? + -+ 2 +t. Then Z, s "B is homeomorphic to Z, N
{t=0n{p < e+5} Let m: Z, Nn{t > 0} - R be the mapping defined by
m(x,t) = (p(z,t),t) and let A C R? be its (stratified) discriminant. It is a definable
curve in a neighborhood of 0 € A in RT x R*. The following function
r : Rt — R*
v o+~ inf{t| (v,t) € A}

is a definable function defined in a neighborhood of 0. Note that r(0) = 0 and
r(v) > 0 for v > 0 close to 0. By the Monotonicity Theorem (see Theorem 2.1
n [10] or [37], 4.1), we can assume that r is continuous and increasing on a small
interval ]0,vp[. Let (¢,0) be a couple such that 0 < ¢ < vy, 0 < 6 < r(e) and
Zy N {t = 6} N {p < €} has the topological type of the Milnor fibre of ¢, . By
taking § smaller if necessary, we can assume that € + § < . Since r is increasing,
0 < r(e) < r(e+0d) and so Z, N{t = 0} N{p < e+ ¢} is homeomorphic to
ZyN{t =6} N{p < e}. We conclude with the results of Section 3. O

A similar result is true for negative values of ¢ replacing \/z% + - - - + 22 +t with
Va?+ -+ 22 —t. We can state the infinitesimal Gauss-Bonnet formula for Z,, 5.

Lemma 4.5. Assume that X and Y satisfy Condition (1) and that v satisfies
Condition (2). Then we have

hm lim AO( Zy5,Zy5 NBY) = lim lim X( Zy s NBY)

e~00—+ e—05—+

—%X(Lk(XmY)) - / Y (Lk(X NY N {u* = 0})) du
Sn—l

25n—1
Proof. Let i : R® — R*""1 2+ (2,6). Since i is a definable isometry, by Theorem
5.0 in [22] or Proposition 9.2 in [4], we have

A (Zys, Zos NBY) = AL (Z,n{t =60}, Z,n{t =86} N{p <e+5}).

Here we suppose that § > 0, A} (resp. A§+") stands for the Gauss-Bonnet measure
in R™ (resp. R"™!) and p(x,t) = /22 + -+ 22 +1

As explained in Section 3, for u generic in S™ and for € > 0 sufficiently small,
there exists d¢, such that for 0 < § < .., the critical points of v* and —u* in
Zys N {t = 0} actually lie in Z, 5 N {t = 6} N {p < {}, hence there are not in
ZysN{t=0}N{e < p<e+d}. Thanks to this observation, we can conclude that

lim lim Af* (Z, N {t =6}, Z, N {t =6} N {p < e+ d})

e—=06—0
= lim lim A" (Z, N {t =6}, Z,Nn{t =6} N{p <¢}).
=060
It is enough to apply Corollary 4.3 and the comments of Section 3 on the choice of
the distance function to the origin to get the result. (I

4.2. A useful lemma. We continue this section with a remark. Instead of trans-
lating Y, we can translate X, intersect this translated set with Y and obtain another
Milnor fibre Y N (X + dv) NBY, 0 < 0] € e < 1.

Lemma 4.6. There exists €g > 0 such that for 0 < € < €q, there exists §. > 0 such
that 0 < 0 < 0., X N (Y +6v) NB? and Y N (X — dv) NB? are homeomorphic.
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Proof. Let py(z,t) = \/(x1 — tv1)2 + -+ - + (z, — tv,)2+t. By the results of Section
3, we know that there exists ¢y > 0 such that for 0 < ¢ < ¢y, there exists §¢ > 0
such that for 0 < § < &, the topological type of Z, N {t =6} N{p, < €} does not
depend on the couple (¢, ) and is the topological type of the positive Milnor fibre
of t|z,. On the other hand, the set X N (Y + dv) N (B + dv) is homeomorphic to
ZyN{t =30}N{py < e+3d}. The same method as the one used in Lemma 4.4 shows
that for 0 < € < ¢y and 0 < § < §. small enough, Z, N {t = 6} N {p, < e+ 4}
is homeomorphic to Z, N {t = §} N {p, < €}. We conclude that Z,s N B? is
homeomorphic to Z, s N (B? 4 év) for 0 < § < e < 1. But

Xm(y+5v)m(]ﬂag+5v)] ~dv=(X —)NY NB".
|

4.3. Genericity of Conditions (1) and (2). We prove the genericity of Condi-
tions (1) and (2). To prove the genericity of Condition (1), we need some auxiliary
lemmas.

Lemma 4.7. Let x € R™ be a non-zero vector. We have
{Hz | H € M,,(R) such that 'H = —H} = zt.

Proof. Tt is clear that if H is an antisymmetric matrix, then Hz € z. Let us write
r = (z1,...,2,) and let a = (ay,...,a,) € z+. Since x # (0,...,0) then there
exists k such that x # 0. Then we can construct H = (h;;) in the following way:

a; .
hij = _;;’ hjk = —hyj for j # k,

and putting h;; = 0 for the other coeflicients. Then H is antisymmetric and
Hx = a. [

Lemma 4.8. Let f:R" — R* with 1 <k <n—1 be a C' mapping and let F be
the mapping defined by
F : M,R) — S,(R)xRF
A —  (*AA, f(Ax)),

where x is a non-zero vector. If A € SO(n) and D f(Ax)|az)+ : (Az)= — R¥ is
surjective then DF(A) is a surjection.

Proof. We have DF(A)(H) = (‘*AH+'HA, Df(Az)(Hz)). Let (Y, ) € S, (R) xR¥,

we have that
1 1
tA <2AY> +°¢ (2AY) A=Y.

Let 3 = Df(Az)(3AYx). We have to find H such that "AH + 'HA = 0 and
Df(Az)(Hz) = a— B. Since D f(Ax)| )+ is a surjection, by the previous lemma,
there exists an antisymmetric matrix L such that Df(Az)(LAx) = a— 5. We take
H=LA. (]

Lemma 4.9. Let T C R" be a C' definable submanifold of dimension d such that
0 € T. Then there exists a neighborhood Ur of 0 such that for x € T N (Ur \ {0}),
dim(T, TNnat) <d-1.
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Proof. If it is not the case, then there exists an injective C! definable map u :
[0,v) = T such that x(0) = 0 and for t # 0, T, )T C pu(t)*, hence p(t) L T, T
Since ' (t) € Tyy)T', we get that (u(t), 4'(t)) = 0. This implies that (u(t), u(t))" =0
and that |u(t)| = 0, which is not possible. O

Lemma 4.10. There ezists a definable subset Xx y C SO(n) of positive dimension
such that for v ¢ Xxy, X and Y satisfy Condition (1).

Proof. We note first that {yT}}7., is a Whitney stratification of vY". Let S # {0}
be a stratum of X and let T # {0} be a stratum of Y. We have to prove that there
exists a definable subset X g 7 C SO(n) of positive codimension such that S and 4T’
intersect transversally in a neighborhood of 0. If dimS = n or dimT = n, there is
nothing to prove so we can assume that e := dimS <n—1 and d := dimT < n —1.
Let M be the following definable set:

M ={(p,7) € (U'\{0}) x O(n) | pe SNy~'T},

where U’ is an open definable neighborhood of 0, included in U N Ur and such that
~U' C U’ for all v € O(n). Let us prove that M is a definable submanifold of
R™ x M, (R).

Let (p,7y) be a point in M. There is an open neighborhood V of (p,v) in R™ x
M, (R) such that in V, M is defined G(z, A) = (0, I,,0), where

G : R"x M,(R) — R"¢x5,(R)x R
(x,A) = (g(z),"AA, f(Ax)),

and where g is a definable submersion such that S is locally defined by g(z) = 0 in
a neighborhood of p and f is a definable submersion such that T is locally defined
by f(z) =0 in a neighborhood of yp.

Since p belongs to U’, yp € Ur NT and so dim(T,,T N (yp)*) < d — 1, which
implies that Df(7p)|(yp)+ : (yp)* — R"? is a surjection. By Lemma 4.8, the
mapping

F : M,R) — S,(R)xR¢
A (144, f(Ap)

is a submersion at . Therefore the submatrix of the jacobian matrix of G at (p,~)
formed by the partial derivatives of ' with respect A has maximal rank. But the
submatrix of the jacobian matrix of G at (p,~y) formed by the partial derivatives of
g with respect to x has also maximal rank. We conclude that G is a submersion at
(p,7) and that M is a definable submanifold of dimension

w + (6 + d) —N.

Let @ : M — O(n) be the natural projection. By Sard’s theorem (see [5]), its
discriminant A is a definable subset of positive codimension. Let 7 : O(n) — O(n)
be the definable diffeomorphism given by 7(A) = ‘A. It is enough to take Ygr =
T(A)N SO(n). O

n(n+1) n

n+n?—2n — (e+d) =

Lemma 4.11. Assume that X andY satisfy Condition (1). There exists a definable
subset xy C S"™' of positive codimension such that for v ¢ T'xy, v satisfies
Condition (2).
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Proof. Let S be a stratum of X and let T be a stratum of Y. We have to prove
that there exists a definable subset I's 7 C S"~! of positive codimension such that
S and T\U intersect transversally outside (0,0), in a neighborhood of (0, 0).

If $ = {0} and T = {0}, then SN T, = {(0,0)} and there is nothing to prove.
If dimS = n or dimT = n, there is nothing to prove neither. Let us treat first the
case 0 < e:=dimS <n—1and 0 < d:=dim7T <n — 1. Let M be the following
definable set:

M= {(p,T,l/) cU xR x R\ {0}) | (p,7) e§mi}.

Let us prove that M is a definable submanifold. Let (p, 7,v) be a point in M. There
is an open neighborhood V of (p,7,v) € U x R x (R™\ {0}) such that in V, M is
defined by g(z) = 0 and f(z—tv) = 0, where g is a definable submersion such that S
is locally defined by g(z) = 0 in a neighborhood of p and f is a definable submersion
such that T is locally defined by f(z) = 0 in a neighborhood of p — 7v. It is easy to
check that the Jacobian matrix of the mapping (g, f) has maximal rank at (p, 7, v)
if 7 # 0. If 7 = 0 this is also the case by Condition (1). Therefore M is a definable
submanifold of dimension 2n+1—2n+ (e+d) = (e+d) + 1. Let 7 : M — R"™ be
the projection 7(p,7,v) = v. By Sard’s theorem (see [5]), its discriminant A is a
definable subset of positive codimension. We take I's 7 = S"~!\ A. The remaining
two cases are proved with the same method. (Il

4.4. The link of Z, N {t > 0}. We study the link of the set Z, N {¢t > 0}. We still
assume that X and Y satisfy Condition (1) and that v satisfies Condition (2). For
(z,t) € R™, we set w(x,t) = |z|. Let ¢g > 0 be such that B?, C U. We set

1
Iy = {(uy,u) |y eY,u G]O,eo[} c R*HL,
We recall that the tangent cone of Yat 0 is CoY =Ty N (R™ x {0}). It is a closed

and conic definable set in R™.

Lemma 4.12. Ifv & (—Co(Y))NS"~! then there exist €, > 0 and a > 0 such that
the inclusion

Y,n{t>0}NB C {(z,t) € R™ | 2| > at} NBH
holds.

Proof. If it is not the case then we can find a sequence of points (z,,t,)nen in
Y, \ {t = 0} such that (z,,t,) — (0,0) and lim,, 4 ‘f"‘ = 0. We have

|z, — tav|? = |a:n\2 + ti — 2t (X, V),

and so
‘xn _QtnU|2 _ |xr2t|2 +1— 2<xi
2 t2 tn

) 0)

Since [($=,v)] < @, we find that lim,—, 4 M = 1. Since
b n "

tn 3 ‘-Ln‘ —
o e find that lim,,, 1 e—iee] = 0. Therefore we see that
Ty — tpv

lim — =
n—-+oo |.Z’n — tnv|

which implies that —v belongs to Co(Y) NS"~1L. O

-0,
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Corollary 4.13. Ifv ¢ (—Co(Y))NS™ ! then for 0 < € < 1, the link on,ﬁ{t >0}
is homemorphic to Z, N{t > 0} N {(z,t) | || = €}.

Proof. Tt is enough to show the implication

{ (yo,to) € }//;O{t > O}Q]Bg?:rl

w(yo,to) =0 = (Y0, t0) = (0,0).

But if w(yo,to) = 0 then |yo| = 0 and, by the previous lemma, |yg| > aty for some
a>0. [l

If dimCy(Y) < n — 1 then the previous corollary holds for almost all v in S?~!
since dimCo(Y) NSt <n — 1.

In the rest of this subsection, we assume that dimCy(Y) = n. This implies that
dimY = n. Let us denote by Y’ the union of the strata of Y of dimension less than
or equal to n — 1. It is a closed definable set of dimension less than or equal to
n — 1, if not empty. We need auxiliary lemmas.

Lemma 4.14. Let S C R™ be a definable open subset such that 0 € S and that
dimCoS = n. If v is in CpS\ Co(S\ S) then there is o > 0 such that ]0,a]-v C S.

Proof. We note that CoS \ Co(S \ S) is not empty because dimCy(S) = n. Let
v € CyS\ Co(S\S) (note that necessarly v # 0). Let us suppose that for all a > 0,
]0,a] - v is not included in S. Hence we can construct a sequence (z,)nen in the
complement S of S such that (z,) tends to 0 and é—:‘ = v. This implies that v
belongs to Cp(%S). Since v belongs to Cy(S) as well, there exists a sequence of
points (zn)nen in S such that ‘i:‘ tends to v.

Let a € S and let b € “S. Let [a,b] be the segment with extremities a and b, i.e.
[a,b) ={z | z=Aa+ (1 —A)b, A €[0,1]}.

Since S is open, there exists 0 < 7 < 1 such that [a,a + n(b — a)[ is included in S.
Let 1, be the supremum of such ’s. The point a +1,(b—a) lies in S\ S. Actually
if a+mn,(b—a) is in S then there exists ' > n, such that a +7n'(b—a) € S, because
S is open. We conclude that the segment [a, b] intersects S\ S.

For each n € N, let y,, be a point in [z,,2,] N (S\ S). If there is a subsequence
Yr(n) such that y,(,) = 0, then =" =

= —v, which is not possible for —“ tends

wa(n)l Iwr(n)l

to v. Therefore we can assume that y, # 0 for n € N, and write
Yn _ An|Zn] 0 (L= Ap)zn|  an

where A, € [0,1]. For simplicity we rewrite this equality in the following way:
T
yin:anv+ﬂn7n7
|Yn] ||
with ay, 8, > 0. Since (v, |§7‘|> — 1, there is ng such that for n > ng, (v, %) > %

This implies that for n > ng, 0 < a2 + 82 + @B, < 1 and so the sequences
(an)nen and (By)nen are bounded. Therefore, taking a subsequence if necessary,

we can assume that «, tends to o > 0 and §,, tends to 8 > 0. Hence ‘Z—"‘ tends
to (a + B)v, where aw + = 1 for the limit of ‘g”‘ is a unit vector. We see that v

belongs to Co(S \ S), which is not possible by hypothesis. We conclude that there
is a > 0 such that ]0,a]-v C S. O
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Lemma 4.15. Let W C R™ be a closed definable set equipped with a Whitney
stratification. Suppose that 0 € W and that 0 lies in a stratum of dimension greater
than or equal to 1. Let g : W — R be a definable function, restriction of a C?
definable function, such that 0 is not a stratified critical point of g. Let f : WN{g <
0} — R be a definable function, restriction of a C* definable function, such that
f(0) =0 and 0 is a local strict mazimum of f. Then ind(f,W N {g < 0},0) =0.

Proof. By Lemma 3.3 in [18], x (Lk(W N{g <0})) = 1. Since —fiwng<o} is a
distance function to the origin, we can write

ind(f,WNn{g <0},0)=1-x(Wn{g<0}n{-f <en{f=-d}),

with0<d<e<1l. Bt Wn{g<0}n{—f <e}n{f= -0} is homeomorphic to
the link of W N {g < 0} at 0. 0

Let us choose v in (—C(Y))NS™ ™! such that v ¢ (—Co(Y’))NS"~!. By Lemma
4.12, there exists ¢, > 0 and a > 0 such that

YN {t>0} B2 C {(2,t) | |z > at} NBIFL

Lemma 4.16. Under these assumptions, we have
2e "
x| XNY+—v)nB, ) =1
a
for0<ex 1.

Proof. For 0 < ¢ < 1, we set 7e = /€2 + (%)2 The set X N (Y + 2) N BY is
the intersection Z, N {t = 2} NBITL. If (g, t0) lies in Z, N {t > 2} N B! then
2
lzo|? < €2 + (%)2 — 2 and |$t“2| < ;—z < (%)2 Therefore if € is sufficiently small,
0 0

ZyN{t>2}NBrHiny; =0.

The function ¢z, has an isolated stratified critical value at 0. If € is small
enough, the stratified critical points of bz, fe> 22 nEn lie in Z, N {t > %} nsy.

But }’/Z does not intersect Z, N {t > 2} NBr!, so Z, N {t > %} N Bf}l (resp.
Zy N {t > 2} N S") is stratified by strata of the form SNT,N {t > 2}n IB%?ZH
(resp. SNT,N {t > 2} NS ), where S is a stratum of X and T is a stratum of ¥’
of dimension n. This means that Z, N {t > 2¢} N IB%?ZH (resp. Z, N {t > %} nsy)
is stratified by open subsets of strata of the form S N {t > 2} N B (resp.
Sn{t>2ynsr).

Such a stratum S is a product Sx] — €, €[ where €,€” > 0 are small and S is a
stratum of X. A point (z, ) is a critical point of tlgﬁsﬁé if and only if g € S and

Nl(xo) 0

rank N, .(mo) 0 <cg+2,

Zo to
0 1
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where (N1 (zo), ..., N,

s (0)) is a basis of the normal space to S at g, that is if and
only if

N1 (Io)

rank <cg+1.
Nc (-TO)

s

xo
But if xg is a point of S close to 0 but distinct from 0, the sphere S&;ﬂ intersects
the stratum S transversally. We conclude that the unique possible critical point of
b5y, is the point (0,7¢). But v is in (=CoY \ —CoY’')NS"~ 1, so by Lemma 4.14,
there is o > 0 such that ]0,«] - (—v) C T where T is a stratum of Y of dimension

n. Hence {0}x]0, ] is included in T,. We conclude that for 0 < e < 1, (0,7) is
the only critical point of tlzvﬂ{t>%}ﬁ13%l.‘j1' Moreover it is a strict local maximum.

Applying Theorem 3.1 in [13] and Lemma 4.15, we get

2 2
X (ZU n{t> —6} N ]Bfﬁ) - X (ZU N{t= —6} m]B%?ﬁ) =0,
a a i
and
2
X (Zq, Nn{t> —E} N Bffl) = ind(—t, Z, N IB%:}:FI, (0,7.)) =1,
a . ]

because _t\Z,UmIB%’;jl has a strict local minimum at the point (0, 7). (Il
Corollary 4.17. Under the same assumptions, we have
2
x (Lk(Z, Nn{t > 0})) = xe (Zv N{t>0}N{(z,t) | |z| = e, t < 6}) + 1.
a
Proof. Let h(x,t) be the semi-algebraic function defined by

h(z,t) = max (|x|7 gt) .

As explained by Durfee in [11], Section 3, the link of Z, N {t > 0} is homeomorphic
to Zy,N{t >0}N{h =€} for 0 < e < 1. We have

t
Zvﬂ{tZo}ﬂ{h:e}:Zvﬂ{tZO}ﬂ{m:e,%§e}

t
UZ.n{t =0} {lz| Se,%:e}.
It is enough to use the previous lemma and the additivity of x.. O

4.5. On the two sides of the kinematic formulas. We prove the existence
of the left-hand sides of the kinematic formulas, and we show that both sides of
the formulas are symmetric in X and Y. We also give a relation with the polar
invariants.

Let (X,0) C (R™,0) and (Y,0) C (R™,0) be two germs of closed definable sets.
We assume that X and Y are included in an open set U. Let ¢y > 0 be such that
Be CU.

1) Let us fix (¢,6) such that 0 < e < ey and 0 < <e. Let

A= {(z,7,v) € R" x SO(n) xS" |z e X,z — v ey, |zl <e}.

It is a closed definable set. By Hardt’s theorem applied to the projection 7 : A —
SO(n) x S"~1, the function (y,v) — x (X N (vY + dv) NBY) takes a finite number
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of values. As in [3] we equip SO(n) with the Haar measure dry, normalized in such a
way that the volume of SO(n) is s,,_1. We equip S"~! with the usual Riemanniann
measure (or density) dv and SO(n) x S*~1 with the product measure dydv. With
this measure, the function (v, v) = x (X N (7Y + dv) N B?) is integrable and so the
integral

/ X (XN (Y + 6v) NBY) dydv
S0(n)xSn—1
exists and is finite. Moreover the function
'yb—>/ X (X N (Y +dv)NBL) dv
S§n—1
is integrable and the function
v X (X NEHY +6v) NBY)dy

SO(n)
is integrable and we have

/ X (X N (VY + 6v) NBY) dydv
50(n)xSn—1
:/ [/ X (X N (VY + dv) NBY) dv]dy
50(n) Jsn—1

= / [/ X (X N (Y + dv) NBY) dv]dv.
sn—1 Js0(n)

Now let us fix € > 0 such that 0 < € < ¢. By Hardt’s theorem, for every
(7,v) € SO(n) x S*~1, there is a small interval ]0,d¢[ such that the function § —
X (X N (7Y + év) NB?) is constant on |0, d¢[ and so lims o+ x (X N (vY + dv) N BY)
exists and is this constant value. Similarly as above, the function (y,v,d) —
X (X N (vY + dv) N BY) takes a finite number of values and so, by Lebesgue’s the-
orem, the function (v,v) + lims_ g+ x (X N (7Y + dv) NB?) is integrable and we
have

lim X (XN (Y + év) NBY) dydv
§=0% J50(n)xsn—1

= / lim x (X N (vY +0v) NBY) dydv. (%)
SO(n)

x§n—1 6—=07F

Let us fix (y,v) € SO(n) x S*~! and let
B:{(m,e,é)eR”x{(e,é) 0<e<en0<d<e) \xeX,m—évEY,mge}.

It is a closed definable set. Applying the argument of the proof of Lemma 3.1, we
see that there exists 0 < €; < ¢ and a definable function r :]0, €;] — R continuous,
monotone and strictly positive such that the function

(€,8) — x (X N (7Y + 6v) NB)

is constant on {(€/,0") | 0 < € < €1,0 < ¢ < r(€')}. But we see that for ¢ €]0, ¢
and 0 < ¢’ < r(¢),

X(XNEHY +8v)NBL) = 5lir(r)1+)<(Xﬁ (vY +6v)NB.).
—

Therefore the limit lime o lims o+ x (X N (7Y + dv) NB?) exists and equals the
above constant value. Always by Hardt’s theorem, the function (v,v,€,d) —
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X (X N (vY + dv) NBY) takes a finite number of values and so does the function
(v,v,€) = limg_,g+ x (X N (7Y + 0v) NB?). By Lebesgue’s theorem, the function
(v,v) = im0 lims 0+ x (X N (7Y 4 6v) N B?) is integrable and

lim lim x (X N (7Y + dv) NBY) dydv
e—0 SO(n)xSn—1 6—0t

= lim li XNOY +o0v)NBY) dyd
/SO(n)xsn 1 613% 6—1>%1+ x( (Y + dv) ) dyv.
Finally, by Equality (%) above, we have that
lim[ lim X (X N (vY + dv) NBY) dydv)
€20%6-0% /50 (n)xsn—1 ‘

exists and equals

/ lim lim x (X N (Y + ov) NBY) dydv.
s

O(n)xsn—1 e—=05—0t

Definition 4.18. For two germs of closed definable sets (X,0) C (R™,0) and
(Y,0) C (R™,0), we set

1
0(X,Y,0) = / lim hm X (X N (Y + dv) NBY) dydw.
SO(n)

s2_ wgn—1 €050+

2) Let us fix € such that 0 < € < ¢g. Let
C={(z,7,H) €R"xSO(n) x G ' |z € XNyY NH,|z| =¢€}.

It is a closed definable set. By Hardt’s theorem applied to the projection 7 : C —
SO(n)x Gp_y, the function (v, H) — x (X NY N H NS™!) takes a finite number
of values. As above, we deduce that the function (v, H) — x (Lk(X N~Y N H))
takes a finite number of values. We equip G?~! with the SO(n)-invariant mea-
sure (or density) dH and SO(n) x G*~! with the product measure. With this
measure, the function (v, H) — x (Lk(X N~yY N H)) is integrable and so the in-
tegral fso(n)XGz—l X (Lk(X N~Y N H)) dydH exists. Moreover the function v

fGﬁ—l x (Lk(X N~Y N H))dH is integrable and so is the function

(v,v) — 1x(Lk(Xﬂ7YﬂH))dH
Gn~

on SO(n) x S*~1. Similarly it is easy to see that the function v +— y (Lk(X N~Y))
is integrable on SO(n) and so is the function (v, v) — x (Lk(X N~Y")) on SO(n) x
sn=t.

3) By Lemmas 4.10 and 4.11, there exists a definable subset A C SO(n) x S*~1
of positive codimension such that for (y,v) ¢ A,

hm hm A (XN (VY +0), X N (Y +dv)NBL) =

e—0

hm hm X (XN (Y +6v) NBY)
e—0§5—

—%X(Lk(XﬂyY)) _ / Y (LK(X N4Y O {u* = 0})) du
Snfl

2sn—1

Therefore the function

(v,v) — lim hm Ao (X N(YY +v), X N (7Y + dv) NBY)

e—08§—0
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is integrable on SO(n) x S*~1.

Definition 4.19. For two germs of closed definable set (X,0) C (R™,0) and
(Y,0) C (R™,0), we set

AG™(X,Y,0)
1
= lim lim Ay (X N (VY +6v), X N (Y + dv) NBY) dvydv.
S$h_1 /SO(n)XSTblegI%W—lgl"' o (XN (Y +0v), X0 (7Y + v) NBY) dydv

We note that
1

Sn—1
/ / x (Lk(X N~Y N{u" = 0})) dudy.
50(n) Jsn—1

The two limits o(X, Y, 0) and Ai™(X,Y,0) are symmetric in X and Y, as explained
in the next proposition.

A Y.0) = o(X,Y.0) - 52— [ (KX n9Y))dy
SO(n)

1

2
Sn—1

Proposition 4.20. For two germs of closed definable sets (X,0) C (R™,0) and
(Y,0) C (R™,0), we have

o(X,Y,0) = o(Y, X,0) and AI™(X,Y,0) = Ai™(Y, X,0).
Proof. By Lemma 4.6, we know that
lim 11rg+x(Xﬂ (VY +0v)NBY) = ggrg)&grg+x((X —dv)NyY NBY).

e—0 45—

The change of variables v — —uv gives that

/ X((X—(Sv)ﬁvYﬂB?)dv:/ X (X +dv) NyY NBY) do,
sn—1 sn—1
and so

/ X((Xfév)ﬂnyﬁIBf)dv:/ x (VX +60) NY NBY) do.
§n—1 §n—1

Hence, by the change of variables v+ v~! on SO(n), we are lead to compute
/ [/ X (V(X + dv) NY NBY) dv]dry.
S0(n) Jsn—1
But for v € SO(n), the change of variables u — ~yu gives that

/ X('y(XJréu)ﬂYOB?)du:/ X (vX +dv)NY NBY) do.
S§n—1 S§n—1

Finally we get that

/ / X (VX +dv)NY NBY) dvdy =
50(n) Jsn—1

/ / X (VX 4+ dv) NY NBY) dudy.
SO(n) JSn—1

It is enough to pass to the limits to get the equality o(X,Y,0) = (Y, X,0). The
result for Ai™(X,Y,0) is obtained applying the relation between o(X,Y,0) and
A™(X,Y,0). O

Now let us relate o(X,Y,0) with the polar invariants of Comte and Merle [9].
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Proposition 4.21. If H € G" %, k €{0,...,n}, then we have
o(X,H,0)=0,(X,0).

Proof. The proof is straightforward for & = 0, because in this case o(X,R™,0) =
limeo x(X NB2) = 1.

Let us assume that £ > 0. First we note that

1 1
o(X,H,0) = — k/ ( / lim lim X(Xﬂ(H+5v)ﬂB”)dv> dH.
Gnk S

gn Sn—1 Jgn—1 €050+

For H € G" %, we recall that S];I_l is the unit bphere in H+ and we denote by

pr+ the orthogonal projection onto H+. If v € %7 o and w € Sn~1 are such that
Pyl (w)
[P L (w)]

lim lim x (X N(H +év)NBY) = lim 5lir(r)1+ X (XN(H+dw)NBY).
—

e—0§5—0+ e—0

This implies that

= v, then

1 1
o(X,H,0) = — /ka- ( /s lim lim X(Xﬂ(H—l—(Sv)ﬁ]B")dv) dH,

In Sk_1 k— 1&»06-{

(see the proof of Corollary 5.7 in [12] for a similar argument or use the co-area
formula). To end the proof, it is enough to show, with the notations of Section 3,
that

sz K7.0) = 1/ lim llmX<Xﬂ(PL+5U)ﬁB")d
Sp

Sk—l k=1 €e—0§—0*

By Lemma 4.14, we know that if v € Co K[!\ Co(Ff\ K?F), there is § > 0 such
that ]0,6] - v C KP. Hence

Np P k—1
1 vol(CoK; NS )
lim 1i XN (P +6v)NBL)d _§ P )
Sk—1 Ak 161—I>r(1)6~l>r(r)1 X( ( + U v Sk—1

vol(Co KF nsh™1)
Sk—1

By [26] Lemma 2.1, is exactly O (K7,0). |

Remark 4.22. The equality

1 1
X lim i XN(H+6 BY)dv | dH
nxo= o [ (k /S i Ji (01 (A 6 B ) ,
is natural because the two sides of the equality coincide for they measure the same
mean-value of Euler characteristics. It already appeared in [9] page 244 in the conic
case, and we used it in [15, 16, 17] as a definition for the polar invariants. We prove
it here for completeness.

We end this subsection with another symmetry result.

Lemma 4.23. For two germs of closed definable sets (X,0) C (R”,0) and (Y,0) C
(R™,0), we have

> A™(X,0) - 0, i(Y,0) Zal (X,0) - Aim(v,0).

=0
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Proof. By Theorem 3.8, we get

n

n—1
D> AMX,0) - 0ni(V,0) =Y (03(X,0) = 0541(X,0)) - 00— (Y, 0)

1=0 i=0
n—1
+0,(X,0) - 00(Y,0) = 0:(X,0) - 0,—;(Y,0)
=0
n—1
— Z Ui+1(X7 0) . O‘n_i(Y, O) + O'n(X, O) . O'()(Yv7 O)
1=0

Therefore we obtain

En: AI™(X,0) - 0,3 (Y,0) = 00(X,0) - 0,(Y,0)

i=0
n—1
+ Z 0i(X,0) - (0p—i(Y,0) — 0p—ix1(Y;0)) + 0,(X,0) - (00(Y,0) — 01(Y,0))
i=1
Another application of Theorem 3.8 gives the result. (]

5. A NEW SPHERICAL KINEMATIC FORMULA

We give a new spherical kinematic formula for two definable subsets of the unit

sphere.
Let X C S™! be a compact definable set and let Y C S™~! be a definable
set, not necessarly compact. We recall that the A;’s, i = 0,...,n — 1, denote the

spherical Lipschitz-Killing measures.

Proposition 5.1. The following kinematic formula holds:

1 / A X) 1
Xe(X NAY)dy = 7 / X(Y NH)IH.
SO(n) ; g Jam

Sp—1 S gn

Proof. First step: We study the case Y compact. Applying the generalized spher-
ical Gauss-Bonnet formula (see Theorem 1.2 in [3]) to x(X N~Y’), we obtain

n—1
2 -
/ X(X NAyY)dy = — A(X NAY, X N~vY)dy.
50(n) i=0.2,... 71 JSO(n)

Then we apply the generalized spherical kinematic formula (see [3, 21]) to each
A(X NY, X N~Y) and we get

/so<) (X NY)dy Z > (X X)

Sp5
U ptg=itn—1 P74

=t

JYY).

Therefore we have

1
/ x(X N~Y)d
Sn—1 JSO(n)

Ap(X, X) 2A,(Y,Y
> (X, X) 24,(Y,Y)

s s
1=0,2,... p+g=i+n—1 p q
_ oy BEAROY) g X 28,(1Y)
p+g=n—1 %» % p+g=n+1 5p %
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. Z ZAg )’

p+g=e(n) °p

where e(n) =2n —2if n — 1 is even or 2n — 3 if n — 1 is odd. This equality can be
rewritten in the following way:

1 A (X X) 20,(Y,Y)
/SO(n) XY= ( 2 8q )

Sn—1 Sp—1
q=0,2,...
Ap_o(X, X 2A,(Y,Y Ao(X,X) [2A,_1(Y,Y
R )<Z o >>+,__+ olX )( i >>.
Sn—2 q=1,3,... Sq Sn—1
In [14] pages 175-176, we proved that
1 20,,1(Y,Y) 1 20, _5(Y,Y
T/ X(YﬂH)dH:#, 7/ X(YmH)dHZ#,
9n JGy Sn—1 In JG2 Sn—2
and for k > 3,
1 A, si(Y,Y
— 2/ (Y N H)dH = 2An—k+i(Y,Y)
gn = e i=24,. ~ On—kti
_ > 28,(Y,Y)
qg=n—k+2,n—k+4,... Sq
Applying these relations, we get that
1 Ap_1(X, X Ap_o(X, X) 1
/ WXy ydy = 2t &) gy Anma (X X) 1 / X(YNH)dH
Sn—1 JS0O(n) Sn—1 Sn—2 gn agn—1
Ap_s(X,X) 1 Ao(X, X
4+ Ans(X, X) n2/ (Y NH)dH + - M / x(Y N H)dH.
Sn—3 gn Gr—2 S0 gn

Second step: Let Y C S"! be compact and let K C Y be a compact definable
set. By the first step, we have

n—1 1
1 AX, X 1
/ X(X NyY)dy = AXX). 1+1/ x(Y N H)dH,
Sn—1 J50(n) - S gn = Jat

and

n—1 7%
1 / AX,X) 1
X(X N~yK)dy = — / x(KNH)IH.
Sn—1 SO(n) ZZ:; S; gn-‘rl Gitt
For each v € SO(n), 7Y = (WY \7K)UyK = (Y \ K) U~vK because 7 is bijective.
Hence x(X NY) = x. (X Nvy(Y \ K)) + x(X NyK) and

1/ Xe (X N A(Y \ K)) dy
SO(n)

Sp—1

n—1 ¢

MX,X) 1
=y D, z+1/_ [x(Y N H) - x(KNH)]dH
i—0 i gn  Jaitt

:ZAi(J{,X il/+1Xc((y\K)mH)dH.

s
=0 : gn
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This gives the result for the set Y \ K.

Third step: We prove the general case. Since Y is definable, it admits the
following cell decomposition Y = LI7_;Cj;, where each Cj is a definable subset
homeomorphic to a unit cube ]0,1[%. By the second step, the result is valid for
each cell C}, because C; and C; \ C; are compact and definable. By additivity of
X¢, We have

1 1
/ Xe(X NYY)dy = / Xe (X Ny (Uj2,Cy)) dy
Sn—1 Jso(n) Sn—1 J50(n)
1 r 1 r
= / Xe (X N (U7 Cy)) dy = / Xe (Uj—1 (X N Cy)) dy
Sn—1 JSO(n) Sn—1 JS0O(n)

T

1
= / Xe(X NYCy)d.
SO(n)

=1 Sp—1

Applying the second step, we obtain

r n—1 ¢

1 / AX.X) 1
Ye(X MY )y = LA [ e nman
Sn—1 JSO(n) ;; S; gn+1 Gitt J
n—1 ¢ r
X, X) 1 /
— R J(C:NH)dH
; 53 gt Jain ;X (i

6. A SECOND KINEMATIC FORMULA IN THE UNIT BALL

We deduce from the previous spherical kinematic a new kinematic formula for
definable subsets of the unit ball.

Let X C R™ be a closed conic definable set. Let Y C B™ be another definable
set.

Proposition 6.1. The following kinematic formula holds:

1 / “OA(X, X NBY) 1
Xe(X Y )dy =3 =0 =) / Xe(Y N H)dH.
Sn—1 Js0(n) ; b 9n Ja

Proof. Let us assume first that 0 ¢ Y and let ¢ be the following definable mapping;:

¢ : B"\{0} — Sr!
T — z

Bl

By Hardt’s theorem, there exists a definable partition of ¢(Y), ¢(Y) = Ui Wi,
such that for j € {1,...,r}, the mapping ¢y ng-1(w,) : o~ (W;)NY — W is trivial.
By additivity and multiplicity of x., we can write x.(Y) = Z;Zl a;Xc(W;), where
a;j = xc(Fy) with Fj the fibre of ¢yng-1(w,). Let us set X* = (X NB")\ {0}.

If w belongs to ¢(Y) N p(X™*) then w = ¢(y) = ¢(x) with y € ¥ and = € X*.
Since X is conic, y belongs to X* and so ¢(Y N X*) = ¢(Y) N p(X*). Therefore
(Y N X*) =I5, W; N ¢(X*). Note that if w € ¢(X*) then ¢! (w) C X* by the
conic structure of X. Hence if w; € W; N ¢(X*), ¢ L (w;)NY NX = ¢ L (w;)NY
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and x.(¢~ ' (w;)NYNX) = a;. Applying again Hardt’s theorem to each W;N¢(X*)
if necessary, one can conclude as above that

(Y NX) = Zajxc(wj NG(X*)).

Let v € SO(n). Since ¢ oy =y o0 ¢ and v is a definable homeomorphism, ¢(7Y) =
Uj_1yW;j and for j € {1,...,r}, the mapping
Dlryne-1(ow;) 1 7Y Mg~ (YW)) = AW

is trivial, with fibre homeomorphic to F}. As above, we can write

Xe (X N9Y) =3 ajxe (YW N 6(X7)).

We can apply Proposition 5.1 to the sets W; and ¢(X™*). We get
1

Sn—1

“Ya <z‘: Ai(qb(x;)i, P(X") Z_lﬂ /G XN H)dH)

Ai(p(X*), 0(X7)) 1 / -
= c= ajx.(W; N H)dH.
i=1 Si gt Jain ; ! !

/‘ Xe(YW; 0 6(X7))dy
SO(n)

Since H is conic, Z;:1 a;Xc(W;NH) = x.(YNH) by the above argument. Applying
Corollary 3.5 in [14], we obtain the following equality:

n—1
1 / A (X, XNnB™) 1
Xe(X NAY)dy = C— / X(Y NH)dH
Sn—1.J50(n) ; bit1 gutt Jgir

n
A(X, XNB?) 1
:Z—z( ’ ) .f/ XY N H)dH,
i=1 bi 9n Jai,
which is the expected one when 0 ¢ Y.
If0 €Y then x.(X NAY) = xc (X NAY*)+ 1 and xo(YNH)=x(Y*NH)+1

where Y* =Y \ {0}. Therefore we have
1

Sn—1

1
/ xe(X NAY)dy =1+ / Xe(X MY *)dn
SO(n) Sn—1 J50(n)

XXﬂIB%") 1 .
—1+Z g%/mxc(Y NH)dH

XXmB" 1 " A(X, X NB"
B Y Yt o)
9n G i=1 bl
But by Corollary 5.2 in [14], we know that 1 — >°" A(Xbiimw) = N(X, X N
Br). 0
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7. A INFINITESIMAL KINEMATIC FORMULA FOR CONIC SETS

We prove a first version of the infinitesimal principal kinematic formula for closed
conic definable sets.

Let X,Y C R" be two closed conic definable sets. We keep the notations used
in Section 4.

Lemma 7.1. There exists 61 > 0 such that for 0 < § < 61, the topological types of
Zy,s NB™ does not depend on the choice 6. Moreover, we have

lim X(Zo,s N B") = lim lim y(Z, s N B).
lim x(Zy,5 NB") = lim lim x(Zv,s N BY)

Proof. By Lemma 4.4, we know that there exists ¢y > 0 such that for 0 < € < ¢,
there exits d. such that for 0 < 6 < é,, the topological type of Z, s N B does
not depend on the choice of the couple (¢,4). Let us fix such a couple (e,d). Let
0. : R™ — R" be the diffeomorphism 6, (z) = 1z. Then 6.(Z,s NB") = Z,s NB".

Since hm(sﬁo = 0, we get the result. O

We are in position to state a first infinitesimal kinematic formula in the conic
setting.

Proposition 7.2. Let X, Y C R"™ be two closed conic definable sets. The following
kinematic formula holds:

1
/ lim x (X N (Y + 6v) NB"™) dydv
SO(n)

8%71 w§n—1 6—07F

OA(X, X NB
-y MEXAE o).
i=0 bi

Proof. Let us fix § > 0. By the change of variable u = ~yv, we have that for
v € SO(n)

/ X(Xm(w+5u)mman)du=/ X (X N (Y + 6v) N B do.
Snl Snfl

Applying Proposition 6.1 to X NB™ and (Y + dv) N B™, we get that

1
7 / X (X Ny(Y + dv) NB"™) dydv
Sn SO(n yx§n—1
/ / X (X Ny(Y +dv) NB"™) dydv
sp_1 Jsr—1 Jsom
A(X, X NB™)
:Z ( / / (Y 4 6v) NB" N H) dHdw,
P bi gnsn 1 Jsn—1 7,
and so that
1
7 / X (X Ny(Y + dv) NB"™) dudy
Sn SO(n)xS" 1

Z Ai(X, X B /
i—1 bl gn 1

Passing to the limit as § — 07 and using Lebesgue’s theorem, we obtain that

/ (Y 4+ 6v)NB" N H) dvdH.
Sn—1

Sp—1

1
7 /s lim x (X N (Y + 6v) NB") dvdy

O(n)xsn—10—07F
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J(X, X NB")
_Z gn/Gl

Z

lim x (Y 4+ 6v) NB" N H) dvdH.
Sp—1 Jsn—1 =0t

By Lemmas 4.6 and 7.1 applied to Y and H, we have that
li Y+ov)NnB*"NH)=li YNB"N(H -9
Sim o ((Y + 6v) )= Jim x( ( v)),

and so

/ lim x (Y 4+ 6v)NB" N H)dvdH = 0,-;(Y,0),
i Sp—1 Jgn—1 6—=0F
by Propomtlon 4.21. O

8. THE PRINCIPAL KINEMATIC FORMULAS

We prove our main results : the principal kinematic formulas for germs of closed
definable sets. We will use the kinematic formula for closed conic definable sets
proved in the previous section. We will proceed in several steps.

We keep the notations used in Section 4. For convenience, we also use the
notation w(zx) for |z|, if z is in R".

First step: (X,0) C (R™,0) is a germ of closed definable set, Y C R™ is a closed
conic definable set.

We assume that X is included in an open neighborhood U of 0. Let ¢y > 0 be
such that B C U. For 0 < u < €p, we set X, = X N Sn=! and we denote by C X,
the cone over X, i.e.:

C’Xu:{a:ER"|EI)\€R+ andeXusuchthatx:)\z}.

Lemma 8.1. There exists a definable subset Ay C S~ 1 of positive codimension
such that for v & Ay,

lim X (Lk(CXu NY, N {t> 0})) =X (Lk(X NY,N{t> 0})) .
Proof. If v ¢ (=Y)NS"~1, then by Corollary 4.13, we have
X(Lk(@nﬁm{t > 0})) - nmx(@mﬁm{t >0} N {w :e})
e—0
and o o
X(Lk(xmm{tz()})) = nmX(XmYm{tzom{w:e}).
e—0
Let us choose €; > 0 such that for 0 < u < €,
X(Lk()?m?vm{tz()})) :X()?m?m{tzom{wzu}).
But)?ﬁ{w:u}:C{X\uﬂ{w:u} and so
X()?m?vm{tzo}m{WZu}) :X(@mﬁm{tzo}m{wm}).
For any € > 0, the mapping

CXoNY,N{t>0N{w=¢c — CX,NY,N{t>0}N{w=u
(z,t) — (%x,%t)

is a homemorphism, since CX,NY,N {t > 0} is conic and w(A(z,t)) = Aw(z,t) for
any A > 0. Therefore

X(Lk(@mﬁm{tzop) :X(@nﬁm{tzo}m{wzu}).
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If dimY < n — 1 then we can put Ay =S""1 N (-Y).
If dimY = n then let Y’ be the union of the strata of Y of dimension less than
orequal ton — 1. If v € (=Y) \ (=Y”), then by Corollary 4.17, we have

X(Lk(@m?m{tzo})) =14 (@mﬁm{t>o}m{w=e,t<2e}>,
a

s o s 2
X(Lk(XﬂYUﬂ{tEO})):1+X0<XﬁYvﬁ{t20}ﬂ{w:e,t<ae}),

for 0 < € < 1 and where a is such that l/’z N{t >0} C {(z,t) | wzx) > at} in a
neighborhood of (0, 0).
As above let us choose €; > 0 such that for 0 < u < €,

P P 2
X(Lk(XﬂK,ﬁ{tEO})) =1+X0<XﬁYvﬂ{t20}ﬁ{w:u,t<au}),
and

~ 2
Xc(XﬁY@ﬂ{tZO}ﬁ{wzu,t<au}>=

— 2
Xe (CXuﬂYvﬁ{t >0t N{w=ut< au}) .
Using the same homeomorphism as above, we can conclude that
— — 2
X(Lk(cxumym{tz o})) — 1+ (CXuﬂYvﬂ{t >0hN{w=ut< u}> .
a

So if dimY = n, we put Ay = S"~ 1N (-Y"). O

Proposition 8.2. If Y C R" is a closed conic definable set, then for any germ
of closed definable set (X,0) C (R™,0), the following principal kinematic formula
holds:

n
o(X,Y,0) =Y A™(X,Y,0) 0,_i(Y,0).
i=0
Proof. By Lemma 4.10, there exists a definable subset ¥ x y C SO(n) of positive
codimension such that for v ¢ Yxy, X and 7Y satisfy Condition (1). Let us
fix v ¢ Yxy. By Lemma 4.11, there exists a definable subset I'x ,y C S"~! of
positive codimension such that for v ¢ I'x 4y, v satisfies Condition (2). Let us
choose v ¢ I'x 4y. By Lemma 4.2, the function ¢ : X N (1Y), — R has an isolated
stratified critical point at (0,0).
Applying Lemma 3.1 in [18] and Lemma 4.4, we obtain that
lim lim y (X N (7Y +6v) NBY) = x (Lk()? N(AY), N {t> 0})) :
e—0§5—0t

and

1
o(X,Y,0) =

/ X (Lk()? N(Y),n{t> 0})) dydv.
SO(n)xSn—1

Of course the same equality is true if we replace X with C'X,,. By Proposition 7.2
for 0 < u < €y, we have

Sn—1

" A(CXy, CX, N B
(X, v,0) =y AT RO

=0

. O'n_i(}/, 0)
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By Lemma 8.1, for v € SO(n) and v ¢ Ay,
lim (Lk(CXu nY,n{t> o})) —x (Lk(X nY,n{t> 0})) .

Hence, by Hardt’s theorem and Lebesgue’s theorem,

lim 0(CX,,Y,0) =c(X,Y,0).
u—0

Moreover using Proposition 3.6 in [14], for ¢ € {1,...,n — 2}, we have
A(CX,, CX, NB" 1 -
( ) __ — / x(CX, NS 'NH)dH
bi 292" Japmit
1
_— CX,NS" N H)H.
+ o /GZ_M x( )

But
X(CX, NS" 'NH)=x(CX, NS 'NH)=x(XNnS" ' nH),
for He G~ or H € G 1 and lim,_0 x(CX,NS" 1N H) = x (Lk(X N H)).
Passing to the limit as u — 0 and applying Theorem 5.1 in [14], we get that
. MN(CX,,CX,NB") . AN(X, X NBD)
lim =lim ————*=

w0 b; e—0 biet

The same proof works for ¢ =n — 1 and ¢ = n. Combining all these equalities, we
get the result. ([

Second step: X C R™ is a closed conic definable set, (¥,0) C (R™,0) is a germ
of closed definable set.

Corollary 8.3. Let X C R™ be a closed conic definable set. For any germ of closed
definable set (Y,0) C (R™,0), the following principal kinematic formula holds:
o(X,Y,0) =Y A™(X,0) - 0_i(Y,0).
i=0

Proof. By Proposition 4.20, we know that o(X,Y,0) = o(Y, X,0), and by Lemma
4.23 that Y1 A™(X,0)-0,,—;(Y,0) = > 1, Ai™(Y,0)-0,,—:(X,0). Then we apply
the previous proposition. O

Third step: (X,0) C (R",0) and (Y,0) C (R™,0) are germs of closed definable
sets.

We assume that X and Y are included in an open neighborhood U of 0. Let
€0 > 0 be such that By, C U. We set

1
'y = {(ux,u) |z € X,u E}O,eo[} c R™*!
and
1
ry = {(Lyu) [y e Vouclo.af} c R

We recall that the tangent cones of X and Y are CoX = I'y NR" x {0} and
CoY =Ty NR"™ x {0}. We will now define two tangent cones associated with X

—

and Y, and will relate them to CyX and CpY . Let

—~ 1
I'x = {(x,t,u) |z e X, u G}O,eo[} C R™*2,
u
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The following lemma is easy to prove.

t) belongs to FX N (R™ x {0}) if and only if there is a
n)neN in X and a sequence of positive real numbers (U, )nen
Tn ¢

n) = (z,1).

Corollary 8.5. We have C/'OT( = iﬂ (R % {0}).

Lemma 8.4. A point (z,

sequence of points (xy,, t
such that u, — 0 and (3=,

Proof. If (z,t) € C/’o7( then there is a sequence of points (z,)neny in X and a
sequence of positive real numbers (u,,)nen such that u, — 0 and 7= — z. Applying

the previous lemma to the sequences (z,,t) and (u,), we see that (z,t) € Tx N
(R4 x {0}).

Conversely if (z,t) € Tx N (R™+1 % {0}), then there is a sequence of points
(Znytn)nen in X x R and a sequence of positive real numbers (uy,)nen such that
un — 0 and ($*,t,) — (x,t). This implies that € CoX and so that (z,?) €

CoX. 0
Let v € S”1 and let

1 1 =
Bt = { (G t0) | () € o €0l f < B2

Lemma 8.6. A point (y,t) belongs to @ N (R"T! x {0}) if and only if there
is a sequence of points (Yn,tn)nen in Y, and a sequence of positive real numbers
(Un)nen such that u, — 0 and (£ tn =) = (y,1).

Corollary 8.7. We have (mv = @ N (R x {0}).

Proof. It (y,t) € (CoY), then there is a sequence of points (y,)nen in Y and a
sequence of positive real numbers (u,)nen such that u, — 0 and ¥= — y — tv. For

n €N, (yn + untv, uptv) is in Y, and (%“t”, 1;" ) tends to (y,t). Therefore (y,t)
is in (Ty )y N (R x {0}).
Conversely if (y,t) is in @ N (R™*! x {0}), then there is a sequence of points

(Yns tn)nen in Y, and a sequence of positive real numbers (u,, )nen such that u, — 0
and (£, ) — (y,t). Then y,, —t,v € Y and y”;ﬂ tends to y — tv. So y — tv

Up ? Un

belongs to CyY. (]

We note that CoX = CoX N (R™ x {0}), CoY = (CoY), N (R™ x {0}) and that

C/’O?( and (CT))/\)U are closed conic definable sets.
Let us assume that X is equipped with a Whitney stratification & = {Si}ﬁzo
with Sg = {0} and 0 € S; fori = 1,...,1. We set

Tg — {(%,u) | € S;,u E]O,eo[} C R
fori=0,...,s

Lemma 8.8. The partition I'x = U;_,I's, is a Whitney stratification of I'x.
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Proof. The partition US_,S;x]0, €o[ gives a Whitney stratification of X x]0, eg[. Let
¢ be the diffeomorphism ¢(z,u) = (+z,u). We have I's, = ¢(5;x]0,eo[) for i =
0,...,s and 'y = ¢(X x]0, €g[). This gives the result for Whitney’s conditions are
C'-invariant. O

We can equip CoX with a definable stratification (3z)k_, where £y = {0} and
Y is conic. This is possible for example by considering a Whitney stratification of
CoX NS™ ! and extending it to CyxX using the conic structure.

Lemma 8.9. Let I's be a stratum of I'x and let 3 be a stratum of Co X such that
Y Cc T'g\T's. The set of points x in ¥ such that the Thom (a.,,)-condition is not
satisfied at x for the pair (I's,X) is a conic definable set of positive codimension.

Proof. By [1] and [27], we already know that this set is definable of positive codi-
mension in X, If z is in this set, then there exists a sequence of points p, = (Yn, tn)
in I's such that p, — (z,0) and T,X € lim, 400 T}, (Ts N {u = uy,}). Let A >0,

Un

by the conic structure of X, Th,X = T,X. Moreover g, = (Ayn, %) € I's and
Ty, Ts N{u=u,}) =T, (T's N {u= %}). O

Since the Thom (a, )-condition is stratifying and taking a refinement if necessary,
we can assume that the Thom (a,)-condition is satisfied for any pair of strata

(Ts,X) (see [30] for the argument). This induces a Whitney stratification of T'y
compatible with CoX x {0}. Namely if S’ ¢ R*! ig a stratum T'x then S =
{(z,t,u) | (z,u) € S'} is a stratum of T'y.

Lemma 8.10. This induced stratification ofi satisfies the Thom (a,,)-condition.

Proof. Let (zy, tn, Un)nen be a sequence of points in 1:)\( that tends to (z,t,0). We
can assume that (z,,t,,u,) lies in a stratum EZ ={(,t',u) | («/,u) € S} and
that (z,t,0) € S}, where S}, = {(2',#,0) | (/,0) € S}. Since the pair (S}, S))
satisfies the Thom (a,)-condition, T(,0)SH C limy s too T(a,, u,) (ST N {t = un}).
But
Tiay w5t = {5 7.6) | (1.8) € T Si}
and
TS5 = {(7,0) | (1,0) € Te,0)50} -

It is straightforward to conclude using the fact that T(,, ,)(S1 N {u = un}) =

(T, ) S1) N{w = 0} and Tia, ¢, 0,) (ST N {t = un}) = (T, b, 0.)51) N {u = 0}
if n is sufficiently big. O

Similarly we can equip 'y with a Whitney definable stratification compatible
with CoY x {0}, that satisfies the Thom (a,)-condition and such that the strata

of CpY are conic. This induces a Whitney stratification of @ compatible with
(CoY), x {0}. Namely if 77 C R™*! is a stratum of Ty then T/ = {(y,t,u) | (y —
tv,u) € T'} is a stratum of @ (see Section 4).

Lemma 8.11. This induced stratification of@ satisfies the Thom (a,,)-condition.
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Proof. The proof is the same as in the previous lemma, taking into account the

following remark: if TZ ={(y,t,u) | (y —tv,u) € T'} is a stratum of @ then

T(y,t,u)T{) = {(Vv 7, f) ‘ (V -7V, 5) € T(yftv,u)T/}-
O

For 0 < u < ¢p, we set X, = X QSZ*I and we denote by C' X, the cone over X,
i.e.
CX,={xcR"|3IN€R" and 2z € X, such that x = \z}.

Lemma 8.12. Let us assume that CoX and CoY satisfy Condition (1). There
exists a definable subset Axy C S"™! of positive codimension such that for v ¢
AX',Y;

lim, x (Lk(@mﬁm{t > o})) . (Lk()?m?m{t > o})).

u—

Proof. As in Lemma 8.1, we have to prove that
X(Lk(@mﬁm{tg()})) :X(@nﬁm{tzo}m{wzu}),

if u is small enough, taking into account that i/; is not conic.
First let us fix v ¢ (—CoY) NS"~ L. There exist €, > 0 and a > 0 such that

Y, n{t>0}NBI* C {(z,t) | w(z) > at} NBIH,
which implies that there exists ug > 0 such that
Yo N {t >0} N {w < up} NBEH C BEH.

We have assumed that CoX and CyY satisfy Condition (1). This means that
two strata W and W’ of CoX and CpY (different from {0}) intersect transversally.
Since these strata are conic, W N {w = 1} and W’ intersect transversally as well
and so CoX N{w = 1} and CpY intersect transversally (in the stratified sense).
As in Lemma 4.11, there exists a definable subset I'c, xn{w=1},coy C S"=1 of pos-
itive codimension such that for v ¢ T'c; xnfw=1},cov> C’OXF{?: 1} and (C/’o?)v
intersect transversally (in the stratified sense).

We need a first auxiliary lemma.

Lemma 8.13. If v ¢ T'cyxn{w=1},cov, then there evists 0 < uy < ug such that
for 0 < u < wuy and for (x,t) € @ﬂﬁﬂ{t >0} N{0 < w < u} NBEFL, the

sets O X, N {t >0} N{w=w(x)} and Y, N {t > 0} intersect transversally (in the
stratified sense) at (z,t).

Proof. Let us specify the stratifications we are working with. The set Y is equipped
with a Whitney stratification {7}}}L,, which induces a stratification {@};”:O of
Y,. Hence Y, N {t > 0} is stratified by {(TJ/TU N{t > 0}}7,. The set X is equipped
with a Whitney stratification {S;}!_,. Hence for u small, CX,, is stratified by
{0} Uu{C(S; NSP~1)}_,. As above this induces a stratification of CX.N {t > 0}.
We note that by the conic structure, the intersection CX, N {t >0} ﬁiw\: w(z)}

is always transverse (in the stratified sense) and the stratification of CX, N {t >
0} N{w =w(x)} is clear.
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Assume that the above result is not true. Then we can find a sequence of
positive real numbers (u,)nen that tends to 0 and a sequence of points (x,,, t,)nen
in C/XZ ﬂ?;ﬁ{t >0}N{0 <w < u,}NB** such that C/XZ N{w =w(z,)} and
Z do not intersect transversally at (z,,,t,).

We can assume that the sequence (z,,t,)nen is included in a unique stratum
f,, where T is a stratum of Y. Moreover we can assume that there is a stratum

S # {0} of X such that for each n € N, (x,,t,) € 55’\ Since w(t;n) 1 taking

L w(gj )) tends to ( t). Let
then w, € CS,, N{w = u,} and so w, € S C X. Therefore

a subsequence if necessary, we can assume that (=%
Wp = unw(x ¥

(W, w(w ) belongs to X and (= — Wy, w(t; ) tends to (z,t). By Lemma 8.4 and
Corollary 8.5, this implies that (m t) is in C/'OT( Moreover since w(#®) = 1, (,t)

belongs to CoX N {w = 1}. On the other hand, (x,,t,) € Y, and so by Lemma 8.6

and Corollary 8.7, (z,t) belongs to (a\)
1

point (CC t) belongs to a stratum 3 of CoX. By the Thom (@,)-condition, we have
Tz, t)E C hmnﬁﬂ,o Ty, (I‘g N{u= un})
Since S is Y xR and ¥ is conic, S intersects {w = 1} transversally. By the Thom

The points p, := (=—wp, W(I ),un) belong to the stratum Fs of Tx and the

(ay)-condition, {w = 1} intersects Tsn {u = wu,} transversally for n big enough,
and so

TenEN{w=1}) C lim T, (Csn{w=1} N {u=1u.}).
But T, (1:; N{w=1}N{u=u,}) = T(wm . (§ﬁ {w = u,}) and so

TaenEn{w=1})C nll)riloo T, (SN {w = un}).

Wno Slan)

We note that

T, L8N {w =un}) = T, ) (CSu, N {w = w(z)}),

Wn, w(wn)

by the conic structure of CS,,,, .

The points g, := (%, m,w(xn)) are in the stratum @ of @ and
the point (z,t) is in a stratum Z’ of (mv. By the Thom (au)—condition, we have
TS C limy e Ty, (Cr)e 0 {u = w(wa)}). But Ty, ((Tr)y N {u = w(an)}) =
Tzt )T and so T, t)E C limy, 400 T(xm n)T

Since v ¢ T'cyxnfw=1},coY> CoX N {w =1} and (C’O ), intersect transversally

(in the stratified sense). But C’OXW— 1} = CoX N {w = 1}, and we conclude
that

T €0 {0 = 1)) + Ty Ty = R,

Therefore

lim T, . )(CS N{w =w(zn)}) + lim T, o )T =R

n—+o00 n—-+oo

and so, for n big enough

T ) (CSuy N{w = w(@n)}) + ey ) To = R*
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This contradicts the construction of the sequence (x,,t,) and ends the proof of this
auxiliary lemma. ([

Similarly the following second auxiliary lemma holds.

Lemma 8.14. There exists 0 < us < wug such that for 0 < uw < us and for
reCX,NYN{0<w<ufyNBY, the sets CXy N{w = w(x)} and Y intersect
transversally (in the stratified sense) in R™ at x.

Let us choose u > 0 such that v < min{e;, u1,us}, where €; is such that for
0<u < €1,

X(Lk()?m?m{tzo})) :X()?m?m{tzo}m{wzu}).

Then for (z,t) € CX,NY,N{0 < w < u}N{t > 0}NB**+, CX,N{w = w(z)}n{t >
0} and Y, N {t > 0} intersect transversally (in the stratified sense) at (x,t). This
implies that C/)?uﬂ{t > 0} and ﬁﬂ{t > 0} intersect transversally at (z,t) and that
{w = w(x)} intersects CX,NY,N {t > 0} transversally at (z,t), and so (z,t) is not
(GRLATaN (50} Similarly if (z,0) € @ N i’; N{0 <
w < u}NB2F, then (z,0) is not a stratified critical point of w

a stratified critical point of w

|EXa NV, {t=0}" Hence

we conclude that w : C X, NY, N {0 <w<upn{t>0}NBIH — Ris a stratified
submersion and so that

X(Lk(c/*)?umﬁm{tz()})) :X(C/)Cmﬁm{tzom{w:u}).
Therefore if dimCpY < n — 1, we can take

Axy = ((=CoY) NS" ) UT gy xn{w=1}.Cov-

If dimCyY = n then dimY = n. Let Y’ be the union of the strata of Y of
dimension less than or equal to n — 1. If v € (—CyY) \ (—=CoY”), we know that

X(Lk(@mﬁm{@@})) =14 e <C/'X\uﬁ)//;ﬁ{t>0}ﬂ{w—e,t<ze}>,

s o 5 2
X(Lk(XﬂYvﬂ{tEO})) =14 xc (XﬁYvﬁ{tZO}ﬂ{w:e,t< ae}),
for 0 < e < 1 and where a > 0 is such that ﬁﬂ {t >0} C {(z,t) | w(z) > at} in a
neighborhood of (0,0).
As above let us choose €; > 0 such that for 0 < u < €1,
s s 2
X(Lk(XﬂK,ﬂ{tEO})) =14 xc (XﬂYvﬂ{tZO}ﬂ{w:u,t< au}).
Since

P 2
Xc(XﬁYUﬁ{t>O}ﬂ{w:u,t<au})

— —~ 2
= Xe (CXuﬂYvﬁ{tZO}ﬂ{wu,t< au}),
we have to prove that

— —~ —_— —~ 2
X(Lk(C’XuﬂYUﬂ{tz()}D =1+ xc <CXuﬂYvﬁ{t20}ﬂ{wu,t<au}>,
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if w is small enough. By the previous case, we know that for u small enough and
for v & T'cy x{w=1},Cov">

w:CX,NY,N{0<w<u}n{t>0}NB"* SR

is a stratified submersion, for an appropriate € > 0. Since the strata of }//; \ ifz have
dimension n + 1 and the strata of Y\ Y’ have dimension n,

w:C/’X\uﬂﬁﬂ{O<w§u}ﬂ{t20}ﬂB?“%R
is a stratified submersion by the conic structure of C X,,. For the same reason and
because Y, N {t > 0} N{t = 2w(x)} = {(0,0)}, we see that
—_— — 2
w:C’XuﬂYvﬂ{O<wSu}ﬂ{t:aw(x)}ﬁR

is a stratified submersion. Hence for 0 < € < u,

—_— —~ 2
Xe (CXuﬁYUﬁ{tZO}ﬂ{wu,t<au}> =

—_— _ 2
Xe (C’XuﬂYuﬂ{t >0tNn{w=et< ae}) .
If dimCyY = n, we take

Axy = ((=CoY") NS" ) UT ¢y xn{w=1},Cov"-
O

Theorem 8.15. Let (X,0) C (R™,0) and (Y,0) C (R™,0) be two germs of closed
definable sets. The following principal kinematic formula holds:

o(X,Y,0) = Z A?m(X, 0) - 0 —i(Y,0).
=0
Proof. By Lemma 4.10, there exists a definable subset ¥ x y C SO(n) of positive
codimension such that for v ¢ Yxy, X and 7Y satisfy Condition (1). Let us
fix v ¢ Yxy. By Lemma 4.11, there exists a definable subset I'x .y C S"~! of
positive codimension such that for v ¢ I'x 4y, v satisfies Condition (2). Let us
choose v ¢ I'x ,y. By Lemma 4.2, the function ¢ : X N (1Y), — R has an isolated
stratified critical point at (0,0).
Applying Lemma 3.1 in [18] and Lemma 4.4, we obtain that
lim lim x (X N (yY + 6v) NB") = x (Lk(f{ N(Y),n{t> 0})) :

e—=05—0+

and so
1

o(X,Y,0) = /SO( e (Lk(f{ N(Y),n{t> o})) dvdy.
n)xSn—1

Shn—1
Of course the same equality is true if we replace X with CX,. By Corollary 8.3,
for 0 < u < ¢y, we have

" A(CX,,CX, N B
(X, v.0) = 3 AT RO

=0

. O'n_i(}/, 0)
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Since Cy(7Y) = v(CoY'), by Lemma 4.10 there exists a definable subset X¢, x,c,y C
SO(n) of positive codimension such that for v ¢ X, x.c v, CoX and Cy(7Y") satisfy
Condition (1). For v ¢ Y¢,x,cov and v ¢ Ax vy,

lim x (Lk(CX N(Y), N {t> 0})) = (Lk(X NAY), N {t> 0}))
Hence, by Hardt’s theorem and Lebesgue’s theorem,
lim 0(CX,,Y,0) = 0(X,Y,0).
u—0
We end the proof as in Proposition 8.2. O

Let us specify this kinematic formula when d+e = n, d = dimX and e = dimY'.
We denote by X9 (resp. Y¢) the union of the top-dimensional strata of X (resp.
Y).

Corollary 8.16. Let (X,0) C (R™,0) and (Y,0) C (R™,0) be two germs of closed
definable sets such that d + e = n, where d = dimX and e = dimY . The following
formula holds:

1 e )
2 /SO( lim lim # (X9 (7Y + 6v) NBY) dydo = ©4(X) - O.(Y).

TL)XS" 1 €050+

Proof. For 7 generic in SO(n) and v generic in S*~1,

lim hm X (XN (Y +6v)NBY) = lim lim # (Xd (7Y€ + 6v) NBY) .

e—0§5§—0+ e—0§—0+

Let us formulate now the second principal kinematic formula.

Theorem 8.17. Let (X,0) C (R™,0) and (Y,0) C (R™,0) be two germs of closed
definable sets. The following principal kinematic formula holds:

A™ (XY, 0) ZAhm (X,0) - Al™ (v, 0).

Proof. Let us compute the integrals

1
/ X (Lk(X NvY)) dy,
SO(n)

Sp—1

and

X (Lk(X N~Y N {u* =0})) dudr.

SO(n) Jsn—1

Let us assume first that X and Y are conic closed definable sets. We have already
computed the first integral in the proof of Proposition 5.1 and we have found that

! / X (LK(X N~Y)) dy
SO(n)

Sp—1

A (LK(X),LK(X) 1
- ; 5 it /wa(Lk(YﬂH))dH,

which can be rewritten in the following way:

! / X (LK(X NAY)) dy
SO(n)

Sp—1
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zn: XXmBn) i/  (Lk(Y A H)) dH.

im1 9n
The same computation applied to X N {u* = 0} yields

/ / x (Lk(X N~yY Nn{u* = 0})) dudy
SO( sn-1

_ ( 1 / R (LE(X 0 {u" = 0), Lk(X 0 {u* = 0})
Sn—1 Jgn-1

2
Sh—1

Sq
=0
S / (Lk(YnH))dH)
g;{&-l Giflx
_"‘1( 1 / A (Lk(X N L) Lk(X N L)
—\gn Jap i

1
X /G+ X (Lk(Y N H)) dH.)

Using the notations and normalizations of [3], Theorem 4.4, we can write

1 / A (Lk(X ML), Lk(X N L))
Gt

dL
gﬁ ! Si

dry,

Sn—1 Sq

1 / A; (Lk(X N~E), Lk(X NyE))
SO(n)

where E is a (n — 2)-dimensional unit sphere in S"~!. By the spherical kinematic
formula, we find that

! Ai(Lk (X NyE), Lk(X NYE L
/ (Lk (X N9 E), L(X 09E)) ) Ai1 (Lk(X), Lk(X))
Sn—1 JSO(n Si s
1
= —Ni2(X, X NB").
bit2

Hence we get that

/S'O( ) /Sn_l x (Lk(X NyY n{u® = 0})) dvdy

n

2
Sh—1

A(X,XNB") 1
ne"). H/_ Y (LK(Y N H)) dH.
i—2 b; gn Git

M

Then we apply this result to C X, and CY,, where X,, = XNS* ! and Y, = YNS? 1,
and make u — 0 and obtain

1

Sp—1

= A(X, X NBY) 1
/ CLK(X QYY) dy = S tigg DX OB 1 / x (Lk(Y N H)) dH,
SO(n) 0 bie’ In Jai,

and

/SO( )/SM Y (LK(X N AY O {u* = 0})) dudy

- i(X, X B” 1
=3 im NBe). H/ X (LK(Y N H)) dH.
i=2 g'ﬂ szl

2
Sh—1
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Therefore by the relation between o(X,Y,0) and Ag(X,Y,0) and by Theorem 8.15,
we get

Ao(X,Y,0) = Ai™(X,0)0,(Y,0)+

i 1
AY™(X,0) (onl(Y, 0) — 291 / x (Lk(Y N H)) dH)
n JGL
+)A™(X,0) - A,
=2
where
1 1
A; = 0p_i(Y,0) — 7/ X (Lk(Y N H))dH — —— / Y (Lk(Y N H)) dH.
295 Gl 29n Git

By [15], Theorem 5.6 and its proof, we have that o, (Y,0) = AI™(Y,0) and for
i>1,
1 1
an_i(Y,O):ﬁ/ X(Lk(YﬂH))dH+—./ x (Lk(Y N H))dH.
200" Jai 295 Jai,

Moreover by [14], Theorem 5.1, we have that

; 1
Alm (Y,0) = 502 / x (Lk(Y N H))dH
e

9n
and for i > 2,
. 1 1
lim _ _
MZ(Y.0) = ey /G (Y U H)) dH /G V(LK ) d,
These equalities enable us to end the proof. ([

For Y = H, where H € G"* and k € {1,...,n}, the above kinematic formula
writes
o(X, H,0) = Ai™(X,0).
Hence we recover our Theorem 3.7, because for H € GZ_’“7

1
Bo(H) = / lim lim Ag(Hs, N X, Hs,, N X NBY)dv,
S

Sn—1 Jgn—1 €2>05—0+

by the co-area formula.

9. MORE KINEMATIC FORMULAS

In view of Theorem 8.17, a natural question is to express the following sums
Z Al(Xao)A](X7O)7
1+j=p+n

for k =1,...,n as the right-hand side of a kinematic formula. The answer is quite
simple and explained briefly in the next proposition.

Proposition 9.1. Let (X,0) C (R™,0) and (Y,0) C (R™,0) be two germs of closed
definable sets. For k € {1,...,n}, the following kinematic formula holds:

/ lim A (X NAY, X NyY NBY)
SO(n) €0 bre®

dy= > A™(X,0)-Am(Y,0).
i+j=k+n
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Proof. When X and Y are conic, it enough to apply the spherical kinematic formu-
las. The general case can be deduced as we have already done in several previous
proofs. O

Corollary 9.2. Let (X,0) C (R™,0) and (Y,0) C (R™,0) be two germs of closed
definable sets. The following principal kinematic formula holds:

n n—i
/ lim Ag(X NAY, X NyY NBY)dy = Y A™(X,0)- [ > A (Y,0)
$0(n) <0 i=0 =0
Proof. Apply Proposition 9.1 and Corollary 3.6. (]
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