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Sharp Estimates of Radial Dunkl and Heat Kernels in the Complex Case A,
P. Graczyk! and P. Sawyer?

Abstract

In this article, we consider the radial Dunkl geometric case k = 1 corresponding to flat
Riemannian symmetric spaces in the complex case and we prove exact estimates for the
positive valued Dunkl kernel and for the radial heat kernel.

Dans cet article, nous considérons le cas géométrique radial de Dunkl & = 1 correspon-
dant aux espaces symétriques riemanniens plats dans le cas complexe et nous prouvons des
estimations exactes pour le noyau de Dunkl & valeur positive et pour le noyau de chaleur
radial.
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1 Introduction and notations

Finding good estimates of Dunkl heat kernels is a challenging and important subject, developed
recently in [1]. Establishing estimates of the heat kernels is equivalent to estimating the Dunkl
kernel as demonstrated by equation (2.3) below.

In this paper we prove exact estimates in the W-radial Dunkl geometric case of multiplicity
k = 1, corresponding to Cartan motion groups and flat Riemannian symmetric spaces with the
ambient group complex G, the Weyl group W and the root system A,,.

We study for the first time the non-centered heat kernel, denoted p;" (X,Y’), on Riemannian
symmetric spaces and we provide its sharp estimates. Exact estimates were obtained in [2] in the
centered case Y = 0 for all Riemannian symmetric spaces.

We provide exact estimates for the spherical functions 1, (X) in the two variables X, A\ when
A is real and, consequently, for the heat kernel p}' (X,Y’) in the three variables ¢, X, Y.

We recall here some basic terminology and facts about symmetric spaces associated to Cartan
motion groups.

Let G be a semisimple Lie group and let g = € @& p be the Cartan decomposition of G. We
recall the definition of the Cartan motion group and the flat symmetric space associated with
the semisimple Lie group G with maximal compact subgroup K. The Cartan motion group is
the semi-direct product Gy = K x p where the multiplication is defined by (k1, X7) - (ko, X2) =
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(k1 ko, Ad(k1)(X2) + X7). The associated flat symmetric space is then M = p ~ G/ K (the action
of G on p is given by (k, X) - Y = Ad(k)(Y) + X).
The spherical functions for the symmetric space M are then given by

Dr(X) = / AAARX) g
K

where A is a complex linear functional on a C p, a Cartan subalgebra of the Lie algebra of G. To
extend A to X € Ad(K)a = p, one uses A(X) = \(7y(X)) where 7, is the orthogonal projection
with respect to the Killing form (denoted throughout this paper by (-,-)). Note that in [6, 7, 8],
A is replaced by 7 A.

Throughout this paper, we usually assume that G is a semisimple complex Lie group. The
complex root systems are respectively A, for n > 1 (where p consists of the n x n hermitian
matrices with trace 0), B,, for n > 2 (where p = is0(2n + 1)), C,, for n > 3 (where p = isp(n))
and D,, for n > 4 (where p = is0(2n)) for the classical cases and the exceptional root systems
E67 E7, Eg, F4 and GQ.

The radial heat kernel is considered with respect to the invariant measure u(dY) = 72(Y)dY
on M, where m(Y) =[] oo @(Y).

Note also that in the curved case My = G/ K, the spherical functions for the symmetric space
M, are then given by

oa(e™) = / eAPHEER) g,
K

where p is the half-sum of the roots counted with their multiplicities and H(g) is the abelian
component in the Iwasawa decomposition of g: g = kef9 n.

2 Estimates of spherical functions and of the heat kernel

We will be developing a sharp estimate for the spherical function ¥,(X). We introduce the
following useful convention. We will write

FE, X, N) =< g(t, X, \)

in a given domain of f and g if there exists constants C; > 0 and C5 > 0 independent of ¢, X and
A such that Cy f(t, X, \) < g(t, X, \) < Cy9(t, X, A) in the domain of consideration.
We conjecture the following global estimate for the spherical function in the complex case.
Conjecture 2.1. On flat Riemannian symmetric spaces with complex group G, we have
eAX)
[Toso 1+ a(Ma(X))’

Remark 2.2. Recall that, denoting 6(X) = [],-sinh’ a(X), we have

Aeat, X eat.

Q,DA(X) =

oa(e¥) = ;fg—)&)wx» 2.1)



Since §Y*(X) < X 7(X)/[Lwo (1 + a(X)) in the complex case, Conjecture 2.1 therefore
becomes

Pa(eX) = XA H

a>0

1+ a(X)

1+ a(N)a(X) (2.2)

i the curved complex case.

Let us compare the estimate (2.2) we conjecture for ¢, with the one obtained in [9], cf. also
[13]. The estimates in [9] apply in all the generality of hypergeometric functions of Heckman and
Opdam. The authors show that there exists constants C1(\) > 0, Ca(A) > 0 such that

CL(A) X0 TT (14 a(X)) < da(e?) < Co(N) X0 T (14 a(X)).
a(20 a()20
Given (2.1), corresponding estimates clearly also hold in the flat case for 1¥\(X). The interest of
our result, in the case A,, lies in the fact that our estimate is universal in both \ and X.

The results of [9, 13] and our estimates in the A, case strongly suggest that the Conjecture
2.1 is true for any complex root system.

Note that asymptotics of ¥, (t X) when A and X are singular and ¢ — oo were proven in [4]
for all classical complex root systems and the systems F; and Gbs.

Consider the relationship between the Dunkl kernel Ejy(X,Y) and the Dunkl heat kernel
pe(X,Y), as given in [10, Lemma 4.5]

1 Xy Y
PXY) = e e B (X, g) (2:3)

where v is the number of positive roots and the constant c; is the Macdonald-Mehta—Selberg
integral. The formula (2.3) remains true for the IW-invariant kernels p}' and E". In the geometric
cases k = 1,1 and 2, by [3], the W-invariant formula (2.3) translates in a similar relationship
between the spherical function v, and the heat kernel p}" (X, Y):

1 SINCNE Y
PV(X,Y)= 5 e w gy (%> , (2.4)

A simple direct proof of (2.4) for k =1 is given in [4, Remark 2.9].
Equation (2.4) and Conjecture 2.1 bring us to an equivalent conjecture for the heat kernel
w
pt (X7 Y)

Conjecture 2.3. We have

—1x-v|?
XY = g e

Consider also the relationship between the heat kernel p}” (X,Y") and the heat kernel p;" (X, Y")
in the curved case. We have
m(X) 7 (Y)
SL2(X) 612(Y)

PV (X,Y) = e PV (X.Y). (2.5)



This relation follows directly from the fact that the respective radial Laplacians and radial mea-
sures are 7' Ly o 7w and 7(X) dX in the flat case and 6712 (L, — |p|?) 0 §/2 and 6(X)dX in the
curved case (L, stands for the Euclidean Laplacian on a).

In the curved complex case, Conjecture 2.3 becomes

T+ a(X)) (14 a(Y)) e_‘X[zY‘Q,

WX YY) w2 —pxv) T
pt( ) ) € 2 e H (t+a(X)a(Y)

a>0

Remark 2.4. In [5], sharp estimates of W -invariant Poisson and Newton kernels in the complex
Dunkl case were obtained, by exploiting the method of construction of these W -invariant kernels by
alternating sums. When a root system ¥ acts in R?, the sharp estimates of [5] have the common
form

KR (X,Y)

]CW(X’ Y) = Ha>0 <|X - Y‘2 + a(X) a(Y))’

XY eat, (2.6)

where KW (X,Y) is the W -invariant kernel in Dunkl setting and K®* (X, Y') is the classical kernel
on R%. Let us observe a common pattern in the appearance of the classical kernels KR and of
products of roots a(X) a(Y) in formulas (2.6) and of the Fourier kernel e*X) and the classical
Gaussian heat kernel and of products a(N)a(X) in the estimates given in Conjecture 2.1 and
Congecture 2.3.

2.1 Proof of Conjecture 2.1 in some cases

We start with a practical result.

Proposition 2.5. Let «; be the simple roots and let A,, be such that (X, Aa,) = a;(X) for X € a.
Suppose X € at and w € W\ {id}. Then we have

Y —wYy =Y 2 @) 4. (2.7)

where a is a linear combination of positive simple roots with non-negative integer coefficients for
each i.

Proof. Refer to [5]. O

Remark 2.6. Note that a?(Y)/|a;|? is bounded by C maxy |ax(Y)| where C is a constant de-
pending only on w € W and, ultimately, on W.

Corollary 2.7. Let Y € at and w € W. Consider the decomposition (2.7) of Y — wY. If
ay(Y) # 0 then oy appears in af, i.e. aff => ., na; with ng > 0.

Proof. Refer to [5]. O

Proposition 2.8. Let § > 0. Suppose a;(\) aj(X) < § for all i, j. Then ¥y(X) < %) (the
constants involved only depend on §).



Proof. Let K(X,Y) be the kernel of the Abel transform. Recall that K(X,Y)dY is a probability
measure supported on C'(X), the convex envelope of the orbit W - X. Notice that

eWmin X <y (X) = / AV K(X,Y)dy < M) (2.8)
C(X)
where w,y;, is the element of the Weyl group giving the minimum value of w A(X). Now, using
Proposition 2.5 and Remark 2.6 with Y = A\, we see that for any w € W
r a(\)

) > cWAX) _ p(wA-XX) JX) H 6—2 a2 (X) AX)

=1

> H 6720(max;C ar(N)) a;(X) 6()\,X> > H 67206€</\’X>.
=1 =1

[]

Remark 2.9. This case and this method apply for any radial Dunkl case; it suffices to replace
K(X,Y)dY by the so-called Risler measure jux(dY') in the integral in (2.8), see [11].

Proposition 2.10. A spherical function ¥x(X) on M is given by the formula

(X)) = m 1;/ E(w)e<w>\,X>7 (2.9)

where p = £ 3 o Mo = > csv @ and v = |ST] is the number of positive roots (refer to [8,
Chap. 1V, Proposition 4.8 and Chap. II, Theorem 5.35]).

Proposition 2.11. Suppose a(\) a(X) > (log|W|)/2 for all « > 0. Then

We are assuming here that |a;| > 1 for each i.

Proof. Suppose w € W is not the identity. In that case, a’(\) is not equal to 0 for some i.
By Proposition 2.5 with y = A and Corollary 2.7, A\(X) — wA(X) > 2a¥(\) ai(X)/|eu|* >
2 a;(A) a;(X) > log |W|. Each term e{®»*) in the alternating sum (2.9) corresponding to w # id is
bounded by e~ 198 W1 AX) = AX) /|WW|. Hence, since only half the terms in the sum are negative,

w 1
W 0 > WEZW 6(w>e<w)\,X) > AX) _ % e’\(X)/\W] =5 MX)



3 The conjecture in the case of the root system A,

We will prove the conjecture in the case of the root system of type A.

Theorem 3.1. In the case of the root system of type A, in the complex case, we have

X\ €<>\7X> A X =+
S | B (O RV 1) MR o

Corollary 3.2.
1 +z; —
Xy = p(A=p)(X) I | ‘ J
et ) =xe ,
M) i L@ =) (=)

—|x-v|?
e at

Hz’<j (t+ (zi = 25) (i = 3))
~¥V(X, Y) = 6—\p\2t t_2 p(X+Y) H 1 + xl — 33] (1 +Yi — yj) e#.
(t+ (zi — 25) (i — y5))

W(X,Y) =<t 2

1<j

We recall (refer to [12]) the following iterative formula for the spherical functions of type A in
the complex case. Here we do not assume that the elements of the Lie algebra have trace 0. Here
the Cartan subalgebra a for the root system A,_; is isomorphic to R™. For \, X € a* C R", we
have

Ua(eX) = X if n =1 and
Tn—1 1
(@) = 0= e B [La =) [ [ e 32)
i< In *2
IT i —v)dys-dyns
1<gj<n
where A\o(U) = 32721 (A — An) g
Remark 3.3. Formula (3.2) represents the action of the root system A,_1 on R™. If we assume
ZZ:1 x, =0 = 22:1 Ak, we have then the action of the root system A,_1 on R"'. We can
also consider the action of A,—1 on any R™ with m > n — 1 by considering formula (2.9) and

deciding on which entries xy, the Weyl group W = S,, acts. These considerations do not affect
the conclusion of Theorem 3.1.

3.1 Approximate factorization for A,

Before proving the conjecture in the case A,, we will prove an interesting “factorization”.

Proposition 3.4. For n > 1, consider the root system A, on R""!. Let A\, X € a* Cc R""! and
X'=[Xy,...,X,]. Define

™ — ](n)<)\;X) = /xn /xn_1 /I2 /ac1 e~ Mo(X'=Y)
Tn+1 Y Tn Z3 Z2

(Wi — ;) i = A))
11 L+ (g — ) (A = Ay

) dy, dys - -+ dys,.

1<j<n



Then the following approximate factorization holds

xﬁ],g)
k=1

/1?1 e~ (M=Ant1) (z1-y1) dy, and

x2

AR / e~ Ae—Ant1) (@x—yx) (2 — ) Y dy for1 <k <n.
: I+ %—%M%—&)%f :

Th41 j=1

Proof. Since u/(1 4 u) is an increasing function, we clearly have

Tn Tp—1 T2 1 , . )\ A\ )
< [T [T [ e (v = w5) ( dyydgy -
- Tnt1 JTn 3 T2 H I+ (x’l ) <)\ —Aj )

1<g<n

On the other hand,

[(n) Z /xn /xn_l . /IQ /I1 67,\0(X/,Y)
(n+Tni1)/2 J (@n_1+xn)/2 (z2+x3)/2 J(r1+22)/2

(5~ 1) (e — 1)
AL ==

Ty Tn—1 x2 Z1
> / / ce / / e Mo (X'=Y)
(#ntznt1)/2 J (Tn—1+zn)/2 (z2t23)/2 J (z1+22)/2

H (v + wi1) /2 = y5) (N = Ny)

T e 2w

In Tn—1 X2 T
_ / / / / o—Ao(X/—Y)
(Tnt+rnt1)/2 J (Tn—1+zn)/2 (w2+w3)/2 J (21+22)/2

(-—yj)(X Aj) _
H 1+ (2 )(/\_)\)dyldy2"'dyn—

) dy, dys - -+ dy,

) dy, dyy - -+ dy,

i<j<n

n Ty . . A "
:H/ e —(Ake=An+1) (T —yk) U xj gkyk) (/\ _)\k H A(

k=1" @etTrs1)/2 =

since

(it zi)/2—y) A=) o (@i —y;) (A = )
T (i +mig1) /2 —y5) (i = A) = 1+ (i — ) (N = )

while

(i

— ;) (N —

(3.3)

dy,.

Aj)

(i tzi)/2—y) M=) o (@i—g)2h=N) o
L (it @) /2 —y) (= A5) — T+ (zi—y)/2(Ni = A) —

1 i
2T+ (@ 15) (h -

Aj)



Now, let

(Thtart1)/2
Blg”) :/ e e~ (Mk=An+1) (2k—yk) H )\k) Ay,

and note that I,En) = A,&n) + B,(Cn).
Now, using the change of variable 2w = x;, — vy, we have

— k—1
B]in) =2 /(‘Dk e e 2Ak=Any1)w H (; — o+ 2w) (A — M) dw
(ﬁk*$k+1)/4 j:1 1 + (l”] - xk; + 2w> ()\] - )\k)

IN

1+ (z; — xp +w) (Aj — Ag)

Tp—Tht1)/4

Tp—Tpi1)/2 k—1
A /( E—Tky1)/ 6_2(>\k_>\n+1)w H (wj — X + w) ()\j — )\k) d
( e

IN

S k—1
4 /( T e~ Ar—Ang1)w H (e, =z w) (A = M) dw =4 A™
0 L+ (25 — o+ w) (0 — ) o

where the last equality comes from the change of variable w = xj — y, in the expression for A,(Cn)
Therefore 1 ,5”) = A,ﬁ”) + B,i”) <5 A,(c"). The result follows. O
The next proposition gives an inductive way of estimating 7™+"), knowing I and 11,

Proposition 3.5. Consider the root system A,y on R"™2. Let A\, X € at C R"*2. Assume
a1(X) > an1(X). Then

— Al — Ans1)
TP O X)) < T (N, o A Ao T e v v T (@1 = Zni) (M1 = Ani
( ) ( 1, ) 9 +25 L1, y L +1)1 T (l’l — In+1>(/\1 _ /\n+1>

I(n)(/\27 ey )\n—l—l; )\n+2; To, ... ,ZEn+2)
](n—l)(/\27 co Any Ang2; Ta, ,ZD,H_l) .

Proof. We start with an outline of the proof.
(i) 10D is estimated by a product of n + 1 factors IV (X; X).

(ii) The product of the first n factors [f”H)()\; X), ..., [T(Lnﬂ)()\; X) give an estimate of the term
T™(XL, ... An, Ango; X') by Proposition 3.4.

(iii) In the last factor [ nT{l (A; X)), we “draw off” one term from under the integral, using the addi-

tional hypothesis a; (X) > a,41(X). The remaining integral corresponds to I ()\2, ey Ang2;To, ..

(iv) The last factor I of I™ is estimated by 1™ /I~ up to a change of variables (we re-use
the idea of (ii)).



Since Tpio < Ynp1 < Tpgr and Tppq — Tpyo < T — T, We get 11 — T < T = Yo <
1 — Tpyo < 2(x1 — T,41) and we have

I(i‘fil) — /QCThLl 6—()\n+1—>\n+2) (Tnt1—Yn+t1) (5171 — ynJFl) ()\1 — )\"Jrl)
" L4+ (1 — Y1) (M — Ans)

T (@ = ynr) N = Aaga)
A — A1) dyn
H 1 + (.'L'] yn+1 )( J "Fl) y +1

_ (21— Zny1) (A1 — Ang) /xnﬂ e~ Ant1=Ant2) (Tnt1-Yn+1)
1+ (IB1 - fl?n-i-l)()\l - )\n-i-l) Tpt2

(@5 = Yn+1) (N — Anta)
1 + x] - yn+1> <)\] - )\n+1

) dyn—i-l .

e

Hence, noting that 1" V(X X) -+ I8 ™ (A X) < I (A, ..., A, Ana; X7), we have
(71— Tny1) (M — Anga)
L+ (21 — Zps1) (A — Apgr)

/mn+1 e—(>\n+1—>\n+2) (l‘n+1—yn+1) ﬁ (.:L'] — yn+1) (A] — )\n+1)
L+ (xj - yn+1) (>\J - )\n+1

TG X)) < T (AL A, Ao X)

dyn+1 :
Cl?n+2 ]:2 )
Finally,

n

/mn+1 —(Ant1=An+2) (Tnt1—Ynt1) H <xj — Y1) ()\ — Ant1)
L+ (5 — Ynt1) (Aj — A

Tkl —(Aprq1—An Thg1— k=1 (zj41=Yr+1) Aj+1—Ak41)
Il /. e”Crt=Ania) (s ven) T ; ; dY+1

) dYn+1

Tn+2

M

Thyo J=1 1+ (zjr1—yry1) Njr1—Aks1)
n=1 (Thi1 (A1 —Ana2) (@ra1—yesr) TTF-1 _@it1—ukt1) Ajr1—Ak1)
e k+1 n+2 k4+1"Yk+1 X
k=1 f$k+2 HJ:1 (241 —Yrr1) Njr1—Aps1) dYy+1
I(n) (/\2, ey )\n+17 )\n+2; Lo,y . .. 7$n+2)

T I (Mg, Ay Aes T2 e Tng)

Remark 3.6. When n = 1, the result of Proposition 3.5 remains valid if we set [ = 1.

We now prove our main result.
Proof of Theorem 3.1. We use induction on the rank. In the case of A;, we have

1
¢A<€X) —_ 6)\2 (x1+:1:2) (xl o x2)71 / e()\1*/\2)y dy

2

€(>\1—/\2) T _ e(/\1—>\2) xo

A2 (z1+x2) (

=e T

AL — Az
—(A1—=X2) (x1—x
— M T1TA2a2 1 — - lmme) = M T1tAz 22 1
()\1 — )\2) (.ZCl — 33'2) 1 + ()\1 — )\2) (33'1 — iUQ)



since 1 —e ™ =< u/(1+ u) for u > 0.
Assume that the result is true for A,, 1 < r < n, n > 1. Using (3.2) and the induction
hypothesis, we have for r =1, ..., n+ 1 and )\, X in positive Weyl chamber in R"*!

7T(‘Xr) 7T( ) ¢A<[5’317-- xﬁx?”rl
=7l 7T()\ ) —A(X) e Sk / / w/\o (yi N yj) dy, - - - dy,
Tr4+1

l<]<7"+1

= 7... —do(X'-Y) (yz’—yj)(X—)\) dve e -+ d
\/Ctr-»-l /:Er /:103 /:m ‘ H 1+<yl )()\ _)\) Y1 ayo Yr

1<j<r+1

where X' = diag[xy,...,x,] and X = [A\1,...,\;]. Using the notation introduced in Proposition
3.4, we have

m(X)7(N) e g (@, zea]) = e T A, B T

Still using the induction hypothesis, we have
(X)) 7(N) e i g1y 2] = P T A 20, Tg)
m(X) 7(N)
[Licjcrn T+ = A)) (5 — 7))

~
—~

(3.4)

forr=1,..., n.
It remains to show that (3.4) holds for r = n + 1, i.e. that
X)m(N
I(n+1)()‘17-~w)‘n+2;$17”'75€n+2)X W( )W( )

[Ticjcnio (L4 = X)) (5 — 25))

It is sufficient to prove the last formula under the hypothesis that a1 (X) > ay,41(X) since the
case a1(X) < a,41(X) is symmetric. Now, according to Proposition 3.5 and (3.4),

(1 = Tny1) (M1 — Auga)
L+ (21 — Zpg1) (A1 — A1)
T™(Ngy o Ansts Ans2s 22, - s Znsz) (T gy o A Angai T2y o Zngn))
(1 = Zny1) (A1 — Auya)
L+ (21 — zpa1) (A — As1)
Hi<j§n+1 (zi — ;) Hi<j<n+1 (Ai = Aj)
[Licjcn U+ (@ —25) (N = A)) TLZ (L4 (20 — 2ng1) (A = Anga))
H1<z<]<n+2 (zi — x5) H1<z<]<n+1 (A =)
H1<z<]<n+2 (1+ (2 — x]) (A — A7)

I () X) < T, A A2 T e ooy Tyt

Iicicjen (T (@i —25) (N = X)) [T (1 + (31 = @) (Ai = Ang2))
H1<Z<J<n+1 (331 — ;) H1<i<j<n+1 (A — )
_ T~ Tpgr L4 (21 — ) (M )\2) Hi<j§n+2 (z; — ;) Hi<j§n+1 (A = A)
Cm = T T4 (11— 1) (A — Ao) Hi<j§n+2 1+ N —N) (z —z5))
The result follows since 1 — 2,411 < 1 — X, 49 given that x; — 29 > 101 — Tpio. O

10



4 Comparison with the estimates of Anker et al. in [1].
Conjecture for Dunkl setting

In [1, Theorems 4.1 p. 2372 and 4.4, p. 2377] the following estimates were proven for the heat
kernel p,(X,Y) in the Dunkl setting on R". There exists positive constants ¢y, ¢, C; and (5 such
that for all X,Y € at
—c1| XY |2/t —ca| XY |2/t
: Cie <p(X,Y) < Cac
min{w(B(X, V1)), w(B(Y,V1))} max{w(B(X, V1)), w(B(Y,v1))}

where w is the W-invariant reference measure (in our paper w = 7(X)?dX) and the w-volume of
a ball satisfies the estimate ([1, p. 2365])

(4.1)

w(B(X,r)) =" [ [(r+ a(x))*.

a>0

The same estimates follow for p}" (X, Y). Our sharp estimates in Corollary 3.2 for k(«) = 1 in the
W-radial case A, suggest that ¢c; = ¢, = 1/4 in (4.1) and that products of terms (t+a(X)a/(Y))*)
are natural in place of separate terms w(B(X, vt)) and w(B(Y,v/t)). On the other hand, estimates
(4.1) and in Corollary 3.2 suggest that the following conjecture is true in the Dunkl setting.

Conjecture 4.1. The Weyl-invariant heat kernel for a root system ¥ in R? satisfies the following
estimates

—|x-v|?
e at

[Toso (t + a(X)a(Y))He)

pV(X,Y)=t2

(4.2)

Formula (2.3) then implies that the W-invariant Dunkl kernel satisfies the estimate

ACX)

KRR | TSPy

5 Additional formulas for p;" (X,Y)

Let us finish by giving formulas relating the heat kernel p}' (X,Y) with the spherical functions
¥y and ¢;y. These formulas can be useful in further study of the kernel p/V (X,Y).

Proposition 5.1. (a) In the flat Riemannian symmetric case, the following formula holds:

(X, Y)=C /e_’\|2t Vir(X)Y_in(Y)m(N)?dN,  C>0. (5.1)

a

(b) In the curved non-compact Riemannian symmetric case the following formula holds

2,12 dA
W _ =(IAP+lpl*) t 4 ,
Dy (X,Y) =C /a e +lp qﬁm(X) qﬁ,M(Y) ‘C()\)P

where c¢(X) is the Harish-Chandra c-function (refer to [8] for details). The constant C' can
be given explicitly.

(5.2)
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Proof. We will prove (b). We show that the right hand side of equation (5.1) satisfies the definition
of the heat kernel. For a test function f, consider

_ e~ (APHP)E g N ()2 c(\)| 2
‘C/Q/a bir(X) 6_ir(Y) K [e(N)[ 2 dA F(Y) |e(N)] 2 dY

where K |c(A\)|72 d) is Plancherel measure.
The fact that Au(X,t) = % u(X,t) where A is the radial Laplacian follows easily from the

fact that A ¢, (X) = —(|A2 +|p[?) ¢ia(X) and & e~ PN = — (N2 + |p[2) e~ A*t. Now, using
Fubini’s theorem,

wxa=cr | -“'“P'“[ () e[ 2 | dir(X) (V)2 dA
‘CK/ PR F(0) 6, (X) (M) dA

which tends to f(X) as ¢ — 0 by the dominated convergence theorem. O

Remark 5.2. The heat kernel estimates of h}"(X) = p;"(X,0) on symmetric spaces ([2] and
references therein) are based on the inverse spherical Fourier transform formula which is a special
case of (5.2) when Y = 0. Thus one may hope that estimates of p{' (X,Y) can be deduced from
(5.2).

Remark 5.3. The passage from h)V (X) to p{¥ (X,Y) is well understood at the group level:
i (9:h) = W' (h™'g),
which is equivalent to
(X,Y) = / Y (e k7 e™) dk
K
and to

V(X,Y) = / hY(H)k(H,-Y,X)r(H)dH, (5.3)

a

where the last formula contains the product formula kernel k which is defined by

[ e R X V) rlE A = i) in(e) = [ (e ke
Similarly,
W(X,Y) = / hY (H)k(H,-Y,X)d(H)dH, (5.4)

where the last formula contains the product formula kernel k which is defined by
/@ R(H,X,Y)0(H) dH = (e / ox(eX ke?)
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