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We demonstrate a high temperature performance quantum detector of Terahertz (THz) radiation based 

on three-dimensional metamaterial. The metamaterial unit cell consists of an inductor-capacitor (LC) 

resonator laterally coupled with antenna elements. The absorbing region, consisting of semiconductor 

quantum wells is contained in the strongly ultra-subwavelength capacitors of the LC structure. The high 

radiation loss of the antenna allows strongly increased collection efficiency for the incident THz 

radiation, while the small effective volume of the LC resonator allows intense light-matter coupling with 

reduced electrical area. As a result our detectors operates at much higher temperatures than 

conventional quantum well detectors demonstrated so far. 

The terahertz (THz) domain of the electromagnetic spectrum has well defined applications ranging from 

imaging, security, spectroscopy [1], and has been recently envisioned for future 6G wireless  

communications by Samsung [2]. Quantum detectors based on electronic transitions in semiconductor 

quantum wells, QWIPs [3,4] have many assets for advanced applications, as they combine high speed and 

high quantum efficiency. Furthermore, they can be implemented in coherent schemes of detection [5, 6] 

and they can also be integrated in optical circuits alongside laser sources [7]. However, high temperature 

operation of THz QWIPs remains notoriously a difficult task. Indeed, typical THz photon energies are small 

(~10 meV, =100 µm) and thermally excited dark current quickly overrides the photocurrent signal when 

temperature is increased above 10 K [3, 4]. Here we propose a metamaterial-based concept which allows 

a significant increase of the detector operating temperature, up to 60 K. This is achieved because of the 

ability of our metamaterial to keep intense light-matter interaction in a highly subwavelength volume [8, 

9]. As a result, the electrical area and the associated dark current noise are strongly suppressed [10, 11]. 

This metamaterial detector has the potential to reach liquid nitrogen operation, like commercial detectors 

in the =8-10 µm band. Furthermore, such devices that combine electrical read-out with enhanced light-

matter interaction provide a technological background for quantum-optical experiments with THz photons 

[12]. 

In our device we combine quantum detector based on electronic transitions in quantum wells (THz QWIP, 

[3]) with a three-dimensional metamaterial architecture, as described in Figure 1(a). The unit cell of the 

metamaterial is a sub-wavelength inductor-capacitor (LC) resonant circuit [8,  9], scaled to operate at the 

frequency of the QWIP electronic transition, 5.2 THz. The LC resonator is further combined with half-

wavelength (/2) patch antennae in order to boost the effective collection area of the device [9]. In 

addition, our metamaterial has been provided with electrical leads which allow an electrical bias on the 
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QWIP and thus the extraction of a photocurrent signal. The QWIP absorbing region is contained only in the 

capacitive parts of the metamaterial, and contains only eight 15.5 nm GaAs quantum wells separated by 

70 nm wide Al0.03Ga0.97As barriers (Figure 1(b)). Each quantum well is nominally doped at 6x1010 cm-2. Highly 

doped, 40 nm wide n++ layers on both side of the absorbing region ensure ohmic contacts with the 

electrical leads. The entire QWIP region is thus Ltot = 834 nm thick, in order to keep strong confinement 

between the quantum wells and the electric field of the LC resonators [8]. Figure 1(c) shows an optical 

microscope picture of the metamaterial array, indicating the array unit cell  (dashed square). Typically, 

=80 µm², while the overall optical surface of all devices studied here is 120x140 µm². The electrical area 

of each unit cell corresponds to the overall surface of the capacitor parts,  = 4.5 µm². The high value of 

the ratio /   ensures the high operating temperature of the detector [10]. Further details on the 

device fabrication are provided in the SI. 

As indicated in Figure 1(d) each antenna connects two neighboring LC units, ensuring thus maximum 

possible packing of the array [9]. As discussed in Ref. [9], the LC  resonator and the antenna are two 

strongly-coupled optical oscillators, with a typical coupling strength of G=0.8 THz. This is further illustrated 

in Figure 2, which provides an estimate of the optical response of the metamaterial based on coupled 

mode theory (see [9] for details). While the LC  resonator alone is very poorly coupled to free space, the 

coupling with the antenna with high radiation loss allows a significant increase of the reflectivity contrast 

of the coupled system (Fig. 2(a)). At the same time, the small effective volume of the LC resonator allows 

intense light-matter coupling with reduced electrical area. The resonant frequency of the THz coupled-

modes depends on two parameters: the perimeter of the LC  inductive loop, P, and the antenna length La 

(Fig. 1(d)). Here we report on three devices with P=4 µm and variable antenna length La=7 µm, 8 µm and 

10 µm so that the mode at higher energy is close to the QWIP absorption resonance (Fig. 2(b)). In the SI 

we provide an analysis of the reflectivity curves.  

Alongside metamaterial detectors we also studied a reference device where the absorbing region was 

processed into a square mesa of dimensions 200x200 µm² [10, 13, 14]. In this geometry light is coupled 

through a 45° wedge of the semiconductor substrate. Such device allows evaluating the performance of 

the detector region without any metamaterial effect, as well as obtaining the photoconductive gain [4].  

We performed optical and electrical characterizations of the devices as a function of the temperature. In 

particular we compared the current – voltage characteristics of the mesa and of the metamaterial device 

in dark conditions, as well as under illumination from ambient black body radiation at 300K. In dark 

conditions, the sample is enclosed in a metallic cryo-shield without aperture that is maintained at the same 

temperature as the detector. For measurements under background illumination, the cryo-shield has an 

opening such as the field of view of the sample is ~60°. Figure 3 presents the results for the mesa (Figure 

3(a)) and the metamaterial detector with P=4 µm, La=7 µm (Figure 3(b)). In this figure the background 

current density JB and the dark current density Jdark are plotted as a function of the applied bias for different 

temperatures.  For each device the current density has been calculated by considering the total electrical 

area. In both cases, we observe a dark current density that increases exponentially with the temperature. 

At fixed bias, the dark current is well fitted by the formula Jdark = J0 exp(-Eact/kBT) + const where the 

activation energy is Eact = 13.2 meV (3.2 THz) for the mesa device and  Eact = 15.6 meV (3.8 THz) for the 

metamaterial device (see SI for fits). Furthermore, the dark current in the mesa is typically 10 times higher 
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than that in the metamaterial device. This difference can be partly explained by the charge depletion of 

the devices processed in metamaterial geometry [8] (see further).  In the case of the mesa, the background 

and the dark current-voltage characteristics become almost identical at 20 K. On the contrary, for the 

metamaterial structure, substantial difference between the background and the dark current remains up 

to 40 K. At T=4 K , the background current of the metamaterial is 2400 times higher than the dark current, 

whereas for the case of the mesa the corresponding factor is ~30. These observations already show 

qualitatively that the metamaterial geometry leads to a very strong suppression of the dark current with 

respect to the photocurrent. In the following, we will comment the device performance at low applied bias 

(-20mV), as at higher bias the structure becomes electrically unstable owe to field domain formation [14]. 

Figure 4 presents the spectral response and responsivity of the structures. In Fig. 4(a) we report the 

spectrally resolved measurements of the photocurrent with the help of a Fourier Transform Infrared 

Spectrometer in a step-scan mode. Remarkably, on sample (P=4 µm, La =7 µm) a clear spectrum was 

measured up to 60K, a record high operation temperature of a THz quantum detector. For devices with 

different values of P and La we routinely observed measurable spectral response up to 40K. Further 

characterizations as a function of the polarization of the incident wave were also performed, as shown in 

the SI.  

The peak responsivity which corresponds to the maximum of the photocurrent spectra in Fig.4(a) is 

reported in Figure 4(b). It was obtained from the photocurrent measured by exposing the sample to a 

500°C calibrated black-body source and using a lock-in detection technique with a chopper (120 Hz). 

Samples were mounted in the same conditions as for the background-limited experiments, and light from 

the blackbody was refocused on the sample with the help of two F1 off-axis parabolic mirrors (full details 

are provided in SI).  For adequate estimation of the photon flux we also took into account the 300 K 

radiation from the shutters of the chopper. In Figure 4(b) we compare the resulting responsivity as a 

function of the detector temperature for the mesa and the (P=4 µm, La =7 µm) detector at two different 

voltages, +20 mV and -20 mV. In the case of the mesa we were able to measure the responsivity only up 

to 20 K, as the signal at higher temperatures was overridden by dark current noise. In the metamaterial 

device a photocurrent signal was measured up to 60K. As seen from Figure 4(a), the responsivity depends 

strongly on the temperature for the metamaterial detector: it increases sharply as the temperature is 

increased from 4 K to 20 K, and then drops as the temperature is further increased. Such variations of the 

photoconductive response have been observed before [3], although in that case studies were performed 

on much shorter temperature range (up to 16 K). The responsivity rise at low temperature can be explained 

by activation of carrier injection from the n++ contacts to the quantum wells [15], this phenomenon could 

also explain the strong asymmetry observed between positive and negative bias. Another phenomenon 

that contributes to the low temperature responsivity is the carrier depletion in the metamaterial device 

at low temperature due to the etched active region sidewalls; such phenomena was previously observed 

with similar structures [8]. Note that our metamaterial geometry allows exploring a much wider 

temperature range of the detector operation with respect to the existing literature, and clearly evidences 

the temperature variations of the responsivity of such THz QWIP. In the case of the mesa, we observe a 

maximum value of the responsivity 0.1 A/W at +20 mV, while the maximum value is 0.25 A/W for the 

metamaterial sample.  
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The external responsivity of all structures can be written in the form [4] R = eg/E21 where e is the electron 

charge, g the photoconductive gain (number of photo-excited electrons read-out by an external circuit per 

absorbed photon),  is external quantum efficiency (number of photons absorbed by the intersubband 

transition with respect to the incident photon number) and E21 is the energy of the electronic transition.  

In the case of the metamaterial resonators,  depends on the properties of the LC and antenna elements 

as described in Ref. [9]. In the mesa geometry with a =45° polished facet, mesa can be evaluated from the 

well-known expression [13]:  mesa = (2sin²/cos)Tf21e²NQWNs/(m*nc0). Here T = 0.67 is the transmission 

of the facet, f21=0.7 is the oscillator strength of the electronic transition, obtained from bandstructure 

simulations of the quantum wells (see also Figure 1(b)), NQW = 8 is the number of quantum wells, Ns = 6x1010 

cm-2 is the areal electronic density per well, m* = 0.067m0 is the effective electron mass, n=3.7 is the 

refractive index at 5 THz, c is the speed of light, 0 the vacuum permittivity and  =0.8 THz is the half width 

at half maximum of the electronic transition obtained from fits of the photocurrent spectra from Figure 

4(b). In the expression of mesa we also take into account the polarization response of the electronic 

system. In the present case we obtain mesa = 0.026, which provides a photoconductive gain g=0.1 at a bias 

of +20mV for a maximum value of the responsivity R=0.1 A/W. Similar values of the gain have been 

observed in previous studies [14]; however direct comparison between the samples is difficult owe to the 

different number of quantum wells, as well as the strong dependence of the gain on the applied bias [14]. 

Indeed, previous studies with QWIP operating at wavelengths =9 µm have shown that the gain in thin 

quantum well structures is very sensitive to the electric field inhomogeneity and injection from the 

contacts that lead to reduction of the responsivity [16].   

In the case of metamaterial detectors, the photon absorption efficiency  can be evaluated by systematic 

studies of the reflectivity spectra of the arrays and by applying coupled-mode theory equations [9]. In 

practice, it was difficult to evaluate experimentally the reflectivity of the detectors because of their small 

area. Furthermore, the exact evaluation of  is complicated by the charge depletion phenomenon 

discussed above. However, we could evaluate  from the measurements of the responsivity and assuming 

that the mesa and metamaterial have the same gain at the maximum responsivity point. The 

corresponding values of  estimated for the metamaterial devices are  = 0.06 (P = 4 µm, La = 7 µm), 

 = 0.034 (P = 4 µm, La = 8 µm) and  = 0.04 (P = 4 µm, La = 10 µm). While these values are superior to the 

mesa reference (mesa = 0.026) , they are of the same order of magnitude. Indeed, the superior 

temperature performance of the metamaterial arises from the strong reduction of the dark current noise, 

as discussed further.  

The background limited detectivity of the structure has the following expression [4, 10, 17]: 

(1) 



=*

4
BLIP

B

R
D

egJ
  

This expression reveals the effect of metamaterial detectors through the factor (/)1/2 [10]:  in the 

present designs we have / = 14-21. This brings an enhancement of a factor of 4 of the high-temperature 

detectivity with respect to the mesa geometry. Note that here we are interested in particular to the “high 
temperature” regime where the detector is dominated by the dark current noise JB~Jdark. The dependence 
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of DBLIP* on T resulting from equation (1) is shown in Figure 5. For comparison we also plot the value 

Dmax=2.3x1011  cmHz0.5/W for an ideal photoconductive detector with unity quantum efficiency [17]. 

We observe that, in comparison with the mesa device, the enhanced detectivity compensates the 

exponentially increasing dark current, and thus expands the temperature operation of the device by about 

40 K. The P = 4 µm La = 8 µm device where the carrier depletion was less pronounced has a maximum 

detectivity D* = 0.6x1011 cmHz0.5/W, at 15 K, an order of magnitude higher than the value of the reference 

mesa at 4K. This value corresponds to a Noise Equivalent Power, NEP = 0.2 pW. For the best high 

temperature performing metamaterial ( P= 4 µm, La =7 µm), we estimate a NEP = 150 pW at 60 K. The high 

temperature performance of our detector is thus comparable with recently demonstrated graphene based 

detectors [18], however with the potential to operate at much higher speed [19].  

In conclusion, we have shown that our metamaterial design has a strong impact on the performance of 

THz detectors. In this first demonstration we showed that such devices can operate up to 60 K. However, 

both the metamaterial structure and the absorbing region dispose of many degrees of freedom to further 

improve the detector temperature operation. For instance we can envision quantum cascade detectors 

that operate at 0 V and feature even lower dark current [20]. Clearly, an optimization of the electronic 

density is also required to fully exploit the potential of the metamaterial geometry. We believe that an 

operation at 80 K is within reach: this would be a significant technological leap, as it would allow the use 

of compact and portable cryocoolers that are currently used at industrial scale. Also, the circuit-like nature 

of our metamaterial resonators allows its integration with other active devices in THz optical circuits. 

Finally, we have demonstrated that our metamaterial design, that was previously used to demonstrate 

ultra-strong light-matter coupling is also compatible with electrical leads. This makes it an interesting 

technological platform to explore the interplay between electrical transport and quantum-optical 

phenomena [12, 21]. 

Supplementary material 

See supplementary material for full details on the sample fabrication, biasing scheme for the mesa and 

metamaterial detectors, method to estimate the reflectivity curves shown in Fig. 2, dark current fits, 

methods for measuring the detector responsivity, polarization dependence of the photo-response, as well 

as additional current voltage characteristics for the metamaterial devices  commented in Fig. 5. 
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Figures  

 

 

Figure 1. (a) Schematics of the metamaterial unit cell, which comprises a three dimensional LC resonator 

laterally coupled with antennas. The inductive parts of the LC resonator have leads which allow application 

of a bias as well as read-out of photocurrent signal. The photoconductive region is contained in the 

capacitive parts of the LC circuit. (b) Details of the absorbing region, which contains eight quantum wells 

with an electronic transition at 5.2 THz. (c) Optical microscope picture of the metamaterial. Each antenna 

connects two LC resonators. The dashed rectangle corresponds to the metamaterial unit cell .  (d) 

Schematics of two LC resonators connected by an antenna. The relevant parameters that set the 

metamaterial resonance are the inductive loop length P and the length of the antenna La. 
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Figure 2. (a) Illustration of the strong coupling between the LC resonators and the antenna resonance. The 

dotted curve show simulations of the reflectivity curves of the uncoupled resonators, which are 

schematized in the inset images. The LC resonator has a poor coupling with free space (low reflectivity 

contrast), while the antenna has strong radiation loss (almost unity contrast). The two coupled modes 

(continuous line) inherit the high radiation loss of the antenna, while keeping the strong electromagnetic 

confinement of the LC resonator. (b) Simulation of reflectivity curves of the metamaterials where the high 

energy coupled mode is close to the QWIP absorption resonance. 
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Figure 3. (a) Current-voltage characteristics of the mesa reference device, as a function of the device heat-

sink temperature. The dotted curves are dark current density, whereas the continuous lines are 

background current where the detector is exposed to the ambient thermal radiation. (b) Current-voltage 

characteristics of a metamaterial device, with the same convention as in (a). 
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Figure 4. (a)  Photocurrent spectra at different temperatures for the metamaterial detector. The dashed 

curve reports the mesa spectrum at 4K.  (b) Responsivity as a function of the detector temperature at bias 

+20mV (purple) and -20mV (magenta). The dashed curves are the results for the reference mesa device, 

and the full lines represent the metamaterial detector with P= 4µm and La= 7µm.   

 

Figure 5. Estimates of the detectivity as a function of the temperature for an applied bias of -20mV on the 

metamaterial arrays and +20mV for the mesa device. Dmax=2.3x1011cmHz0.5/W corresponds to the 

maximum possible background limited detectivity for a perfect photo-conductive detector. 
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1. Sample fabrication 

The fabrication procedure closely resembles the one described in Refs. [1, 2], but has been adapted to 

improve the optical quality of the sample while coping with the high temperature annealings necessary 

to obtain ohmic contacts between the active region and the metallic parts.  

We first fabricate the LC resonators. We start by fabricating the 1.5x1.5 µm² ohmic contact pads below 

the bottom (square) capacitor plates of the LC circuits using electron beam lithography (EBL) and 

electron beam evaporation (EBE) of a stack of Pd/Ge/Ti/Au (15/45/5/15 nm). Using a subsequent EBL 

step, we pattern the bottom part of the LC circuit consisting of two capacitor plates on top of the ohmic 

contacts, and the straight wire connecting the two pads. We also pattern the metallic leads (long 

vertical wires in Fig. 1 of the main text) and evaporate a Ti/Au (5/150 nm) stack. Large contacting pads 

overlapping the vertical metallic leads are added using optical lithography to allow contacting the 

bottom side of individual arrays using wirebonding. The sample is then etched using the metal as a 

mask using a Cl-based inductively coupled plasma reactive ion etching (ICP-RIE). A 3 µm thick SiN 

insulation layer is deposited using a low temperature (150°C) plasma enhanced chemical vapor 

deposition (LT-PECVD) and coated with Ti/Au (10/200 nm). The sample is then flipped and bonded to 

a host GaAs substrate using an epoxy. The substrate is selectively etched, revealing the unprocessed 

side of the active region. We repeat the same two-step EBL+EBE procedure to fabricate the top 

contacts of the LC circuits (1.5x1.5 µm² Pd/Ge/Ti/Au pads) and then the top part of the LC circuit (Ti/Au 

capacitor plates, inductive loop and metallic leads). A second contacting pad is processed using optical 

lithography to allow contacting the top side of individual arrays. The excess active region is then 

removed using ICP-RIE again, revealing the metallic wires and pads buried below the active region. 

After this etch step, only the active region embedded in the capacitors of the LC circuits is left in the 

sample. Finally, a 500nm thick SiN layer is added to the sample using LT-PECVD, and the λ/2 antennas 

are patterned using EBL and deposited using EBE (Ti/Au 5/150nm). The SiN layer above the contact 

pads is then selectively removed using optical lithography and fluoride based reactive ion etching. 

Ultimately, the sample is annealed at 200°C on a hotplate for 30 min.  

We summarize below the electrical area of each device and compare it to the physical footprint on the 

sample.  
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 La = 7µm La = 8 µm La = 9 µm La = 10 µm La = 11 µm 

Footprint (µm²) 2.32 104 2.24 104 2.16 104 2.08 104 2 104 

P = 9 µm 2916 2430 2268 1944 1782 

P = 8 µm 3098.25 2581.875 2409.75 2065.5 1893.375 

P = 4 µm 2754 2409.75 2237.625 2065.5 1721.25 

P = 3 µm 3280.5 2733.75 2551.5 2187 2004.75 

P = 2.4 µm 3280.5 2916 2551.5 2187 2004.75 

Table S1: Electrical area (bold numbers, in µm²) of each array, and the corresponding footprint on the 

sample (second line).  

For the reference mesa device we use standard fabrication protocol, where a top PdGe contact is 

defined as above. The mesa is then defined by wet etching down to the bottom n++ contact, and then 

we evaporate AuGeNi contacts laterally to the mesa. The lateral contacts are diffused in order to reach 

the bottom n++ layer.  

 

Figure S1: Illustration of the biasing scheme for the metamaterial device (a) and the mesa 

device (b) with respect to direction of the epitaxial growth. These illustrations are not on 

scale. 

In Figure S1 we illustrate the electrical bias scheme for both the metamaterial and mesa device as a 

result of this process. Note that the as a result of the process, the absorbing region is inverted in the 

case of metamaterial devices with respect to the mesa device; we therefore compare the two devices 

for opposite sign of the applied bias. This comparison allows to take into account the asymmetries 

introduced by the epitaxial growth, such as dopant segregation [3].   
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2. Reflectivity curves 

In Ref. [2] we have discussed in details the coupling between the LC resonators and the antenna 

elements. This coupling is described in terms of the temporal coupled mode theory [4], where the LC 

resonator and the antenna are treated as two coupled oscillators described by their frequencies, 

radiative and non-radiative loss rates:  respectively (LC, LC, LC) and (A, A, A). The coupled-mode 

theory equations read: 

(S1)                                                  ( ) 2LC LC LC LC in

da
i a iGA S

dt
  

(S2)                                                         ( ) 2A A A A in

dA
i A iGa S

dt
  

(S3)
                                                     

     2 2out in A LCS S A a  

Here a and A are the amplitudes of the LC resonator and the antenna mode; Sin and Sout are respectively 

the amplitude of the incident and reflected wave. The LC-antenna coupling is described by the coupling 

constant G. By solving the system (S1-S3) for a harmonic regime where all amplitudes evolve as ~eit, 

we obtain the reflectivity R() = |Sout|²/|Sin|² as illustrated in Figure 2 in the main text.  

The system (S1-S3) includes several parameters that have to be determined experimentally. For this 

we use our prior results from Ref. [4] which are supplemented with novel measurements. First, we 

have prepared large area arrays with an antenna length La=13µm and a variable perimeter P. The 

resulting reflectivity spectra at room temperature and their modelling through the system (S1-S3) are 

shown in Figure S2.  

 
Figure S2: Reflectivity spectra at room temperature of large area (~1 mm²) arrays 

comprising La  = 13 µm long antennas and LC resonators with variable perimeter P: (a) P = 

9 µm, (b) P = 8 µm and (c) P = 3 µm. The full blue curves are experimental results and the 

dotted curves are modelling from the equations (S1-S3). 



4 
 

 

Figure S3: (a) LC resonant frequencies (fLC=LC/2in THz) as a function of the inverse 

perimeter (1/P, in µm), as extracted from the data modelling of the data in Figure S2.   (b) 

Resonant frequencies of the antennas (fA=A/2in THz) obtained from the data in Ref. 

[2] and the data from Figure S1 (dot in dashed circle). (c) Non radiative (A, diamonds) and 

radiative loss rates (A, triangles) obtained from Ref. [2] and the data from Figure S2 

(symbols in dashed ellipse). 

From these measurements we extract the various parameters such as the resonant frequencies of the 

uncoupled LC resonator (Figure S3(a)), as well as the magnitude of the coupling parameter G = -0.8 

THz. As in Ref. [2] we found that the radiation loss LC of the LC structures are negligeable, and they 

have non-radiative linewidth of LC=0.4 THz. By studying uncoupled LC resonators alone, we found that 

the annealing of the ohmic contacts introduces a frequency shift fLC=+0.56 THz that is taken into 

account in the final modelling shown in Figure 2. For the P = 4 µm we find thus that the resonant 

frequency of the LC resonator alone is fLC = 3.8 THz. 

The fit parameters from the data of Figure S1 are combined with the results from Ref. [2] to obtain all 

characteristics of the wire antennas (Figure S3(b,c)). In particular, we found the following values: fA = 

4.3 THz for La=7 µm, fA = 4.07 THz for La=8 µm, and fA = 3.7 THz for La=10 µm. For all antennas we use 

the parameters a=0.45 THz and A= 0.32 THz. 
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3. Dark current fits 

 

 
Figure S4: (a) Dark current density as a function of the temperature for the metamaterial 

device  P= 4 µm and La = 7 µm biased at -20 mV. The dots are experimental data and the 

full line is exponential fit. (b) The corresponding data for the mesa device. 

The temperature activated dark current is fitted with the function Jdark = J0 exp(-Eact/kBT) + const, as 

shown in Figure S4. The parameters for the metamaterial device (a) are J0 = 2.8 A/cm², Eact = 15.6 meV 

and const = 5.9x10-7 A/cm². For the mesa the corresponding parameters are: J0 = 600 A/cm², Eact = 13.1 

meV and const = 3x10-5 A/cm². For the mesa, the deviation at high temperature can be explained by 

an extra resistance R ~ 10k in series with the device Rdevice, such as the total resistance is R+Rdevice. At 

low temperature, the device is very resistive, Rdevice ~ 100 M, meaning that the effect of R is 

negligeable. At high temperature, we expect the device to have an intrinsic resistance on the order of 

Rdevice ~ 1, and therefore we see essentially the effect of R. The most probable explanation for the 

presence of R in for the case of the mesa is as follows. As illustrated in Fig. S1(a) for the mesa devices 

we use lateral bottom contact, with very thin, 40 nm, contact layer. Because of the very thin contact 

layers over a very large area mesa 200 µm x 200 µm we could expect an extra lateral resistance R in 

series with the resistance QW region. Note that we do not observe current saturation for the 

metamaterial detectors, even if the high temperature resistance is Rdevice ~ 10 . Indeed, in the case of 

metamaterials the QW are contacted with metal contacts on both sides, and furthermore the lateral 

sizes of the pads are 1.5 µm, which removes completely any effect of any lateral resistance (Fig. S1 (a)). 

4. Photocurrent and responsivity measurements 

In order to determine the responsivity of our devices we have used calibrated black body source 

heated at 500°C and a lock-in amplifier. Details of the experimental set-up are provided in Figure S5 

(a). The blackbody radiation is focused on the sample with a help of a F1 parabolic mirror, after passing 

on a 50% mechanical chopper rotating at a speed 120 Hz. The current from the sample is amplified 

with a low-noise transimpedance amplifier and then send to the lock-in amplifier. The photocurrent 
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Iph is related to the lock-in reading Vlock-in through the formula Iph = Vlock-in (/21/2)/gtr, where gtr is the 

transimpedance gain. 

 

Figure S5: (a) Full experimental set-up for the measurements of the device responsivity. 

(b) Estimate of the received radiation power on the device. The black curve is a 

difference between 500°C and 25°C blackbody sources. The device spectrum has been 

normalized such as its maximum is set on the black curve. The resulting curve 

corresponds exactly to the integrand in Eq. (S5).   

As we use a broadband source the measured photocurrent Iph corresponds to total signal collected 

from the entire spectral range of our THz detector. The spectral shape of the responsivity has been 

determined from spectrally resolved photocurrent measurements with the help of a FTIR   as described 

in the main text and Figure 4(a). In order to obtain the correct spectral shape of the responsivity R() 

the photocurrent spectra have been normalized on the power spectral density of the globar source of 

the FTIR assumed to be a blackbody of a temperature T =1200K.  

 Knowing the spectral shape R() responsivity we can determine the absolute value of the peak 

responsivity Rpeak. Responsivity can be cast in the form:  

(S4)
                                                                       

 ( ) ( )peakR R L  

Here Rpeak is the maximum responsivity at a frequency peak = 5.2 THz (see Figure 4(a).) and L() is the 

function that describes the responsivity spectrum but  normalized such as L(=peak) = 1. The total 

photocurrent measured from the lock-in experiment described above is thus provided by the formula: 

(S5)
                          

 
 


 

      
 


0

( ) ( 500 ) ( 25 )BB BB
ph peak

dP dP
I R L T C T C d

d d
 

Here dPBB/d(T) is the spectral density of a black-body radiation incident on the detector that has been 

computed taking into account the device area and the solid angle of the F1 focusing mirror (see, for 

instance, equation (2.6) on page 7 from Ref. [5]).  In this formula we take into account the fact that 

when the detector is facing the palette of the mechanical chopper it is actually exposed to the ambient 



7 
 

black body radiation at 300K (~25°C). The function under the integral of Eq.(S5) has been plotted in 

Figure S5(b) together with the expression in brackets. The total power received by the device 

corresponds to the red area in the graph of Figure S5(b). For instance, for metamaterial devices we 

have typically an incident power 220nW. From this value we determine the peak responsivities shown 

in Figure 4(b) in the main text. 

 

Figure S6: Comparison between current densities obtained from direct measurement of 

current voltage characteristics and photocurrent density measured in the lock-in 

experiment. 

The DC measurements shown in Figure 2 of the main text were obtained with Yokogawa GS200 source/ 

measurement unit. In Figure S6 we show a comparison between DC current voltage characteristics and 

photocurrent obtained by a lock-in experiment described above. At low temperature, where the dark 

current is negligible we see that the background current is of the same order of magnitude as the 

photocurrent obtained from with the lock-in amplifier. These observations attest the reliability of our 

estimation for the responsivity.   

5. Polarization dependence of the photoresponse 

By construction the optical response of our metamaterial is dependent on the polarization of the 

incident THz wave. Only the electric field component of the incident wave, that is parallel to the wire 

antenna excites the metamaterial resonance [2]. As a consequence, the photoresponse of the detector 

is also dependent on the polarization of the incident polarization. This selection has been 

experimentally verified by placing a wiregrid THz polarizer in front of the detector, and measuring the 

spectral response as a function of the angle   between the active polarization and the wire antennas 

of the metamaterial. These results are shown in Figure S7(a,b). As seen from Fig. S7(a) the 

photocurrent intensity is maximal when the incident electric field vector is aligned with the wire 

antennas. Furthermore, as shown in Fig. S7(b) the photocurrent signal follows the expected 
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cos²dependence. These results attest for the fact that the photoresponse of the device is mediated 

by the coupling between the metamaterial resonance and the electronic transitions, and not by any 

other spurious effects (i.e. bolometric effect). These measurements were performed with the (P=4µm, 

La =7µm) device. 

 
Figure S7: (a) Photocurrent spectra as a function of the polarization of the incident wave. 

The inset shows the electric field vector with respect to the wire antenna. In our 

experiments we vary the angle  defined in the inset. (b) Values of the integrals of the 

photocurrent spectra as a function of  (dots). The dashed line is a plot of the expected 

cos²dependence. 

 

6. Current-voltage characteristics of all structures reported in the main text 

Here we provide the current voltage characteristics of the structures (P = 4 µm, La  = 8 µm) and (P =4 

µm, La= 10µm) that were used to obtain the results reported in Figure 5. 
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Figure S8: Current-voltage characteristics for under dark conditions (a) and background 

illumination (b) for the sample (P=4µm, La=8µm).  

 

Figure S9: Current-voltage characteristics for under dark conditions (a) and background 

illumination (b) for the sample (P=4µm, La=10µm).  
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