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Abstract 

A dynamical model of the pathophysiological behaviors of IL18 and IL10 cytokines with 

their receptors is tested against data for the case of early sepsis. The proposed approach 

considers the surroundings (organs and bone marrow) and the different subsystems (cells and 

cyctokines). The interactions between blood cells, cytokines and the surroundings are 

described via mass balances. Cytokines are adsorbed onto associated receptors at the cell 

surface. The adsorption is described by the Langmuir model and gives rise to the production 

of more cytokines and associated receptors inside the cell. The quantities of pro and anti-

inflammatory cytokines present in the body are combined to give global information via an 

inflammation level function which describes the patient’s state. Data for parameter estimation 

comes from the Sepsis 48H database. Comparisons between patient data and simulations are 

presented and are in good agreement. For the IL18/IL10 cytokine pair,  5 key parameters have 
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been found. They are linked to pro-inflammatory IL18 cytokine and show that the early sepsis 

is driven by components of inflammatory character. 

 

1. Introduction 

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host 

response to infection [1]. Septic shock is the most severe form of sepsis in which hypotension 

persists despite adequate volume resuscitation thus requiring the use of vasopressors. Sepsis 

deeply perturbs immune homeostasis by inducing a complex response that varies over time, 

with the concomitant occurrence of both pro- and anti-inflammatory mechanisms. 

Schematically, the opening tremendous systemic inflammatory response (aka cytokine storm) 

may lead to multiple organ failure while the anti-inflammation process may lead to delayed 

immunosuppressed status [2,3]. However exact chronology of these processes remains 

unclear. As Sepsis represents a major healthcare problem worldwide (e.g, first cause of 

mortality in Intensive Care Units (ICU) [4]), the World Health Organization (WHO) 

recognized sepsis as a global health priority by adopting a resolution to improve the 

prevention, diagnosis and management of this deadly disease [5].  Indeed, despite significant 

advances in the understanding of the pathophysiology of sepsis, to date, no therapeutic 

intervention targeting host response has specifically been approved.  

Several studies have shown that the first hours after septic shock are decisive in the evolution 

of the disease and therefore for patient’s care and outcome [6,7]. At this step, the host 

response is very complex because a tremendous number of mediators, receptors and cells are 

involved in the whole body, both activators and inhibitors [8], thus the dynamical modeling 

approach is an interesting solution to better describe early dynamics in septic shock. In 
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particular, mechanistic modelling based on principles of chemical engineering may help to 

build the complex models necessary to describe the immune system [9–12]. 

Many dynamical models have appeared in the literature to describe the immune system in the 

context of sepsis. They are based on ordinary differential equations (ODE) with classical 

kinetics used in biology such as Michaelis-Menten kinetics, Hill function, inhibitory functions 

[13–24]. 

A discussion about reduced and large models for immunology and their help with respect to 

qualitative and quantitative behavior in order to improve diagnosis and treatment is proposed 

in Vodovotz et al. [25]. 

Some reduced models are used to analyze the asymptotic behavior of ODE models with 

respect to key parameters, such as kinetic constants, and show that, depending on parameter 

values, different immune system scenarios can be represented, as in Kumar et al. [13]. 

Numerous models are used to simulate the immune system for better understanding, 

[14,16,17,19,22,24,26,27]. The authors have different modeling approaches, but, currently, 

the principal limitation is the availability and complexity of experimental data for validation. 

Some models are used as the foundation for simulations for testing therapy strategies 

[21,23,26,28–30]. 

Finally, in Yiu et al. [8], based on the 2006 Clinical Trial of TGN1412, the authors propose an 

eighteenth-order, linear, time-invariant dynamic system to simulate the behavior of nine 

interacting cytokines based on data obtained from six healthy volunteers that experienced 

severe inflammatory response during five days. An identification procedure of 90 parameters 
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is performed from cytokine level measurements. The model reveals plausible cause-and-effect 

relationships among the cytokines showing how each cytokine induces or inhibits others. 

For now, the work to model the immune system is only at its beginning. The complexity of 

the system and the lack of experimental data are the main barriers to advancement. To our 

knowledge, no article presents a model tested against transcriptomic data.  

Microarray-based expression profiling provides an interesting opportunity to gain knowledge 

on sepsis. This was done in the case of the study on twenty-eight patients in septic shock, 

called “Sepsis 48h” and conducted in 2009 by the laboratory LCR SEPSIS HCL and 

bioMerieux [7].  In this study, a blood sample was taken every 6 hours for 48 hours and a 

sample was taken after 6 days for some patients. For each sample, a complete genomic study 

was performed.  

By virtue of the “Sepsis 48h” databank, it is therefore possible to build an original model that 

can be validated experimentally against both genetic expression and cell count. 

The objective of this study is to propose a pathophysiological dynamical model capable of 

describing the evolution of inflammation in case of septic shock based on the “Sepsis 48h” 

data. The chosen cytokines are IL18 and IL10 as well as their associated receptors IL18R and 

IL10RA. This choice is motivated by the simplicity of the production mechanisms of this pair 

of cytokines with their associated receptors. 

In section 2 we set out the way we selected the training data among the large available dataset. 

In section 3 we present the assumptions and the model. In section 4 we describe parameter 

estimation based on the “Sepsis 48h” data.  Finally, in section 5 we discuss the estimated 
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model, the results obtained and we also propose a qualitative validation of the model on the 

basis of the “Sepsis 48h” data. 

2. Experimental dataset: Sepsis 48h 

The “Sepsis 48h” dataset includes clinical characteristics of twenty-eight patients at the onset 

of septic shock and admitted to two ICUs of a university hospital (see Cazalis et al. [7] for a 

detailed description of patient characteristics and data treatment). Briefly, a blood sample was 

taken every 6 hours for 48 hours. The transcribed RNA was extracted from each sample and 

the gene expressions were measured using microarrays from Affimetrix (GeneChip® Human 

Genome U133 Plus 2.0).  The full data set has not yet been released but data from initial 

samples and those taken after 24 and 48 hours is available on the GEO DataSets site under 

accession number GSE57065. So, for each blood sample, data is available is the form of 

54675 X-ray fluorescence intensity values. Furthermore, twenty-five control samples have 

been obtained from healthy volunteers. A statistical comparison of the genetic expressions of 

samples from healthy and sick patients highlighted 71% of the human genome affected by a 

septic shock [7].  

In addition to this transcriptomic data, a detailed cell count was performed for each sample for 

the major leukocytes. The main cells of innate immunity were measured: neutrophils, 

basophils, eosinophils, and monocytes. The main types of lymphocytes were also counted as 

described in Venet et al. [31].  

2.1. Biological selection of the probesets 

 
The first step of this work was to select the probesets that were related to cytokines and their 

receptors from the available dataset. First, a global approach was taken, with the selection of 
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all the probesets that were potentially important in describing the variation of the cytokines 

and their receptors. The probeset references were translated from the microarray output into 

standard genetic nomenclature found in the literature. For this purpose, the DAVID database 

(Database for Annotation, Visualization and Integrated Discovery) tool to convert gene 

identifiers from one type to another was used [14,32]. 

The genes relating to cytokines and their receptors were then selected with keyword filters: 

“interleukin”; “TNF”; “IFN”; “TGF” leading to a first reduction of the dataset to 329 

probesets of interest. Then, the objective being to describe the inflammation mechanistically 

and without considering intracellular reactions and intermediates, a deeper analysis of these 

probesets was made.  Data which could not be exploited because it was below the microarray 

detection limit was removed and, where more than one microarray output referred to the same 

biological entity, only the most intense signal was selected. Proteins which were unrelated to 

cytokines and their receptors according to the literature were also removed [33]. This allowed 

selection of 53 probesets related to well-known cytokines and their receptors, all of which are 

involved in endotoxin tolerance or pathogen recognition. 

Here, the strategy is to propose a simplified model based on an immune system of one pair of 

cytokines with their receptors and the average quantity of leukocytes. It is intended that this 

be extended in future work.  Further consideration of the probesets narrowed down the 

number of potential cytokines for modelling to 14, each of which has data available for both 

receptors and cytokine (about 30 probesets) : IL1A, IL1B, IL2, IL3, IL4, IL6, IL10, IL11, 

IL12A, IL13, IL16, IL18, IL24 and IL27.  Of these, IL1, IL4, IL6, IL10, IL18 have been 

strongly associated with sepsis [7, 34-40], with 1L1, IL6 and IL18 being pro-inflammatory 

and IL4 and IL10 anti-inflammatory.  From this set of 5 cytokines, IL18/IL10 was identified 
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as the optimal pair for modelling.  This cytokine pair is characterized by two cytokines, one 

with pro- and the other with anti-inflammatory action.   

Both IL18 and IL10 cytokines are very often described in the literature dedicated to sepsis [41 

- 43] and Eidt et al. [44] found mortality directly proportional to IL18 plasma levels, which 

did not occur with other inflammatory mediators whilst Mierzchala-Pasierb et al. [45] found 

that IL18 can be used to differentiate sepsis and septic shock status better than other 

biomarkers. IL10 is the anti-inflammatory cytokine. Indeed, the intensities of IL10 and IL18 

probesets were strongly detected by the microarrays and significantly increased after septic 

shock as indicated by t-test (p-value < 0.05, results not shown).  The mean X-ray fluorescence 

signal measurements are given in Figure 1. Moreover,  it is well-known that IL10 and IL18 

each adsorb onto only one specific receptor [46]. These receptors were constructed from two 

proteins (denoted IL10RA and IL10RB for IL10 and IL18R1 and IL18RAP for IL18) that 

were each described by a single probeset. 

 

Figure 1: Mean X-ray fluorescence signal measured for IL18 and IL10 cytokines at 0, 24h and 

48h after septic shock. The corresponding signals obtained for the healthy volunteers are also 
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reported as control data. The bars correspond to the standard deviation (n=28 and 25 for sick 

and healthy patients, respectively). 

 

As IL10RA is specific to IL10 receptor whilst IL10RB is also engaged by other receptors, the 

variation of IL10RA is followed. IL18R1 and IL18RAP are both specific receptors of the 

IL18 cytokine [46]. Here, we considered these two parts as equimolar in the receptor structure. 

This allowed the quantity of receptors to be monitored using only the limiting probeset. The 

selected cytokines and their receptors are presented in Table 1 with their corresponding 

probeset.   

 

Cytokine/ 

Cytokine receptor Probeset 

IL10 207433_at 

IL10RA 204912_at 

IL10RB 209575_at 

IL18 206295_at 

IL18R1 206618_at 

IL18RAP 207072_at 

 

Table 1 : List of the selected probesets related to the selected cytokines and 

their receptors 
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In reality, cytokines such as IL18 and IL10 have pro- or anti- inflammatory actions through 

complex networks involving feedbacks [42, 47 - 49].  Here, we are limited to a single 

cytokine pair.  So, prior to the modeling part, the two following assumptions have been made 

to describe both the adsorption and production mechanisms of IL10 and IL18 cytokines: 

 

 

 

 

 

i) the cytokines adsorb specifically onto their receptor (IL10RA and IL18R, respectively) 

and no interaction occurs with other receptors and 

ii) the pro-inflammatory cytokine (IL18) stimulates the production of both pro- and anti-

inflammatory species while IL10 only stimulates the production of anti-inflammatory 

ones (as reported in Figure 2).  
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iii)  

iv) Figure 2 : Schematic representation of adsorption and production mechanisms related 

to IL18 and IL10 cytokines 

 

 

2.2. Conversion of X-ray fluorescence data into concentration 

In order to be able to apply the model to patient data, it was necessary to convert the X-ray 

fluorescence intensities into concentrations. Indeed, the material balances were made on 

species in molar quantities. 

However, no calibration curve was available. Indeed, the transcribed RNA cannot be 

rigorously correlated to the amounts of the expressed proteins: many steps subsequent to the 

formation of the RNA are necessary before obtaining an effector protein. Correlating the X-
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ray fluorescence to the concentration is therefore an over-evaluation of the protein 

concentration in the medium, but is necessary at first.  

 

All the probeset intensities are numerically treated so that they can be compared relative to 

each other [7]. A calibration curve between X-ray fluorescence intensity and protein 

concentration can be constructed from measured protein concentrations and the probesets. 

During sepsis, protein production is strongly modified: the calibration curve is therefore 

constructed from control values only. These 22 probesets for healthy individuals make it 

possible to set maximum ranges of expression values  which are correlated with ranges of 

protein volume concentrations from the literature [50,51]. 

To try and improve accuracy, two other widely measured protein concentrations have been 

added: S100A8 and S100A9 [52]. These S100 alarmin biomarkers are secreted by leukocytes 

and are involved in various inflammatory diseases. This data was used to create the 

calibration curve shown in Figure 3, relating the protein concentration in mol.m
-3

 to the X-ray 

fluorescence intensity. Linear regression was used to obtain the following relation: 

Protein concentration = 1.27x10
-9

 X-ray fluorescence intensity 

So, finally, the experimental training data, which will be used for parameter estimation, is the 

concentrations of IL10, IL10R, IL18, IL18R and the white blood cell count (leukocytes). 
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Figure 3: Calibration curve for protein concentration from Average X-ray fluorescence values 

in healthy patients 

 

 

 

3. Modelling 

The model is based on chemical reaction engineering principals with the following 
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 The blood system is an open system (mass balances based on fluxes), described with 

two phases: a fluid phase (blood), and leucocyte cells. It has interactions with 

surroundings through source terms of cells coming from bone marrow and source 

terms of cytokines and receptors coming from organs. The blood system is represented 

in Figure 3.  
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 The blood volume is assumed to be constant.  

 The cells are uniformly dispersed in the fluid phase and represent average leucocyte 

cells.  

 The receptors are described as being only on the surface of the cells. They are said to 

be uniformly distributed. 

 The adsorbed anti-inflammatory IL10 cytokines (B) on their receptors IL10RA (𝑅𝐵) 

directly trigger the chemical production of IL10 (B) and IL10RA (𝑅𝐵). The adsorbed 

pro-inflammatory IL18 cytokines (A) on their receptors IL18R ( 𝑅𝐴)  trigger the 

chemical production of all cytokines and receptors. The production kinetics of both 

cytokines and receptors are assumed to be of order 1 with respect to the adsorbed 

cytokines. 

 The linear driving force model is used to represent the transfer of cytokines from the 

cell to the blood and the transfer of cytokines from the blood to receptors [53]. This 

model relates the average adsorbate concentration inside the cell directly with the 

concentration in the fluid phase. 

 The cytokines in the blood are adsorbed on receptors. This adsorption is already 

described in some existing pharmacokinetic models [24]. Langmuir equilibrium is 

assumed for the adsorption [54]. So the expressions of the adsorbed concentrations 

onto the surface of cells are given below (see Nomenclature section for definition of 

variables): 

𝐴𝑎𝑑𝑠 =
 𝑅𝐴 𝐾𝐴 𝐴𝑖𝑛𝑡

1 + 𝐾𝐴 𝐴𝑖𝑛𝑡
,   𝐵𝑎𝑑𝑠 =

𝑅𝐵 𝐾𝐵 𝐵𝑖𝑛𝑡

1 + 𝐾𝐵 𝐵𝑖𝑛𝑡
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The inflammation comes from the variation of the cytokines, which can stimulate or 

inhibit leucocyte production.   

3.1. Cytokine material balances in the fluid, at the cell/fluid interface and in the cells 

In chemical reaction engineering it is usual to construct balances over a defined volume based 

on conservation of mass.  This can be for any individual component or the sum of all the 

species present.  The mass balance takes into account the consumption, production and 

accumulation of the species under consideration as well as mass flows into and out of the 

defined volume [55].   

The material balances in mol.min
 -1

 for A (pro-inflammatory cytokine IL18) and B (anti-

inflammatory cytokine IL10) in the fluid, at the interface of the cells and in the cells, are 

given in Eq.s (1) – (6).  Eq. (1) is for the pro-inflammatory cytokines in the blood volume.  

They arrive from the cell interior and a source, such as an inflamed organ or mucus, and are 

transferred to receptors on the cell membrane.  There is also a term for cytokine consumption 

because they have a fixed lifetime.  Eq.s  (2) and (3) respectively, are the balances on the 

cytokine quantities at the cell membrane and inside the cell.  The amount of cytokine interior 

to the cell depends on the mass transfer rate from the cell to the blood volume, the 

consumption rate due to the fixed lifetime and the production of cytokine due to adsorption 

onto the cell surface.  Eq.s (4) to (6) represent the anti-inflammatory cytokine behaviour.  It is 

identical to that of the pro-inflammatory cytokine except adsorbed quantities of both pro- and 

anti- inflammatory cytokines are used to determine the cytokine quantity inside the cell. 

𝑑𝑉𝑙 𝐴 

𝑑𝑡
= 𝑉𝑐(𝑘𝑙𝑎

𝑖𝑛𝑡𝐴(𝐴𝑖𝑛𝑡 − 𝐴) +   𝑘𝑙𝑎
𝑐𝐴(𝐴𝑐 − 𝐴)) − 𝑉𝑙 𝑘𝑑

𝐴𝐴 + 𝑆𝐴 (1) 

 
Accumulation 

of A in blood 

(mol.min
-1

) 

Transfer of A 

from blood to 

cell surface 

Transfer of A 

from inside 

cells to blood 

Consumption 

of A in blood  
A into blood 

from source 
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𝑑𝑉𝑐 𝐴𝑎𝑑𝑠

𝑑𝑡
=  − 𝑉𝑐𝑘𝑙𝑎

𝑖𝑛𝑡𝐴 (𝐴𝑖𝑛𝑡 − 𝐴)  
(2) 

 

 

 

𝑑𝑉𝑐 𝐴𝑐

𝑑𝑡
= 𝑉𝑐 𝑘𝐴 𝐴𝑎𝑑𝑠 − 𝑉𝑐  𝑘𝑙𝑎

𝑐𝐴 (𝐴𝑐 − 𝐴) − 𝑉𝑐 𝑘𝑑
𝐴 𝐴𝑐 

(3) 

 

 

𝑑𝑉𝑙 𝐵

𝑑𝑡
= 𝑉𝑐 (𝑘𝑙𝑎

𝑖𝑛𝑡𝐵(𝐵𝑖𝑛𝑡 − 𝐵) +   𝑘𝑙𝑎
𝑐𝐵(𝐵𝑐 − 𝐵)) − 𝑉𝑙 𝑘𝑑

𝐵 𝐵 + 𝑆𝐵 
(4) 

 

 

𝑑𝑉𝑐𝐵𝑎𝑑𝑠

𝑑𝑡
= −𝑉𝑐 𝑘𝑙𝑎

𝑖𝑛𝑡𝐵(𝐵𝑖𝑛𝑡 − 𝐵) 
(5) 

 

 

𝑑 𝑉𝑐𝐵𝑐

𝑑𝑡
=  𝑉𝑐 𝑘𝐵𝐵𝑎𝑑𝑠 + 𝑉𝑐𝑘𝐵𝐴𝐴𝑎𝑑𝑠 − 𝑉𝑐  𝑘𝑙𝑎

𝑐𝐵(𝐵𝑐 − 𝐵) − 𝑉𝑐 𝑘𝑑
𝐵𝐵𝑐 

(6) 
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 -1
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Transfer of A 
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cell surface 

Transfer of A 
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) 
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 -1
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3.2. Receptor material balances at the cell/fluid interface  

Eq.s (7) and (8) give the mass balances on the cytokine receptors which are found on the 

outside surface of the cell membrane.   

The terms 𝒌𝟏𝑽𝟏𝒄𝑽𝒍
𝒅 𝑵𝒄

𝒅𝒕
  𝑹𝑨  and 𝒌𝟐𝑽𝟏𝒄𝑽𝒍

𝒅 𝑵𝒄

𝒅𝒕
 𝑹𝑩 respectively allow the receptor density of 

A and B at the cell surface to be managed. For 𝒌𝟏  and 𝒌𝟐  equal to 1, A and B receptor 

concentrations are maintained constant with respect to cell number. For 𝒌𝟏  and 𝒌𝟐  greater 

than 1, A and B receptor densities increase, while for 𝒌𝟏 and 𝒌𝟐 lower than 1, they decrease. 

In the particular case where 𝒌𝟏  and 𝒌𝟐  are equal to 0, the quantity of A and B receptors 

remains constant. 

𝑑 𝑉𝑐 𝑅𝐴

𝑑𝑡
= 𝑉𝑐 𝑘𝑅𝐴  𝐴𝑎𝑑𝑠 + 𝑘1𝑉1𝑐𝑉𝑙

𝑑 𝑁𝑐

𝑑𝑡
  𝑅𝐴 

(7) 

 

 

 

 

𝑑𝑉𝑐 𝑅𝐵

𝑑𝑡
 =  𝑉𝑐    𝑘𝑅𝐵 

𝐴 𝐴𝑎𝑑𝑠 +    𝑉𝑐 𝑘𝑅𝐵 𝐵𝑎𝑑𝑠 + 𝑘2𝑉1𝑐𝑉𝑙

𝑑 𝑁𝑐

𝑑𝑡
 𝑅𝐵 

(8) 
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 -1

)  

Production of 

A receptors  
A receptor 

density term 

Accumulation 
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(mol. min
 -1
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Production of 
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3.3. Cell number balances  

Eq. (9) is the balance on the number of cells in the blood volume with the inflammation 

function given in Eq. (10).  This function combines the quantities of pro- and anti- 

inflammatory cytokines to give a numerical representation of the overall amount of 

inflammation in the body. This function is chosen with the variable parameter, α, adjusted  

such that f=0 for healthy volunteers, with the average IL18 and IL10 concentrations taken as 

3.87 and 4.09 nmol.m
-3

 respectively.  

𝑑 𝑉𝑙 𝑁𝑐

𝑑𝑡
= 𝑉𝑙 𝑓 𝑘𝑐 𝑁𝑐 −  𝑉𝑙 𝑘𝑑

𝑐   𝑁𝑐   +   𝑆𝑐 
(9) 

 

 

 

𝑓(𝑡) = 𝐴 −  𝛼 ∗ 𝐵 (10) 

This model has the ability to evolve to an alternative homeostatic equilibrium in the case 

of septic shock as shown in Tallon et al. [56]. 

 

 

4. Results and discussion 

The estimation procedure was initiated from simulation data reported in the previous work 

[56]. For the pair of cytokines under consideration, the model has 21 parameters for 45 

experimental data points per patient (5 components multiplied by 9 sample times) and there 

are 19 patients.  It is thus important to reduce the number of parameters to avoid over 

parameterization and to this end ten of the parameters (see Table 2) have been fixed at 

reasonable values. These were chosen by sensitivity analysis of the model, which revealed 

Accumulation 

of cells 

(number of 

leukocytes. 

min
-1

)  

Production 

of cells  
Consumption 

of cells  

Cells into 

blood from 

source  
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that, for all patients, variation in the receptor production kinetic constants (kRA, kRB, kRB
A ) and 

the cytokine death kinetic constants (kd
A, kd

B) had little impact.  Each of these was therefore 

fixed at an estimated average value. The kinetic constant for cell natural death was also found 

not to be very sensitive and was fixed to be the same as a typical cell lifetime, around 24h. 

Finally, high values were chosen for the mass transfer coefficients so that mass transfer would 

not be a limiting factor.  This seems to be a good assumption because we know the cytokines 

are transferred rapidly around the whole system. 

 

 Mass transfer coefficients 

(min) 

Death kinetic constants 

(min) 

Kinetic constants for 

receptor production 

(min) 

Parameter 

1

kla
intA ,

1

kla
intB  

1

kla
cA ,

1

kla
cB 

1

kd
A ,

1

kd
B 

1

kd
c  

1

kRA

,
1

kRB

 
1

kRB
A  

Value 0.001 0.001 30 1470 90 90 

Table 2 : Fixed parameters and their values 

11 parameters were estimated from 45 data points using the MATLAB non-linear least 

squares solver function, lsqnonlin, with the trust-region-reflective algorithm [57]. The 

algorithm minimizes the objective function based on an input vector of differences between 

the measured and calculated data. 

Parameter significance levels and confidence limits of the vector parameter b were 

determined from the standard calculation method assuming that errors in the data are normally 
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distributed and bearing in mind the nonlinearity of this model. The lsqnonlin Jacobian output 

matrix, J, was used to estimate the standard error 𝒔(𝒃𝒊) for parameter 𝒃𝒊 from Eqs. (11) to 

(12) with 𝚺, n and p the sum of the squared errors, the numbers of data points and the number 

of parameters to estimate respectively.  𝑯𝒊𝒊
𝑻

  is the i
th 

diagonal element of 𝑯𝑻 . Hence the 

statistical significance of each parameter in Eq. (13) was used to calculate the confidence 

limits at 𝜶𝐭% using the t-distribution with variable t. 

𝐻 = 𝐽𝑇𝐽 (11)  

 

𝑠(𝑏𝑖) = √
Σ. 𝐻𝑖𝑖

𝑇

(𝑛 − 𝑝)
 

(12) 

𝑏𝑖 ±  𝑠(𝑏𝑖)𝑡(𝑛 − 𝑝; 𝛼t/2) (13) 

 

4.1. Strategy for parameter estimation 

Although 10 parameters have been fixed due to their low variability, 11 parameters (8 

physical parameters and 3 source terms) remained to be estimated for a total of 45 data points. 

First the estimation of all these parameters was performed for each patient. From a global 

analysis of parameter sensitivity, the three least sensitive parameters were then fixed and a 

second round of estimation was performed for all patients. Then, three more parameters were 

fixed and a third, final, estimation was carried out. In this section, we present the results of the 

different steps of this strategy. 

4.1.1. First round of estimation:  11 parameters for each patient 

The estimated parameters are listed in Table 3 and Table 4.  
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Langmuir 

coefficients 

(m
3
.mol

-1
) 

Kinetic constants for 

cytokines production 

(min) 

Proportion of 

receptors produced or 

destroyed 

(-) 

Kinetic constant for cell 

production 

(min.mol.m
-3

) 

𝐾𝐴 𝐾𝐵 1

kA

 
1

kB

 
1

kBA

 
k1 k2 1

kc

 

Table 3: List of the estimated parameters  

 

Source terms for: 

Pro-inflammatory cytokines  

(mol.min
-1

) 

Anti-inflammatory 

cytokines  

(mol.min
-1

) 

Cells 

(min
-1

) 

𝑆𝐴 𝑆𝐵 𝑆𝑐 

Table 4: List of the estimated source terms 

 

The distributions by number of patients for all the estimated parameters listed in Table 3 are 

given in Figure 4.  For each parameter, the estimated values for all the patients were collated 

into 5 sets to smooth the results and highlight the overall trend. Figure 5 gives the estimated 

values of the cytokine source terms, 𝑆𝐴 and 𝑆𝐵, plotted against the estimated cell source term, 

𝑆𝑐. This figure shows that the production of cytokines is more or less independent of the cell 

source term, except for the pro- inflammatory cytokine source term 𝑆𝐴  which seems to 

decrease as the cell source term increases. The bone marrow of women appears to produce 
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fewer cells than that of men. Moreover, Figure 5 shows that the relative rates of cytokine and 

cell production do not differ between patients who survive and those who do not. 

 

Figure 4: Representation of the blood system 
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Figure 5:  Estimated parameter distributions by number of patients, 𝑁𝑝  for 

𝑲𝑨, 𝑲𝑩, kA, k𝐵, kBA, k1, k2, kc. 

The mean parameter values (corresponding to the first moment of the distribution) are listed 

in Table 5 with parameter values and 95% confidence intervals for four patients (2 men and 2 

women including 2 patients who died). The source terms of cytokines and cells are presented 

in Table 6.  
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Parameters 𝑲𝑨 

(m
3
.mol

-1
) 

𝑲𝑩 

(m
3
.mol

-1
) 

kA 

(min
-1

) 

kB 

(min
-1

) 

kBA 

(min
-1

) 

k1 

(-) 

k2 

(-) 

kc 

(min
-1

) 

Total mean 

value for all 

patients 

(n=19)  

 

0.0062 0.1750 0.0055 1.3996 2.1222 1.2328 1.0501 1.9016 

living 

woman 

 
0.0132 0.8984 0.0099 1.7205 0.2124 1.1939 0.9978 1.1097 

CI for living 

woman ±0.006 ±14 ±0.006 ±0.55 ±33 ±0.047 ±0.028 ±2.51 

 

dead man 

(1)  

  

0.0018 0.0009 0.0098 0.9778 2.4406 1.0732 1.031 0.198 

CI for dead 

man (1) ±1 10
-5

 ±3.2 ±1 10
-5

 ±1169 ±3412 ±1 10
-5

 ±0.1 ±7.7 

living man 

 

0.0024 0.3862 0.0035 0.4868 2.7062 1.3686 0.871 0.6541 

CI for living 

man ±0.19 ±44 ±0.29 ±56 ±273 ±0.79 ±0.4 ±45 

dead man 

(2) 

 

0.0019 0.3086 0.004 2.05 0.0945 0.4882 1.2208 4.1631 

CI for dead 

man (2) ±1 10
-5

 ±0.014 ±0.024

7 

±51 ±20 ±0.19 ±0.133 ±248 

Table 5: Mean parameter values and calculated parameter values for four Patients (1 

woman and 3 men) with their 95% confidence intervals (CI). 
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Source terms 𝑺𝑨 

(mol.min
-1

) 

𝑺𝑩 

(mol.min
-1

) 

𝑺𝑪  

(min
-1

) 

Living woman 0.14 0.10 0.0008 

CI for Living woman ±0.07 ±0.04 ±0.0002 

Dead man (1) 0.09 0.07 0.0046 

CI for Dead man (1) ±0.40 ±0.30 ±1 10
-5

 

Living man 0.05 0.07 0.0010 

CI *for Living man ±0.11 ±0.12 ±0.0003 

Dead man (2) 0.10 0.10 0.0014 

CI for Dead man (2) ±0.03 ±0.22 ±0.0001 

Table 6: Mean source term values and source term values calculated for four Patients 

(1 woman and 3 men) with their 95% confidence interval (CI). 

 

Confidence intervals were calculated for the nonlinear parameters. A wide confidence interval 

suggests that there is insufficient identifiability structure in the model to determine the 

parameters from the available measurements. The existence of superfluous parameters in the 

model may lead to a “rank deficient” condition of the Jacobian matrix (when gradient based 

methods are used for solution) and/or inflated confidence intervals. 

From the results presented in Table 5, it can be seen that the confidence intervals of 
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parameters  kB, kBA, kc were very wide. So, they were considered non-sensitive and were set 

at the mean value obtained from all patients and given in Table 5. The most sensitive 

parameter for all patients, without exception, is the source term 𝑺𝑪  corresponding to the 

production of the cells by the bone marrow. 

 

4.1.2. Second round of estimation: 8 parameters for each patient 

The same methodology as in section 4.1.1 was applied for this new estimation. The 

distributions of parameters 𝑲𝑨, 𝑲𝑩, kA, k1, k2 by number of patients are presented in Figure 6.  

 

 
Figure 6:  Cytokine source terms, 𝑆𝐴 and 𝑆𝐵, relative to cell source term, 𝑆𝑐. Red dots indicate 

deceased patients and blue dots represent survivors. 

The estimated cytokine source terms, 𝑆𝐴 and 𝑆𝐵, considered relative to the cell source term, 𝑆𝑐, 

are not given because the results were the same as those shown in Figure 5. Table 7 gives the 
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mean parameter values and source terms and also the parameter values and source terms for 

the same four patients as previously with their confidence intervals. 

 

Since the confidence interval of parameter  KB is wide for most of the patients, it was set to 

the corresponding total mean value given in Table 7. From Figure 6 and Table 7, it can be 

seen that the mean value of parameter k2 was close to 1 for most patients. The concentration 

of the associated receptor (RB) was constant, meaning that the receptor concentration is linked 

to the formation and death of cells. The variation of the cell number was not accompanied by 

a proportional change in the number of receptors. So, this parameter was fixed at one for the 

last estimation. The source term related to the anti-inflammatory components was less 

sensitive and remained relatively constant for all patients (see Figure 5). This latter was thus 

also fixed to 0.0742 mol/min, i.e. the average value calculated across all patients. 
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Parameters 𝑲𝑨 

(m
3
.mol

-1
) 

𝑲𝑩 

(m
3
.mol

-1
) 

kA 

(min
-1

) 

k1 

(-) 

k2 

(-) 

SA 

(mol.min
-1

) 

SB 

(mol.min
-1

) 

SC 

(min
-1

) 

Total Mean 

Value for all 

patients 

 

0.0082 0.2132 0.0085 1.4676 1.0830 N/A N/A N/A 

Living 

woman 0.0233 0.9000 0.0170 1.197 0.989 0.135 0.100 0.0007 

CI for 

Living 

woman 
±0.008 ±0.051 ±0.008 ±0.031 ±0.035 ±0.013 ±0.03 ±0.0001 

 

Dead man 

(1) 

 

0.0018 0.0009 0.0098 0.9778 2.4406 1.0732 1.031 0.198 

CI for Dead 

man (1) ±3.8 ±0.018 ±20 ±0.25 ±0.24 ±0.23 ±0.22 ±0.0008 

 

Living man 0.0020 0.4996 0.0034 1.3274 0.9192 0.0596 0.0760 0.0010 

CI *for 

Living man ±6 ±6 ±10 ±0.55 ±0.27 ±0.058 ±0.13 ±0.0003 

 

Dead man 

(2) 

 

0.0018 0.2134 0.0038 0.5071 1.2221 0.0888 0.0996 0.0014 

CI for Dead 

man (2) ±0 ±2.9 ±0.023 ±0.19 ±0.12 ±0.1 ±0.2 ±0.0001 

Table 7 : Parameter and source term values determined from the whole set of patients 

(mean values, n=19 and individually for  four patients (1 woman and 3 men) with their 

95% confidence interval (CI). 

 

4.1.3. Third round of estimation: 5 parameters for each patient 

RB and k2 and KB being fixed, 5 parameters remained to be estimated. In the following, the 

distributions of parameters 𝐾𝐴, kA, k1, by number of patients are presented in Figure 7.  
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Figure 7:  Parameter value distributions by number of patients for 𝑲𝑨, 𝑲𝑩, kA, k1, k2. 

Table 8 gives the mean parameter values and source terms and also the parameter values and 

source terms for the same four patients as previously with their confidence intervals. 
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Parameters 

 

𝑲𝑨 

(m
3
.mol

-1
) 

 

kA 

(min
-1

) 

 

k1 

(-) 

 

SA 

(mol.min
-1

) 

 

SA 

(mol.min
-1

) 

Total Mean 

Value for all 

patients 

 

0.0082 0.0085 1.4676 N/A N/A 

Living 

woman 

 

0.0799     0.0368     1.1990     0.1467     0.0007 

CI for 

Living 

woman 

±0.0064 ±0.0064 ±0.0597 ±0.0150 ±0.0002 

 

Dead man 

(1) 

 

0.0006 0.0031     1.0686     0.0730    0.0046 

CI for Dead 

man (1) ±0.0007 ±0.0007 ±0.2963 ±0.0424 ±0.0018 

 

Living man 0.0026     0.0039     1.3300     0.0666     0.0010 

CI *for 

Living man ±0.00001 ±0.0029 ±0.3463 ±0.0212 ±0.0003 

 

Dead man 

(2) 

 

0.0036     0.0044     0.5492     0.0884     0.0014 

CI for Dead 

man (2) ±0.00001 ±0.0008 ±0.2530 ±0.1350 ±0.0002 

Table 8: Parameter and source term values determined from the whole set of patients 

(mean values, n=19) and individually for four patients (1 woman and 3 men) with 

their 95% confidence interval (CI). 

 

 

Figure 8 shows that the parameters of all patients who died are to the left of the distribution, 

especially for the adsorption of the pro-inflammatory cytokine, IL18, onto its receptor, 

meaning a very slow adsorption. This slow adsorption could cause a slow cell response to the 

inflammatory action of the system and therefore lead to bad regulation of this aspect.   
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Figure 9 shows the same trends as Figure 5 with the pro-inflammatory cytokine source term 

decreasing as the cell source term increases for females and no differentiation between 

surviving and deceased patients.  

 
 

 

Figure 8:  Parameter value distributions by number of patients for 𝑲𝑨, kA, k1 

and the intervals corresponding to all dead patients. 

Overall, the parameter values are of the correct order and comparable with other values found 

in the literature [58]. 
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Figure 9: Cytokine source terms, 𝑆𝐴 and 𝑆𝐵, relative to cell source term, 𝑆𝑐. Red dots indicate 

deceased patients and blue dots represent survivors. 

 

 

4.2. Model outputs 

The parity plots in Figure 10 compare the simulation results directly against the experimental 

training data described in section 2: the number of white blood cells (leukocytes), cytokines 

IL18 and IL10 (A and B) and their receptors. Simulations were performed with the final set of 

parameters and source terms (from the estimation of 5 parameters for each patient). The parity 

plots show a good correlation between the calculated and measured data with a Pearsons 

correlation coefficient of 0.975 for the white blood cells and as follows for the cytokines: 

0.388 for IL18, 0.818 for IL10, 0.813 for IL18 receptors and 0.743 for IL10 receptors.  The 

critical value of Pearson’s correlation coefficient above which R indicates a statistically 

significant correlation is 0.159 at the 95% confidence level for 150 degrees of freedom. 
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Figure 10: Parity plots for calculated Nc, A, B, RA, RB fluorescence against measured data 

(each color corresponds to one patient).  Pearsons correlation coefficient values are 0.906 for 

Nc, 0.715 for A, 0.818 for B, 0.855 for RA and 0.874 for RB. 
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For the four patients (2 women and 2 men), Figures 11 to 15 give the calculated and measured 

values of pro-inflammatory cytokine, A, pro-inflammatory cytokine receptor, RA, anti-

inflammatory cytokine, B, anti-inflammatory cytokine receptor, RB and cell number 

respectively for all blood samples.  

 

Living woman  Dead Man (1) 

 
 

Living man  Dead Man (2) 

  

Figure 11: Calculated and measured pro-inflammatory cytokine A fluoresence versus time, 

markers indicate measured data, simulation results are shown as lines. 

 

Figure 11 compares the measured and calculated values of fluorescence for IL18, the pro-

inflammatory cytokine.  In each case, the calculated values follow the trend of the data.  

However, there is no common trend between the four cases shown.  The profiles of the curves 

relating to the women show increasing quantities of IL18 which would be expected at the start 
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of sepsis [8], whereas the curves for the men have much less of a gradient.  One drawback 

with the data is that the first measurement is based on the moment the patient arrived in the 

hospital and not the actual onset of sepsis.  So the initial condition for the model is at an 

unknown time during the sepsis response.  Another is that although the treatment is 

standardized the cause of sepsis is not controlled.  

 

Living woman Dead Man (1) 

 
 

Living man Dead man (2) 

  

Figure 12: Calculated and measured recepetor of pro-inflammatory cytokine RA fluoresence 

versus time, markers indicate measured data, simulation results are shown as lines. 

 Figure 12 shows the results for the pro-inflammatory cytokine receptor.  In all cases, except 

that of the surviving man, the model represents the data well, suggesting that the method of 

determining receptor concentration from the quantity of cytokine at the cell membrane is a 

useful one. Figure 13 compares the measured and calculated values of fluorescence for IL10,  
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Living woman Dead Man (1) 

 
 

Living man Dead man (2) 

  

Figure 13: Calculated and measured anti-inflammatory cytokine B fluoresence versus time, 

markers indicate measured data, simulation results are shown as linesthe anti-inflammatory 

cytokine.  As mentioned earlier, the model was not very sensitive to the parameters for the 

anti-inflammatory cytokine and here we observe that, despite apparent trends in the data, the 

model did not pick up this dynamic but rapidly adjusted to a value close to the mean.   
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Living woman Dead Man (1) 

 
 

Living man Dead man (2) 

  

Figure 14: Calculated and measured receptor of anti-inflammatory cytokine RB fluoresence 

versus time, markers indicate measured data, simulation results are shown as lines. 

 

 

Figure 14 compares the measured and calculated values of the anti-inflammatory cytokine 

receptor fluorescence and, here, the receptor of anti-inflammatory cytokine RB does not vary 

much experimentally and the calculated values were constant.  This low variation observed 

experimentally is almost definitely the reason behind the low-sensitivity of the associated 

parameters (KB, 𝐤𝐁, 𝐤𝐁𝐀).  Also, the number of data points is quite limited and the timing of the 

data collection, in the first 48h of sepsis, is during a period of strong inflammation.  This 

could partially explain why the model was more sensitive to parameters relating to the pro-

inflammatory cytokine, IL18, and why the calculated fluorescence for IL18 and its receptor fit 
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the measured data better than those for IL10.  Furthermore, in their work to model the 

response of 9 cytokines to TGN1412 infusion, Yiu et al. [8] demonstrated that IL10 

concentrations have a small but rapid response to IFN-γ stimulus and, in their model of 

cytokine dynamics during a cytokine storm in mice, Waito et al. [27] showed that IL10 

concentrations depend on at least six pro-inflammatory cytokines. So, as more data becomes 

available and more cytokines are included in the reaction network, calculation of the anti-

inflammatory response should improve.   
 

Living woman Dead Man (1) 

 
 

Living man Dead man (2) 

  

Figure 15: Calculated and measured cell number Nc versus time, markers indicate measured 

data, simulation results are shown as lines. 
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Figure 15 shows that the model gives a good prediction of the variation of the number of 

leukocyte cells, particularly for the women in this case.  This depends on the parameters: kd, 

which fixes the cell lifetime, Sc, which determines the quantity of leukocytes entering the 

blood volume and  , the inflammation function.  Figure 16 shows the calculated and measured 

inflammation level function 𝒇  versus time for the four patients. This inflammation level 

doesn’t provide any general information about the inflammatory state of the patient but only 

describes  the amounts of A (pro-inflammatory cytokine IL18) and B (anti-inflammatory 

cytokine IL10) cytokine pair. The experimental data is dispersed making its interpretation 

difficult. The simulation showed increasing inflammation in all cases except for the surviving 

man and a greater increase in the inflammatory level of the women relative to the men.  In 

fact, the curves for the women are highly reminiscent of those used by Hotchkiss et al. [3] to 

describe the host inflammatory response in their competing theories of the host immune 

response in sepsis, with a rapid initial increase in inflammation over the first two days which 

then plateaus before decreasing.  

 

Living woman Dead Man (1) 

 
 

Living man Dead man (2) 
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Figure 16: calculated and measured inflammation level function 𝒇 versus time, markers 

indicate measured data, simulation results are shown as lines. 

 

 

 

5. Conclusion 

A dynamical model describing the physico-chemical phenomena involved in homeostasis and 

sepsis, has been proposed in Tallon et al. [56]. This dynamical model of the blood system 

considers interactions between cells and cytokines, with its surroundings (organs, bone 

marrow) and introduces the inflammatory level impact on homeostasis via the function f.  

Data for the cytokine pair IL18 and IL10 from the sepsis 48H data base has been chosen to 

validate this model. Since the model contains 21 parameters, 10 parameters (kinetic constants 

and source terms) have been fixed and the others have been estimated in three stages. All 

estimated kinetic constant values are distributed with respect to the number of patients. 

Finally, the more sensitive parameters are those related to pro-inflammatory cytokines and 

cells. By the parity diagram, the model shows a good agreement between the experimental 

and simulated data. At the beginning of sepsis, the simulated patient response seems to be 

driven by the inflammatory actors. The estimated adsorption coefficient of the pro-

inflammatory cytokine, IL18, on its associated receptor, IL18R, is consistently below the 
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mean value of its distribution and, is particularly low in the non-surviving patients, hinting 

that this could be a key aspect in the dysregulation of the immune system in sepsis and would 

be interesting to study with a larger data set.    

 

 

6. Nomenclature 

 

A, B 

 (𝑚𝑜𝑙 𝑚−3) 

Concentration in the blood of cyt. 

A, B resp. 

𝐴𝑐 , 𝐵𝑐 

(𝑚𝑜𝑙 𝑚−3) 

Concentration in the cell of 

cyt. A, B resp. 

𝐴𝑎𝑑𝑠, 𝐵𝑎𝑑𝑠 

(𝑚𝑜𝑙 𝑚−3) 

Concentration of adsorbed cyt. A, 

B resp. 

𝐴𝑖𝑛𝑡 , 𝐵𝑖𝑛𝑡  

(𝑚𝑜𝑙 𝑚−3) 

Concentration at the 

interface of cyt. A, B resp. 

𝑓 (𝑚𝑜𝑙 𝑚−3) the inflammation level function   

 𝑘𝐴 , 𝑘𝐵  (𝑚𝑖𝑛−1) Production kinetic constant of 

cyt. A, B in the cell from 

adsorbed cyt. A, B resp. 

𝐾𝐴, 𝐾𝐵   

       (𝑚3𝑚𝑜𝑙−1) 

Langmuir coefficients 

𝑘𝐵𝐴 (𝑚𝑖𝑛−1) Production kinetic constant of 

cyt. B in the cell from adsorbed 

cyt. A 

𝑘𝑙𝑎
𝑐𝐴,  𝑘𝑙𝑎

𝑐𝐵  

  ( 𝑚𝑖𝑛−1) 

Mass transfer coefficient 

between blood and cell for 

cyt. A, B resp. 

𝑘𝑑
𝐴 , 𝑘𝑑

𝐵, 𝑘𝑑
𝑐   

(𝑚𝑖𝑛−1) 

death constants of cyt. A, B and 

of cells resp. 

𝑘𝑙𝑎
𝑖𝑛𝑡𝐴, 𝑘𝑙𝑎

𝑖𝑛𝑡𝐵 

( 𝑚𝑖𝑛−1) 

mass transfer coefficient 

between blood and interface 

for cyt. A, B resp. 
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 𝑘𝑅𝐴 ,  𝑘𝑅𝐵 

 (𝑚𝑖𝑛−1) 

Production kinetic constant of 

rec. A from adsorbed cyt. A, of 

rec. B from adsorbed cyt. B resp. 

 𝑘𝑅𝐵 
𝐴 (𝑚𝑖𝑛−1) Production kinetic constant  

of rec. B  from adsorbed 

cyt. A  

 𝑘𝑅𝐵 
𝐴 (𝑚𝑖𝑛−1) Production kinetic constant of 

rec. B from adsorbed cyt. A  

𝑘𝑐  

(𝑚3𝑚𝑜𝑙−1 𝑚𝑖𝑛−1)) 

Adjustment parameter  

𝑘1, 𝑘2  

(𝑚3) 

Proportion of rec. A, B resp. 

produced or destroyed induced by 

the variation of the cell number 

  

𝑁𝑐 

(𝑚−3 𝑜𝑓 𝑏𝑙𝑜𝑜𝑑) 

number of cells in the blood 𝑅𝐴, 𝑅𝐵 

(𝑚𝑜𝑙 𝑚−3) 

Concentration on the cell of 

rec. A, B resp. 

          𝑆𝐴, 𝑆𝐵   

(𝑚𝑜𝑙 𝑚𝑖𝑛−1) 

source terms of cytokine A, B 

respectively 

𝑆𝑐(𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟.  𝑚𝑖𝑛−1) source terms of cells from 

the bone marrow 

 𝑉𝑐  (𝑚3)   volume of cells 𝑉𝑙 (𝑚3) volume of the blood 

𝛼 (-) Ratio A/B for healthy patient  𝑉1𝑐  (𝑚3)   volume of one cell 
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