
HAL Id: hal-03088369
https://hal.science/hal-03088369

Submitted on 26 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trophic and fitness correlates of mercury and
organochlorine compound residues in egg-laying

Antarctic petrels
Alice Carravieri, Nicholas A Warner, Dorte Herzke, Maud Brault-Favrou,

Arnaud Tarroux, Jérôme Fort, Paco Bustamante, Sébastien Descamps

To cite this version:
Alice Carravieri, Nicholas A Warner, Dorte Herzke, Maud Brault-Favrou, Arnaud Tarroux, et al..
Trophic and fitness correlates of mercury and organochlorine compound residues in egg-laying Antarc-
tic petrels. Environmental Research, 2021, 193, pp.110518. �10.1016/j.envres.2020.110518�. �hal-
03088369�

https://hal.science/hal-03088369
https://hal.archives-ouvertes.fr


Environmental Research 193 (2021) 110518

Available online 24 November 2020
0013-9351/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Trophic and fitness correlates of mercury and organochlorine compound 
residues in egg-laying Antarctic petrels 

Alice Carravieri a,*, Nicholas A. Warner b,c, Dorte Herzke b,c, Maud Brault-Favrou a, 
Arnaud Tarroux d, Jérôme Fort a, Paco Bustamante a,e, Sébastien Descamps f 

a Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle, 17000, France 
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A B S T R A C T   

Understanding the drivers and effects of exposure to contaminants such as mercury (Hg) and organochlorine 
compounds (OCs) in Antarctic wildlife is still limited. Yet, Hg and OCs have known physiological and fitness 
effects in animals, with consequences on their populations. Here we measured total Hg (a proxy of methyl-Hg) in 
blood cells and feathers, and 12 OCs (seven polychlorinated biphenyls, PCBs, and five organochlorine pesticides, 
OCPs) in plasma of 30 breeding female Antarctic petrels Thalassoica antarctica from one of the largest colonies in 
Antarctica (Svarthamaren, Dronning Maud Land). This colony is declining and there is poor documentation on 
the potential role played by contaminants on individual physiology and fitness. Carbon (δ13C) and nitrogen 
(δ15N) stable isotope values measured in the females’ blood cells and feathers served as proxies of their feeding 
ecology during the pre-laying (austral spring) and moulting (winter) periods, respectively. We document feather 
Hg concentrations (mean ± SD, 2.41 ± 0.83 μg g− 1 dry weight, dw) for the first time in this species. Blood cell Hg 
concentrations (1.38 ± 0.43 μg g− 1 dw) were almost twice as high as those reported in a recent study, and 
increased with pre-laying trophic position (blood cell δ15N). Moulting trophic ecology did not predict blood Hg 
concentrations. PCB concentrations were very low (Σ7PCBs, 0.35 ± 0.31 ng g− 1 wet weight, ww). Among OCPs, 
HCB (1.02 ± 0.36 ng g− 1 ww) and p, p’-DDE (1.02 ± 1.49 ng g− 1 ww) residues were comparable to those of 
ecologically-similar polar seabirds, while Mirex residues (0.72 ± 0.35 ng g− 1 ww) were higher. PCB and OCP 
concentrations showed no clear relationship with pre-laying or moulting feeding ecology, indicating that other 
factors overcome dietary drivers. OC residues were inversely related to body condition, suggesting stronger 
release of OCs into the circulation of egg-laying females upon depletion of their lipid reserves. Egg volume, 
hatching success, chick body condition and survival were not related to maternal Hg or OC concentrations. 
Legacy contaminant exposure does not seem to represent a threat for the breeding fraction of this population 
over the short term. Yet, exposure to contaminants, especially Mirex, and other concurring environmental 
stressors should be monitored over the long-term in this declining population.   

1. Introduction 

Antarctic ecosystems are under growing pressure of environmental 
change (Meredith et al., 2019), and are not spared by chemical 
contamination despite their remoteness (Corsolini, 2009; Trathan et al., 
2015). Mercury (Hg), a non-essential metal, and organochlorine com
pounds (OCs), synthetic chemicals widely used until the 1970s for 

industrial and agricultural applications, are highly toxic and can reach 
Antarctica via long-range transport by atmospheric and oceanic currents 
(Corsolini, 2009; Fitzgerald et al., 2007). Secondary sources such as 
re-emissions from Antarctic soil, melting permafrost and sea-ice add to 
long-range transport contributions (Cabrerizo et al., 2013; Cossa et al., 
2011), and have the potential to increase under climate warming 
(Cabrerizo et al., 2013; Potapowicz et al., 2019). Hg (as its methylated 
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form, methyl-Hg) and OCs are readily transferred to marine food webs, 
where they bioaccumulate in the tissues of organisms and biomagnify at 
each trophic step (Bargagli et al., 1998; Borgå et al., 2001; Corsolini, 
2009). Antarctic predators are thus exposed to Hg and OCs through food 
ingestion (Bargagli, 2008; Bustnes et al., 2006a). Hg and OCs can affect 
physiology and behaviour in wildlife (Frye et al., 2012; Tan et al., 2009), 
with short- and long-term fitness consequences such as decreased 
reproductive output (both Hg and OCs, Bustnes et al., 2007; Dietz et al., 
2019; Roos et al., 2012) and adult survival (OCs, Erikstad et al., 2013; 
Goutte et al., 2015). Demographic effects of Hg and OCs can be severe in 
polar species, that can be vulnerable to the synergistic effects of multiple 
stressors (Bustnes et al., 2006b; Goutte et al, 2015, 2018). While 
extensive work on the patterns and effects of Hg and OC residues has 
been done in the Arctic (e.g., Dietz et al., 2019), still very little is known 
on both the drivers and consequences of Hg and OC exposure in Ant
arctic wildlife (but see Carravieri et al., 2018; Goutte et al., 2014a, 
2014b), which hinders our ability to fully understand the impact of 
environmental change on Antarctic animal populations. 

Seabirds are good bioindicators of chemical contamination in Ant
arctic and subantarctic environments (Carravieri et al., 2020; Polito 
et al., 2016; Roscales et al., 2016). Concentrations of most contaminants 
are overall low in Antarctic seabirds when compared to 
ecologically-similar species from industrialised regions or the Arctic 
(Blévin et al., 2013; Bustnes et al., 2006a; Roscales et al., 2016). How
ever, concentrations of Hg and OCs such as hexachlorobenzene (HCB) 
and Mirex can be comparable to those of Northern Hemisphere seabirds 
(Bengtson Nash et al., 2007; Bustnes et al., 2006a). Feeding ecology 
plays an important role in explaining within- and among-species vari
ation in contaminant residues in seabirds, as often shown by their cor
relation with dietary chemical proxies (Anderson et al., 2009; Leat et al., 
2013; Monteiro et al., 1998). Hg and OC concentrations in blood reflect 
dietary exposure over the short-term (a few weeks to a few months 
before sampling, Bearhop et al., 2000; Clark et al., 1987; Monteiro and 
Furness, 2001), while feather residues may represent exposure over the 
long-term (several months, Anderson et al., 2009; Bearhop et al., 2000; 
García-Fernández et al., 2013). OCs are lipophilic molecules that can be 
stored in lipid tissues over long timescales, and be released into the 
circulation when lipid reserves are depleted (whole-organism half-lives 
of some OCs can be 300–400 days, Clark et al., 1987a). Contaminant 
concentrations circulating in blood are thus potentially influenced by 
diet assimilated at different time scales. Information on both present and 
past dietary exposure could contribute to explain variation in blood 
contaminant concentrations. 

Here we focus on Antarctic petrels Thalassoica antarctica from Svar
thamaren, Dronning Maud Land, Antarctica, one of the largest known 
colonies of the species (Schwaller et al., 2018). Antarctic petrels are 
pagophilic (i.e., highly associated with sea-ice), and feed mainly on 
crustaceans, but also on fish and squid (Descamps et al., 2016a). They 
are restricted to Antarctic waters throughout the year, but range widely 
in the Southern Ocean outside the breeding period (Delord et al., 2020). 
The number of breeding Antarctic petrels at Svarthamaren has declined 
in the last decades as a consequence of large-scale climatic and ocean
ographic changes (Descamps et al, 2015, 2016b). However, additional 
potential threats, from chemical contamination for example, may have a 
role in the trajectory of this population. Winter and early breeding 
exposure to contaminants can be a significant driver of short-term 
reproductive output in polar seabirds, affecting breeding propensity 
(Tartu et al., 2013) and egg size (Fort et al., 2014), a fitness indicator 
(Amundsen et al., 1996). Here we focused specifically on the 
early-breeding period in female Antarctic petrels sampled over a few 
days during egg-laying, thus minimizing seasonal effects on circulating 
contaminant residues (Van den Brink et al., 1998). This study had 
multiple aims: 1) quantify Hg and OC residues and their 
inter-relationships, and compare concentrations to those of other polar 
seabirds; 2) test whether pre-laying (spring) or moulting (winter) 
feeding strategies (inferred from the stable isotope ratios of carbon 

(δ13C) and nitrogen (δ15N) in blood and feathers, respectively) explain 
variability in Hg and OC concentrations; and 3) quantify the association 
of Hg and OC residues with egg volume, hatching success, chick survival 
and female and chick body condition. We expected lower residues of 
polychlorinated biphenyls (PCBs) in Antarctic petrels than in Arctic 
species, but higher concentrations of HCB and Mirex, according to the 
preferential production and use of those compounds in the Northern and 
Southern Hemispheres, respectively (Bengtson Nash et al., 2007; 
Bustnes et al., 2006a). Pre-laying trophic position (δ15NBlood) was pre
dicted to drive blood Hg concentrations (Carravieri et al., 2018). Feather 
and/or blood Hg concentrations in female Antarctic petrels were ex
pected to be related to egg volume, as previously found in little auks Alle 
alle (Fort et al., 2014), an ecologically-close Arctic species with similar 
Hg concentrations. 

2. Material and methods 

2.1. Study site and sampling procedure 

Fieldwork was carried out at the Svarthamaren Antarctic petrel 
colony (71◦53′S, 51◦10′E) in Dronning Maud Land, Antarctica, during 
the austral summer of 2017–18. Thirty-one females were captured at 
their nest between 22–27 November, a few hours after egg-laying (fe
males generally leave for the sea within 24 h after laying their single egg, 
Lorentsen and Røv, 1995). The nests were chosen within an area of 
approx. 100 × 50 m. We selected nests where the female could be easily 
identified by examining cloacal characters (Copestake et al., 1988; 
Lorentsen and Røv, 1995), i.e., which had clear signs of recent egg-laying 
(dilated cloaca and traces of fresh blood on the cloaca/feathers and on 
the egg). At capture, the bird was put into a soft bag and the egg gently 
removed from the nest. Eggs were weighed with a 200 g-Pesola balance 
(precision ± 2 g), and their length and breadth were measured with a 
calliper (±0.1 mm). Eggs were kept in a warm insulated box while 
processing the females. A blood sample (≤2 ml) was taken from the 
brachial vein of the female with a heparinized syringe, and stored in 
heparinized microtubes. Ten body feathers (hereafter feathers) were 
plucked from the lower back region. Females were weighed with a 
1000-g Pesola scale (±5 g), their bill height and culmen measured with a 
calliper (±0.1 mm), and their wing length measured with a ruler (±1.0 
mm). Females were immediately released onto their nests after replacing 
the egg. The whole procedure typically lasted 15–20 min. One egg was 
lost (broken) during the capture of a female, making the final sample 
size N = 30. Female blood was centrifuged at 5000 rpm for 10 min, 
within 4 h from sampling. Red blood cell and plasma fractions were 
stored separately at approximately − 10 ◦C in a cavity built in, and sealed 
with, ice for 2 months. Thereafter, they were transferred to a freezer at 
− 20 ◦C until laboratory analyses. All nests were monitored every other 
day from incubation to chick-rearing to estimate hatching success and 
chick survival (at 20 days of age, Carravieri et al., 2018; Descamps et al., 
2015). Chick body mass and head-bill length were measured with a 
1000-g Pesola scale and a calliper, respectively (see above for precision), 
during our last nest check of the season, which took place approx. 20 
days after hatching. 

Egg volume was calculated using the formula: Volume (cm3) =
0.00051 x length (mm) x breadth (mm)2 (Amundsen et al., 1996). The 
scaled mass index (SMI, Peig and Green, 2009) was used as a proxy of 
body condition as presented in Carravieri et al. (2018). 

2.2. Stable isotope, Hg and OC determination 

Isotopic and total Hg analyses were carried out in red blood cells and 
feathers at the laboratory Littoral, Environment and Societies (LIENSs), 
La Rochelle. Red blood cells were lyophilised and homogenised. 
Feathers were washed to remove surface lipids and contaminants, dried 
at 50 ◦C for 48 h, and homogenised by cutting them with stainless 
scissors into 1–2 mm fragments (Carravieri et al., 2013). Ten body 
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feathers per individual were pooled and homogenised together in order 
to get an integrative, averaged measure of isotopic and Hg values within 
each individual over the moulting period (Carravieri et al., 2014a). Body 
feathers in Antarctic fulmarine petrels moult gradually over at least four 
months after the breeding period, i.e., during the austral winter (Beck, 
1970; Delord et al., 2020). 

In the Southern Ocean, δ15N values of marine organisms increase 
with trophic level (Cherel et al., 2010), and δ13C values indicate their 
latitudinal feeding habitats (Carpenter-Kling et al., 2020; Jaeger et al., 
2010). Specifically, δ13C isoscapes indicate that values < − 21.2‰ 
(feathers) or < − 22.9‰ (blood) in seabirds correspond to feeding in 
Antarctic waters (Jaeger et al., 2010). Isotopic values in red blood cells 
and feathers are representative of a bird’s feeding ecology during the 
3–4 weeks preceding sampling (here the pre-laying period, in spring) 
(Bearhop et al., 2002; Carleton and Del Rio, 2005) and during the moult, 
respectively. A continuous flow mass spectrometer (Thermo Scientific 
Delta V Advantage) coupled to an elemental analyser (Thermo Scientific 
Flash EA 1112) was used to measure δ13C and δ15N values in sample 
aliquots of ~0.3 mg dw, carefully packed and folded into tin containers. 
Results are in δ notation relative to Vienna PeeDee Belemnite and at
mospheric N2 for δ13C and δ15N, respectively. Internal laboratory stan
dards (acetanilide) were used to check accuracy. Measurement errors 
were <0.15‰ for both δ13C and δ15N. 

Blood is a good proxy of Hg and OC burdens in seabird internal tis
sues, and typically represents recent exposure (Fromant et al., 2016; 
Henriksen et al., 1998). Hg is mainly found in association with red blood 
cell proteins (Tavares et al., 2013), and is efficiently excreted in feathers 
(Braune and Gaskin, 1987; Renedo et al., 2021). In most seabirds, 
HgFeather residues are thought to be indicative of Hg accumulated over 
the inter-moulting period (~a year in Antarctic petrels, i.e., the breeding 
and wintering seasons preceding sampling, Carravieri et al., 2014a). Hg 
in red blood cells (HgBlood) and feathers (HgFeather) was quantified with 
an Altec AMA 254 spectrophotometer (aliquots mass: ~5 mg dry weight, 
dw) as described in Carravieri et al. (2014b) and Blévin et al. (2013). All 
analyses were carried out in duplicate (relative standard deviation <
10%). The certified reference material (CRM) DOLT-5 (certified Hg 
concentration: 0.44 ± 0.18 μg g− 1 dw) was measured at the beginning 
and end of each set of analysis, and every 10 samples. Measured values 
were 0.44 ± 0.01 μg g− 1 dw, N = 7. CRM mass (and thus Hg mass 
introduced in the analyser) was adjusted to mirror the Hg mass present 
in red blood cell samples. Blanks were analysed at the beginning of each 
set of samples and the limit of detection (LOD) of the AMA was 0.05 ng. 

OCs were measured in plasma at the Norwegian Institute for Air 
Research (NILU), Tromsø. Twelve OCs were targeted, including seven 
PCBs (congeners CB-52, -99, − 101, − 118, − 138, − 153, and − 180) and 
five organochlorine pesticides (OCPs: HCB, Mirex, trans-nonachlor, p, p’- 
DDE and p, p’-DDT). OCs were extracted from plasma using liquid-liquid 
extraction in a biphasic mixture of ethanol saturated with ammonium 
sulphate and hexane. Each sample was spiked with mass-labelled (13C) 
internal standards prior to extraction to correct for losses during pro
cessing and for ion suppression/enhancement. Each sample extraction 
batch included three blanks and a standard reference material of forti
fied human serum (National Institute of Standards & Technology (NIST) 
material 1958). Lipid content (%) was determined gravimetrically by 
evaporating the collected hexane phase to dryness and weighed to 
determine the amount of extracted organic content from initial sample 
amount. Sample extract underwent clean-up with acidified silica (5%, 
H2SO4) using automated solid phase extraction. Collected sample frac
tion was evaporated to approximately 50 μL followed by the addition of 
13C-PCB-159 recovery/syringe standard to each sample. OCs were 
quantified by gas chromatography high resolution Orbitrap mass spec
trometry (GC-HRMS) using methodology described by Warner and 
Cojocariu (2018), and summarized in the Supplementary Information. 
Quantification was performed using internal standard calibration with 
isotopic dilution. Data processing was performed using Tracefinder 
software v. 4.1 EFS. Concentrations reported for OCs were blank 

corrected based on the average concentration detected within blank 
samples. LOD and limit of quantification (LOQ) were compound 
dependent, and calculated as three and ten times the standard variation 
within blank samples, respectively. LODs ranged between 1 and 177 pg 
on column (1.72 and 305 pg g− 1), and LOQs between 3 and 589 pg on 
column (5.17 and 1016 pg g− 1). Analytes that had a quantifica
tion/qualifier ion ratio >20% of the ratio determined within the quan
tification standard were not reported. Recoveries of certified reference 
material to assess method performance ranged between 45% (p, p’-DDT) 
and 104% (p, p’-DDE). LODs, LOQs and recoveries of each OC are re
ported in the Supporting Information (Table S1). 

Results are given as mean ± SD in μg g− 1 dw for Hg, in pg g− 1 wet 
weight (ww) and ng g− 1 lipid weight (lw) for OCs, and in ‰ for stable 
isotope values. “Blood” within the text refers either to red blood cells for 
Hg and stable isotope values, or plasma for OC values. For our com
parison of Hg and OC concentrations with the literature, we focused on 
seabird species that are ecologically similar to Antarctic petrels, i.e. mid- 
trophic species feeding on a mixture of fish and crustaceans. Compari
sons of OC residues are made on a lw basis in plasma samples only. When 
possible, we converted OC concentrations from ww to lw by using the 
mean plasma lipid content (%). 

2.3. Statistical analyses 

Statistical analyses were carried out in R version 3.5.2 (R Core Team, 
2018). Preliminary analyses showed that plasma lipid content and OCs 
were not correlated (Fig. S1a). Therefore, we used absolute OC con
centrations for statistical analyses. 

Aim 1: HgBlood and OC concentrations with quantification fre
quencies (QF) above 80% were used in a principal component analysis 
(PCA, R package ade4, Dray and Dufour, 2007). For the selected OCs, 
concentrations below the LOQ were substituted with randomly gener
ated values between zero and the LOQ. HgBlood and OC values were 
log-transformed and scaled (centred on the mean and then divided by 
the standard deviation) prior to the PCA. As OC residues were strongly 
associated with each other and had high loadings on principal compo
nent 1 (PC1, see Results and Table S2), scores were extracted from this 
axis as a continuous variable representing OC concentrations (hereafter 
PC1OCs) and used in further statistical analyses. HgFeather were not 
included in the PCA (since measured in a different tissue), but their 
correlation with HgBlood was tested in multifactorial models (see Aim 2 
below). PC1OCs were not related to plasma lipid content (Fig. S1b). 

Aim 2: we tested the relationship between contaminant concentra
tions (HgBlood and PC1OCs) and feeding ecology over spring (δ13CBlood 
and δ15NBlood values) and winter (δ13CFeather and δ15NFeather values). 
HgFeather were also included as an explanatory variable of HgBlood. The 
initial models were thus: HgBlood ~ HgFeather + δ13CBlood + δ15NBlood +

δ13CBlood + δ15NBlood and PC1OCs ~ δ13CBlood + δ15NBlood + δ13CBlood +

δ15NBlood. 
Aim 3: the relationships between contaminants and (i) egg volume, 

(ii) hatching success, and (iii) female and chick SMI, were tested by 
setting the initial model as follows: physiological/fitness parameter ~ 
HgBlood + HgFeather + PC1OCs. These models had a total sample size of 29, 
because one female had a very small egg volume (three SD from the 
mean), and was removed from all models. Outputs were similar when 
including this outlier in the analysis, but we decided to present results 
and estimated effects without it, as they are expected to be closer to the 
mean effects in the population. 

Generalised linear models with different link functions (see Results) 
were used to address aims 2 and 3. We adopted an information-theoretic 
approach through the use of Akaike’s information criterion corrected for 
small sample sizes (AICc, R package MuMIn, Bartón, 2019; Burnham and 
Anderson, 2002). Model assumptions (e.g., residuals’ homoscedasticity) 
were assessed via visual inspection of residuals of the initial models 
(Zuur et al., 2009). For binomial models, model fit was checked through 
the overdispersion term value. Explanatory variables were not 
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significantly collinear (variance inflation factors < 3, Dormann et al., 
2013), and were standardised (mean = 0, SD = 1) to facilitate com
parison of effect sizes. Interactions among the explanatory variables 
were not included to avoid overfitting and because they were not 
considered biologically essential. For each model, the AICc, the differ
ence between AICc of the specific model and of the best model (ΔAICc), 
and the AICc weight (normalized weight of evidence in favour of the 
specific model, relative to all candidate models, Burnham and Anderson, 
2002) were calculated. If the null model performed better than all other 
candidates, or was within AICc <2 from other models, the effects of all 
explanatory variables were considered nonsignificant. When multiple 
models had similarly high support in explaining the response (ΔAICc <
2), we used model averaging to make multi-model inference (Burnham 
and Anderson, 2002). Averaged parameter estimates (βavg) of all pre
dictor variables contained in the most supported models, weighted using 
AICc weights, were therefore produced. 

3. Results 

3.1. Hg and OC values and their inter-relationships 

Hg was present at quantifiable concentrations in all blood (1.38 ±
0.43 μg g− 1 dw) and feather samples (2.41 ± 0.83 μg g− 1 dw, Table 1). 
Among the 12 targeted OCs, only CB-180 and p, p’-DDE were detected 
above LOQs in all females (Table 2). The OC pattern was largely 
dominated by OCPs (89% of Σ12OCs, Fig. 1), in particular HCB (40%), 
which had the highest absolute mean concentration, even though it was 
not detected in a few individuals (Table 2). Mean concentration of p, p’- 
DDE (1017 ± 1485 pg g− 1 ww) was also high, with large between- 
individual variation (Table 2). Residues of p, p’-DDT were detected in 
two individuals only, with DDT/DDE ratios of 0.06 and 0.07. OCs 
retained for statistical analyses were CB-138, -153 and − 180, HCB, 
Mirex, and p, p’-DDE which all had high QFs (>80%, Table 2). The two 
first axes of the PCA explained 67% of the total variation in blood 
contaminant concentrations (Fig. 2). OC residues had high loadings on 
PC1. Since OC concentrations were negatively associated with PC1 
(Fig. 2), increasing PC1OCs represent decreasing OC concentrations. In 
contrast, PC2 was mainly associated with HgBlood (high PC2 scores 
indicating high HgBlood concentrations). HgBlood and OC concentrations 
were thus not related to each other. In addition, concentrations of 
HgBlood were not related to HgFeather (Table S3). 

3.2. Effect of winter and spring feeding ecology on Hg and OC 
concentrations 

Descriptive statistics of δ13CBlood, δ15NBlood and δ13CFeather, 
δ15NFeather values are reported in Table 1. HgBlood concentrations in egg- 
laying females were positively associated to their trophic level during 
spring as indicated by a statistically significant effect of δ15NBlood on 
HgBlood residues (βavg ± standard error (SE), 0.17 ± 0.05, Fig. 3). We did 
not detect any relationship between HgBlood and other trophic tracers 
(δ13CBlood, δ15NBlood, δ13CFeather, Table S3). PC1OCs were not predicted by 
any trophic tracer (the null model was the most supported one, 
Table S3). 

3.3. Correlation of Hg and OC residues with physiological and fitness 
parameters 

Egg volume (mean ± SD, 85.6 ± 5.97 cm3) was not affected by 
HgBlood, HgFeather or OC residues (Table S4). Female SMI (mean ± SD, 
607 ± 32 g) was not related to HgBlood or HgFeather concentrations 
(Table S4), nor to plasma lipid content (Fig. S1c). In contrast, PC1OCs 
had a statistically significant effect on female SMI (β ± SE, 16.9 ± 5.6, 
Fig. 4, Table S4), indicating that increasing OC concentrations were 
associated with decreasing female SMI. Hatching success (67%) and 
chick SMI (mean ± SD, 493 ± 65 g) were not related to the maternal 
HgBlood, HgFeather, or PC1OCs values (Table S4). At our last nest check, all 
chicks were alive except one. This indicates that within the range of 
concentrations observed, there was no effect of maternal Hg or OCs on 
short-term chick survival. 

4. Discussion 

This is the first study to document concentrations of Hg in feathers 
and OCs in plasma of the Antarctic petrel, and to investigate correlations 
of OCs and fitness parameters in this species. Hg and OC concentrations 
were not related to short-term reproductive output. However, OC resi
dues were inversely related to the females’ body condition. 

Both δ13CBlood and δ13CFeather values were highly negative, indicating 
that female Antarctic petrels fed in Antarctic waters both during the pre- 
laying (spring) and moulting (winter) periods. The range of δ13CBlood 
was small, consistent with all females feeding at high Antarctic latitudes 
during the pre-laying period in spring, as previously shown for the 
breeding season (Carravieri et al., 2018; Tarroux et al., 2020). The range 
of both δ13C and δ15N values in feathers was larger than in blood, 

Table 1 
Hg concentrations and stable isotope values in red blood cells and feathers of 
egg-laying Antarctic petrels (N = 30) from Svarthamaren, Antarctica. The first 
line indicates the mean ± SD, while the second line shows the median and range 
[min; max].   

Hg (μg g− 1 dw) δ13C (‰) δ15N (‰) 

Blood 1.38 ± 0.43 
1.34 [0.66; 3.05] 

− 26.5 ± 0.1 
− 26.5 [-26.8; − 26.3] 

9.2 ± 0.3 
9.1 [8.7; 9.9] 

Feathers 2.41 ± 0.83 
2.33 [1.22; 4.11] 

− 24.4 ± 0.7 
− 24.5 [-25.6; − 22.6] 

9.2 ± 0.7 
9.1 [7.7; 10.9]  

Table 2 
Lipid content, and absolute and lipid-corrected concentrations of organochlorine 
compounds (OCs) in plasma of egg-laying Antarctic petrels (N = 30) from 
Svarthamaren, Antarctica. The first line indicates the mean ± SD, while the 
second line shows the median and range [min; max]. QF represents the quan
tification frequency; LOD and LOQ represent the limits of detection and quan
tification, respectively.   

QF (%) Absolute concentrations  
(pg g− 1 ww) 

Lipid-corrected concentrations  
(ng g− 1 lw) 

Lipid (%) 90 0.60 ± 0.30 (27) 
0.64 [0.17; 1.37]  

CB-52 0 <LOD <LOD 
CB-99 13 36.8 ± 19.0 (4) 

42.5 [<LOQ; 52] 
12.7 ± 12.1 (4) 
10.1 [<LOQ; 28.5] 

CB-101 0 <LOD <LOD 
CB-118 67 45.3 ± 31.5 (20) 

35 [<LOQ; 147] 
13.4 ± 16.5 (18) 
7.19 [<LOQ; 63.6] 

CB-138 93 72.0 ± 78.0 (28) 
40.7 [<LOQ; 309.8] 

21.7 ± 38.4 (25) 
6.84 [<LOQ; 184] 

CB-153 97 150 ± 121 (29) 
111 [<LOQ; 541] 

42.0 ± 64.6 (26) 
16.8 [<LOQ; 320] 

CB-180 100 103 ± 76.9 (30) 
77.3 [26.4; 361] 

27.6 ± 41.3 (27) 
12.1 [5.48; 214] 

HCB 83 1019 ± 361 (25) 
947 [<LOQ; 1908] 

264 ± 228 (22) 
162 [<LOQ; 831] 

p, p’-DDE 100 1017 ± 1485 (30) 
444 [205; 5675] 

298 ± 579 (27) 
88.5 [20.9; 2615] 

p, p’-DDT 7 319 ± 81.3 (2) 
319 [<LOQ; 376] 

113 (1) 

Mirex 97 718 ± 345 (29) 
566 [<LOQ; 1806] 

175 ± 212 (27) 
103 [0.001; 1070] 

trans-nonachlor 7 195 ± 138 (2) 
195 [<LOQ; 292] 

32.9 ± 5.04 (2) 
32.9 [<LOQ; 36.5] 

Σ7PCBs 100 350 ± 312 (30) 
248 [90.3; 1366] 

99.0 ± 162 (27) 
37.4 [17.6; 810] 

Σ5OCPs 100 2594 ± 2012 (30) 
1932 [864; 9391] 

700 ± 983 (27) 
344 [82.9; 4609] 

Σ12OCs 100 2944 ± 2307 (30) 
2216 [1076; 10548] 

799 ± 1142 (27) 
377 [109; 5418]  
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corresponding to a wider foraging distribution that includes low 

Antarctic latitudes during moult in winter, in accordance with previous 
isotopic and tracking evidence (Delord et al., 2020; Descamps et al., 
2016a). δ15NFeather values encompassed a whole trophic level (~3‰ 
range), indicating that prey included crustaceans and fish/squid, most 
likely Antarctic krill Euphausia superba and the myctophid fish Electrona 
antarctica and/or the squid Psychroteuthis glacialis, as previously shown 
(Delord et al., 2020; Lorentsen et al., 1998). 

4.1. HgBlood and HgFeather concentrations and trophic drivers 

Antarctic petrel HgBlood concentrations were close to those previ
ously reported in ecologically-similar Arctic and Antarctic seabirds, such 
as little auks (Albert et al., 2019; Fort et al., 2014) and snow petrels 
Pagodroma nivea (Tartu et al., 2015). HgBlood concentrations in Antarctic 
petrels were also comparable to those previously found in their internal 
tissues (muscle, liver, and kidneys, Nygård et al., 2001). However, the 
present egg-laying HgBlood concentrations (2017) were almost twice as 
high as previously reported in late incubating and chick-rearing in
dividuals from the same population (approx. 0.83 μg g− 1 dw in the 
breeding seasons of 2013 and 2014, Carravieri et al., 2018). Although 
rarely considered, breeding stage or timing of sampling can affect 
HgBlood residues in seabirds (Carravieri et al., 2018; Hipfner et al., 2011; 
Tartu et al., 2016; Lerma et al., 2016). In our previous study, HgBlood 
concentrations were lowest during late incubation, and then increased 
slightly, but significantly, across the breeding season (Carravieri et al., 
2018). Hence, breeding stage is unlikely to be a key factor in explaining 
the difference in HgBlood concentrations between 2013–14 and 2017. At 
remote sites far from Hg point sources, inter-annual variability in Hg 
concentrations in seabird blood and feathers is usually very low (Brasso 

Fig. 1. Stacked bar plot of plasma OC residues in egg-laying Antarctic petrels from Svarthamaren, Antarctica. Values correspond to mean contribution to the Σ12OCs. 
Contributions of CB-52, -99, -101, -118, p, p’-DDT, and trans-nonachlor were all <1% and are not represented. 

Fig. 2. Biplot of individual scores and contaminant loadings on the two prin
cipal axes (PC1 and PC2), obtained from a principal component analysis (PCA) 
on scaled red blood cell trace elements and plasma organochlorine compound 
concentrations in egg-laying Antarctic petrels from Svarthamaren, Antarctica. 

Fig. 3. Relationship between red blood cell Hg concentrations (HgBlood) and 
red blood cell δ15N values (δ15NBlood) in egg-laying Antarctic petrels from 
Svarthamaren, Antarctica. Coefficient estimates and confidence intervals of the 
represented model are given in Table S3. 

Fig. 4. Relationship between scaled mass index (SMI) and PC1OCs (plasma OC 
concentrations) in egg-laying Antarctic petrels from Svarthamaren, Antarctica. 
Coefficient estimates and confidence intervals of the represented model are 
given in Table S4. 
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et al., 2014; Carravieri et al., 2016). An increase in Antarctic petrel 
HgBlood concentrations over such a short period is unlikely, and contrasts 
with recent declines in Hg concentrations in myctophid fish and squid, 
although from a different Antarctic region (South Georgia and South 
Orkneys Islands, Seco et al., 2020b; 2020a). Antarctic petrel δ15NBlood 
values were very similar in 2013–14 and 2017 samples (approx. 9.2‰), 
thus suggesting that the difference in HgBlood concentrations was not 
driven by a shift of Antarctic petrel’s diet to a higher trophic level 
(Braune et al., 2014). More likely, intra-annual fluctuations in envi
ronmental factors (e.g., vertical ocean dynamics, light irradiance, sea-ice 
melt, atmospheric deposition) that influence Hg transport, methyl-Hg 
production, and bioavailability to marine predators and their prey 
(Cossa et al., 2011; Driscoll et al., 2013; Renedo et al., 2020) could 
explain this temporal difference. Identifying specific mechanisms that 
explain this result is beyond the scope of our study. The doubling of 
HgBlood concentrations in this population highlights that future moni
toring is needed to assess whether this trend continues upward and why. 

HgFeather concentrations were intermediate when compared to re
sults available in other Antarctic seabirds. Antarctic petrel HgFeather 
concentrations were higher than those of penguin species (Brasso et al., 
2014; Polito et al., 2016), comparable to those of skuas (Catharacta sp, 
Bargagli et al., 1998; Calle et al., 2015), and lower than those of 
black-bellied storm petrels Fregetta tropica (Pacyna et al., 2019). 
HgFeather concentrations were also intermediate when compared to 
Arctic seabirds, being higher than those of Alcidae, and lower than those 
of Laridae species (reviewed in Albert et al., 2019). These inter-specific 
comparisons are made to put results in a polar context, and cannot be 
interpreted solely in terms of trophic position. Instead, pole-specific Hg 
dynamics and transfer to food webs, as well as species-specific moulting 
patterns and wintering distribution come into play to explain them. 
Concentrations of HgFeather were twice as high as HgBlood, and there was 
no correlation between the two. HgFeather concentrations reflect the Hg 
burden accumulated in internal tissues over the inter-moult period, thus 
covering a longer time period than Hg accumulated in blood. In addi
tion, exposure to Hg over wintering grounds could be higher than 
around the high latitude Antarctic breeding sites. In winter, Antarctic 
petrels migrate north of the marginal sea-ice zone, up to the northern 
limits of Antarctic waters (Delord et al., 2020; Descamps et al., 2016b), 
where ecologically-similar seabird species were shown to have higher 
HgBlood and HgFeather concentrations than “true” Antarctic species 
(Becker et al., 2016; Carravieri et al, 2014c, 2020). 

As expected, HgBlood concentrations were positively related to the 
pre-laying female trophic position (δ15NBlood values), indicating that 
individuals feeding higher in the food web (i.e., larger proportions of 
fish/squid in their diet) accumulated more Hg than those relying mainly 
on krill (Carravieri et al., 2018). This is consistent with myctophid fish 
and squid having higher tissue Hg concentrations than krill in Antarctic 
waters (Anderson et al., 2009; Seco et al, 2019, 2020a, 2020b), and 
confirms the biomagnification of Hg in high latitude Antarctic food webs 
during the austral spring. Feeding habitat (δ13CBlood values) did not 
drive HgBlood concentrations, likely as a result of the spatial homoge
neity of Hg transfer to food webs around Antarctica (Brasso et al., 2015; 
Carravieri et al., 2018). Feeding ecology over winter (δ13CFeather and 
δ15NFeather values) had a weak explanatory power of HgBlood concen
trations, confirming that Hg acquired during winter is efficiently and 
rapidly excreted from the organism though feather and egg deposition, 
and/or stored long-term in internal tissues (Bearhop et al., 2000; Cherel 
et al., 2018). 

4.2. Plasma OC concentrations and trophic drivers 

Exposure of seabirds to OCs can happen in Antarctica (Bustnes et al., 
2006a; Mello et al., 2016; Roscales et al., 2016). As expected from 
biomagnification mechanisms (Borgå et al., 2001), plasma OC concen
trations of Antarctic petrels were up to 10 times lower than those of their 
predator at Svarthamaren, the south polar skua Catharacta maccormicki 

(Bustnes et al., 2007). Antarctic petrels and skuas had similar OC pat
terns, with notably HCB, Mirex and p, p’-DDE being the strongest con
tributors (Bengtson Nash et al., 2007; Bustnes et al., 2006a). As 
expected, PCB concentrations were 15–124 times lower in Antarctic 
petrels than in ecologically similar Arctic seabird species (Table 3). 
Antarctic petrels also had lower PCB residues than female snow petrels 
from Adélie Land, Antarctica (Tartu et al., 2015, Table 3). HCB residues 
were comparable to those of Arctic and Antarctic species, while Mirex 
concentrations were six times higher in Antarctic petrels (Table 3). This 
is in agreement with previous results in south polar skuas from the same 
site (Bustnes et al., 2006a). Plasma p, p’-DDE were comparable to those 
of Arctic-breeding Mandt’s black guillemots Cepphus grylle mandtii 
(Eckbo et al., 2019), and were three times higher than those of female 
snow petrels (Tartu et al., 2015, Table 3). Plasma p, p’-DDT residues 
were quantified in two individuals here, while they were under detec
tion limits in ecologically similar Arctic species (Eckbo et al., 2019; 
Haarr et al., 2018). Overall these results indicate very low exposure to 
PCBs, intermediate exposure to HCB and p, p’-DDE, and relatively high 
exposure to Mirex in Antarctic petrels. This calls for further in
vestigations on potential toxic effects in Antarctic petrels, as Mirex can 
impact fitness in Antarctic predators (Goutte et al., 2018). 

Plasma OC residues were not influenced by either pre-laying (spring) 
or moulting (winter) feeding ecology, despite relatively strong variation 
in blood δ15N values between individuals. This contrasts with previous 
studies on polar seabirds (Carravieri et al., 2014b; Mello et al., 2016; 
Roscales et al., 2016), and could have two non-mutually exclusive ex
planations: 1) physiological factors (differential OC metabolism and 
excretion, and transfer of OCs to the eggs, Borgå et al., 2001; Bustnes 
et al., 2010; Dehnhard et al., 2017) overcame trophic factors in driving 
plasma OC variation in females upon egg-laying; 2) there is little spatial 
and trophic variation in OC residues among prey of Antarctic petrels. 
The latter explanation is consistent with previous studies showing low 
OC biomagnification factors between crustaceans and fish in the Arctic 
(Borgå et al., 2001). In addition, Antarctic marine invertebrates and fish 
species were shown to have comparable OC residues in their tissues (Ko 
et al., 2018). Finally, other Antarctic and subantarctic krill-eating sea
birds were shown to accumulate more OCs than fish-eating species 
(Carravieri et al., 2020). 

4.3. Correlation of Hg and OC with fitness components 

Reproduction is very sensitive to Hg toxicity in birds. Parental Hg 
concentrations can be associated with altered breeding behaviours 
(Evers et al., 2008; Heath and Frederick, 2005; Tartu et al., 2015), 
reduced egg size (Evers et al., 2003; Fort et al., 2014), and hatching 
success (Heinz et al., 2009; Yu et al., 2016). Egg-laying maternal HgBlood 
concentrations are correlated to in ovo Hg values (reviewed in Ackerman 
et al., 2020). In ovo Hg concentrations can also affect growth, behaviour, 
and survival of chicks in experimental settings (Heinz, 1976a, 1976b, 
1979), with contrasting evidence from the wild (e.g., Ackerman et al., 
2008; Herring et al., 2012, 2010; Kenow et al., 2003). Hg effects can be 
species-specific, dependent on the level of exposure, and/or on 
concurring physiological, environmental and ecological factors (Heinz 
et al., 2009; Hill et al., 2008). Here, maternal HgBlood or HgFeather con
centrations were not related to egg volume, contrary to our prediction 
based on results in Arctic breeding little auks, which had similar blood 
Hg concentrations (Fort et al., 2014). In addition, we did not detect an 
effect of maternal HgBlood nor HgFeather concentrations on hatching 
success, chick survival and the SMI of 20-day-old chicks. The females’ 
SMI was also unrelated to HgBlood or HgFeather concentrations. Previous 
studies on the relationship between body condition and Hg concentra
tions in birds have reported negative (Ackerman et al., 2019; Fort et al., 
2015), positive (Kalisińska et al., 2010), or no relationship (Heath and 
Frederick, 2005; Herring et al., 2014; Tartu et al., 2015). These con
trasting results suggest that this relationship could be modulated by 
concurring environmental perturbations, or by the birds’ physiological 
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status. For instance, energetically challenged individuals (starving or 
migrating, Ackerman et al., 2019; Fort et al., 2015), or those experi
encing strong environmental change (Fort et al., 2014), could be more 
vulnerable to the effect of Hg on their health, and thus show a negative 
relationship. Here, the lack of association between Hg, body condition 
and short-term reproductive output suggests that, under current envi
ronmental conditions, Hg exposure appears to be of little concern in this 
population. 

In seabirds, OC residues in plasma are correlated with OC concen
trations in internal organs (brain, liver, e.g., Henriksen et al., 1998), and 
in eggs (Verreault et al., 2006). Previous studies on the correlates of OCs 
and fitness parameters in wild birds have shown negative relationships 
with egg size, phenology, hatching and breeding success, over the short 
and long terms (Bustnes et al., 2006b; Goutte et al., 2014b; Helberg 
et al., 2005), including in Svarthamaren south polar skuas (Bustnes 
et al., 2007). Here, maternal OC concentrations did not predict egg size, 
hatching success and chick SMI at 20 days of age. However, female 
Antarctic petrels having higher concentrations of OCs had lower SMI. 
This result is consistent with previous findings in Mandt’s black guille
mots and great black-backed gulls Larus marinus (Eckbo et al., 2019; 
Helberg et al., 2005), but not in the similarly OC-contaminated snow 
petrel (Tartu et al., 2015). Females in poorer body conditions may have 
experienced a stronger depletion of their lipid reserves, and thus 
released larger quantities of OCs in blood (Bustnes et al., 2017; Van den 
Brink et al., 1998). Alternatively, females with higher blood OC con
centrations may have suffered toxic effects that ultimately impacted 
their SMI. Egg-laying is an energetically costly behaviour, and female 
Antarctic petrels leave the nest shortly thereafter to feed at sea (Lor
entsen and Røv, 1995). In seabirds, low SMI are often the consequence of 
poor environmental conditions and/or food deprivation (energetic 
stress, Wanless et al., 2005). Strong release of OC concentrations could 
thus constitute an additional challenge for individuals in poor body 
condition, and have long-term fitness consequences (Goutte et al, 2014a, 
2018), despite no apparent OC effects on short-term fitness. Further 
experimental evidence is needed to confirm this hypothesis on potential 
toxic effects of OCs in egg-laying Antarctic petrels. 

5. Conclusion 

Antarctic petrels showed low exposure to PCBs, low to intermediate 
exposure to Hg and OCs, and relatively high Mirex residues. Hg and OC 
exposure does not seem to be of toxicological concern in the breeding 
fraction of this population over the short term. However, the clear 
correlation between female plasma OC residues and SMI could result in 
long-term fitness effects. In addition, birds with higher OC concentra
tions and lower SMI may have skipped breeding. Further monitoring of 
this sensitive population is a priority, especially in the context of climate 
warming that could increase the quantities of contaminants available to 

predators, e.g., through enhanced methyl-Hg production in the subsur
face ocean (Cossa, 2013), or food-web reorganisation (Braune et al., 
2014). Future work in Antarctic petrels should also establish (i) the link 
between environmental contaminants and breeding propensity; (ii) the 
exposure and effects of emerging contaminants such as perfluoroalkyl 
substances (Roscales et al., 2019) and chlorinated paraffins (Li et al., 
2016); and (iii) the combined effects of environmental contaminants 
and other changing biological and environmental factors in Antarctica 
(e.g., primary productivity, krill abundance, sea-ice dynamics, Meredith 
et al., 2019). 
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Table 3 
Comparison of plasma concentrations of major OCs ([OC]) between egg-laying Antarctic petrels (ANPE) from Svarthamaren, Antarctica, and selected polar species.  

OC Reference Speciesb [OC]  
ng g− 1 wwc 

Lipid  
content (%) 

[OC]  
ng g− 1 lw 

[OC]ANPE  

ng g− 1 lw 
Ratio [OC]/[OC]ANPE 

ΣPCBsa Eckbo et al. (2019) Black guillemot 18.1 1.2 1508 99 15 
Haar et al. (2018) Black guillemot, F 14 0.7 2000  20 
Haar et al. (2018) Black-legged kittiwake, F 16 0.13 12308  124 
Tartu et al. (2015) Snow petrel, F   1976  20 

HCB Eckbo et al. (2019) Black guillemot 2.2 1.2 186 264 0.7 
Tartu et al. (2015) Snow petrel, F   193  0.7 

Mirex Eckbo et al. (2019) Black guillemot 0.352 1.2 29 175 0.2 
Tartu et al. (2015) Snow petrel, F   27  0.2 

p, p’-DDE Eckbo et al. (2019) Black guillemot 3.188 1.2 266 298 0.9 
Tartu et al. (2015) Snow petrel, F   93  0.3  

a Eckbo et al., (2019): Σ7PCBs = CB-52, -99, -101, -118, -138, -153, -180 (same as this study); Haar et al., (2018): Σ12PCBs = CB-28, -52, -99, -101, -105, -118, -138, 
-153, -170, -180, -183, and -187; Tartu et al., (2015): Σ4PCB = CB-101, -138, -153, -180. 

b When available, we considered values measured in females (F). 
c When [OC] were given in wet weight (ww), they were converted to lipid weight (lw) by using the mean plasma lipid content. 
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