
HAL Id: hal-03084463
https://hal.science/hal-03084463

Submitted on 22 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Priori Neural Networks Versus A Posteriori MOOD
Loop: A High Accurate 1D FV Scheme Testing Bed

Alexandre Bourriaud, Raphaël Loubère, Rodolphe Turpault

To cite this version:
Alexandre Bourriaud, Raphaël Loubère, Rodolphe Turpault. A Priori Neural Networks Versus A Pos-
teriori MOOD Loop: A High Accurate 1D FV Scheme Testing Bed. Journal of Scientific Computing,
2020, 84 (2), �10.1007/s10915-020-01282-1�. �hal-03084463�

https://hal.science/hal-03084463
https://hal.archives-ouvertes.fr

J. Sci. Comput. manuscript No.
(will be inserted by the editor)

a priori Neural Networks vs a posteriori MOOD loop — A high
accurate 1D FV scheme testing bed.

Alexandre Bourriaud · Raphaël Loubère · Rodolphe

Turpault

the date of receipt and acceptance should be inserted later

Abstract In this work we present an attempt to replace an a posteriori MOOD loop used in a high
accurate Finite Volume (FV) scheme by a trained artificial Neural Network (NN). The MOOD loop,
by decrementing the reconstruction polynomial degrees, ensures accuracy, essentially non-oscillatory,
robustness properties and preserves physical features. Indeed it replaces the classical a priori limiting
strategy by an a posteriori troubled cell detection, supplemented with a local time-step re-computation
using a lower order FV scheme (ie lower polynomial degree reconstructions). We have trained shallow
NNs made of only two so-called hidden layers and few perceptrons which a priori produces an educated
guess (classification) of the appropriate polynomial degree to be used in a given cell knowing the
physical and numerical states in its vicinity. We present a proof of concept in 1D. The strategy to
train and use such NNs is described on several 1D toy models: scalar advection and Burgers’ equation,
the isentropic Euler and radiative M1 systems. Each toy model brings new difficulties which are
enlightened on the obtained numerical solutions. On these toy models, and for the proposed test
cases, we observe that an artificial NN can be trained and substituted to the a posteriori MOOD loop
in mimicking the numerical admissibility criteria and predicting the appropriate polynomial degree
to be employed safely. The physical admissibility criteria is however still dealt with the a posteriori

MOOD loop. Constructing a valid training data set is of paramount importance, but once available,
the numerical scheme supplemented with NN produces promising results in this 1D setting.

Keywords Neural network · Machine learning · Finite Volume scheme · High accuracy · Hyperbolic
system · a posteriori MOOD.

Mathematics Subject Classification (2010) 65M08 · 65A04 · 65Z05 · 85A25

A. Bourriaud
Institut de Mathématiques de Bordeaux (IMB), Université de Bordeaux, CNRS, Bordeaux INP, F33400, Talence,
France
E-mail: alexandre.bourriaud@u-bordeaux.fr
Raphaël Loubère
Institut de Mathématiques de Bordeaux (IMB), Université de Bordeaux, CNRS, Bordeaux INP, F33400, Talence,
France
E-mail: raphael.loubere@u-bordeaux.fr
Rodolphe Turpault
Institut de Mathématiques de Bordeaux (IMB), Université de Bordeaux, CNRS, Bordeaux INP, F33400, Talence,
France
E-mail: rodolphe.turpault@u-bordeaux.fr

1 Introduction

Undoubtedly there is a frenetic activity revolving around the key words ’Machine Learning’, ’Arti-
ficial Intelligence’, ’Neural Networks’, etc. in most, if not all, branches of science. While there has
been some genuine success brought by the use of those seemingly new tools, some unreasonable ex-
pectations (overstated by the media, the society and, sometimes, the scientists themselves) creep in
the scientific laboratories. Unfortunately the deep understanding of those ’revolutionary tools’ is still
far. This has generated some misunderstanding or exaggeration, leading unavoidably to fantasy and
urban legends on their true usefulness or applicability. One of our goal in this paper is to test some
of these ML tools in a genuine simple computational fluid dynamics (CFD) 1D framework.
We will focus more specifically on the sub-field of Neural Networks (NN) which begun in the early
1940’s when the formal idea of using neural networks as computing machines was introduced in [31],
and in [24] where the first rule for self-organized learning was proposed. In the following years a key
person, Rosenblatt, yet another psychologist, introduced the McCulloch-Pitts model of a non-linear
neuron [37, 38]; the Rosenblatt’s perceptron. The perceptron, a single neuron with adjustable weights
and bias, is the simplest form of a NN used for the classification of twofold separable patterns. This
model was an inspiration for a whole generation of scientists (engineers, mathematicians, physicists,
etc.) in the 1960s and 1970s, and this model is still in use nowadays. Later in [32] a precise mathe-
matical analysis of a perceptron was proposed showing that it was not capable of representing many
important problems. The important learning procedure called backpropagation of error was probably
first introduced in [47] which, associated to the increase of the computer power, led to the applica-
tion of multi-layer NN for pattern recognition, such as handwritten characters. Many applications
later on have been added to the list of success while the access to more and more powerful computers
opened the path for so-called deep learning using massive NNs. It is simply impossible to exhaustively
cite or list all the applications using NNs nowadays, such as image recognition, language processing,
etc. however many interesting historical or broad overviews have recently been produced such as
[28, 23, 40] amongst many others on the web.
In this work we only consider and test feed-forward NN also called multi-layer perceptron network.
Despite its obvious success, employing a NN in the field of numerical analysis and simulation, or, to
design more efficient numerical methods is not yet a classical tool amongst all practitioners. Some
researchers use NN to learn PDEs from data, to approximate numerical solutions of PDEs in com-
plex geometries, to replace the underlying physical model by a NN, to predict the uncertain model
parameters and many other examples. This broad range of applications appear in more and more
complex CFD environments maintaining a mysterious aura for newcomers in the field.
Contrarily in this work we propose to present an ultra-simplified situation to test how a NN can be
used within the design of a numerical scheme in one dimension. Very recently some works from the
numerical analysis community (and numerical scheme designers) have partially brought some answers
[35, 36, 45, 34, 1, 21]. We will follow their path and propose the simple testing bed constituted by a
1D high order finite volume (FV) scheme solving hyperbolic systems of partial differential equations
(PDEs). All high order FV schemes are subject to the generation of spurious numerical oscillations in
the vicinity of discontinuities. In this work we rely on an a posteriori MOOD loop (Multi-dimensional
Optimal Order Detection) [8, 12, 13, 29] which allows the use of arbitrary accuracy. Indeed this a

posteriori approach detects if the unlimited candidate solution (at the next time-step) fulfills some
validity criteria: computer (NaN), physical (positivity preserving) and numerical admissibility (essen-
tially non-oscillatory behavior based on relaxed Discrete Maximum Principle (DMP)). This stage
is in fact a troubled cell detector [25, 35, 15, 18]. Then for any troubled cell, the numerical solu-
tion is discarded and locally recomputed starting again at the beginning of the time-step with a
more robust and less accurate scheme. In the simplest approach one reduces the degree of the local
polynomial reconstructions. This generates a new candidate solution which is again tested against
the validity criteria, possibly detecting other troubled cells, etc. The resulting MOOD loop ensures
that the converged solution is always valid according to the detection criteria provided that the
lowest order scheme, the so-called parachute scheme, provides such a solution. Here we use the 1st

2

order accurate FV scheme. While the MOOD paradigm is in use in several codes see for instance
[16, 5, 2, 9, 11, 3, 33, 6, 17, 41, 4, 43], some weaknesses can be pointed.
First the a posteriori MOOD loop breaks the parallel efficiency because some cells demand more at-
tention than others: they are possibly recomputed several times while (most) others are accepted at
the end of the very first MOOD iteration. Second, the MOOD paradigm has a fundamental explicit
nature due to the a posteriori check and the local degree decrementing. Even if some recent works
explore its extension to implicit schemes [10, 27], a fully a priori version would be more convenient
and presumably more efficient even in parallel. Third, the numerical admissible detection criteria
based on a relaxed DMP in the detection is not based on a rigorous theoretical and mathematical
base and demands one parameter to be fixed. Moreover amongst the troubled cells (about 10% of the
total amount of cells on average), the vast majority is flagged by this relaxed DMP. Therefore being
able to a priori predict which ones are such cells would certainly accelerate their treatment.

The environment of this study is made as simple as possible on purpose

• only a posteriori MOOD FV schemes are considered [8, 12, 13, 29];
• the accuracy is restricted to 2nd, 3rd or 4th order using polynomial reconstruction with centered

stencil and Strong Stability Preserving Runge-Kutta (SSPRK) time discretization [42, 19];
• only 1D experiments are carried out on four models of hyperbolic PDEs of increasing complexity:

advection and Burgers’ equation, isentropic hydrodynamics and M1 systems of conservation laws;
• only shallow NNs of exactly two hidden layers are addressed and trained via the MATLAB Deep

Learning ToolboxTM R2019b;
• optimal performance or implementation are not considered here.

The goal is to built a 1D proof of concept that a shallow supervised NN can be trained to replace the
a posteriori MOOD loop. We present the difficulties of this construction and the numerical evidences
of their impact on the numerical results. This paper is organized as follows. In the first section, an
arbitrarily high order FV scheme based on polynomial reconstructions and an a posteriori MOOD
stabilization loop is presented thoroughly for a generic system of conservation laws. Then we briefly
recall the concepts underlying Neural Network and comment its use in our framework. The third
section is devoted to the replacement of the a posteriori MOOD loop by a supervised trained NN.
The NN is constructed and trained with four different hyperbolic PDE models: advection, Burgers’,
isentropic Euler and M1. Numerical evidences are gathered in their dedicated sections. Several clas-
sical and demanding test cases are proposed and the NN-FV-MOOD scheme is compared with the
classical a posteriori FV-MOOD scheme. A conclusion and perspective section terminates this paper.

2 High accurate Finite Volume scheme with a posteriori MOOD loop

In this section we present the governing equations and the high order FV scheme used to solve
them. This family of FV schemes is devoted to solve hyperbolic system and, as such, is subject to
the generation of spurious numerical oscillations in the vicinity of the discontinuities. Consequently,
some form of limitation must be supplemented to stabilize the high order method. In this work we
rely on an a posteriori MOOD loop (Multi-dimensional Optimal Order Detection), see [8, 12, 13, 29]
and some applications in [16, 5, 2, 9, 11, 3, 33, 6, 17, 41, 4, 43]. This approach a posteriori checks
if the unlimited candidate solution fulfills some validity criteria (computer, physical and numerical
admissibility) and accordingly recomputes the current solution locally in space and time with a more
robust but less accurate scheme by reducing the polynomial degree of the local reconstruction.

3

2.1 Finite volume scheme solving hyperbolic system of conservation laws

2.1.1 Governing equations

As stated earlier, 1D hyperbolic systems of conservation laws are considered in this work. They can
therefore be written

∂W

∂t
+
∂F(W)

∂x
= 0, (1)

where W is the vector of conservative variables, F(W) is the associated flux vector, t and x are the
time and space variables respectively. Four increasingly difficult 1D models are taken into account.
First a scalar linear advection/transport equation

W = w ∈ R, F(W) = w. (2)

Second, Burgers’ equation [7]

W = w ∈ R, F(W) =
1

2
w2, (3)

Third, the isentropic Euler equations :

W = (ρ, ρu), F(W) = (ρu, ρu2 + p), (4)

where ρ is the gas density, u its velocity and p the pressure. We restrict the study to polytropic gases
for which p = p(ρ) = κργ , with γ = 1.4 and κ = 1. This system of PDEs is hyperbolic provided that
the state remains admissible, see [44], that is within

A =
{
W = (ρ, ρu)> ∈ R2 / ρ > 0

}
. (5)

Fourth, the M1 model for radiative transfer in transparent media

W = (E,F), F(W) = (F, c2P), (6)

where E is the radiative energy, F the radiative flux, c the speed of light and P = P (E,F) is the
radiative pressure [14]. The set of admissible states is the following one

A =
{
W = (E,F) ∈ R2 / E > 0, |F | < cE

}
. (7)

2.1.2 Finite Volume discretization

The computational domain Ω is paved with M cells of constant size ∆x. The cell centers are noted xi
and the cell interfaces xi−1/2 and xi+1/2 for i = 1, . . . ,M . The time step is denoted ∆t and changes
during the simulation according to the CFL condition.
In a FV context, a constant per cell approximation is considered which approximates the mean value
of the solution W (x, t) over the cell at time tn

Wn
i '

1

∆x

∫ xi+1/2

xi−1/2

W (x, tn) dx. (8)

Using the method of lines with the explicit time discretization, a FV scheme for (1) writes

Wn+1
i = Wn

i −
∆t

∆x

[
Fni+1/2 −F

n
i−1/2

]
, (9)

where Fni+1/2 = F
(
W̃n
i (xi+1/2), W̃n

i+1(xi+1/2)
)

is the numerical flux at interface i+1
2 and W̃n

i (xi+1/2)

is its extrapolated state. In this work the Rusanov flux is considered for the sake of simplicity

F (WL,WR) =
F(WL) + F(WR)

2
− bLR

WR −WL

2
(10)

where bLR is related to the fastest characteristic speed of the approximate Riemann problem involving
WL and WR. However, other classical first order schemes could have been considered.

4

Representation and reconstruction. In order to compute the extrapolated left and right states at each
interface a polynomial per cell reconstruction is performed. It consists in finding the polynomial of
degree d > 0 in each cell denoted W̃ d

i (x) such that the mean value in the current cell is conserved

1

∆x

∫ xi+1/2

xi−1/2

W̃ d
i (x) dx = Wi . (11)

The chosen polynomial is the one that best fits the mean values in the least-square sense on a stencil
of neighbor cell Sdi , i.e the polynomial coefficients are set by minimizing the cost function

J(W̃ d
i) =

1

2

∑
k∈Sd

i

∣∣∣∣∣
(

1

∆x

∫ xk+1/2

xk−1/2

W̃ d
i (x) dx

)
−Wk,

∣∣∣∣∣
2

. (12)

Obviously, the centered stencil Sdi should contain at least d+ 1 cells to fulfill (11)-(12). In practice,
a few more cells are considered to reduce oscillations, usually about b3

2 (d+ 1)c is employed [8].

Time discretization. The time discretization is performed using SSP (Strong Stability Preserving)
Runge-Kutta methods (see [20] for instance). The same order is used for time and space approxima-
tions for the sake of consistency. The SSP property allows to preserve convex sets so that the effort in
the limiting is entirely undertaken in the space discretization. As an example, the third order scheme
used in this work is the classical SSP-RK(3,3) scheme

W
(1)
h = Wn

h +∆tL(Wn
h) (13)

W
(2)
h = W

(1)
h +∆tL(W

(1)
h) → W ∗

h =
3

4
Wn
h +

1

4
W

(2)
h (14)

W
(3)
h = W

(2)
h +∆tL(W ∗

h) → Wn+1
h =

1

3
Wn
h +

2

3
W

(3)
h . (15)

where L is the spatial discrete operator associated to the current FV scheme. The SSP-RK(2,2) and
SSP-RK(5,4) schemes are used whenever second or fourth orders are respectively required.

2.2 A posteriori MOOD loop as limiting strategy

A high order method is subject to the generation of spurious oscillations in the vicinity of shock waves,
contacts, steep gradients, etc. An a posteriori MOOD loop is used here to stabilize the numerical
scheme in these cases. The MOOD paradigm consists in a posteriori checking the admissibility of a
candidate numerical solution at time tn+1 through relevant criteria. Whenever a cell does not fulfill
these criteria, a local re-computation employing a more robust scheme is performed. The principle is
illustrated on figure 1.

2.2.1 Cascades and parachute schemes

As a consequence, in a MOOD loop one must design a cascade of increasingly robust schemes (and
usually decreasingly accurate ones). At least two schemes must compose this cascade: the most
accurate but possibly oscillatory scheme and a less accurate but robust one called the ’parachute
scheme’. The unlimited (d + 1)th order scheme is the starting and most accurate scheme and the
first-order one as the parachute. In between these two some intermediate schemes are considered. For
instance we will employ the following cascade: d = 3→ 2→ 1→ 0 although shorter cascades such as
d = 3→ 1→ 0 are also possible.

5

2.2.2 Detection criteria: Computer, Physical and Numerical admissibility

Detection criteria are used to determine if a candidate solution in a given cell is admissible or must
be sent back for re-computation (see figure 1). These are the three sets of detection criteria used in
this work for a given candidate solution Wn+1,∗

i in cell Ωi:

Computational - CAD. This criterion detects floating point exceptions i.e. the numerical solution
passes the Computer Admissible Detection criteria if it does not contain any NaN (Not-a-Number),
Inf (Infinite), etc.

Physical - PAD. The numerical solution in cell is validated by the PAD criterion if it remains in the
set of admissible states A. The PAD criteria must hence be adapted to the physics embedded into
the model of PDEs. In the case of scalar equations (advection and Burgers), this is replaced by
checking that the solution remains in-between the bounds of the initial data.

Numerical - NAD. The numerical solution in cell Ωi is said to be Numerically admissible if it is es-
sentially non-oscillatory. In this work we rely on a Relaxed Discrete Maximum Principle (RDMP)
on the conservative variables, which writes for variable A as

−δ +md
i ≤ A

n+1,∗
i ≤Md

i + δ, (16)

where the bounds are given by md
i = mink∈Sd

i
(Ank), Md

i = maxk∈Sd
i
(Ank) and the relaxing param-

eter δ is fixed to δ = min
(

10−4, 10−3|Md
i −m

d
i |
)

. Notice that if δ = 0 then the strict DMP is

enforced and the accuracy in L∞ norm is bounded by 2.

Obviously, the criteria are crucial for the detection to be neither too permissive nor too preventive.

2.2.3 MOOD loop

The MOOD loop usually embraces the FV scheme solver. At the beginning of each time step tn the
maximal accuracy d is set for all cells and the FV scheme of order d+ 1 is employed to produce the
so-called candidate solution Wn+1,∗

h . Then the detection procedure separates the valid cells which are
accepted from the troubled ones.These cells demand to be re-computed by the next and more robust
scheme in the cascade. The direct neighbors of a troubled cell are also sent back for re-computation
because some common flux may change. Note that only the troubled cells and their neighbors are re-
computed, which make the subsequent iterations of the MOOD loop relatively inexpensive. The next
scheme in the cascade then produces a new candidate solution which is processed by the detection
criteria. If some bad cells are still present then another iteration of the MOOD loop is performed
using the next robust scheme from the cascade. If the parachute scheme has been reached, then the
candidate solution is admissible by construction. In figure 1 we schematically present a high accurate
a posteriori MOOD numerical scheme (bottom) in comparison with a classical a priori FV one (top).

2.3 Drawbacks of an a posteriori MOOD loop

The three main drawbacks of using an a posteriori MOOD loop are : 1- the parallelization efficiency
is not optimal due to the different treatment of bad cells, 2- the explicit nature of the a posteriori

treatment complexifies the design of an efficient implicit version, see [27, 9], and 3- the NAD criteria
are not firmly based on mathematical concepts and the δ parameter in (16) still needs to be tuned.
A Neural network could possibly mitigate these drawbacks. In particular the a posteriori detection is
used to predict which scheme is the most appropriate in a given cell at the beginning of a time step
without invoking a precautionary principle. A well trained neural network may be able to make an a

priori educated guess. If so, then the a posteriori detection procedure could be reduced to its strict
minimum, that is, only the CAD and PAD, to assure the fail-safe property of the scheme. Because

6

i

i

MOOD loop

Detection A
d

m
is

si
b

le
 c

el
ls

Next scheme
in cascade

CAD, PAD, NAD

ce
ll

s
th

at
 n

ee
d

 r
e−

co
m

p
u

ta
ti

o
n

d = max(0, d−1)

i

n Polynomial
Reconstruction

n+1

iW WFV SOLVER

Limiting

i

n Polynomial
Reconstruction

n+1

iW WFV SOLVER

Troubled cells

ca
n

d
id

at
e

so
lu

ti
o

n

Runge−KuttaRusanov

Rusanov Runge−Kutta

Degree d

Degree d Central stencil

Fig. 1 Top: sketch of a FV limited scheme, for instance with slope limiter, WENO strategy, moment limiter,
artificial viscosity, etc. — Bottom: a FV scheme stabilized by an a posteriori MOOD loop. The limiting box is
replaced by an a posteriori MOOD loop

extremely few cells endure a CAD or PAD failure, then the parallelization would only be marginally
impacted. Moreover, the neural network will guess the appropriate scheme to be used, only based on
a priori data, therefore employing an implicit scheme becomes again practicable.

3 Neural Networks and high order FV schemes

In this section we present the basis of Neural Network (NN) theory and how it can fit in a high
order FV scheme. The NN we are interested in is a feed-forward NN called a multi-layer perceptron
network, see [28, 23, 40].

3.1 Perceptron

A NN is a network of elementary building blocks called perceptrons (later called neurons) which
are organized in several layers. A perceptron δj is an entity illustrated in figure 2. It receives so-
called input entries ŷj = (yp)p=1,...,P and delivers an output yj . The perceptron operates a linear
transformation on the input data via real weights wp,j as

uj =
P∑
p=1

wp,j yp, (17)

then, introduces non-linearity by means of an activation function f such that

yj = f(uj − bj), (18)

with a bias bj ∈ R. The activation function is usually common to all perceptrons of a layer and can
be chosen among a lot of different functions. We use in this work a sigmoid, f(x) = tanh(x) for all

7

layers but the last one for which a linear function f(x) = x is employed. The degrees of freedom are
the weights and the bias which we gather into one vector w̃j = (w1, . . . , wP , bj) for the perceptron δj .
They are determined by training so that the output matches some target value (see section 4.1).

y
1

y
2

y
P

y
P−1

y
p

...

...
w

p,j

w
1,jw

2,j

w
P−1,j

w
P,j

juy
j j

y
ju bj

bjδ

f(),
Activation

function

bias

y
1

x
1

x
3

x
2

δ1

δ2

δ4

δ5

δ6

δ7 δ11

δ10

δ9

δ8
w15

w14

w37

w1112

w1012

w912

w812

w48

w711

b
3

b
2

b
1

b
4

b
5

b
6

b
7

b
9

b
8

b
11

input layer

hidden layer 2hidden layer 1

YX

output layer
δ3

b
10

δ12

b
12

Fig. 2 Left: Illustration of the action of a perceptron δ. From a entry vector (ŷj)j=1...P , the perceptron constructs

the output yj = f(uj − bj) where uj =
∑P

p=1 wp,j yp — Right: Sketch of a neural network made of 2 inner/hidden
layers of 4 neurons δj and the input and output layers, made respectively with 3 and 1 neurons. The weights are
denoted by wp,j while the bias for each neuron is bj . A weight is the link between two consecutive neurons from
layer `− 1 and `. The input vector is X = (x1, x2, x3) and the output vector Y = (y1) for illustration purposes. (A
global numbering is adopted on this illustration to lighten the notation.)

3.2 Multi-layer perceptron (MLP) network

A multi-layer perceptron (MLP) network is a collection of perceptrons associated in L layers ` =
1, . . . , L of P` ≥ 1 perceptrons. The first (` = 1) and last (` = L) layers are respectively called the
input/source and output. The in-between layers are the hidden ones. Each perceptron δ`,p can be
identified by its layer index ` and its index within the layer 1 ≤ p ≤ P`. The signal resulting from a
perceptron δ`,p is denoted y`,p and the signal produced by a layer is the vector y` = (y`,p)p=1,...,P`

.
A perceptron of layer `, δ`,j , receives as input data the signals y`−1 from the perceptrons located
in the previous layer. From these data using the linear and non-linear operations (17) and (18), the
perceptron produces a single output signal y`,p, that is

y`,j = f(u`,j − b`,j), with u`,j =

P`−1∑
p=1

w`p,j y`−1,p. (19)

y`,j is then sent to all subsequent perceptrons in the next layer `+ 1.
A MLP network is therefore an association of massively inter-connected parameters i.e the set of
all the weights and the biases for all the perceptrons. We denote the vector of input values by
X = (x1, x2, . . . , xI) while the vector of output values by Y = (y1, y2, . . . , yO) where I > 0 and O > 0.
The total number of perceptrons, weights and bias in a network is then given by

P =
L∑
`=1

P`, W =
L−1∑
`=1

P`P`+1, and B = P. (20)

A network is said to be deep when it has a large number of layers, and wide when it has a large
number of perceptrons on at least one layer. In this study, only shallow networks of four layers (two
hidden ones) are considered. The numbers of perceptrons in each layer is not trivial to determine
and we will resort to numerical experiences to estimate them. For instance the network in figure 2
made of L = 4 layers made of P1 = 3, P2 = 4, P3 = 4 and P4 = 1 perceptrons each demands the
determination of B = 12 bias and W = 32 weights, hence 44 unknowns.

8

3.3 Input and output of the NN in a FV context

A NN in an explicit MOOD FV context can be used as a decision support system in a way that is
close to the approach of a multinomial logistic regression. It is designed to predict which polynomial
degree di to use in a given cell Ωi. In order to update the FV data Wn+1

i , the FV scheme demands

the knowledge of all cell values Wn
k in the stencil of the polynomial reconstruction, i.e for all k ∈ Ski .

Therefore, the input of the NN will be composed of (at least) (Wn
k)k∈Sk

i
, and, the output would

be the degree of the polynomial reconstruction di to be employed. More precisely, the output of the
NN is a real vector of ’probabilities’ that degree d would have been used by the MOOD scheme. For
instance for a fourth order scheme Yi = (pd)d=0,1,2,3 where pd is the probability to use polynomial
degree d. The NN should provide an ouput vector from which a clear and unique choice of degree can
be extracted i.e. with only one value pd ' 1. If it is not the case, then the closest pd to 1 is selected.
Ultimately the NN should replace the NAD criteria in the MOOD loop (see figure 4) .

3.4 Training the NN

The training methodology is one of the key points to build an efficient NN. Since the objective is to
replace the detection criteria in the MOOD loop by the prediction of the NN, it is trained to mimic
the behavior of the whole MOOD scheme including all detection criteria. To this end, a training data
set is built by running the simulation of a training case during a few time steps with the MOOD
scheme using all detection criteria. Elements of the training database are then created by associating
an input (all cells in the stencil for a given case) to its corresponding output (the polynomial degree
d of the reconstruction effectively used by the reference MOOD scheme).
In other words given data Xn

i , MOOD creates the target vector

Y MOOD
i = ed+1, (21)

the (d + 1)th unit vector which is then stored in the data set. This means that for a Nt time-steps
simulation made on Nc cells,the data set size is Nt×Nc. The training methodology employed to build
a MOOD-compatible NN is depicted on figure 3.

Remark 1 At first glance for instance for a 2nd order RK scheme, the MOOD scheme determines for
any cell the degree d1

i for the first RK step, then d2
i for the second one. The pair could be taught to

a NN. For a higher order RK scheme, even more degrees should be predicted which would demand
larger NNs. In order to simplify the framework even further, in this study, one stores only the first
step of the RK scheme. As such the NN has no notion of time discretization.

Once the training dataset is built, the genuine training ought to minimize the error made by the
NN on it. That is, until convergence is reached, the following iterative procedure is applied: at each
epoch, m patterns (Xi)i=1...m are randomly picked in the database, then the weights and biases are
adjusted taking into account the error (Y MOOD

i − Yi) with a Levenberg-Marquart algorithm ([30],
see also [22] for its application in the context of NN) used to compute the minimum of functional

J(X1, . . . ,Xm) = (Y MOOD − Y)>(Y MOOD − Y),

where Y = (Y >1 , . . . ,Y >m)> and Y > denotes the transpose of Y .

Obviously the NN should endure a relatively heavy supervised training period with a large num-
ber of patterns Xi. These patterns should be representative of situations encountered during FV
simulations, that is smooth, irregular and discontinuous profiles of all kinds. This training data set
should be adapted depending on the system of PDEs solved to be a valid representation of the true
encountered situations. The different choices made to build this data set are explained in section 4

9

Y i

... ...i−l i+li

iW
~

p
20

p

p
3

p
1

max
k

p
k

x8

x7

x1

Scheme

MOOD

d i

d i

d i

i

n
W

1
2 3 4

5
6

... ...i−l i+li

7

x8

x7

x1

d i

0
p

p
1

p
2

p
3

Y i

... ...i−l i+li

iW
~

... ...i−l i+li

iW
~

... ...i−l i+li

iW
~

...
...

X i

R
ec

og
ni

ze
d

pa
tte

rn
?

P
o
ssib

ilities

...
...

X i Network

Neural

=1
MOOD

−1

0

0

0

1
DETECT

=3

Fig. 3 Sketch of a neural network training with a MOOD FV scheme. Bottom part: Given a pattern Xi (a stencil
of Sdi FV data for cell Ωi) the 4th order MOOD scheme computes the updated solution. During the MOOD
detection/decrementing procedure the scheme has determined the appropriate polynomial degree d ≡ di to use for
the reconstruction procedure, leading to an output vector Y MOOD = ed+1 the (d + 1)th unit vector — Top part:
The NN should recognize or match at best the given pattern and predict the probability that MOOD would use the
degree di = 0, 1, 2, or 3 in this situation. The degree for which the maximal probability is attained, is then selected.

3.5 NN and FV MOOD scheme

As already mentioned the NN is intended to replace the NAD detection procedure of a MOOD
scheme. Instead of starting with di = dmax

i and dropping the degree according to the cascade, here,
a trained NN makes an educated guess on di. If the candidate solution obtained with this degree is
detected as invalid due to PAD or CAD criteria, then, the degree is dropped to di = 0, otherwise the
solution is accepted. As a consequence the number of MOOD loop is reduced to a strict minimum
because the cascade is restricted to di → 0 where di is a priori predicted by the NN. As a rough
estimate, for classical simulations, on average, few percents of troubled cells are detected. Among
those cells the vast majority is flagged due to the NAD criteria and several MOOD loops (and
polynomial reconstructions) are then performed. We expect to spare the associated CPU time if the
NN evaluation cost is reasonable. Notice that the cost related to fixing PAD and CAD troubled cells
was already negligible in a classical MOOD scheme, and, it remains so here. We can also anticipate
a decrease in CPU time by parallelizing the NN more efficiently than the a posteriori MOOD loop.
In figure 4 we present a sketch of the MOOD scheme supplemented with an a priori NN (red block).

4 Numerical experiments on the transport equation

In this section, the use of a NN as a predictor in the MOOD scheme is tested on the transport
equation. This simple case will allow to obtain valuable insights on the practicability of the process.

4.1 Training and Validation sets for the Neural Network

Constructing training and validating data sets for the advection equation. In order to construct the train-
ing data set, we consider an initial condition H plotted on figure 5-left, which is a compound signal

10

i

n
W

Failsafe loop

d i

Neural Network

n
Wi+k

n
Wi−k

...()

Detection A
d
m

is
si

b
le

 c
el

ls

CAD, PAD, NAD

Polynomial
Reconstruction

n+1

iWFV SOLVER

Troubled cells

ca
n
d
id

at
e

so
lu

ti
o
n

scheme
Parachute

d = 0

Rusanov Runge−Kutta

OUT:IN:

dDegree
Central stencil

Fig. 4 sketch of a generic MOOD FV scheme with Neural Network a priori prediction of local polynomial degree
di in replacement of the NAD detection criteria.

on domain Ω = [0, 10] made of Heaviside, linear, sine functions separated by plateaus. This initial
condition contains all the important features for this equation. Periodic boundary conditions are
considered. The numerical solution is computed by the high order MOOD scheme until a final time
T = 1 on M = 200 cells. Consequently we can build a training data set by associating the mean
values of the stencil, Wn

k where k ∈ Sd
max

i , gathered into Xn
i and the output vector Y n

i = ed+1 with
d = dni . Hence, a pattern Xn

i is coupled to Y n
i for each cell i and time-step index n. The input data

is normalized between −1 and +1 in order to reduce the size of the data set and to make it more
convenient.

Remark 2 Neighborhood. For a 2nd order accurate MOOD scheme, the polynomial degrees can be
0 or dmax = 1, and, due to the two-step RK method, the actual neighborhood N d

max

i spans cells
i− 3, . . . , i+ 3. Likewise, for a nominally 4th order accurate MOOD scheme, the polynomial degrees
can be d = 0, 1, 2 and dmax = 3, and, due to the three-step RK method, the neighborhood N d

max

i

spans cells i − 12, . . . , i + 12. This effect is illustrated on Figure 6 for the 2nd order scheme. In this
section we employ N d

max

i = 7/9/11 for 2nd/3rd/4th order schemes respectively.

Remark 3 Normalisation. In all applications but this one, the input vector Xn
i is supplemented

with a real scalar per variable corresponding to the normalisation factor and the Courant num-
ber. This signed normalisation factor F = sign(x)(x − x) is local to each stencil and computed
with x = mink∈Ndmax

i
xk and x = maxk∈Ndmax

i
xk. An entry x is then re-scaled with formula:

x̃ =
(
x− x+ x

2

)(2

x− x

)
. As such F does not produce any shift in the data. This normalisation has

obviously no impact on linear equations and therefore is omitted in this first application.

Remark 4 The design of our NNs is performed under the assumption that this normalisation factor
spans a subset [F−;F+] ∈ R+ which corresponds to some physically relevant jump sizes depending
on the non-linear system of PDEs and on the mesh resolution. Our investigations have shown that a
crude sampling for F (three samples) and the Courant number allows the NNs to handle unknown
situations.

Remark 5 Output functional. The output functional is not a softmax like function because we want
to be able to exclude bad predictions, i.e output components negatives or greater than one, from
acceptable ones. This operation is easier when the output vector is not re-scaled by a softmax output
function. Moreover the numerical results generated when using the softmax output function gave
unsatisfactory results for the test cases simulated in the numerical section.

Proceeding likewise for any of the Nt time-steps we can gather a set of M × Nt couples (Xn
i ,Y

n
i)

for 1 ≤ i ≤ M and 1 ≤ n ≤ Nt, leading in our case to 4800 training units. Among those, 20% are

11

randomly chosen to construct the so-called Validation data set, V, onto which the NN is further
evaluated. The remaining 80% training units form the Training data set, T .

Fig. 5 Initial compound signal H used to build the training data set — Left: for the advection equation, H
is constructed as a succession of discontinuities, linear and sine profiles — Right: for Burgers’ equation, H is
constructed as a succession of discontinuities and sine profiles.

0 1 2 3 4 5 6 7 98 10 11 12 13−1−2−3−4−5−6−7−8−9−10−11−12−13

0 1 2 3 4 5 6 7 98 10 11 12 13−1−2−3−4−5−6−7−8−9−10−11−12−13

0 1 2 3 4 5 6 7 98 10 11 12 13−1−2−3−4−5−6−7−8−9−10−11−12−13

reconstruction
stencils

RK 1

RK 2

influence

zone light cone

influence
zone

Order 2

Fig. 6 Light cone for second-order FV methods: influence zone for a given cell 0 for a two-step Runge-Kutta
method.

From the training data set T we randomly pick a couple (Xn
i ,Y

n
i) and, knowing Xn

i the NN
attempts to predict Y n

i . The NN then learns from its mistakes and adapts its weights and biases
accordingly. This random picking, predicting and learning operations continue up to convergence, i.e

no mistake is no more made by the NN, or, if 3 epochs do not lead to any improvement. Then the
training period is considered to be complete, the NN is stored and ready to use within the simulation
code, see figure 4. The NN training performance is measured by the associated number of epochs and
the misclassification percentages, that is the percentage of errors still made by the NN on the sets T
and V (see table 1). More precisely these errors are computed as

Err. on S := 100
#errors made by the NN on the dataset S

#elements in S ,

where S is either T or V. It is important to recall that the validation set is composed of training
units never seen by the NN. Moreover even if the NN performs perfectly on T and V it may still
produce erroneous predictions for unknown situations. At last, two equivalent NNs trained with this

12

Archi. Trainer Epoch Err. Err. Predic CPU
Scheme Ord. NAD Neigh. # on T on V >0.95 s

A
d
ve
ct
. 3×3 MOOD o3 DMP 5 1657 9.2% 9.9% 23.1% 17

5×5 MOOD o3 DMP 7 4230 5.8% 7.8% 20.0% 80
10×10 MOOD o3 DMP 9 2608 2.5% 4.8% 15.6% 188

B
u
rg
er
s 3×3 MOOD o3 DMP 7 5399 8.5% 9.1% 22.6% 63

5×5 MOOD o3 DMP 9 1580 6.3% 7.3% 22.2% 74
10×10 MOOD o3 DMP 9 382 4.9% 6.3% 18.5% 78

Table 1 Neural Networks’ architectures tested for the advection and Burgers’ equation solved with a 3rd order
accurate FV MOOD scheme. Recall that T is the training data set, while V is the validation one (made of 20%
randomly picked units from T).

procedure may generate slightly different biases and weights in an uncontrollable way. For this reason
each of the NN in this paper has been retrained 5 times ensuring that its good behavior is observed
at least 4 times and is not due to (un)fortunate random effects. The network used to produce the
figures is then randomly picked among the 4 successful ones.

Some diagnostics on Neural Networks training. We present some diagnostics for the NN training in
table 1 (top part) for the advection equation. In particular the number of epochs, the misclassification
errors on T and V, the percentage of prediction in the range [0.95, 1.0], and the CPU time of training
for three networks of 3rd order. We observe that the larger the network, the less error is produced
during the training and validation. Also more confidence in its predictions is measured. Obviously
the CPU time increases with larger architectures.

4.2 Test case description

Now, the trained NNs are used as a priori predictors of polynomial orders in the MOOD scheme on
the following test-case. The computation domain is Ω = [0, 10] and the profile used for the simulation
is made of four signals : a triangle, a square, a bump and an ellipsoidal profiles [26, 46]

W (x) =

|x− 2| if 1.5 ≤ x ≤ 2.5,
1 if 3.5 ≤ x ≤ 4.5,
−4(x− 5.5)(x− 7.5) if 5.5 ≤ x ≤ 7.5, 1− 2

√
1
4 − (x− 7.5)2 if x < 8

1− 2
√

1
4 − (x− 8.5)2 if x ≥ 8

 if 7.5 ≤ x ≤ 8.5,

0 else.

(22)

The same number of cells M = 1000 is employed and the simulations end at tfinal = 100 after ten
rotations of the initial profile. Obviously the exact solution at t = tfinal corresponds to the initial
profile. However due to the presence of discontinuities and irregular profiles, the Gibbs phenomenon
will be triggered for any high order scheme.

4.3 Numerical results: second- and third-order numerical schemes

We present the results for

• Unlim: the unlimited 1st, 2nd and 3rd order accurate FV schemes,
• MOOD: the classical 2nd or 3rd order MOOD scheme with PAD and DMP criteria,
• NN: the proposed 2nd or 3rd order FV schemes supplemented with a NN trained by MOOD.

13

In figure 7 we present the results obtained with a first and high order (unlimited) FV schemes along
with the a posteriori MOOD scheme against the exact solution. The second/third order schemes
results are depicted on the left/right panels. As expected the first order scheme is overly dissipative
while the unlimited high order schemes generate spurious oscillations. On the contrary, the a posteriori

MOOD scheme is able to overcome those drawbacks. Let us emphasize that while the third-order
MOOD scheme produces genuinely acceptable solutions, the second-order one presents some artefacts
which are particularly visible on the last two shapes on figure 8. Even though we could tweak a relaxed
DMP principle to produce a second-order MOOD scheme that would overcome those issues, this is
not the goal here. Contrarily we wish to show that the NNs will reproduce all scheme behaviors,
should they be good or bad.
Several NN architectures’ results are displayed in figure 8, namely 3 × 3 (top panels in red), 5 × 5
(middle blue), and 10 × 10 (bottom green) for second and third-order schemes on left and right
panels respectively. All the schemes are consistently reproducing MOOD solutions, even with the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

Unlim Order 2

Order 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

Unlim Order 3

Order 1

Fig. 7 Advection equation — 500 cells — 10 full turns — Exact solution in black straight line, MOOD solutions
in black symbols against the first order FV scheme (blue symbol) and the and unlimited high order FV scheme (red
symbols) — Left: nominally second-order schemes — Right: nominally third-order schemes.

smallest NNs. We will see on the next sections that the 3 × 3 NN is generally not wide enough
for more complex models. However, they behave correctly here and the differences are extremely
small, meaning that these NNs are able to mimic an a posteriori MOOD scheme for both second-
and third-order schemes. Notice that the spurious effects for the second-order MOOD schemes are
also retrieved, which is expected because the NNs have learned from this trainer, consequently there
should be no surprise to observe the NNs also reproducing its bad behaviors.

Next, we present some quantitative results on the cell polynomial degrees chosen by the MOOD
scheme and the NN versions of it. In figure 9 we present a space/time plot of the reconstruction
degrees chosen by the 3 × 3 NN for all steps of RK, all time-steps and every 4 cells (to lighten the
visualization). The results of second- and third-order schemes are respectively presented on the left
and right panels. The classical a posteriori MOOD scheme results are displayed on top panels, while
the current NN results are on bottom ones. From the plots we can observe that the vast majority of
cells are updated with the maximal possible reconstruction degrees (1 for the second-order scheme and
2 for the third-one). The remaining ”low” order cells are those crossed by one of the discontinuities
present in the profiles. They gather on oblique and parallel lines, which is expected for these constant
velocity advection simulations. Notice that the third-order scheme presents some P1 updated cells,
justifying that this intermediate order between 3rd and 1st may be useful. The comparison with
MOOD results indicates that the NNs seem less active, with nonetheless no negative impact on the
final solution. Probably this extra-activity of MOOD schemes occurs on almost flat region which can
accept any reconstruction degree anyway.

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

NN 3x3 o2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

NN 3x3 o3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

NN 5x5 o2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

NN 5x5 o3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

NN 10x10 o2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

NN 10x10 o3

Fig. 8 Advection equations — 500 cells — 10 full turns — Exact solution in black straight line, MOOD solution
in black symbols, NN solution in colored symbols. Left/right panels: second (cross)/third (circle)order schemes —
Top panels: solutions for a 3× 3 NN driven FV scheme (red)— Middle panels: solutions for a 5× 5 NN driven FV
scheme (blue)— Bottom panels: solutions for a 10× 10 NN driven FV scheme (green).

A more quantitative statement is gathered in table 2 where we report the reconstruction degrees
used during the simulations for the 3 × 3 NNs and the MOOD scheme. From the NN results we
observe that more than 97% of updates are made with the maximal degree and less than 1 − 2%
updates are made with other degrees. Even if those percents are low, they are absolutely mandatory
to avoid spurious effects or failure of the code. Meanwhile MOOD schemes employ about 90 − 96%
of maximal degrees and 3−6% of lower orders. This shows that the NN is able to mimic the classical
a posteriori MOOD scheme without too much extra dissipation, nor spurious oscillations. Also we
report on the last column, the number of inadequate predictions made by the NN compared to the

15

Fig. 9 Advection equation — Space/time plot — Reconstruction degree selected for each RK step and each time-
step, every 4 cells — Top panels: MOOD results — Bottom panels: NN results — Left: NN order 2, P1 in blue and
P0 in red — Right: NN order 3, P2 in green, P1 in blue and P0 in red.

classical MOOD scheme starting from the very same data at time tn. One observes about 4 to 10% of
’wrong’ prediction. Notice that most of those updates lay on smooth or flat zones, which has, indeed,
no visible impact on the solution quality.

5 Numerical experiments on Burgers’ equations

Let us increase the difficulty by considering Burger’s equation. The problem is hence still scalar but
non-linear. As a consequence, the initial profile is no more transported but the creations of shocks
and rarefaction waves are expected.

5.1 Neural Network design and training

The NNs are trained starting from an initial function H shown in figure 5-right, constituted of several
Riemann problems supplemented by a piece of sine function. The training database is constructed
following the procedure described in section 4.1 by using the MOOD scheme with PAD and NAD
criteria on M = 200 cells to produce a numerical solution up to time tfinal = 2.0, which is about
Nt = 135 time-steps. Shock and rarefaction waves are generated as expected, but for this short final
time no wave interaction has yet occurred. The only difference with the advection training is that
the signed normalization factor is now taken into account. Examples of such NNs are given in table 1
and we observe that the 3× 3 NN has had some difficulty to converge. After 5400 epochs, the error

16

Equ. Scheme Total Degree % Error
M ×Nt ×RK Degree 0 Degree 1 Degree 2 Degree 3 vs MOOD

Advection MOOD, o2 1000 × 210 × 2= 15669 404331 — — —
420 000 3.7% 96.3% — — —

Advection MOOD, o3 1000 × 210 × 3= 36447 227249 566304 — —
630 000 5.8% 4.3% 89.9% — —

Advection NN 3×3, o2 1000 × 210 × 2= 6503 413497 — — 17731
420 000 1.5% 98.5% — — 4.2%

Advection NN 3×3, o3 1000 × 210 × 3= 11012 3207 615781 — 69395
630 000 1.7% 0.5% 97.7% — 11%

Burgers MOOD, o2 1000 × 210 × 2= 12806 407194 — — —
420 000 3.0% 97.0% — — —

Burgers MOOD, o3 1000 × 210 × 3= 19486 7455 603059 — —
630 000 3.1% 1.2% 95.7% — —

Burgers MOOD, o4 1000 × 210 × 5= 30346 9601 5512 1004541 —
1 050 000 2.9% 0.9% 0.5% 95.7% —

Burgers NN 5×5, o2 1000 × 210 × 2= 11871 408129 — — 9838
420 000 2.8% 97.2% — — 2.3%

Burgers NN 5×5, o3 1000 × 210 × 3= 13848 7015 609137 — 23073
630 000 2.2% 1.1% 96.7% — 3.7%

Burgers NN 5×5, o4 1000 × 210 × 5= 22304 5667 0 1022029 61427
1 050 000 2.1% 0.5% 0.0% 97.3% 5.9%

Table 2 MOOD and NN based FV schemes tested for the advection and Burgers’ equation solved with a nominally
2nd, 3rd and 4th order accuracy. Diagnostics on the reconstruction degree used. Nt is the number of time-steps, M
the number of cells and RK the number of Runge-Kutta steps. M ×Nt × RK is the total number of cell updates
during the simulation. The last column reports the number of ’wrong’ predictions of the NN compared to the answer
of the classical MOOD scheme starting from the same data at each beginning of time-step.

is still of the order of 10% on non-plateau data. When more perceptrons are added in the NNs, the
convergence is faster with lower errors (∼ 5 − 7%) The NN makes bullet-proof prediction for about
80% of the data set1.

5.2 Simulations

A test-case is performed using an initial condition given by the same function as for the advection
equation (22). The final time is set to tfinal = 2. At this time each discontinuity generates one
rarefaction and one shock wave, possibly interacting, see figure 10 top panels. The presence of these
wave interactions is interesting since no interaction is present in the training database. A reference
solution is computed with the first-order MOOD scheme using M = 20000 cells, and is referred to as
’exact’ in the figures. In this section we check the efficiency of NNs with a higher order method (fourth
order instead of third order like in the previous section) to see how it can be handled. On the bottom
panels of figure 10 we present the results for the first-order FV scheme and the second (left panel)
and fourth-order (right panel) unlimited FV schemes. As expected, the high-order schemes without
any limiting strategy do oscillate at shocks while the first-order scheme, while being slightly more
dissipative, remains oscillation free. MOOD second- and fourth-order schemes seem to associate the
best of these two behaviors. The results obtained by a 3×3 NN (top panels in red), a 5×5 NN (middle
panels blue) and a 10 × 10 NN driven FV scheme (bottom panels in green) are shown on figure 11.
The left/middle/right panels present the second/third/fourth-order results respectively. Different NN
architectures’ results are displayed from top to bottom. The smaller networks systematically produce
some (small but) visible over- or under-shoots. This shows the inability of some NNs to reproduce
the ultimate MOOD behaviors if they do not have weights (perceptrons and/or layers). On the other
hand, the 10 × 10 NN solutions seem free from spurious oscillations and are able to reproduce the

1 We must be careful that the NN may be certain of its prediction, even if it is a wrong one.

17

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a
ri
a
b
le

Position

Final

Initial

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a
ri
a
b
le

Position

Initial

50dt

100dt

150dt

200dt

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a
ri
a
b
le

Position

Exact

MOOD

Unlim Order 2

Order 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a
ri
a
b
le

Position

Exact

MOOD

Unlim Order 4

Order 1

Fig. 10 Burgers’ equation — M = 1000 cells — tfinal = 2 — Top: initial and exact solutions (left) and intermediate
time solutions (right) — Bottom: MOOD solutions in black symbols against the first order FV scheme (blue symbols)
and the unlimited high order FV scheme (red symbols) — Left: nominally second-order scheme — Right: fourth-order
scheme.

expected behavior even when fourth-order schemes are used.
Likewise for the advection equation, the space/time plot of the reconstruction degrees chosen by

the 5 × 5 NN for all steps of RK, all time-steps (but every 3 cells to enhance the main features) is
shown on figure 12. The vast majority of cells are updated with the maximal possible reconstruction
degrees. The ”low” order cells are located on the discontinuities generated by the initial solution
and further transported. They arrange on oblique lines/curves up to their interactions, after which
reflected and refracted waves may be generated. The comparison with MOOD results on top-panels
indicates that the NNs seem slightly less active, but unlike the advection case, this has an impact on
the solution. In particular the waves present on MOOD results around x ∈ [3 : 5] do not seem to be
well anticipated by the second and third-order NN based FV schemes. This explains the presence of
spurious oscillations in the simulations. On the contrary the fourth-order NN results seem to mimic
well MOOD behaviors.

On the bottom part of table 2 we have reported the reconstruction degrees used during the
simulations of figure 12. One observes again that about 97% of updates are made with the maximal
degree and less than 3% with lower degrees. Notably, for the fourth-order accurate scheme, the P2

reconstruction is never selected by the NN. This may be explained by the fact that the solution is
either flat, linear or irregular, leading to seldom use of P2 reconstructions. The last column reports
how many ’wrong’ predictions were made by the NN compared to the use of MOOD scheme starting
from the same data, leading to about from 2 to 6%. We also report the results of MOOD schemes for
which a little more cells are selected with low degrees, but the main tendencies are comparable. As a

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

NN 3x3 o2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

NN 3x3 o3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

NN 3x3 o4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

NN 5x5 o2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

NN 5x5 o3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

NN 5x5 o4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

NN 10x10 o2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

NN 10x10 o3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

V
a

ri
a

b
le

Position

Exact

MOOD

NN 10x10 o4

Fig. 11 Burgers’ equation — M = 1000 cells — tfinal = 2 — Exact solution in black straight line, MOOD solution
in black symbols, NN solution in colored symbols. Left/right panels: second (cross)/third (circle)/fourth (square)
order schemes — Top panels: solutions for a 3×3 NN driven FV scheme (red)— Middle panels: solutions for a 5×5
NN driven FV scheme (blue)— Bottom panels: solutions for a 10× 10 NN driven FV scheme (green).

temporary conclusion, as long as large enough NNs are considered, they are again able to correctly
guess the polynomial orders so that the approximation is very close to the one provided by the
classical MOOD scheme. Fourth-order simulations are well reproduced, as well as wave interactions,
despite the fact that they are not learned during training. Note that some simulations have also been
carried out considering an initial condition shifted by 1, that is 1 ≤ w(t = 0, x) ≤ 2. The problems
are of course no longer equivalent because of the non-linearity of Burgers’ equation. However, no
significant discrepancy was encountered, and consequently the curves are not presented here.

6 Numerical experiments on isentropic Euler equations

We now turn to the case of systems and start with the isentropic Euler equations, whose stiffness
remains generally moderate. In addition to the inherent difficulty of using a system, it is now also
necessary to preserve the set of admissible states (5), namely the positivity of the density here.

6.1 Neural Network design and training

The input data are constituted of both the cell density ρ and the velocity u in each cell of the stencil
in addition to the CFL number and the normalisation factor for each variable. The size of the input
vector depends on the size of the stencil N which depends on the maximal polynomial degree dmax.

19

Order 2 Order 3 Order 4

Fig. 12 Burgers’ equation — Space/time plot — Reconstruction degree selected for each RK step and each time-
step, every 3 cells — Top panels: MOOD results — Bottom panels: 5× 5 NN results — Left: NN order 2, P1 cells in
blue and P0 ones in red — Middle: NN order 3, add P2 cells in green — Right: NN order 4, add P3 cells in white.

ρL uL ρR uR
RP1 1 0 0.5 0
RP2 0.5 0 1 0
RP3 1 -1 0.5 1
RP4 1 1 0.5 -1
RP5 1 -1 1 1
RP6 1 1 1 -1

Table 3 Riemann problems used to train the NNs in the case of the hydrodynamics system of PDEs.

This means that for a stencil of size |N | = s, the size of the input data is 2s+ 3. The output vector
is constituted by the actual polynomial degree used by the target MOOD scheme using all detection
criteria. The training data set is constructed by solving the following Riemann problems (and their
symmetric version) depicted in table 3, with 5 different CFL numbers (0.2, 0.4, 0.6, 0.8 and 0.95),
leading to 72 states. The target MOOD scheme of appropriate order is used with M = 2000 cells
(∼ 25 cells per state) on ΩT = [0 : 1] up to time t = 0.002, leading to Nt = 21 time-steps, yielding
about 55000 training units in the database. Notice that with only 21 time-steps, interactions between
waves do not occur, meaning that the training does not explicitly take into account such situations.

6.2 Simulations

Riemann Problem (RP). We first test the prediction of NNs on a problem of average difficulty, namely
a Riemann problem which, if not available in the database, corresponds to the RP1 for which the
data are only doubled. The computational domain is set to Ω = [−1 : 1] meshed with M = 100 cells
with the following initial conditions

H0(x) = (ρ0(x), u0(x)) =

{
(2.0, 0.0) if −1 ≤ x ≤ 0,
(1.0, 0.0) if 0 ≤ x ≤ 1,

(23)

leading to a left moving rarefaction and a right moving shock waves. The exact solution is presented
in figure 13 and zoomed on [−0.75 : 0.75] at final time tfinal = 0.25. On the same figure we also

20

plot the numerical solutions obtained with a first, second (left panel) or fourth-order (right panel)
unlimited and MOOD schemes. In figure 14 we present the density obtained by the 2nd and 4th order

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

D
e

n
s
it
y

Position

Exact
MOOD

Unlim Order 2
Order 1

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

D
e

n
s
it
y

Position

Exact
MOOD

Unlim Order 4
Order 1

Fig. 13 Isentropic Euler equation — Riemann problem — Simulation at tfinal = 0.25 — Comparison of the 1st and
2nd order unlimited FV schemes and 2nd order MOOD against the exact solution (black line). Density variable.

FV schemes supplemented with a 3×3, 5×5 and 10×10 NNs (from top to bottom panels) against the
associated classical MOOD schemes. We observe that the smallest NN does not seem to be able to
reproduce MOOD results for 2nd order, meaning that the first-order scheme (degree 0) is chosen too
often leading to excessive diffusion. Clearly this NN was not able to train appropriately, it was not
large enough for this task. For the 4th order scheme, the NN predicts more ’good’ choices amongst
high degrees: 3, 2, 1. The larger NNs seem to reasonably well reproduce MOOD results, although
some minor inaccuracies occur. In figure 15-16 we present the polynomial degrees employed by the
second and fourth-order MOOD (left and right panels) and the three NNs FV schemes for the two
RK steps respectively (top to bottom panels). The possibilities are restricted to degrees d = 0 (red)
and 1 (blue) for the second-order schemes and degrees d = 0, 1, 2 and 3 for the fourth-order one. On
these figures, we can clearly see the areas in which the NNs predict different orders than MOOD does.
Apart from the plateaus, on which the prediction does not significantly impact the results, one can
clearly see that the other differences have an impact on the quality of the solution. The main waves
seem to be detected by all NNs. However the smallest and largest NNs are more conservative, leading
the activation of more first-order cells. Without any clear explanation MOOD seems to detect some
troubled situation around position x ' 0, which is a plateau as soon as the waves move away. The
NNs have the same prediction but only for very few time steps.

A Riemann problem with wave interactions and close-to-vacuum states (RP2). This next test case is
designed to be challenging for NNs. To this end, we propose to simulate situations which have
never been taught to them, including wave interactions and close-to-vacuum states. This test-case is
genuinely difficult because it involves very low densities with values under machine precision. The
computational domain is set to Ω = [−2 : 2] meshed with M = 500 cells. The initial conditions

H0(x) = (ρ0(x), u0(x)) =

(0.5, 0.0) if x ≤ −1,

(0.1,−4.0) if −1 ≤ x ≤ 0,
(0.1, 4.0) if 0 ≤ x ≤ 1,
(0.5, 0.0) if x > 1,

(24)

lead to an almost vacuum area close to x = 0 after two rarefaction waves move outwards, following
two faster diverging shock waves. Ultimately, at later time, the central rarefaction waves interact with
the shocks, see figure 17 for a time evolution of the solution and zooms on interesting regions. The

21

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

D
e

n
s
it
y

Position

Exact
MOOD

NN 3x3 o2

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

D
e

n
s
it
y

Position

Exact
MOOD

NN 3x3 o4

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

D
e

n
s
it
y

Position

Exact
MOOD

NN 5x5 o2

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

D
e

n
s
it
y

Position

Exact
MOOD

NN 5x5 o4

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

D
e

n
s
it
y

Position

Exact
MOOD

NN 10x10 o2

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

D
e

n
s
it
y

Position

Exact
MOOD

NN 10x10 o4

Fig. 14 Isentropic Euler equation — Riemann problem — Simulation at tfinal = 0.25 — Density — Left-panels:
2nd order NN vs MOOD schemes results — Right-panels: 4th order NN vs MOOD schemes results — Top: 3 × 3
NN — Middle: 5× 5 NN — Bottom: 10× 10 NN — The exact solution is displayed in straight black line.

final time is set to tfinal = 0.25 and the CFL number is set to 0.8. The minimal density of the exact
solution is roughly 10−12 and the first order FV scheme produces densities of the order 2 × 10−17.
This usually generates robustness difficulty for any high order numerical method.

A first set of results is given by the first-order FV scheme which is naturally able to handle the
close-to vacuum state as well as the shocks without oscillations to the price of an excessive numerical
dissipation, see figure 18. From a M = 10000 cell mesh we have computed a reference solution with
the first-order FV scheme. We also display the numerical solutions produced by a 2nd and 4th order
FV scheme a posteriori limited by the PAD only; that is, only the occurrence of negative density does
trigger the decrementing procedure, yielding to a fail-safe FV scheme not preventing any spurious
oscillations2. At last we present in figure 19 the results obtained by the genuine MOOD schemes and

2 Notice that without the a posteriori MOOD loop the 2nd and 4th order schemes crash due to the occurrence
of negative densities.

22

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

T
im

e

Position

 0

 1

 2

 3

R
e

c
o

n
s
tr

u
c
ti
o

n
 d

e
g

re
e

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

T
im

e

Position

 0

 1

 2

 3

R
e

c
o

n
s
tr

u
c
ti
o

n
 d

e
g

re
e

Fig. 15 Isentropic Euler equation — Riemann problem — Simulation at tfinal = 0.25 — Polynomial degrees for
MOOD scheme — Left-panel: 2nd order NN results — Right-panel: 4th order NN results

a FV scheme using the following NN architectures: 3× 3, 5× 5 and 10× 10, from top to bottom and
2nd and 4th order scheme (left and right panels respectively).
As expected the MOOD schemes, used to train the NNs behave appropriately, while the NNs seem

to perform nicely with almost the same quality as MOOD. Some slight over or undershoots may
however been observed. Nonetheless all schemes are robust in the presence of almost vacuum states
and after the wave interactions.
Notice that due to the statistical nature of the training, the NNs of the same structure do not produce
exactly the same numerical solutions. A few NNs have presented slight spurious over/undershoots
close to the shock waves while others were producing good results. The polynomial degrees employed
by MOOD and the NNs is also shown on figures 20-21. First of all the a posteriori MOOD loop for
the positivity is truly active in a zone starting at position x = 0 and spanning up to [−0.5 : 0.5] at
final time (recall that red cells correspond to first-order updated cells). Then the main discontinuities,
i.e the head and tail of rarefaction and shock waves, are captured and followed in time. They are
captured and followed by the NNs for second and fourth-orders. Again the plateaus are approximated
by the maximal polynomial degree but for the 5×5 NN the 4th order scheme uses P0 reconstructions
without any visible problem even if it is not expected. This highlights the importance for the NN to
be right mainly in the important or difficult situations, elsewhere the impact of a wrong prediction is
less dramatic. Notice that the colors in figure 21 correspond only to the prediction of the NN before
the a posteriori positivity loop. Therefore the central zone is not colored in red, but, nonetheless,
those cells are necessarily updated with first-order. It is important to note that the a posteriori

MOOD loop has to be maintained for the PAD criteria in order to guarantee a failsafe algorithm by
ensuring that the numerical solution remains in the admissible set A in (5). Aside from this, it seems
that the use of well trained NNs leads to approximate numerical solutions of the same quality as the
original MOOD scheme.

7 Numerical experiments on the M1 model

Finally, the behavior of NNs to predict polynomial order is investigated on the M1 model for radiative
transfer in transparent media (6). For such a model, if SI units are used then generally quantities
very far from 1 are observed, such as characteristic times in nanoseconds and large amplitudes for E
and F . In addition, there is a definite stiffness at the limit of the admissibility domain when |F | ' cE.
Finally, Riemann’s problems are genuinely different from those for Euler’s equations [39]. Among
the notable differences are the shape of the Hugoniot curves, the profile of the rarefaction waves

23

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

T
im

e

Position

 0

 1

 2

 3

R
e
c
o
n
s
tr

u
c
ti
o
n
 d

e
g
re

e

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

T
im

e

Position

 0

 1

 2

 3

R
e
c
o
n
s
tr

u
c
ti
o
n
 d

e
g
re

e

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

T
im

e

Position

 0

 1

 2

 3

R
e
c
o
n
s
tr

u
c
ti
o
n
 d

e
g
re

e

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

T
im

e

Position

 0

 1

 2

 3

R
e
c
o
n
s
tr

u
c
ti
o
n
 d

e
g
re

e

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

T
im

e

Position

 0

 1

 2

 3

R
e
c
o
n
s
tr

u
c
ti
o
n
 d

e
g
re

e

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

T
im

e

Position

 0

 1

 2

 3

R
e
c
o
n
s
tr

u
c
ti
o
n
 d

e
g
re

e
Fig. 16 Isentropic Euler equation — Riemann problem — Simulation at tfinal = 0.25 — Polynomial degrees —
Left-panels: 2nd order NN results — Right-panels: 4th order NN results — Top: 3× 3 NN — Middle: 5× 5 NN —
Bottom: 10× 10 NN.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

D
e

n
s
it
y

Position

Initial
10dt
25dt
50dt

100dt
140dt
175dt

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-1 -0.5 0 0.5 1

D
e

n
s
it
y

Position

Initial
10dt
25dt
50dt

100dt
140dt
175dt

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.6 0.8 1 1.2 1.4

D
e

n
s
it
y

Position

Initial
10dt
25dt
50dt

100dt
140dt
175dt

Fig. 17 Isentropic Euler equation — (RP2) — Density — Time evolution of the solution on the full domain (left)
and zooms in the central rarefied region (middle) and wave interaction and shock region (right)

and the fact that the variables used to solve the problem are complex nonlinear combinations of the
conservative variables.

24

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

D
e

n
s
it
y

Position

Exact
MOOD

Unlim Order 2
Order 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

D
e

n
s
it
y

Position

Exact
MOOD

Unlim Order 4
Order 1

Fig. 18 Isentropic Euler equation — (RP2) — Density — Comparison of the first and 4th order schemes (unlimited,
classical MOOD and NN) against the reference solution (black line) at final time tfinal = 0.25.

EL FL ER FR

RP1 E0 × 10−6 0 1.0× 10−6 0
RP2 E0 × 10−6 0 E0 × 10−6 -100
RP3 E0 × 10−6 -100 1.0× 10−6 100
RP4 E0 × 10−6 100 E0 × 10−6 -100
RP5 E0 × 10−6 100 1.0× 10−6 -100

Table 4 Riemann problems used to train the NNs in the case of the M1 model system of PDEs.

7.1 Neural Network design and training

The input data are constituted of both the radiative energy and the radiative flux in each cell of the
stencil in addition to the normalisation factor for each variable. This means that for a stencil of size
s, the size of the input data is 2s + 2. The output vector is constituted by the actual polynomial
degree used by the MOOD scheme using all detection criteria. The training data-set is constructed
by solving the following Riemann problems (and their symmetric version) depicted in table 4, for 6
different values of E0 (E0 ∈ {2; 3; 5; 7; 10; 15}), leading to 66 states. The Riemann problems are solved
until time t = 1.0 × 10−10 with a 2000 cell mesh, leading to Nt = 150. The first 15 time-steps are
stored, then only one every five is further used to build the training data-set. This leads to a training
data-set of 27000 units.

7.2 Simulations

The computational domain is set to Ω = [−1 : 1] and the Riemann problem located at x = 0 is such
that the radiative energy is (EL, ER) = (1.211, 6.128) × 10−6 and radiative fluxes are set to 0. This
problem is obviously not in the training data set. At final time, tfinal = 2× 10−9 the exact solution is
composed of a left-moving shock wave located at xS ' −0.4204 and a right-moving rarefaction wave
between xF ' 0.1782 and xH ' 0.3462, see figure 22.

The numerical solutions obtained by the first-order (blue symbols), second-order unlimited (red
symbols) and MOOD schemes (black symbols) are plotted on figure 22-left versus the exact solution
at final time. A zoom on [−0.5 : 0.5] is displayed. As expected the first-order scheme produces
dissipative results while the 3rd order one creates spurious oscillations. On the other hand, the 3rd
order MOOD scheme is able to create an accurate and non-oscillatory solution. At last on the same
figure one plots the space-time distribution of the degree of the polynomial reconstructions for MOOD
scheme (for all cells and all RK steps). We extract from these data that the degree is d = 2 for 93%
of the updates, d = 1 for 1% and d = 0 for 5%, see table 5. Now, the results obtained with 3rd

25

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

D
e

n
s
it
y

Position

Exact
MOOD

NN 3x3 o2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

D
e

n
s
it
y

Position

Exact
MOOD

NN 3x3 o4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

D
e

n
s
it
y

Position

Exact
MOOD

NN 5x5 o2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

D
e

n
s
it
y

Position

Exact
MOOD

NN 5x5 o4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

D
e

n
s
it
y

Position

Exact
MOOD

NN 10x10 o2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

D
e

n
s
it
y

Position

Exact
MOOD

NN 10x10 o4

Fig. 19 Isentropic Euler equation — (RP2) — Density — Left-panels: 2nd order NN vs MOOD schemes results —
Right-panels: 4th order NN vs MOOD schemes results — Top: 3× 3 NN — Middle: 5× 5 NN — Bottom: 10× 10
— The exact solution is displayed in straight black line. at final time tfinal = 0.25.

order accurate schemes supplemented with a 10 × 10 and 20 × 20 NN are presented in figure 23.
The numerical results are extremely close to the original MOOD scheme. The bottom panels present
the polynomial degrees and we observe that the distribution does not match MOOD’s results from
figure 22. The two networks do not even fully agree with each other, the smallest one overestimates
the need for low order reconstructions, and both seem over-conservative on the rarefaction wave
compared to the classical MOOD scheme. These facts are visible on table 5 where these numbers are
reported altogether in terms of number of cells and percentages. The larger NN seems to be closer to
the expected behavior by selecting more second-order reconstructions and a lot less first-order ones,
following the lead of MOOD. These differences, which may seem enormous at first glance, should be
balanced by the fact that they are mainly located on plateaus. Now we specifically focus on the
three discontinuous features: shock, tail and head of the rarefaction waves, the position of which are
exactly known as a function of time, and denoted xw(t). The wave is located in a unique cell at any
tn, xw(tn) ∈ [xi−1/2, xi+1/2] and we consider 10 cells on each side of cell i. In figure 24 we re-plot

26

Fig. 20 Isentropic Euler equation — (RP2) — Simulation at tfinal = 0.25 — Polynomial degrees for MOOD schemes
— Left-panel: 2nd order results — Right-panel: 4th order results. The large central red zone corresponds to the
positivity preserving action of the MOOD scheme which must decrement the accuracy to first-order on these cells.

Archi. Number of cells Percentages
P0 P1 P2 P0 P1 P2

MOOD 23492 6023 420485 5.2% 1.3% 93.4%
10×10 90886 3187 355927 20.2% 0.7% 79.1%
20×20 63149 7782 379069 14.0% 1.7% 84.2%

Table 5 M1 model test problem. Number of cells treated with first-, second- and third-order accurate reconstruc-
tions (for all cells, all time-steps and all RK steps) and their relative percentages.

the polynomial degrees from figure 23-22 but for these cells only. The cell containing the wave is
centered in the middle of its band. We can precisely observe what are the degrees predicted by the
schemes in front and after the waves. Qualitatively the NNs are able to predict the MOOD degrees
for those very important regions. This explains why the NNs produce good solutions even if some
(less important) regions seem wrongly predicted. It is important to note that in the case of the M1
model, the training dataset has revealed to be extremely sensitive during the NN construction. Some
inappropriate construction of the data-set inexorably leads to oscillatory solutions.
Another feature encountered here is the fact that many cells were predicted by NNs with a relatively

low confidence level, sometimes even artificially large or negative values are computed. In order to
investigate the impact of this fact, two additional tests are carried out for a 20× 20 NN and a third
order FV scheme. The first one, shown in figure 25 was obtained by randomly choosing the polynomial
degree between 0, 1, and 2 (top panels). The goal is to see if a pure random choice may not produce
the same solution quality. We directly observe that, as expected, some excessive diffusion is generated
by such an approach and the overall accuracy corresponds to no more than a first-order FV result,
see figure 22.
The second test is performed by resorting to a randomly chosen polynomial degree whenever the
NNs produce unsure predictions. In other words if we have not 0.9 ≤ pk ≤ 1.1 then the degree is
randomly chosen. The results are presented on the bottom panels of figure 25. The overall quality
of the solution is not changed. This figure proves that even if the NN produces seemingly uncertain
predictions, then those are still the ”best” ones according to its training. Moreover the NN is confident
about its predictions around the shock wave, which is the most sensitive location.
The FV scheme with NNs produce acceptable numerical solutions with a reasonably small number
of perceptrons. The M1 model being stiffer a 5× 5 NN is not large enough and produces oscillatory
results, while 10 × 10 and 20 × 20 NNs can match MOOD solution quality. Even if some NNs lack
of certainty in large zones, it still produce better results than a pure random choice method. At last
we present a rough estimate of the CPU times generate by the classical 1D MOOD scheme against
its NN versions in table 6 solving the first Riemann problem of this section with 3rd order accurate

27

Fig. 21 Isentropic Euler equation — (RP2) — Simulation at tfinal = 0.25 — Polynomial degrees — Left-panels:
2nd order NN results — Right-panels: 4th order NN results — Top: 3 × 3 NN — Middle: 5 × 5 NN — Bottom:
10× 10 NN.

MOOD NN 5×5 NN 10×10 NN 20×20
CPU time (s) 4.87 3.95 4.57 6.22
Ratio 1.0 0.81 0.93 1.28

Table 6 M1 model — 1st Riemann problem — CPU times and ratio — Classical 1D MOOD scheme against NN
versions with 3rd order accurate schemes.

schemes. Using the 10×10 NN instead of the MOOD loop is roughly equivalent in terms of CPU for
this test. However these figures are highly dependent on the test case, more precisely, on the number
of recomputed bad cells. On a smooth problem the MOOD scheme would certainly be less expensive,
while in presence of many bad cells the NN may become extremely performing. The genuine study
of efficiency is postponed to a future work in multi-dimensions where we expect true gains.

28

1.10
-6

2.10
-6

3.10
-6

4.10
-6

5.10
-6

6.10
-6

7.10
-6

-0.4 -0.2 0 0.2 0.4

E
n
e
rg

y

Position

Exact
Unlim Order 3

Order 1
MOOD

Fig. 22 M1 model — Left panel: Numerical solutions obtained by the first-order (blue symbols), second-order
unlimited (red) and MOOD schemes (black) vs the exact solution at final time tfinal = 2 × 10−9 — Right panel:
space-time distribution of the degree of the polynomial reconstructions for 3rd order MOOD scheme for all cells and
all RK steps.

1.10
-6

2.10
-6

2.10
-6

2.10
-6

3.10
-6

4.10
-6

4.10
-6

5.10
-6

5.10
-6

6.10
-6

6.10
-6

7.10
-6

-0.4 -0.2 0 0.2 0.4

E
n
e
rg

y

Position

Exact
MOOD

NN 10x10 o3

1.10
-6

2.10
-6

2.10
-6

2.10
-6

3.10
-6

4.10
-6

4.10
-6

5.10
-6

5.10
-6

6.10
-6

6.10
-6

7.10
-6

-0.4 -0.2 0 0.2 0.4

E
n
e
rg

y

Position

Exact
MOOD

NN 20x20 o3

Fig. 23 M1 model — Simulation at tfinal = 2× 10−9 for 10× 10 (top) and 20× 20 NN — Left panels: numerical
solution for the MOOD+NN and a posteriori MOOD schemes — Right panels: space-time distribution of the degree
of the polynomial reconstructions for all cells and all RK steps.

29

 0

 20

 40

 60

 80

 100

 120

 140

 160

T
im

e
 i
te

ra
ti
o

n

20 cells around discountinuities
 0

 1

 2

 3

R
e
c
o
n
s
tr

u
c
ti
o
n
 d

e
g
re

e

 0

 20

 40

 60

 80

 100

 120

 140

 160

T
im

e
 i
te

ra
ti
o

n

20 cells around discountinuities
 0

 1

 2

 3

R
e
c
o
n
s
tr

u
c
ti
o
n
 d

e
g
re

e

 0

 20

 40

 60

 80

 100

 120

 140

 160

T
im

e
 i
te

ra
ti
o

n

20 cells around discountinuities
 0

 1

 2

 3

R
e
c
o
n
s
tr

u
c
ti
o
n
 d

e
g
re

e

Fig. 24 M1 model — Simulation at tfinal = 2 × 10−9 for 20 × 20 NN — Polynomial degrees for 20 cells around
the shock (left band), the tail (middle) and the head (right) of the rarefaction waves. Left panel: MOOD results —
Middle panel: 10×10 NN results. Right panel: 20×20 NN results.

1.10
-6

2.10
-6

2.10
-6

2.10
-6

3.10
-6

4.10
-6

4.10
-6

5.10
-6

5.10
-6

6.10
-6

6.10
-6

7.10
-6

-0.4 -0.2 0 0.2 0.4

E
n
e
rg

y

Position

Exact
MOOD

H 20x20 o3

1.10
-6

2.10
-6

2.10
-6

2.10
-6

3.10
-6

4.10
-6

4.10
-6

5.10
-6

5.10
-6

6.10
-6

6.10
-6

7.10
-6

-0.4 -0.2 0 0.2 0.4

E
n
e
rg

y

Position

Exact
MOOD

NH 20x20 o3

Fig. 25 M1 model — Simulation at tfinal = 2× 10−9 — Left panels: numerical solutions schemes — Right panels:
space-time distribution of the degree of the polynomial reconstructions for all cells and all RK steps — Top panels:
third-order FV scheme for which the polynomial degrees are randomly chosen — Bottom panels: third-order FV
scheme with 20× 20 NN for which only uncertain predictions are replaced by a random choice.

30

8 Conclusion and perspectives

In this paper we have investigated the use of a shallow Neural Network in replacement of the a

posteriori Numerical Admissibility Detection MOOD loop within a high accurate FV scheme. Indeed
a MOOD scheme of nominal order dmax picks the most appropriate reconstruction degree di ≤ dmax in
each cell which generates the best solution according to a set of detection criteria checked a posteriori

on the candidate solution at time tn+1. If the criteria are not fulfilled then the cell is recomputed
decrementing the polynomial degree up to degree 0 in the worse case scenario. This is the philosophy
behind an a posteriori MOOD limiting strategy. Our goal was to train a shallow NN by such a MOOD
scheme expecting that it could a priori predict the correct cell polynomial degree. We have made the
1D framework as simple as possible avoiding most subtle choices like which variables to use in the
training, varying the NN architectures, having large training data set, multiplying the input data
(more neighbors, more variables), etc.
The goal was to observe how a NN behaves facing a relative simple task. To this end, multi-layer
perceptron networks containing two hidden layers are trained in a supervised way, employing the
MOOD scheme as the reference. We have observed that the NNs are able to recognize the vast
majority of the training patterns and predict the correct polynomial degrees. We have presented
how to build an appropriate training data-set for the scalar advection and Burgers’ equation in 1D,
train and use several of them for the 2nd up to 4th order accurate schemes. (Notice that there is
no formal limitation in the approach to deal with higher order schemes, only practical limitations
may apply.) Moreover we have extended the procedure to deal with the isentropic Euler and M1
systems of conservation laws. For all four models we have been able to reproduce MOOD results
using network architectures which are small enough to consider their use in practical simulations
in the future. The number of perceptrons never exceeds a few dozen. The input vector is restricted
to 5 to 20 components and the training data-set is made of about 5000 to 50000 units. We have
analyzed the space-time distribution of the polynomial degrees. Some evidences show that the NN is
more permissive than a classical MOOD scheme. However it does not seem to generate large spurious
parasitical phenomena.
The NN high accurate FV scheme in the case of system cannot be freed from the a posteriori loop
checking for physical admissibility. In fact the intrinsic statistical nature of the NN training does not
assure that the numerical solution will always remain physically valid. As a consequence we have
coupled the a priori NN prediction of reconstruction polynomial degree with an a posteriori MOOD
loop on positivity (and NaN) detection. Usually a lack of positivity leads to the failure of high accurate
non-robust FV schemes, which is not the case for our schemes enjoying a fail-safe property rendering
them extremely robust. Scalar equation and systems of equation seem to be similarly solved with the
same quality by MOOD FV schemes or the FV schemes supplemented by a NN. Obviously a large
enough number of weights should be considered to ensure that the NN can learn the training data
set. On the downside remain some classical drawbacks of NNs:

• different training usually does not produce the same NNs, some may have a poor prediction
capability;

• the constitution of the training data-set is of paramount importance to ensure good prediction
capability. Our shallow NNs can possibly recognize unlearned patterns only if they remain close
to already seen situations. As such one shallow NN which has been trained for a given non-linear
model of PDEs can not in general be employed blindly with another model;

• if the NN prediction is wrong and some oscillation occurs, then the NN cannot recover from this
situation because the training data-sets have not been specifically designed to teach such failures.

While those drawbacks could possibly be mitigated by using larger training data-sets and NN archi-
tectures, they may nonetheless remain. However it does not lower the interesting feature of having a
NN replacing the a posteriori MOOD loop in a high order FV scheme.
In the future, relying on this first proof of concept in 1D, we will extend the approach to 2D and 3D
MOOD FV schemes for which the number of input data will grow a lot. Consequently the number of

31

perceptrons and layers may also increase demanding the use of parallel machinery for the training and
the use within the scheme. However we expect to reach a better efficiency compared to the a posteriori

MOOD loop (with detection and decrementing). Moreover extending the approach to deal with more
complex or larger systems of PDEs possibly with stiff source terms seems also our achievable.

Acknowledgments

RL would like to thank M. Han Veiga (University of Zürich) and S. Clain (Universidade do Minho)
for sharing fruitful discussions on neural networks. The authors thank the anonymous reviewers who
have led to an improved version of this paper.
The datasets generated during and/or analysed during the current study are available from the
corresponding author on reasonable request.

References

1. Jens Berg and Kaj Nyström. A unified deep artificial neural network approach to partial differ-
ential equations in complex geometries. Neurocomputing, 317:28 – 41, 2018.

2. F. Blachère and R. Turpault. An admissibility and asymptotic preserving scheme for systems
of conservation laws with source term on 2d unstructured meshes with high-order mood recon-
struction. Computer Methods in Applied Mechanics and Engineering, 317:836 – 867, 2017.

3. Ghislain Blanchard and Raphaël Loubère. High order accurate conservative remapping scheme
on polygonal meshes using a posteriori mood limiting. Computers and Fluids, 136:83 – 103, 2016.

4. Walter Boscheri, Michael Dumbser, Raphaël Loubère, and Pierre-Henri Maire. A second-
order cell-centered lagrangian ader-mood finite volume scheme on multidimensional unstructured
meshes for hydrodynamics. Journal of Computational Physics, 358:103 – 129, 2018.

5. Walter Boscheri, Raphaël Loubère, and Michael Dumbser. Direct arbitrary-lagrangian–eulerian
ader-mood finite volume schemes for multidimensional hyperbolic conservation laws. Journal of

Computational Physics, 292:56–87, 2015.
6. Jean-Philippe Braeunig, Raphaël Loubère, Renaud Motte, Mathieu Peybernes, and Raphaël Pon-

cet. A posteriori limiting for 2d lagrange plus remap schemes solving the hydrodynamics system
of equations. Computers and Fluids, 169:249 – 262, 2018. Recent progress in nonlinear numerical
methods for time-dependent flow and transport problems.

7. J.M. Burgers. The Nonlinear Diffusion Equation: Asymptotic Solutions and Statistical Problems.
Springer, 1974.

8. S. Clain, S. Diot, and R. Loubère. A high-order finite volume method for systems of conservation
laws—Multi-dimensional Optimal Order Detection (MOOD). Journal of Computational Physics,
230(10):4028 – 4050, 2011.

9. S. Clain and J. Figueiredo. The mood method for the non-conservative shallow-water system.
Computers and Fluids, 145:99 – 128, 2017.

10. Stéphane Clain, Raphaël Loubère, and Gaspar J. Machado. a posteriori stabilized sixth-order
finite volume scheme for one-dimensional steady-state hyperbolic equations. Advances in Compu-

tational Mathematics, 44(2):571–607, Apr 2018.
11. Yves Coudière and Rodolphe Turpault. A domain decomposition strategy for a very high-order

finite volumes scheme applied to cardiac electrophysiology. Journal of Computational Science,
37:101025, 2019.

12. S. Diot, S. Clain, and R. Loubère. Improved detection criteria for the Multi-dimensional Optimal
Order Detection (MOOD) on unstructured meshes with very high-order polynomials. Computers

and Fluids, 64(Supplement C):43 – 63, 2012.

32

13. S. Diot, R. Loubère, and S. Clain. The Multidimensional Optimal Order Detection method in the
three-dimensional case: very high-order finite volume method for hyperbolic systems. International

Journal for Numerical Methods in Fluids, 73(4):362–392, 2013.
14. B. Dubroca and J. L. Feugeas. Etude théorique et numérique d’une hiérarchie de modèles aux

moments pour le transfert radiatif. Comptes Rendus de l’Académie des Sciences - Series I - Mathe-

matics, 329(10):915 – 920, 1999.
15. M. Dumbser and R. Loubère. A simple robust and accurate a posteriori sub-cell finite volume

limiter for the discontinuous Galerkin method on unstructured meshes. Journal of Computational

Physics, 319(Supplement C):163 – 199, 2016.
16. Michael Dumbser, Olindo Zanotti, Raphaël Loubère, and Steven Diot. A posteriori subcell limit-

ing of the discontinuous galerkin finite element method for hyperbolic conservation laws. Journal

of Computational Physics, 278:47 – 75, 2014.
17. Javier Fernández-Fidalgo, Xesús Nogueira, Luis Ramı́rez, and Ignasi Colominas. An a posteriori,

efficient, high-spectral resolution hybrid finite-difference method for compressible flows. Computer

Methods in Applied Mechanics and Engineering, 335:91 – 127, 2018.
18. Pritam Giri and Jianxian Qiu. A high-order runge-kutta discontinuous galerkin method with a

subcell limiter on adaptive unstructured grids for two-dimensional compressible inviscid flows.
International Journal for Numerical Methods in Fluids, 91(8):367–394, 2019.

19. S. Gottlieb and C.W. Shu. Total variation diminishing Runge-Kutta schemes. Mathematics of

Computation, 67:73–85, 1998.
20. Sigal Gottlieb and Chi-Wang Shu. Total Variation Diminishing Runge-Kutta Schemes. Math.

Comput., 67(221):73–85, January 1998.
21. V. Gyrya, M. Shashkov, A. Skurikhin, and S. Tokareva. Machine learning approaches for the

solution of the riemann problem in fluid dynamics: a case study. preprint, 2020.
22. M.T. Hagan, H.B. Demuth, and M.H. Beale. Neural Network Design. PWS Publishing, 1996.
23. Simon S. Haykin. Neural networks and learning machines. Pearson Education, third edition, 2009.
24. Donald Olding Hebb and DO Hebb. The organization of behavior, volume 65. Wiley New York,

1949.
25. C.-W. Shu J. Qiu. A comparison of troubled-cell indicators for Runge–Kutta discontinuous

Galerkin methods using weighted essentially nonoscillatory limiters. Journal of Scientific Compu-

tating, 27:995–1013, 2005.
26. Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted eno schemes. Journal

of Computational Physics, 126(1):202 – 228, 1996.
27. Zhen-Hua Jiang, Chao Yan, and Jian Yu. Efficient methods with higher order interpolation and

mood strategy for compressible turbulence simulations. Journal of Computational Physics, 371:528
– 550, 2018.

28. David Kriesel. A Brief Introduction to Neural Networks. 2007.
29. R. Loubère, M. Dumbser, and S. Diot. A New Family of High Order Unstructured MOOD and

ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws.
Communications in Computational Physics, 16(3):718–763, 2014.

30. D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM

Journal on Applied Mathematics, 11(2):431—-441, 1963.
31. W S McCulloch and W Pitts. A logical calculus of the ideas immanent in nervous activity. Bull.

Math. Biophys., 5:115–133, 1943.
32. M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. MIT Press,

1969.
33. Xesús Nogueira, Luis Ramı́rez, Stéphane Clain, Raphaël Loubère, Luis Cueto-Felgueroso, and

Ignasi Colominas. High-accurate sph method with multidimensional optimal order detection
limiting. Computer Methods in Applied Mechanics and Engineering, 310:134 – 155, 2016.

34. Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of nonlinear
partial differential equations. Journal of Computational Physics, 357:125 – 141, 2018.

33

35. Deep Ray and Jan S. Hesthaven. An artificial neural network as a troubled-cell indicator. Journal

of Computational Physics, 367:166 – 191, 2018.
36. Deep Ray and Jan S. Hesthaven. Detecting troubled-cells on two-dimensional unstructured grids

using a neural network. Journal of Computational Physics, 397:108845, 2019.
37. F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization

in the brain. Psychological Review, pages 65–386, 1958.
38. F. Rosenblatt. Principles of neurodynamics. New York, Spartan, 1962.
39. Céline Sarazin-Desbois. Méthodes numériques pour des systèmes hyperboliques avec terme source

provenant de physiques complexes autour du rayonnement. PhD thesis, Université de Nantes, 2013.
40. Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85 –

117, 2015.
41. Matteo Semplice and Raphaël Loubère. Adaptive-mesh-refinement for hyperbolic systems of

conservation laws based on a posteriori stabilized high order polynomial reconstructions. Journal

of Computational Physics, 354:86 – 110, 2018.
42. A. Suresh and H.T. Huynh. Accurate monotonicity-preserving schemes with runge-kutta time

stepping. Journal of Computational Physics, 136:83–99, 1997.
43. Siengdy Tann, Xi Deng, Yuya Shimizu, Raphaël Loubère, and Feng Xiao. Solution property

preserving reconstruction for finite volume scheme: a bvd+mood framework. International Journal

for Numerical Methods in Fluids, n/a(n/a), 2019.
44. E. F. Toro. Riemann Sovlers and Numerical Methods for Fluid Dynamics. Springer, 2009.
45. Maria Han Veiga and Rémi Abgrall. Towards a general stabilisation method for conservation

laws using a multilayer perceptron neural network: 1d scalar and system of equations. In Euro-

pean Conference on Computational Mechanics and VII European Conference on Computational Fluid

Dynamics, number 1, pages 2525–2550. ECCM, June 2018.
46. François Vilar. A posteriori correction of high-order discontinuous galerkin scheme through sub-

cell finite volume formulation and flux reconstruction. Journal of Computational Physics, 387:245
– 279, 2019.

47. P.J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.
Harvard University, 1975.

34

