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Abstract

In this paper, we focus on non-asymptotic bounds related to the Euler scheme of an ergodic
diffusion with a possibly multiplicative diffusion term (non-constant diffusion coefficient). More
precisely, the objective of this paper is to control the distance of the standard Euler scheme with
decreasing step (usually called Unadjusted Langevin Algorithm in the Monte Carlo literature) to
the invariant distribution of such an ergodic diffusion. In an appropriate Lyapunov setting and
under uniform ellipticity assumptions on the diffusion coefficient, we establish (or improve) such
bounds for Total Variation and L!-Wasserstein distances in both multiplicative and additive and
frameworks. These bounds rely on weak error expansions using Stochastic Analysis adapted to
decreasing step setting.
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Keywords: Unadjusted Langevin algorithm; Euler scheme with decreasing step; multiplicative noise; Malliavin calculus;
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1 Introduction

Let (Xt)te[o,T] be the unique strong solution to the stochastic differential equation (SDFE)
dX; = b(Xt)dt + O'(Xt)th (1.1)

starting at Xy where W is a standard R%-valued standard Brownian motion, independent of Xy, both
defined on a probability space (€2, A, P), where b : R? — R% and o : R? — M(d, ¢, R) (d x g-matrices
with real entries) are Lipschitz continuous functions. The process (X):>o is a homogeneous Markov
process, denoted X* = (X[);>q if Xo = z, with transition semi-group P;(x,dy) = P(X[F € dy). We
denote by P, its distribution starting from Xo ~ p (and P, when i = 6,). Let £ = L denote its
infinitesimal generator, defined on twice differentiable functions g : R¢ — R by

1
Lg = (b|Vg) + §T1“(O'*D290'),

where (.|.) denotes the canonical inner product on R%, D?g denotes the Hessian matrix of g and Tr
denotes the Trace operator.
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Let (7, )n>1 be a non-increasing sequence of positive steps. We consider the Euler scheme of the
SDE with step y,, > 0 starting from Xy = X defined by

XF'!H»l = Xl—‘n + 7n+1b(XFn) + O-(Xrn)(WF'rH»l - WFn)? n 2 0 (1‘2)

where
I'o=0 and T, =7+ -+ 7.

with (7, )n>1 a sequence of varying time steps. We define the genuine (continuous time) Euler scheme
by interpolation as follows: let te [y, T'x11).

Xy = Xp, + (t —Tp)b(Xr,) + o(Xr,)(We — Wr,). (1.3)

If we set ¢ = T’y on the time interval [['y,T'x11), the genuine Euler scheme appears as an Ito
process solution to the pseudo-S D E with frozen coefficients

dX = b(Xy)dt + o(Xy)dW;. (1.4)
It will be convenient in what follows to introduce
N(t)=min{k>0sz+1>t}zmax{k‘ZO:Fkét}. (1.5)
The Euler scheme is a discrete time non-homogeneous Markov process with transitions

f%ﬁurn+1($vdy):: F%n+1($7dy)

where the transition probability Py(x, dy) reads on Borel test functions
Pyg(z) =Eg(z +g(x) +yo(x)Z),  Z~N(0;1a). (1.6)

We assume that the time step sequence (7, )n>1 satisfies Assumption (I") defined by:

(T) : (Vn)n>1 non-increasing, lim~y, =0 and Z Yn = +0. (1.7)
n

n=1

Then v, = sup,,~; ¥» and we will denote indifferently this quantity by |~| or v; depending on the
context.

It is well-known that for a twice continuously differentiable function V' : R¢ — R, such that
e Ve L[1R+ (R%, \q) (\g Lebesgue measure on R?), then for every o€ (0,1]

_ V(x) . V(=) -1
Vo(dz) = Coe” o7 Ag(dz) with C, = ( JRde _cr?_/\d(da:)>

is the unique invariant distribution of the Langevin (reversible) Brownian SDE
dX; = —=VV(Xy)dt + V2 odW, (1.8)

where (W});>¢ is d-dimensional standard Brownian motion.

A first application of this property is to devise an approximate simulation method of v = v =
Cy Le=V . A4 by introducing the above Euler scheme with decreasing step (I2) with b = —VV and
o(x) = v/2. Coupled with a Metropolis-Hasting speeding method, this simulation procedure is known
as the Metropolis Adjusted Langevin algorithm whereas in absence of such an additional procedure it is
known as the Unadjusted Langevin Algorithm (ULA) extensively investigated in the literature since the
1990°s (see e.g. [Pel96], [MP96]) and more recently in a series of papers, still in the additive setting,




motivated by applications in machine learning (in particular in Bayesian or PAC-Bayesian statistics).
Among others, we refer to [DM17,IDM19|Dall7, MFWB19] and to the references therein.

A second application is to directly consider, o being a fixed real number (or possibly a matrix of
M(d, d,R)), the Euler scheme

Xﬁwl = XFn - ’Yn+1VV(XﬁL) + \/iamzn+l (1-9)

where (Zy)k>1 is an N'(0, I;)-distributed i.i.d. sequence. It appears as a perturbation by a Gaussian
white noise of the gradient descent

Tp+1 = Tn — 7n+1VV($n)

aiming at minimizing the potential V. Then, using the notation [Y'] to denote the distribution of a

random vector Y,
TV weakly

[XE ]—v, and v, — Y opx asa — 0

if argmingaV = {z*} (or v, is asymptotically supported by argmingaV when simply finite). So simu-
lating (L.9) on the long run provides sharper and sharper information on the localization of argmingaV'.
In fact making o = o,, slowly vary in a decreasing way to 0 at rate (log n)*l/ 2 makes up a simulated
annealing version of the above perturbed stochastic gradient procedure. This stochastic optimization
procedure has been investigated in-depth in [GM93]] with, as a main result, the convergence in proba-
bility of X‘FTZ toward the (assumed) unique minimum z* of V' under various assumptions on the step
~,, and the invertibility of the Hessian of V" at z*.

For much more general multidimensional diffusions, say Brownian driven here for convenience, of
the form (LI)) with infinitesimal generator £ satisfying an appropriate mean-reverting drift (typically
LV < p—aV?% ae (0,1] for some Lyapunov function V), it is a natural problem of numerical
probability to have numerical access to its invariant distribution v (when unique). Taking full advantage
of ergodicity, this can be achieved by introducing the weighted empirical measure

1 n
(w, d€) = F—Z_} WOsp, (@) (), n>1, (1.10)

where (ka) k>0 is given by (L2)) (and the Brownian increments are simulated by a R%-valued white
noise (Zj)y>1 with Wr, , —Wr, = k12K, k = 1. A.s. weak convergence of U (d€) to v, its con-
vergence rate as well as deviation inequalities depending on the rate of decay of the time step ~,, have
been extensively investigated in a series of papers in various settings, including the case of jump diffu-
sion driven by Lévy processes (see [LP02[, [LPO3], [Pan08b], [Pan08a], [LemO3]], [LemO7], [HMP20],
etc). One specificity of interest of this method based on the simulation of the above weighted empirical
measures 7, (w, d€) (see (L1Q)) for applications is that no ellipticity is required to establish most of the
main results. This turns out to be crucial for Hamiltonian systems or more generally for mean-reverting
SDEs with more or less degenerate diffusion coefficients.

However it is a quite natural question to tackle the total variation (TV) and L'-Wasserstein (rates of)
convergence of [XT, ] toward the (necessarily) unique invariant distribution  when o is not constant
but uniformly elliptic. In particular, one aim of this paper is to check whether or not the VT and L!-
Wasserstein (or Monge-Kantorovich) rates of convergence remain unchanged in such a more general
setting (in terms of (7, )n>1). Moreover, considering such diffusions with non constant o will deeply
impact the methods of proof. When o is constant, the continuous-time Euler scheme (X7 );>o and
the diffusion (X}');>0 have the same diffusion component oW . Girsanov’s theorem then implies that
their distributions are equivalent and provides an explicit expression of the density of the distribution
of X with respect to the one of X. This is the key to establish the estimates of dry ([XZ ], [XZ 1)
through Pinsker’s inequality (see [DM17] or Proposition 4.1] and Theorem of our paper). In the



multiplicative case, such an approach no longer works and will be replaced here by stochastic analysis
arguments (see below for details).

Such investigations also have applied motivations since in the blossoming literature produced by
the data science community to analyze and improve the performances of stochastic gradient procedures,
non-constant matrix valued diffusion coefficients o(x) are introduced in such a way (see [MCF15a]
and the references therein with in view Hamiltonian Monte Carlo, see [LCCC15a] among others) that
the invariant distribution is unchanged but the exploration of the state space becomes non-isotropic,
depending on the position of the algorithm or the value of potential function to be minimized with the
hope to speed up its preliminary convergence phase. Note that a script of the [LCCC15a] version of
Unadjusted Langevin Algorithm is made available in the API TensorFlowProbability ).

As mentioned above we mainly focus on 7'V or L'-Wasserstein bounds in the so-called multiplicative
setting i.e. when the diffusion coefficient is state dependent, which is new in this field to our best
knowledge. However we also show how to refine our methods of proof (see below) in order to derive
improved rates in the additive setting (when o is constant). These results improve those obtained e.g.
in [DM17] or in [Dall7] in terms of (7;,),>1 and seem quite consistent with more recent works (by
very different methods) like [MEWBI19|| or [DM19]. In fact, we slightly improve the results of these
papers by killing some logarithmic terms with the help of Malliavin calculus (see Remark 2.4] for de-
tails). However, compared with these papers, we do not tackle the problem related to the dependence of
the bounds with respect to the dimension d, which would lead to very heavy technicalities, especially
in the multiplicative setting which is the main goal of this paper.

Although this problem seems not to have been already tackled in the multiplicative case, we can yet
connect our work with several other papers where non-asymptotic bounds between the Euler scheme
and the invariant distribution have been established: in the recent paper [CDO21]], the authors provide
uniform in time bounds for the weak error (which in turn may be used to derive some bounds for
the error with respect of the invariant distribution). Nevertheless, this paper only considers smooth
functions which is clearly not adapted to 7'V or 1-Wasserstein bounds. We can also refer to [DMS20]
where, with the help of a new Backward It6-Ventzell formula, the authors interpolate the diffusion
and its continuous-time Euler discretization to derive nice LP-bounds under some pathwise contraction
assumptions (close to Assumption (C,,) below). These LP-bounds lead in turn to 1-Wasserstein bounds
but it is not clear that they may produce 7'V -bounds in an optimal way. The interesting fact is that our
so-called domino decomposition described below can be seen as a discrete weak version of the pathwise
interpolation proposed in [DMS20]. In particular, our approach is different from that in [DMS20]
since we rely on the contraction of the semi-group of the diffusion instead of the pathwise assumptions
required everywhere there (whereas contraction of the semi-group may hold in settings where pathwise
contraction holds only outside a compact set, see e.g. Corollary 2.3)).

Now, let us be more specific about our results and methods. We start from some assumptions on
the diffusion (L)) itself: we mainly assume a classical Lyapunov mean-reverting assumption (denoted
by (S)), an exponential contraction property (in 1-Wasserstein distance) of the distributions [X}’] and
[X} A and uniform ellipticity and boundedness assumptions on the diffusion coefficient o (denoted by
(&0) 52» See Section 2.1l for details).

In the multiplicative setting, under these general assumptions (including uniform ellipticity), our
main result (see Theorem establishes that the Total Variation (TV) distance between the distri-
bution of X, and the invariant distribution v (denoted by || [Xfﬁn] — VHTV, see below for notations)
converges to O at rate

O(vL7¢), for every €€ (0, 1), for the TV -distance (if b and o are C°),

! see [www.tensorflow.org/probability/api_docs/python/tfp/optimizer/StochasticGradientLangevinDynamics)|
2See Assumption (H,) and Remark 2.2]for details.




whereas its 1-Wasserstein counterpart (denoted by Wl([XfEn], v)) converges to 0 at rate
O(%L log(l/%)) for the W -distance (if b and o are C*).

In the additive case (see Theorem 23le.g. if b is C?3), we prove that the distance between the
distribution of X1, and v is :

O(yy,) for both the T'V -distance and the WV -distance.

As mentioned before, these results are established under general contraction assumptions made on
the dynamics of the underlying diffusion. Thus, in order to be more concrete, we recall and provide in
Section[2.3] practical criterions which imply exponential contraction (and thus exponential convergence
rate). Typically, such an assumption holds true if the drift coefficient is strongly contracting outside a
compact set (see Corollary 2.3)).

Our method of proof mostly relies on Numerical Probability and Stochastic Analysis techniques
developed for diffusion processes since the 1980’s, adapted to both decreasing step and long time
behaviour. Namely, we carry out an in-depth analysis of the weak error of the one step Euler scheme
(bounded) Borel and smooth functions, with a a special case in the latter case to the dependence of the
resulting rate with respect to the regularity of the function. Then we rely on the regularizing properties
of the semi-group of the underlying diffusion through an extensive use of Bismut-Elworthy-Li (BEL)
identities and their resulting upper-bounds (see [Bis84, [EL94]). To deal with (non-smooth) bounded
Borel functions we call upon the Malliavin Calculus machinery adapted to the decreasing step setting
relying, among others, on recent papers by Bally, Caramellino and Poly (see [BC19], [BCP20]) which
make these methods more accessible.

Our global strategy of proof (initiated by [TT90, BT96]) relies either on a partial (for TV-distance
in the multiplicative case) or a full domino decomposition of the error to be controlled, formally reading
in our long run behaviour as follows (here for the full one)

Ef(XF,) —Ef(XF,)] = |Py o Py, f(z) = Pr, f(2)]

i ’ Py 1(15% _P’yk)Panrkf(ﬂf)‘-

Depending on the nature of the distance and o we will subdivide the above sum in two or three
partial sums and analyze them using the various tools briefly described above. The paper is organized as
follows. SectionPlis devoted to the assumptions, the main results and the applications. In Section[3]we
first provide some background on our main tools, especially on Stochastic Analysis (BEL, weak error
by Malliavin calculus, having in mind that most background and proof are postponed in Appendices [Al
and [Bl and, in a second part of the section, we analyze in-depth the weak error of the one-step Euler
scheme with in mind the strong specificity of our long run problem. In Section 4} we provide proofs
for our main convergence results.

NOTATIONS. — The canonical Euclidean norm of a vector x = (x1,...,z4) € R? is denoted by
o = (af + -+ 2) /2.

= {0,1,...} and N* = {1,2,3,...}.
— || Al = [Tr (AA*)]'/? denotes the Fribenius (or Hilbert-Schmidt) norm of a matrix Ae M(d, ¢, R)
where A* stands for the transpose of A* and Tr denotes the trace operator of a square matrix.

- 8(d, R) denotes the set of symmetric d x d square matrices and S*(d, R) the subset of non-negative
symmetric matrices.

— ||| = sup,,~; |an| denotes the sup-norm of a sequence (an)n>1-
. Rd _ |f(z)—f ()]
—For f: R - R, [flLip = suP,, %

— For a transition Q(z, dy) we define [Q]rLip = supy, 7, <1[Qf]Lip-
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— [X] denotes the distribution of the random vector X.

— a, = b, means that there are positive real constants c1, co > 0 such that ¢; a, < b, < 2 ay,.

—For every z,ye R?, (z,y) = {uz + (1 — u)y, ue (0,1)}. One defines likewise [, y], etc.

— The space of probability distributions on (R?, Bor(R?)), endowed with the topology of weak con-
vergence is denoted by P(R?).

- Wy(p, 1) = inf {(S |z — y|P(dz, dy))l/p, TE PM,V(Rd)} denotes the LP-Wasserstein distance

between the probability distributions . and p’ where PW,(IRd) stands for the set of probability distri-
butions on (R? x R%, Bor(R%)®? with respective marginals z and v.

—|plrv = sup{§ fdu, f : R® - R, Borel, | f|lsup < 1} where p denotes a signed measure on
(R, Bor(R%)) and dry denotes the related distance: dry (1, v) = || — v|7v-.

2 Main Results

2.1 Assumptions

In whole the paper, we assume that b and o are Lipschitz continuous and satisfy the strong mean-
reverting assumption

(S): There exists a positive C2-function V : R — (0, +c0) such that

lim V(z) =+, |[VV|?<CV and sup |D?V(z)|, < +o© (2.11)

|z[—+00 zeR4
(Frobenius norm) and there exist some real constants Cy > 0, « > 0 and 8 > 0 such that:
(i) |b]*> < C4V and o is bounded (e.g. in Frobenius norm), (ii) (VVIb) < B—aV

Remark 2.1. e Note that (S) implies that V" attains a minimum value v > 0 (possibly at several points
in R%).

e Note that since o is bounded, (i7) is equivalent to the existence of a > 0 and 5 > 0 such that
LV < B —aV.

e Let us also remark that (2.11) implies that V' is a subquadratic function, ¢.e. there exists a constant
C > Osuchthat V < C(1 +|.%).

Under (S), it is classical background (see e.g. [EK86, Theorem 9.3 and Lemma 9.7 with ¢ = V'
and ¢ = LV] that the diffusion (X};)¢>0 (in fact its semi-group (P;);>0) has at least one invariant
distribution v i.e. such that vP; = v, t > 0. Furthermore, Assumption (S) implies stability of the dif-
fusion and of its discretization scheme by involving long-time bounds on polynomial (and exponential)
moments of V' (X;) and V (X, ). Such properties are recalled in Proposition

In all the main results of the paper, we will also assume that the diffusion coefficient o satisfies the
following uniform ellipticity assumption:

(Sﬁ)gg = 30, > 0 such that Vze R?, oo*(x) = oil; in ST(d,R). (2.12)

This uniform ellipticity assumption implies that, when existing, the invariant distribution is unique
(see e.g. [Pag01]] among others).

Finally, we suppose that the semi-group (F;)>o of the diffusion satisfies a contraction property at
exponential rate in for a given distance d on P(R%), namely



(Hy): There exist ¢y > 0 and positive constants ¢ and p such that for every ¢ > ¢,
Vo, yeRY O([XT] [XY]) < clo —yle".

In the sequel we will use (Hyy, ) and (Hrv ), i.e. the conditions related to @ = W, (1-Wasserstein) and
to 0 = dpy (Total variation) respectively. Note that owing to the Monge-Kantorovich representation
of Wi, see e.g.[Vil09], (resp. the definition of dry ), the condition (Hyy, ) (resp. (Hrv)) also reads
on Lipschitz continuous functions f : R — R (resp. on bounded Borel-measurable functions) f :
R? - R

Vit = to, [P:flLip < ce [ fluip  (resp. [Pif]uip < ce™[f]o0)-

In fact, only (Hyy, ) appears in the next theorems. Actually, by the regularizing effect of the elliptic
semi-group, we have the following result (whose proof is postponed to Appendix [C.2):

Proposition 2.1. Suppose that b and o are C* with bounded partial derivatives and that () o2 is in
force. If (Hyy, ) holds with some positive p and to, then (Hrv ) holds with the same p and t.

Remark 2.2. o If b and o are both Lipschitz continuous and (Hyy, ) holds true, then it holds true
from the origin, i.e. for tg = 0, with the same p, up to a change of the real constant c. Actually, if
f : RY — Ris Lipschitz continuous, then, for every te [0, %] and every z, ye R,

[Ef(X7) = F(XD)] < [upBEIXT = XY| < Crg, 8]yl L Linl2 — 9

by standard arguments on the flow of the SDE (see e.g. [Pag18|, Theorem 7.10]). One concludes by the
Kantorovich-Rubinstein representation of Wj. Note that for (Hrv ), the property does certainly not
extend to ¢ty = 0 since |6, — dy| 7y = 2 for any = # y.

e In Assumption (Hy) (and especially in Assumption (Hyy, )), we choose to base our main results on a
contraction property of the semi-group, in order to avoid to mix up discretization problems and ergodic
properties of the diffusion. However, we provide in Section a large class of examples where this
assumption is fulfilled: in the uniformly convex/dissipative setting as established in Corollary [2.4]later
on but also, when b is only strongly contracting outside a compact set (see Corollary 2.5). When o is
constant, one can refer to [LW16] or [EGZ19| for bounds in Wasserstein distance for diffusions. For
background on ergodicity properties of diffusions, we also refer to [BGL14, IDKZ12] or to [CCDO21]]
for the degenerate setting.

2.2 Main results

To a non-increasing sequence of positive steps denoted v = (v, ),>1 We associate the index

w = ﬁ%e [0, +o0].

" Tn+1
This index is finite if and only if the convergence of ~y, to O is not too fast. To be more precise, if
Y = %(a>0),w:0if0 <a<landw = ,Y—llifa: land w = +0if a > 1. We are now in
position to state our main result.

Theorem 2.2. Assume (f%)gg and (S) and (Hyy,) with p > w. Let v be the (unique) invariant

distribution of (Xt)¢=o. Suppose that the step sequence (vy,)n>1 satisfies (I'), that w € [0, +0) and
§1¢lv(dE) < +oo.

(a) If b and o are C* with bounded derivatives, then

Vn>1, Wl([Xffn], V) < Chon,v "yn‘ log(’yn)‘ I(x)



where C, 5~ is a constant depending only on b, o, v and 9(z) = (|z| + 1) v V3(z).
(b) If b and o are C® with bounded existing partial derivatives and if |l;1|rg TOE V(z)/|z|" > 0 for some
re (0,2] (resp. liminf V(x)/log(1 + |x|) = +0), then, for every small enough € > 0, there exists a
real constant C’!x‘z_)g': b,V > 0 such that

V=1, |[XE ] - vy, < Cerh o)

where 9(z) = V8/"(x)e L*(v) (resp. ¥(x) = V@ e L1(v) for some M€ (0, Asup/2) where Asup
is defined in Proposition [A (D))

Remark 2.3. e The parameter p does not appear in the above constants since p can be in turn consid-
ered as a function of b and o. But the constant clearly depends on it. For the sake of readability, we
will sometimes omit the dependency in the next results. The main point is that these constants do not
depend on x.

e The proofs of the above convergence rates certainly rely on ergodic arguments but also on refined
bounds on the one-step weak error between the Euler scheme and the diffusion for non-smooth func-
tions. In particular, one important tool for the total variation bound is a one-step control of the weak
error for bounded Borel functions when the initial condition is an “almost” non-degenerated (in a
Malliavin sense) random variable (ﬁ). More precisely, this random initial condition is precisely an
Euler scheme at a given positive (non-small) time and (E¢) o2 guarantees that the related Malliavin
matrix is non-degenerated with high probability but not almost surely (since the tangent process of
the continuous-time Euler scheme does not almost surely map into GL4(R)). This almost but not ev-
erywhere non-degeneracy induces a cost which mainly explains that the bound in Theorem 2.2(b) is
proportional to v' ¢ and not to | log(7y)|, as in the above claim (a). However, one could wonder about
the optimality of this bound and on the opportunity to get a bound in . Such a result could perhaps
follow from a sharper control of the probability of non-degeneracy of the Euler scheme but this appears
as a non trivial task, not achieved in [BCP20]. An alternative (used for instance in [Guy06|) is to base
the proof on parametrix-type expansions of the error between the density of the Euler scheme and that
of the diffusion obtained in [KMO2]. But relying on such an alternative would require to adapt their
arguments to the decreasing step setting and to prove that the coefficients of the resulting expansion do
not depend on the considered step sequence (H). Solving this problem would yield a 7'V bound in 7,
as can be checked from proof of the theorem.

Let us now turn to the so-called additive case, o(z) = o.

Theorem 2.3 (Additive case). Assume that b is C3 with bounded existing partial derivatives and
o(x) = o with oo™ is definite positive. Assume (S) holds and w € (0,+0). If (Hyy,) holds with
p > w and §|z|v(dz) < +00, then there exists a real constant C = C, ,~ v > 0 such that for all
n =1,

Wi([XE ,v) <C-ywd(z) and |[XE ] - V”TV < C | log ()| V()
with ¥(z) = (1 + |z|) v V%) witha = 2 for | - | v and a = 3/2 for W.
If, furthermore, liminf |, o, V(z)/|z|" > 0 for some r € (0,2] (resp. liminf V(x)/log(1 +
+o0

|z|—

|z|) = +0), then there exists a real constant C = Cy o~ v such that for all n > 1,

[IXE,] = vy < C- ()

3This result is established in Theorem 3.7 Among other arguments, the related proof relies on recent Malliavin bounds
obtained in [BCP20].

“More precisely, the main result of [KMO2]| establishes existence of error expansions reading as polynomials (null at
0) of the step but, surprisingly, with coefficients still “slightly” varying with the step. Then the authors claim that such a
dependence can be canceled by further (non-detailed) arguments.



where ¥(z) = Vzv%(x)e LY (v) (resp. 9(z) = e*V@ e L1 (v) for some Ag€ (0, Asup/2))-

The Wasserstein bound is thus proportional to -, whereas the one in Total Variation is proportional
to 7, log(1/,) or to -y, under a very slight additional assumption. Note that in our proof, passing from
Yn log(1/75) to 7y, without adding smoothness assumptions on b, results from a sharp combination of
Bismut-Elworthy-Li formula and Malliavin calculus (see end of Subsection 4.3). This bound in O(~;,)
is optimal (in Wasserstein or in 7TV-distance). Actually, explicit computations can be done for the
Ornstein-Uhlenbeck process which lead to lower-bounds proportional to -,,. To be more precise, let us
consider the a-confluent centered Ornstein-Uhlenbeck process defined by

dX; = —aXydt + odWy, Xo =0,

where «, o > 0. Then, there exists ¢, > 0 such that, for large enough n (see Section 4.6 for a proof),

2

L%

min (1, 77/ (20) ) = e

- 1
[Xr.] = v, = 200
Remark 2.4. Although, this paper is mainly concerned with the multiplicative setting, it is interesting
to compare our additive result in Theorem [2.2lwith the literature. First, note that such bounds have been
extensively investigated in the literature. For instance, one retrieves 1T’V -bounds in a somewhat hidden
way in works about recursive simulated annealing (see [GMO91]], [MP96]). But more recently, many
papers tackled this question, in decreasing or constant step settings with a focus on the dependency of
the constants in the dimension. Here, we consider the first setting and the dependency in ~,,. From
this point of view, our TV-bounds improve those obtained in [DM17] or [Dall7] (in O(\/y_n)) and are
mostly comparable to the more recent [DM19, Theorem 14] or [MFWBI19], up to logarithmic terms.
More precisely, these two papers respectively lead (in a constant step setting) to bounds in O(~ log )
or O(v+/|log~|), whereas in our work, we obtain a rate in O(+y,,) with the help of a refinement of the
proof based on Malliavin calculus techniques.

2.3 Applications

The assumptions of the above theorems hold under contraction assumptions of the semi-group of the
diffusion. Here, we provide some standard settings where the result applies (proofs are postponed to
Sections [4.4] and 4.3] respectively).

> Uniformly dissipative (or convex) setting. A first classical assumption which ensures contraction
properties is the following:

(Ca) = Va,yeR?, (b(z) —b(y) |z —y) + 5lo(z) —o(¥)|2 < —alz —yl* (2.13)

In particular, if b = —VU where U : R — R is C? and o is constant, this assumption is satisfied
as soon as DU > al; where a > 0i.e. U is a-convex. This leads to the following result which
appears as a corollary of the above theorems (its proof is postponed in to Subsection [4.4)).

Corollary 2.4. Assume (E() o3 and (S). Assume (C). Then, (Hyy,) is satisfied with p = «. As a
consequence, the conclusions of Theorem 2.2 (resp. Theorem[2.3lwhen o is constant) hold true.

Remark 2.5. When o is constant and (C,) holds true, a 2-Wasserstein bound can be directly deduced
by some discrete Gronwall like arguments based on recursive estimates of E|Xr, — Xr, |? (with
Xr, and X1, built from the same Brownian motion) combined with expansions of the one step error
similar to those which lead to the control of the LP-error in finite horizon for the Milstein scheme
(which coincides with the Euler-Maruyama scheme when o is constant), see e.g. [Pagl8l Corollary
7.2].



> Non uniformly dissipative settings. In fact, our main results are adapted to some settings where
the contraction holds only outside a compact set. The following result is a fairly simple consequence
of [Wan20] and of our main theorems (see Section for a detailed proof).

Corollary 2.5. Assume ((%)gg and (S) (in particular o is bounded). Assume that b is Lipschitz con-
tinuous and that some positive o and R > 0 exist such that for all

Vr,ye B(O,R)°, (b(x)—by) |z —y) < —alz —yl*
Then, (Hyy,) is satisfied. Hence, the conclusions of Theorem (resp. Theorem when o is
constant) hold true.

Remark 2.6. It is clear that Assumption (C,) implies that (b(z) — b(y) |z — y) < —alz — y|? for
all z, y, hence outside any compact set. Thus Corollary 2.5] contains Corollary However, the first
result emphasizes that the exponent p in Assumption (Hyy, ) can be made explicit in the uniformly
dissipative case, opening the way to more precise error bounds.

When o is constant, one can also deduce (Hyy, ) in the non-uniformly dissipative case from [LW16]
or [EGZ19].

2.4 Langevin Monte Carlo and multiplicative (multi-dimensional) SDEs

A significant portion of the paper is devoted to the multiplicative case (in particular, a significant part
of the proof of Theorem [2.2). However, in applications and in particular in the Langevin Monte-
Carlo method (whose principle is recalled below), diffusions with constant ¢ are more frequently used.
Below, we show that using multiplicative SDEs may be of interest for applications to the Langevin
Monte-Carlo method. Let us recall that for a potential V : R? — R and its related Gibbs distribution

v, (dz) = Cye V@ . \y(dx) with = jev(x) - Aa(dz),

the Langevin Monte-Carlo usually refers to the numerical approximation of v,,, viewed as the invariant
distribution of the additive SDE

dX; = —o?VV(Xy)dt +\20dWs, (2.14)

where ¢ is a positive constant (usually equal to 1). In fact, it is possible to exhibit a large class of
multiplicative diffusions which also share with the same invariant distribution v, as shown in Propo-
sition 2.6 below.

Proposition 2.6. Let V : R? — R, be a C? function such that V'V is Lipschitz continuous and
eVe L'(\). Leto : R — M(d, ¢, R) be a C*, bounded matrix valued field with bounded partial
derivatives and satisfying (Eﬁ)gg. Let (X[)t=0 be solution to the SDE

dX; = b(Xt)dt + O'(Xt)th, Xo =x, (2.15)

(W = (Wy)e=0 standard Brownian motion defined on a probability space (£, A, P)) with drift

b — _% ((UU*)VV - [i axj(aa*)ij]pl-d) '
i=l '

Then, the distribution
v, (dx) = C,e”V@ . \y(dx)

is the unique invariant distribution of the above Brownian diffusion (2.15).
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The proof of this proposition is postponed to Appendix

For a given Gibbs distribution v,,, the existence of such a family of diffusions opens the opportunity
to optimize the choice of the diffusion coefficient in view of the numerical approximation v,,. In
some cases, it is clearly of interest to introduce non constant diffusion coefficients. For instance, in
the example below, we show that the weak mean-reverting of the Langevin diffusion (with constant o)
related to a particular Gibbs distribution v, can be dramatically strengthened by replacing it by a diffu-
sion with non-constant diffusion coefficient (which is shown to be strongly reverting and exponentially
contracting).

In the same direction, in [BJM16], the authors show that the optimal constant in one-dimensional
weighted Poincaré inequalities can be obtained as the spectral gap of diffusion operators with non
constant ¢. This toy-example and the above reference emphasize the fact that considering non constant
o may help devising procedures whose rate of convergence can be more precisely controlled. Using
non-constant ¢, i.e. non-isotropic colored noises in stochastic gradient procedures frequently appears
in the abundant literature on machine learning (see e.g. [MCF15b] or [LCCC15b] among many others).
Nevertheless, investigating this problem in greater depth is beyond the scope of the paper and will be
the object of future works.

Example. Let us consider the distribution on R? with exponent x > 0 defined by

Cr

vi(de) = 1 + [z]2)%

Aa(dz) = Coe V@ N\y(dz)  with  V(z) = (d + &) log(1 + |z|?) + 1.

By (2.14) applied with o = I, the distribution v, is the invariant distribution of the one-dimensional
Brownian diffusion,

Y;

Let £, denote the infinitesimal generator of this SDE. One has

(2(d+ k) + Dy|> -1 (2(d + k) + 1) (d + k)

L,V (y) = —|VV(y)P+iTe(VPV (y)) = —(d+r) e ~— o

as |y| — +o0. Hence, the diffusion cannot be strongly mean-reverting since
L V(y)—0 as |yl — +oo.

On the other hand, applying now (Z.14) applied with o (z) = (1 + ||?)"/2I,, the distribution v, is also
the invariant distribution of the Brownian diffusion

dX; = —(d + K — 1)Xtdt +4/1+ |Xt|2 dW; (2.16)
whose infinitesimal generator £ satisfies, when applied to the functions W, (z) = (1 + |z[?)%,

ace (0,1],
L Wy(z) ~ —a(2(d+ k) —1—2a)(Jz* +1)* as |z] - +o0.

Hence, one can easily deduce that, strong mean-reversion (S) holds for W, iff « < d + k — %

and o € (0,1] (in particular, this is always true for « = 1 when d > 2). Furthermore, setting
b(z) = —(d + k — 1)x and using that z — (1 + |w\2)% is 1-Lipschitz, one also remarks that

() ~ b |2 =) + o)~ o2 < (@4 -1+ 5 ) o= P

so that (C,) is satisfied as soon as & > 1 — 4. Hence, for (2.16), (Hyy,) and (S) hold true for any
k> (1 —2)4 (true for any £ > 0 when d > 2).

11



2.5 Roadmap of the proof

The sequel of the paper is devoted to the proof of the above theorems. The aim of the next Section
is to recall or provide tools used to establish our main results: thus we recall in Section [3.1] basic
confluence properties, the Bismut-Elworthy-Li formula (BEL in what follows), Then, in Subsection[3.2]
we provide a series of strong and weak error bounds for a one-step Euler scheme which will play a key
role to deduce the results (see also Appendix [A). Finally, we state in Subsection a general result
on weak error expansions for non-smooth functions of the Euler scheme with decreasing step under
an ellipticity assumption which relies on Malliavin calculus. The proofs of both Theorems [2.2]and 2.3
are divided in several steps and detailed in Section 4] some parts of the proofs are postponed in the
Appendices A, B, C and D (to improve te readability).

3 Toolbox and preliminary results

Throughout the paper we will use the notations

S(x) =14+ |b(z)| + |lo(z)]|] and Sppe. . (x)=C

p,b,o,...

S(z) (3.17)

where C) -, .. denotes a real constant depending on p, b, o, etc, that may vary from line to line. These
dependencies will sometimes be (partially) omitted.

3.1 BEL formula and differentiability of the diffusion semi-group

We now recall the classical Bismut-Elworthy-Li formula (see [Bis84, [EL94] [Cer00]]), referred to as
BEL formula in what follows.

Theorem 3.1 (Bismut-Elworthy-Li formula). Assume b and o are C* with bounded first order partial
derivatives. Assume furthermore that (EX) o2 holds. Let f : R — R be a bounded Borel function.

Then, denote by o' the right-inverse matrix of o. Then, for every t > 0, the mapping = — P;f(x) =
E f(X7) is differentiable and

t

1
VoPf (@) = EVLf(XF) = VLE[f(X7)7 f (o(x2) 71y ) aw | (3.18)
0
where (Ys(x)) s>0 stands for the tangent process at x of the SDE (1)) defined by Yt(x) = dfj, t=0.

Moreover the above result remains true if f is a Borel function with polynomial growth.

The proof for unbounded f is postponed to Annex

Proposition 3.2. (a) Let f : R? — R be a bounded Borel function. Let T > 0. Then for every
k =1,2,3, there exist a real constant Cy, depending on b and o (and possibly on T') such that,
Ck

2 1 f lsup- (3.19)

Vte (0,T], |0xPif(x)] <
agt>

(b) Let f : R* — R be a Lipschitz continuous function. Let T > 0. Then for every k = 1,2,3, there
exist a real constant C}, depending on b and o (and possibly on T) such that,

Cl
k L [fLipS () (3.20)
agt 2

Vte (0,T], |0uPf(z) <

The proof is postponed to Appendix
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3.2 One step L”-strong and weak error bounds for the Euler scheme
Strong error.

Lemma 3.3 (One step strong error ). Let pe [2,+00). Assume b and o Lipschitz continuous so that
(X7F)i=0 is well-defined as the unique strong solution of SDE starting from xe R%. Let (X ’x)te[o
denote the (continuous) one step Euler scheme with step v > (O starting from x at time 0.

7]

(a) For every te [0,7],

+ t 1/2
IX7 — X7, < [l jo X2 — lyds + Cylo]uip (jo IxT - :czds) |

where C,, is a positive real constant only depending on p.

(b) In particular, if o(x) = o is a constant matrix,

| — X"

t
»< [b]upfo X2 — alyds.

Lemma 3.4 (One step strong error II). Assume b and o Lipschitz continuous. Let 7 > Q.
(a) pe [2,4+0). The diffusion process (X[')i=o satisfies for every t€ [0,7]
|XF = zlp < Sappon(2)VE (3.21)

where the underlying real constant Cq 1, 5 depends on b and o only through [bvip, [0|Lip. As for the
one step Euler scheme (X, )0 with step v€ (0,7], we have

Vte [0,7],  [X7C — 2]y < Sappos(@)VE (3.22)

(b) Let pe [1, +0). The one step strong error satisfies, for every v (0,7] and every te [0, 7],

ST O |Li
IXF — X7, < Sapuapon(@) (%[b]upﬁ il }%) : (3.23)

(c) Let pe [1,+0). In particular, if o(x) = o > 0 is constant, then, for every v > 0 and every
te [0,7],

Hth - Xt’%x p < Sd,PV2,b,U,’_Y<x)t3/2' (3'24)

Both proofs are postponed to the Appendix [A.2l

Weak error. We first establish a weak error bound for smooth enough functions (C?3, see below)
with a control by its fist three derivatives. Then we apply this to the semigroup P; f where f is simply
Lipschitz to take advantage of the regularizing effect of the semi-group.

Proposition 3.5 (Weak error for smooth functions). Assume b and o are C* with bounded first and
second order derivatives. Let 7 > 0. Let g : R* — R be a three times differentiable function.

(a) There exists a real constant Cap,o5 > 0 such that, for every e (0,79],

IE [9(X)] — E[g(X]| < Sap.on(2)*7*P14(2) (3.25)

)

where ®1y(z) = max(|Vg(@)l, |D2g(@)], | supeecs ) 1D*()| | supeegexe) D900 )
and (a,b) ={Aa+(1—=X)b, A€ (0,1)} stands for the open geometric interval with endpoints a, b.
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(b) If o(x) = o is constant, the inequality can be refined for every € (0,7] as follows

E[9(X2)] —E[9(X2)] — TT(g,b,0)(«)]
<V Sap0q(2)*[Vg(@)] + 777 P2, (2)Sap,0n(x)° (3.26)

where

Tg,b0)(x) = . @, 9@)((00%): Vb)) (x), (3.27)

1<i,j<d

Lo 1D L)

€lz,X

and 5 4(x) = max <||D2g(x) ,

Proof. (a) By the second order Taylor formula, for every y, z € RY,

1
9(z) — g(y) = (Vg(y)|z —y) + JO (1 —u)D?*g(uz + (1 — u)y)du(z — y)®*

where, for a d x d-matrix A and a vector u € RY, Au®? = (Aulu). For a given = € RY, it follows that

1
9(2) —g(y) = (Vy(z)|z —y) + (Vg(y) — Vg(x)|z —y) + L (1 —u)D*g(uz + (1 — u)y)(z — y)®*du
= (Vg()|z —y) + (D*g(x)(y — z)|z — )

1
T fo (1 — w)DPg(uy + (1 — W)y — 2)®(z — y)du

1
+ f (1-— u)ng(uz +(1— u)y)du(z —y)®2.
0

Applying this expansion with y = X7 and z = X'EY” , this yields:

E[g(X2) - g(X2)] = (Vg(@)|E[XZ — X2]) +E[(D%g(a)(X2 — )| X2 — X2)]

1 —
+E {L (1- u)Dgg(quf + (1 —w)z) (X7 — z)®% (X7 — Xx)du}

1
+ L (1 —w)E[D?g(uXy + (1 —u)X5) (X5 — X5)®*]du.

NG J

=:Ay4

Let us inspect successively the four terms of the right-hand member.
Term A;. First,

E[(X] - X2)] = B f " (b(xXs) — b(a)) s = L ! L CE[Lh(XT)duds,  (3.28)

0
Since b has bounded partial derivatives, |Lb;(z)| < Cy o (|b(z)| + |o(2)]?) so that
(Vg(@)|E[X5 = X3D| < [Vg(@)[[E[X] - X7]| < Coo¥(2)|Vy(2)]y?
with

U(z) = sup E[[b(X])|+ |o(XF)[*]. (3.29)

0<t<y
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Now note that

U(x) < (|b(2)] + 2o (@)[?) + [bluip sup [ X7 — | +2[o]E;, sup | X7 — |3

<t<¥y <t<¥y

(Ib()| + 2o (@)*) + [blLipCap1,0,591 (@) + [0]F1pCap,2,0,55 ()
Sipoq(x)? (3.30)

(where real constants Cy j, » 5 come from Lemma[3.4).

<
<

For the sake of simplicity, we omit the dependence in z in the notations of the sequel of the proof.

Term Ay. Temporary denoting by u1, . . ., uy the components of a vector u of R?, we have for every
i,je{l,...,d},

2] < D) (0w, 9(@)|[EL(X, — 2)i(Xy — X5)]]

1<i,j<d

with  E[(Xy —2)i(Xy = X5);] = —B[(Xy = X3)i(Xy = X5);] + B [(Xy = 2)i(Xy — X5)51]-
By Lemma[3.4{c), we deduce the existence of a positive constant Cj, ;5 such that
B [(Xy = X5)i(Xy — X))l < E[IX, - X7|2] < Sb,crﬂ‘/(w)z’Yz'

On the other hand,

_ _ Y gl
(X5 —2)i(Xy — X5); = (v0(z) + o(z)W,), (f (b(Xs) — b(x))ds + f (0(Xs) — a(m))dWs> ,

0 0 7

hence (using that the increments of the Brownian Motion are independent and centered),

E[(X,Y —z)i( X, — Xw)j] = ybi(z f f Lb;( du + EUO (o(x)W,)i(b(Xs) — b(w))de]
+E|(olo)ws), (fo (0(X) - o)) |. (331)

By the same argument used to upper-bound A;, we first get

J J Lh;( duds‘ Cy o U () [b(z) 7

where W is defined by (3.29). Then, it follows from Cauchy-Schwarz inequality and (3.21)) that

E [|(o(@)W,)i(b(X) =b@);[1 < | Y ou(@)Wi] [((X,) = bla));

1<j<q

< |oi (@) [BlLip| Xs — 22 < [bluipllo (@) Sa,2,6,0,5 (@) /75
Hence, as Sg \/sds = %73/ 2 one has

‘E UV(U(SC)Ww)i(b(Xs) - b(x))de] < Cazpoalbliplo(@)]|S(@)y?

0

For the third term in the right hand side of (3.31), we deduce from Itd’s isometry that

e[ ([ o) - o) |

0

d_
Z L E[oix(x)(ojr(Xs) — oji(x)]ds

d
Z f f [Loji(Xy)]duds.

k=1
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Since the partial derivatives of o are bounded, we again deduce that this term is bounded Cj |0 ()| ¥ (z)72.
Finally, collecting the above bounds yields

| 42| < Cyommax (| D?g(2)], |Vg(x)]) max (S(x), ¥(2)) (1 + lo(@)] + vIb(z))7*.

Now, we focus on As:

[As| <3E| sup [DPg(O)[IXT — 2*| X" — X7||.
¢e(w, X2)

By (three fold) Cauchy-Schwarz inequality and Lemma [3.4{(b)

Al <3| sup | D3gle H X® — 2|2 X2 — X2,
43| < 3 §G(M%C)H O, 1%5 =zl X3 1
<3| sw D% CarvosSia)s™ (3:32)
fe(z,X2) 4

Note that the power 3 in b (and o) comes from this term. To conclude the proof, let consider Ay4:

Ad <3| sw D)l | X - X3 < “hapes D&, S(2)*.

ge(X’?yzv*X'Y’z)

sup |
te(Xz,X2)

(b) First note that the third term in the right hand side of (3.31)) vanishes since o is constant. Secondly,

note that using the improved bound for | XJ* — X || (in v*/2) from Lemma[3.4{(c) in that setting, >

can be replaced in the above bound for | A,| by 7%/

Let us focus now on the second term in the right hand side of (3.31)). We write

Y Y S
| Wil x0) = ) ds = [ (oW [ by (x)duds
0 0 0

(oW2); fo (Vb (XZ) — Vb (x)|odW,)ds.

n f(:(avvs)i(wj (@)loWs)ds + fo

We inspect these three terms. Using that W has independent increments, we get
E [ LW(UWS)Z- LS Ebj(Xff)duds] = Lﬁ/ f: E [(aWu)iﬁbj (XS)]duds
so that, by Cauchy-Schwarz inequality,
[ ] Lot xilauds| < [ 1owailaloby (XDladuds

< C|Wy ool (1 + sup [B(XT)]2)77/?
ue(0,7)

On the other hand, noting (00); = [(00)}]1<k<d>
Y 2
E L (Wi (Vb5 (@)]oWs)ds = L-((00*):[75;)

Finally, using Itd’s isometry and the boundedness of second partial derivatives of b, we get
Y s Y &

B[ W [ (Ve - Ve @loaw)as| = | [ E[eWa): | (95,050 - O @)las)|as
0 0 0 0

Y s
< oo [ [ 12~ aladuds < 42725 (0)
0 JO
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which completes the proof. O

Combining the above results with Proposition 3.2(b) and Lemma[A.2] yields the following precise
error bound for the one step weak error.

Proposition 3.6 (One step weak error at time t). Assume b is C> and o is C* with bounded existing
partial derivatives and |b|*> + ||o|* < C - V. Assume that (Sﬁ)gg holds. Let T, 5 > 0.

Then, there exists a positive constant C' = Cy, ; » 15,v such that, for every Lipschitz continuous
function f and every te (0,T],

Ve (0,9],  [E[RS(X]N)] = E[RS(XD] < CflLipy*t V(). (1 + [b(2)]* + o (2)]°).

Proof. We apply Proposition 3.5(a) to gt = P, f(z) with ¢ > 0. It follows from Proposition [3.2/(b)
(see (3.20)) that the function ®; 4 in (3.23) satisfies

[f] Lip
t

q)lvgt (.Z') < Cbﬁ?ﬁo max (S(‘T)7 || sup S(é.) 2

ge(X3,X3) ge(z

sup S ||)

< Cbpygo [f]tLip V% (33)

owing to Lemmal[A.2lin Appendix [Aland where we used that S < C’b,UV%. Consequently

[E [P f(X77)] = E[PF(XI| < Clfluipy? (1 + [b(@)P + [o(2)P) V2 (z)t !
< Clflupy*t V3 (2).

3.3 Domino-Malliavin for non smooth functions

For the control in variation distance, we will need a weak error estimate for Borel functions of the one
step Euler scheme starting from a “non-degenerate” random variable to produce a “regularization form
the past”. It mainly relies on a Malliavin calculus approach. In the theorem below (hy,),>1 denotes a
non-increasing step sequence. Set t,, = ZZ:I hy, (and tg = 0) in what follows.

Theorem 3.7 (Domino-Malliavin). Assume that o is bounded and satisfies (0 )gg, that b has sublinear

growth: |b(z)| < C(1 + |z|). Assume that b and o are CO-functions with bounded partial derivatives.
Then, for every e > 0, T > 0 and h > 0, there exists Cpp, . > 0 such that for any hy € (0, h) and any
n = 1 satisfying % < t, < T and any bounded Borel function f : R — R,

[Py © -0 Phyy © (Ph,, = P,) 0 f(2)] < Opy (14 [2) | f lsuphi ™. (3.33)

Remark 3.1. With further technicalities, it seems that we could obtain 1 + |x|% instead of 1 + |z|5.
Nevertheless, since the degree of the polynomial function involved in the result is not fundamental
for our paper, we did not detail this point (more precisely, the improvement could be obtained by
separating drift and diffusion components in the Taylor formula (B.48]).

4 Proof of the main theorems

The starting point of the proofs of both claims of the main theorem is to decompose the error using
a domino strategy. Let us provide the heuristic by only considering a given function f : R — R
(typically, a bounded Borel function when dealing with the total variation distance or a 1-Lipschitz
continuous function if dealing with the L'- Wasserstein distance W;). In this case, we can write:

‘Ef(Xlg“C ) EfXF Z k71O(P“/k_p“fk)oprnfrkf(x)‘-
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4.1 Proof of Theorem 2.2 b) (Total variation distance)

Let ¥ = ||| = sup,>1 n- Let T" > 27 be fixed. We may assume without loss of generality (w.l.g.)
that T',, > 27" (). Furthermore, under ((%) , (Hrv ) holds for any to > 0 owing to Proposition 2.1}
so we may set tg = 7 throughout the proof

For the TV distance, the idea is then to separate this sum into two partial sums, namely,

N(,—T)

[Ef(XF,) - Ef(XF,)] <
k=1

+ Z ‘p’Ylo"'op“/kﬂo(P’Yk_p’m)oprnfrkf(:n)"
k=N (Tp—T)+1

where f : R¢ — R is bounded Borel function.

These two terms, say (A) and (B) respectively, correspond to two different types of weak errors:
first the “ergodic term” where the exponential contraction of the semi-group can be exploited and weak
error results for smooth functions (here P — f withT',, ="y, > T) can be used (see Proposition 3.6)),
then the second term where the smoothlng effect of the operator Prn—rk (I', =T € [0,T7]) is no longer
smooth enough leading us to establish a one step weak error expansion for bounded Borel functions
(see Theorem [3.7)).

Term (A). Let ke {1,...,N(I', = T)}. Then I',, — 'y, > T" and

‘P’Y Fn ka<x) P OPFn ka(l‘)|
‘PWOPTOPF —r—1/2f () — ’kaPTOPF _rp-1/2f (@)]
(4.34)

= |EPr,_r—1/2f (B%) —EPr,_r,—7/2f (E})]
< ce T £l B 1 X5F — X (435
2 2

x

where we applied (Hpv) with ¢y = yattime ¢t = T',, — 'y — % = % ¥ = 0, the bounded function
d

X T”k (having in mind that
2

X
fand 2 % and Z7 are any random vectors such that =7 z 4 x TW’C and Ei
X7 denotes the solution of (SDE) (L.I)) starting from x at time t).

Thus, it follows from the definition of the L!-Wasserstein distance that
’P“/kO Tp—T} f(z)— wko T'n-T}, f(x )‘ < C'pTe p(ln=Tk) Hf”supwl( 'YkOPT (z,dy), 'YkOPT (z, dy))
with C, 17 = ¢, ePT/2. On the one hand, the Kantorovich-Rubinstein (see [VilQ9]) representation of
the L'-Wasserstein distance says that
Xcv

Xfl:
Wi (Py, © PT (z,dy), Py, oPT (z,dy)) = ’ ]Sup 1E[g(X%wc) B g(X%wc)]
9lLip<

= sup E[PZQ(X?/IC)_PZQ(X’?I@)]
[lp<l 2 i

Now, it follows from Proposition [3.6]applied with ¢ = T'/2 that

E[Prg(X3,) — Pro(X3)]| < [hippCooay12V(w) < O gy 11 2V @)

*When I', < 27, we can artificially upper-bound |E f(XF, ) — E f(XF )| by 2 Hstup%(,%QT)fyn.
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so that W, (P,, o Pg , P’Yk o P%) < Cl;,a,gO,T7H’YH’Y]3V2 (z). Hence

[Py 0Py f(x) =Py oP. . f(z )\ Cho,00.T, 7€ PEn=T)| f | upy2V 2 (). (4.36)

Finally, integrating with respect to PAY1 o---oP, | yields

‘P% oo Py o(Py — pwc) © Prnfrkf(x)’ < Cb,o,ng,H’YHe_p(Fn_Fk)Hstup’Yl% SZQEE Vz(XI:Ee)

< ooy 1y "7 flaup 2 VA (@)

owing to Proposition [A.Il(a) (and where the constant C'_ may vary from line to line). As w < p,
Lemmal[A_J3|(7) implies the existence of a constant C-, > 0 such that

N(Tn—T)
Z er—p(Fn—Fk) <Cy Y
k=1
that |(4)] < C\Y V2
so that |(A4)] < b0'0'07Tﬂy||stup/7n (@).
Term (B). Let us deal now with the the second term, when k € {N(I';, — T') + 1,...,n}. We
assume that n is large enough so that I';, > 27" and temporarily set ¢ = Pr, 1, 7/2f. We apply
Theorem 3.7l with t; = I'y(r, —o7)4+¢ — U n(r,—27)+0> £ = 1, 2T (instead of T'), h = y and ¢ € (0, 2).
Owing to the very definition of N(¢) and the fact that 7, < 7 for every £ > 1, one checks that
Ly —TCne,—ory+1 < T — (T — 27) = 27 and
Lo =Tnep-ory1 2Tn =T =T =2T + |y]) 2T =5 = T/2.

Hence, it follows form (3.33)) that

‘P’YN(Fn—zT)H ©--0 P’kal o (Py, — P’Yk)‘p’f(x)‘ < Ce(1+ \x| )’YN (Tp—27) +1H90kHSUP'

Asa consequence

’p’ﬂ O+ 0 p"/k—l © (P’wc - P’m)‘:@k(aj)’ < Ce S£l>111)E<1 + ‘Xl“g| )7]2\7_(16“71,27“”1“]0”51113'

Finally as the step sequence satisfies @ < p < +0 , Yy, —21)+1 = O(7n) (see Lemma[A.3(ii)),
one has

[Py o 0Py o(Py, — Py )or()] <C. . 331;13(1 + 1XE, )92 fllsup-

Ifc,, = liminfj, % > (, it follows from Proposition [AT}(a) that

supE (1 + |Xf££|8) </

é?l V,r

supE (1 +V¥"(XE)) <C, (1+V(@)¥"). (4.37)
=1 Y

Now, by the definition of N (T',, — T') and using again that to < p, one has

n n

2— 1- 1= f 1=
Z Vi S UNE-T)+1 Z M S UNE )T S Oy T o™
E=N(Tp—T)+1 k=N(T',—-T)+1

Applying (Hrv ), Proposition 2.1 (which allows to choose ¢ty = 1 > 0) and using that v has a finite
first moment, we have for the diffusion and for every n > 1,

drv ([XTF, ], v) = f v(dy)drv ([XE ] [XP, 1) < )y v(]z — e Pn

< ey vllz =) (I + v(] - ) e ™
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where we used that v is invariant. Collecting all what precedes, we get for large enough n,

drv ([XE, ], v) < drv([XE, ], v) + drv ([XE, ], [XF,]) < Cho )t (2) (7™ + 7 4 )

Co P (@)
withd(z) = Cp 5 || V87 (x) (since V¥ dominates both V2 and |2|) and where we used LemmalA 3|47 )

with @ = 1 to control e ' by 7,. As dry is bounded by 2 this holds for every n by changing the
constant Cy, , | if necessary.

<
<

o]

If lim inf |, 4o V(2)/log(1 + |z|) = +o0, it follows from Proposition [AT(b) that 1 + [z[® <

oV () AoV(XE)
V2o

may set ¥(x)

c for any fixed A\g € (0, Aqup] and that sup,,»; Ee

= eAOV(x)

< Gy, )\(werV(:c) so that one
since this function also dominates V'(z) and |x|.

4.2 Proof of Theorem 2.2l a) (Wasserstein distance)

Let f : R? — R be a Lipschitz continuous function with coefficient [ flLip- The idea is now to separate
this sum into three parts, namely, for a given 7" > 0 (ﬁ).

N(n—T)
‘Ef(X%n)_Ef<X%n)’< Z ‘P’Ylo"'OP’kalo<P’m_P’Yk)oprnfrkf(w)’
k=1

n—1

+ Z ‘P’Ylo"'OP’kalo<P’w@_P’Yk)opr,rrkf@)‘
k=N(Tp—T)+1

+’P’Y1 O”’Op’ynﬂ O<P’y

n _P'yn) of(w)’

The three terms on the right hand side of the inequality denoted from the left to the right (), (b) and (c)
respectively, contain three different types of weak errors: respectively, the “ergodic term” (a) where
the exponential contraction of the semi-group can be exploited, the “semi-regular weak error term”
(b), where the smoothing effect of the operator P, Tn—Tye [Yn, T']) helps us in controlling the
weak error related to the function z — P, . f(z) and finally, the “less smooth term” (c¢) where the
weak error applies directly on f. The control of each term then relies on quite different arguments.

— Term (c): first, it follows from Lemma[3.4(b) with p = 2 and 5 = |~| that

Py, f(z) = Py, f(2)] < [fluipl X5, — X2 |2 < [flLipmPi(z),
where W1(z) = Cgp g 4| (1 + [b(z)] + [lo(2)]) < Cvape,y - V(z) withC = Cy g4 54| > 0
Consequently, it follows from Proposition [A.1](a)

(o) < C[flLipmEV(XE ) < C[flLipmm zliISEV(X%k) < C[flLipmV (2)

where Cy, 4,5~ > 0 (may vary in the above inequalities).

— Term (b). Let k€ {N(I', — T) + 1,n — 1}. It follows from Proposition applied with
t =T, — Ty and 5 = ||| so that v, < 7 that

B 2

0
[Py 0o Pr, oy f(x) = Py o Py o f(2)] < Chaly) [Flupg—F- sl A €))

%Once again, we assume w.l.g. that I',, > T keeping in mind thatif n € {1,..., N(T)}, |E f(X{ ) — Ef()?ffnﬂ can
be artificially controlled (for instance) by C[f1Lipy (7 ¥n With C = 2(1 + sup,,, E[|XE, [] + sup,,-, E[| XF, |])
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which in turn implies (up to an update of the real constant Cj, 5 )

n—1

2
5
[(0)] < Cho,y) V() ) ﬁ
k

k=NTn—T)+1

— Term (a). We adopt a strategy very similar to that of the proof of Theorem 2.2/(b), namely we get a
variant of (4.33)) where | f||sup is replaced by [ f]rip i.e., for n large enough,

Py, 0P, . flz) =Py, 0P F(@)] < cem T T T/ F) B XSF — X
2 2

Tp—T}

: : . —z d X5 = d X5 o .
owing to (Hyy, ) applied at time I';, — ', — T'/2 where Zf = X ™ and =} = X, "*. Finally, still
2

2
following the lines of the proof of Theorem 2.2|(b), we obtain for a constant Cho,0, 0Ty > 0
|p71 O P’Yk 1 (P“/k - p“/k) © Prnfrk f($)| < vaavgo,Tv’Yeip(Fnirk)[f]Lip713V2(33)'

On the other hand, applying (Hyy, ), we have for the diffusion

Wi (X, v) = fRd v(dy)Wr ([XE,], (X2, 1)
<ev(z = e < clz] +w(] - ]))e

so that we obtain:

N(T,—T n—1

2
) o 5
Wi([XE,],v) < Chpovinjyd(@) [ e + Z 72 A ) T
k=N(Tn-T)+1 " ~F

with 9(z) = (|| +1) v V2(z). Asw < p, e Pl + 21 <h<N(Tn-T) y2e=PTn=T%) < C', like in the
proof of claim (b), owing to Lemma -(zz) (3i). As for the last sum, one proceeds as follows: still
using @ < +00, one checks that sup,,~ <n-—1,

7

I, —T'j_ I, —T
n k-1 _1n k+’Yk:1+ Yk <14 Yk <,
Fn_rk Pn_rk Fn_rk Vk+1

Consequently (still with Cy > 0 a real constant that may vary from line to line),

n—1 2 n—1

2

Z Tk o C Z Tk
Tk <, _ e
k=N(Tp—T)+1 I =Tk k=N(Tp-T)+1 I =Tk

Thn-1 1
< Cy - YNET,-T) J dt
'nen-1) Lp—t
< Cy -plog (%) < Cyynlog <%) (4.38)

where we used in the second line that (,,),>1 is non-increasing and a classical comparison argument
between sums and integrals and, in the third line, Lemmal[A.3|(i¢). This completes the proof.

4.3 Proof of Theorem

We will follow the global structure of the proof of Theorem[2.2](a) for both distances. However, taking
advantage of the fact that when o is constant the distributions of the diffusions and the Euler scheme
on finite horizon T" are equivalent, we will replace Theorem [3.7 by a more straightforward and less
technical Pinsker’s inequality, as developed in the next proposition.
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Proposition 4.1. If b is Lipschitz continuous, o(x) = o € GL(d,R) is constant (so that it satis-

fies (EX) o2 ). Then there exists a real constant Kk, > 0 solution to ue" = HQU—OH and a real constant

C = Gy such that, for every ye (O, b’{—") and every bounded Borel function f : R* — R,

[blLip
Ep £(X2) — Ep f(X2")] < [ flsupC - V().
Proof. Set .
Q= f o~ (b(XF) ~ b{x))dW,) B =L,
0 Y

where £ denotes the Doléans exponential.
First we prove that QQ, is a true probability measure.

t
| X7 — x| < f |b(XT) — b(z)|ds + |b(z)t + oWy
0
t
< [lusp f X7 — alds + |b(a)[t + oW,
0
where W} = supg<s<; |Ws|. By Gronwall’s lemma,
X7 — 2 < et (|b(z) ]t + W)
so that
! 2 2[b ! 2
f |XP — a2t < e []Liﬂf (|b(z)[t + oW}) dt
0 0

3
< e (1b(@)2(1+ 1/m) T + (L + my(W3)?)),

where the second inequality holds for any n > 0. By Novikov’s criterion (see e.g. [RY99]), it easily
follows that QQ,is a probability measure if for some small enough 7 > 0,

2
E exp (352X 2(1 4 )y (W)2) < +o0.
90

The Brownian motions W!, - -, W% being independent and (W2)? < ((Wl)fy)2 +- 4 ((I/Vd)*)2
it is suffices (in fact equivalent) to show that

. ol .
E exp <%[b]fip€2[bh“”%(1 +m)y(WH)3)?) < +eo.

o)
Now, it is classical background that

EW? < WD 4 B AW

where B; = Supg<s<; Bs. As —W is a standard Brownian motion and W, £ NG | B1|, we derive that,
if \t < 1, then
2

e
V1—=2M

EAWE < 9R MBE — +oo

Consequently, the above measure Q- is a probability if
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which is equivalent to

K
0<7vy< =2,
[b]Lip
where k, is the unique solution to u e* = ”g—o By Girsanov’s Theorem

o

t
B, =W, + f o ' ((XZE) —b(x))ds isa Q,-M.B.S.
0

so that, under Q,,
X! =b(z)t+ 0By, te [0,7].

Hence, for every bounded Borel function f : R — R,
Ep f(X?) = Eq, Ly f(x +7b(z) + 0B,) and Ep f(X)*) = Eqg, f(z + yb(z) + 0B,).

It follows from Pinsker’s inequality (see [CBLO0G]) that
dry(P,Q,)* < 2f log (L7")L;'dQ, = —2f log L. dP
Q Q

— ! -1 Y —b(x A/o'f1 2 —b(w 28
— 25| [ (o 00 - v + [ o 00x2) - v s

bl12.
< []I;pf Ep| X7 — z|%ds.
0

9y

It follows from Lemma [3.4] (a) (see (3.22)) and the fact that So(z) = (1 + |b(x)| + |o]|) that for
s€ (0, o /[b]Lip)
E]P |X;E — 33‘2 < C{)7|‘0_H5up <\b(x)\2 + 1>S

Hence

[b]%i 72
drv (P, Q)% < Cf ) — (1b(@)* +1) =
oy

so that, for ye (0, K5/[b]Lip)s

drv(P,Q,) < C'go,b,|\ousup,vv(ﬂ?)l/2’y

Finally, for a bounded Borel function f

[ £(X2) ~Ep f(X37)] < | flsupdry (B, Q) < [FlsupCl pjopup V@) Py O

g()v

Remark 4.1. In fact we could avoid to call upon Pinsker’s inequality by noting that

< Pl (f LSHZXs—ands) .
gy 0

Then the conclusion follows from Lemma [3.4] applied with p = 4 (after having classically controlled

SUPQ< s | Ls | 4)- The resulting constants are (probably) less sharp.
ip

i
Bo, Ly 1] = Bely=1| = B | " Lo~ (40x0)—b(a)
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Proof of Theorem (Wasserstein distance). Let T° > 0 be fixed and let n be such that I';, > T'.
Like in the proof of Theorem 2.2)(a) (see the footnote), we may assume that 7 is large enough so that
I',, > T. Then we write for a Lipschitz continuous function f : R* — R

N(Tn—T)

’H‘Ef()(lg“ﬂn)_IE':JC()ZIQEn)‘< Z ‘P'no”'op’wcflO(P’Yk_p’m)oprnfrkf@)‘
k=1

+ ‘]5% o 'OPVN(FWT) © (PFR_FN(F7L—T) = Pyyir om0 'Op%)f(x)) ‘

STEP 1. First we note that

Pyo--oPyy 5 O(PFn—FN(Fn—T) ~ Py © 'OPF"_F”*)f(w)‘

B E[f (XXIEN(DLT) > _ f<XX1£N(FnT) >]

- Fn—LnNr,-1) Fn—LnNr,-1)
. 3 _ v -

< [f]Llp j |XF7L_FN(F7L—T) Xrn_FN(F,,LfT) |]P>XF7L7FN(F7L7T)
. 12(a\p .

< [f]LIPCTHhusup INEn-T)+1 jV (g)Pch“canN(Fn—T) (dg)

1/2 (v
< [f]LipCTJr\h\\sup /}/N(Fn—T)E Vv / (X%N(r‘nf’]“))

< [fluip T+|vlsupsY VN(anT)Vl/2 (5’3)7

(d¢)

where we used Proposition [A.l (a) in the last inequality and, in the second one, the fact that the
Euler scheme with decreasing step is of order 1 when o is constant. This expected result follows by
mimicking the proof of the convergence rate of the Euler scheme with decreasing step from in [PP14]]
adapted by taking advantage of the one step strong error from Lemma[3.4](c) with p = 2 (ﬁ]). We know

.. . r _ . r _
from Lemma[A3|(i7) that lim sup,, w < limsup,, N(%T) < +00 so that finally

n

’P“/l o .OP'\/N(Fn*T)O(Prn*FN(Fn*T)f(':L')_P’\/N(Fn*T)‘FlO‘ ~oPp, -1, f(x))’ < [f1LipCr., V2 (:E)

STEP 2. Let ke {1,...,N(I';, = T')}. Using that I';, — I'j, > T and adapting the treatment of term (A)
in the proof of Theorem 2.2/(b), we have

’P“fl o---oPy  o(Py —Py)o P r, f(:E)’ < Cbmgo,Trveip(FniFk)[f]Lip713V2(33)'

Thus, it follows from the Kantorovich-Rubinstein representation of the }V; -distance

N(T,—T)
WI([XE, ], v) < Cpory - () e Pl 4, + Z r2e™PTn=Tk)
k=1

with 9(z) = (V?(z) v (|z| + 1)) and one concludes that, since p < @,

Wl([X%n], V) < Cb,o,T;y . ’y,ﬂ?(x).

"Thus, one shows for the Euler scheme with decreasing step, say 6, with ¢, := &1 + --- 4+ 8, — +00, that for every
T > 0, there exists a real constant (not depending on (,,)) such that

x v T
‘ kgiangth - X/ |

, S COror(l+ b(@)| + o (x))d1 < Coor V()01
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Proof of Theorem 2.3/ ('V" distance, first 7V-bound). First note that (£¢),» is satisfied so that (Hrv)
holds by Proposition 2.1l Then, we will use (3.26]) from Proposition 3.3]in ts less sharp form

IE[g(X2)] - E[g(X)]] < v*max (| Vgl v [ D?gllo) Sap,05 ()
75/2 max (HngHsupv HDggHsup)Sd,b,o,’y(x)g-

We rely again on the three-fold decomposition used for the proof of Theorem 2.2)(a), this time with
f : R% - R a bounded Borel function.

We still consider 7' > 7 with 4 = |/|. First, we may assume w.l.g. that n is large enough so that
I, > T and v, < ['i]—" (coming from the above Proposition [4.1)) since for n < N(T') v ng (with

Tno+1 < ﬁ < o), We may artificially bound |E f(X“"/’ ) — Ef(Xffn)| by 2||f\\sup7;,b)vn07n.
Then we may apply Proposition 4.1] and Lemmalﬂrespeotlvely with steps 7,,.

Term (a). Let k€ {1,...,N(I';, — T'}. The proof used in Theorem 2.2(b) with o non constant for
term (A) still works here without modification (see in particular (4.36))): it follows from (Hyy, ) (which
implies (Hrv ) with ¢y = 71 by Proposition 2.T)) that

‘ Fn Iy, f(z) — P Prn Iy f(vT)‘ < Cb,cr,THstup’Yr% e_p(F"_Fk)‘ﬂ(x)

and, as @ < p, one still has ZKKN(DFT) ’y,%e*p(rnfrk) < Cy - 7y, which yields

l(a)] < Cb,o,Try’YanHsupV2(x)-

Term (b). Let ke {N(I';, —T') +1,...,n — 1}. Applying Proposition3.5(b) to g = P, | f with the
help of BEL identity and the resulting inequalities yields

5 % 7
[Py, 0P,y fl@) =Py oP. . f(@)] < Capos | flsup <V(l’)ﬁ + V32 (x )W)
Now, as in the proof of Theorem 2.2](a), still using that @ < p,

n—1

72 T+|
Z Tk <y log ( M)
I‘n _ 1—‘ Yn
k=N(Tp—T)+1

and, proceeding likewise

nz:l 72/2 3/2 Fn=t dt 3/2 1/2
—— a3 SOy e Tf s SO Yo '
k=N(T'n—T)+1 (T — )32 (=) Pyen-r) (Fn = )32 M

3/2

It follows from Lemmal[A.3(ii) that vy 7,y < Cyr - ~3/% so that, still using Proposition A.I}(a),

|<b)| < Cb,o’,’y,T * In-

Term (c). It follows from the former Proposition [£.1] that

P, f(2) = P, f(2)] = [E £(X,) = E F(X5)] < Cooll flwpraV 2 (2).

One concludes as in the multiplicative setting.
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Proof of Theorem (T'V distance, second TV-bound). Assume now that 7' > 27 (still with 7y =
[v|). In addition to the former constraints on ~,, we may assume w.l.g. in this specific setting that

n = ng where YN (g —2T) < m. We rely now on a four fold decomposition
N(T»—T)
EFXE)-EFXE) < ), [PuooPy oy —Py)oR, . f(2)
k=1

n—1

+ Z ‘P’Ylo"'OP’kalo<(P’Yk_P’Yk)oprnfrkf@U)_TS(Prn rkf b70)>‘
k=N(T,—T)+1

n—1

+% Z ’Yl%p’ﬂo OP’Yk 1(3:( I'n— ka b U)( )
k=N(Tn—T)+1

+‘p“/1 OP%1 (P'Yn_p')/n)of(l')"

Let us call the second and third term of the decomposition (b) and (¥’) respectively, the treatment
of other terms being unchanged.

Term (b). Now using the sharp form of (3.26) and using the same tools (inequalities derived from BEL
identities), we can upper bound this “corrected ” term by

/72 75/2
Cavos | Fllsup (V(z)m + vsm(w)W)

and we check that by the usual arguments that

n—1

3 o Pn-1 dt
—— 75 <O ’Ynf 75 < Oy (4.39)
e N(PneT) 11 (T, — Tp) /2 Il Pt (T, — t)1/2 Y

Term (b'). First, remark that, for every k € {N(I';, — T') + 1,. -1},

p’Ylo”'Op’w@qz( Tn— ka b, U)( ) = Z E[a?c :cJPF,rrkf(Xlzk,l)((UU*)i~|Vbj<Xlzk,l))]
1<i,j<d

= Z (0™ [Tijeh(XT y, ppy)]  With Y jen(@) = Eg[0n, f5(X7°)0eb; (X)),
1<ijb<d

where 70 = U'nr,—or)+¢ — Unrp—2r)4e—1, £ = 1, X7 is the Euler scheme with time step se-
quence v, tg—1 = I'r—1 — Iy, —21) = fk,l,N(pn,ﬂ) and f; = 0y, Prnfrkf. The next step is to
perform an integration by parts using Malliavin calculus for X7+ using the “toolbox” developed in Ap-
pendix [Blfor the TV -convergence with varying o, but taking into account that now the tangent process
of the scheme is GL4(R)-valued without any truncation. More precisely, with the notations of Propo-
sition [B.3], the tangent process (Yt)t;o of the (continuous-time version of) X7'? reads }70(96) = Iz and

Y(w) (Ig+(t—Ty_ 1)Vb(X7 x ))}7%(:31 forany t € [I'y_1,T¢]. Hence, as 43 < YN(Tpy—2T) < m,

forany © > 0, inf g 10,01 det(Y;(x)) is lower-bounded by a positive deterministic constant. Apply-
ing this with © = 27'+7% and noting that T'/2 < t;, < 2T'+7 forevery k € {N(I',=T)+1,...,n — 1}
for large enough n, one checks that the (determinant of the) Malliavin covariance of ngl (see Propo-
sition [B.3|for similar computations) is bounded from below by a positive constant x, , only depending
on |Vb|sup, o and T This allows us to apply (which comes from Lemma 2.4(i) of [BCP20])
with f = f;, F = XZi, G = 0sb; (X;Zi) and |a| = 1. With the notation introduced in Section [B.2]
this leads to

[Eala F5 (X" )ebs (X < CLElloc[B [ (1 + X7, 521K 10 + [EXT [0)10ebs (K71 |

th—1 th—1 th—1
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By Proposition3.2[(a), | f;[ < C(T,—Ty) "2 | f||sup- By (B.60) and PropositionB.3|(i), E [\thi Tol <
Cy, 1 for any p > 0, where C), 7 does not depend on x and k. As well, using that J,b; is bounded with

bounded partial derivatives, |dgb; (X;: xl )1,p < Cp 1 where Cp, 1 is again a constant independent of x

and k. Finally, by (B.60) and the fact that b is C3, one checks that for any p > 0,

1
ILXY iy < Cpr (1 + E[X%P17) < Cor(1 + o)),

te—1 te—1

where in the second line, we used a Gronwall argument. Finally, using Holder inequality, we deduce
that a constant C), 7 exists such that

[Eal0n, £ (X007 )b (X)) <

te—1 te—1

e,

If lim mf V(z)/|z|" > 0, we deduce from Proposition [A.Il(a) and (.39), that

|z|—

n—1 2
’)/ —
(0| < Cpr Z ==supE[V (X2
k=N(Tn—T VT k k=0 *

n—1 2
Vet 1
Cp.r 2 =V (@) < Cpr WV (@),
k=N(T,—T)+1

The alternative growth assumption on V' can be treated likewise owing to Proposition [A.T|(b). Il

4.4 Proof of Corollary 2.4

The result is a consequence of the following lemma.

Lemma 4.2. Assumption (C,) implies that (Hyy, ) holds with p = . To be more precise, one has
Vo, ye R, Vi >0, E[XF - XV|2 <e 2z —y
so that WA(LXE [XPD) < Wal[X7), (X)) < el — gl

Proof. Tt follows from Ito’s formula applied to e?*'|X¥ — X7|? that this process is a supermartingale
starting from |z — y|? owing to (C,). O

4.5 Proof of Corollary 2.3

By Proposition 2.1] it is enough to show that (Hyy, ) holds true. When o is constant, this is a direct
consequence of [LW16]. In the multiplicative case, we rely on [Wan20, Theorem 2.6]. Since o is
bounded, we remark that Assumption (2.17) of [Wan20] is true as soon as there exist positive constants
K, K5 and Ry such that for every z, y € R4,

(b(z) = b(y) |z — y) < Kil{j,—y<ry) — Kolz —y|*. (4.40)
But it is easy to check that this assumption is equivalent to the existence of some «, R > 0 such that

Actually, the direct implication is obvious by setting R = R and o = K.
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In order to prove the converse, set Ry = 4R<1 + [ ]L‘p) Let x, y € R? be such that |z — y| >

Ry. If both x and y lie outside B(0, R) (closed Euclidean ball centered at 0 with radius R), then

(b(z) — b(y) |z —y) < —alr — y|?>. Otherwise, one may assume w.l.g. that x € B(0,R) and

y ¢ B(0, R) since Ry > 2R. Then let Z = Az + (1 — )y be such that |Z| = R (i.e the point of the

segment [z, y| which intersects the boundary of the ball B(0, R)). It is clear that Ae (0, 1] and that
z— |z — £| 2R e

y
r—y=—— and 1—-X= —_ .
=73 72—yl S Ro  2(a+ Bluy)

Consequently

(b(z) —b(y) | —y)
)
| —y|?

(b(a) = b(w) | = — ) < (b(x) ~ b(@)| 2~ v) +
[Plisple — 2l — |~ §

— (@A = Bluip(1 = ) ) [ =y
~(a-0- )(a+[b]L1p)>|w—y|2<—%|9€—y|2-

Finally, (.40) holds with R defined above, K = [b]ripR3 and Ko = -5

N

4.6 Explicit bounds for the Ornstein-Uhlenbeck process
Let us consider the a-confluent centered Ornstein-Uhlenbeck process defined by
dX; = —aXdt + O'th, Xo =0,

where o > 0. It satisfies (Hyy, ) and (S) with p = . As X; = e~ Sg e*$dWs, one checks that
¢ 2

Var(Xy) = 0262°‘tfo e?8ds = ;—a(l — e %)

and its (unique) invariant distribution is given by v = N’ (0 ﬁ)

' 2a0 )"

Now, let us consider the Euler scheme with a decreasing step (,)n>1 such that w < a-and }; 12 <
+00. It reads B B
XFn+1 = XF (1 - Oé/yn+1) + U(WF7L+1 - WFn)’ XO = 0

The scheme is centered and its variance o2 = Var(Xr, ) at time T, satisfies 0 = 0 and
2 1- 2 >0
Tni1 = 0n(L = aymi1)? + 0% 41, 0 > 0.

Elementary computations show that,

2

2 n n 2
2 O g 2 Vi
= 1—
= o | oo S

< sk(l - O‘W)2

I'n 2a(T ) I'n 2a(T ) 1— 672041—‘71 1
— —za(l n—s8 d 2 —2a(l n—s - - = o
L € TN (s)aS L € YN(T,) 2% Tn 2a%

where, for two sequences (ay,) and (b, ), a,, =< b, means a,, = O(b,,) and b,, = O(a,) asn — +0o0.

Hence, one checks that, as o,, — o,

Wi ([Xr,],v) = lon — 0/V2a|E|Z| =
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As for the total variation distance we rely on the lower bound from [DMR18]] for two one dimensional
Gaussian distributions (sharing the same mean)

2

(X1 vy > oo min (1]1 - a]) = o

200

for large enough n where ¢, > 0 so that H [Xr,] — I/HTV = Yn.
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A Useful properties for the Euler scheme and its step sequence

A.1 Bounds on the moments of the Euler scheme with decreasing step

Proposition A.1. Assume (S) and (T').

(a) For every a > 0 such that there exist a real constant Ky -, > 0 such that, for any invariant distribution v,
one has
(V) < Fboa

Furthermore, there exist real constants Cy, 5 o > and Ci'byc,_,a_,y > 0 such that, for every xe R¢,

supEV(XY) < Ch0aV*(x) and  supEV*(XE ) < ChoanyV (). (A42)

t=0 n=0

b) There exists Asup > 0 such that, for any invariant distribution v, for every x € R? and V¥ \ € (0, Asup)»
V(e)‘v) < +00.

Furthermore, there exists real constants Cy 5 » > 0 and Cy o » ~ > 0 such that, for every xe R4,

supEe’\V(th) < Cb,m)\e’\v(””) and supEe’\V(Xffn) < Cb,m)\,.ye’\v(m). (A.43)
t=0 n=0

The bounds in (a) are straightforward consequences of (the proof of) Lemma 2 in [LP02] (established in
more general setting where o is possibly unbounded). The bounds in (b) are established in [Lem03, Theorem
I1.1] for the diffusion and [Lem0S5, Corollary III.1] for the Euler scheme (see also [[GPP20, Lemma D.5 and D.6]
for sharper exponential bounds in the additive setting).
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A.2 Strong L”-errors for the one-step Euler scheme (proofs of Lemmas 3.3 and 3.4)

Proof of Lemma (a) Tt follows from the generalized Minkowski inequality and the B.D.G. inequality that

X7 - X7, < | f (b(x3) = b@)ds| +| j (o(X2) ~ o))

1/2
)
2
t t 1/2
< blup [ 12 ~alyds + CFloluy ( [ 1 w|§ds)

where [o|rip should be understood with respect to the Frobenius norm. O

t t
< [b]LipJ0 X2 — alds + CEPE o] <‘ JO X7 — 2f2ds

Proof of LemmaB.4| (a) One has by the general Minkowski inequality and BDG inequality

t t
17 = ol < [ 1002 s+ U o(X

p

< )] + VAWl lo @) + [ 160XE) ~ 0ol + H [ o) - owpam.

p
1/2

t
< tb(@)| + VE[Wilplo ()] + [b]mpf0 | X5 = zlpds + CZC J lo(X3) — o(@)|*ds
2

t 1/2
<t|b<x>|+v%wlp|a<x>|+[b]mpf0|X§x|pds+[a]mp cppe (f X7 — o ds> .

Set p(t) = supgc,ey | X2 — x|, and 1(t) = t|b(z)| + V/t|Wi||p|o(x)]. Both functions are nondecreasing so
that one derives from the above inequality that
¢

o(s)ds + [U]LlpCBDG (Lt <p(s)2ds) v )

Now using that ¢ is non-decreasing, we derive for every a > 0,

( | tw(sfds <Vey | «/ <get)+ & | p(s)ds.

As a consequence, setting a = W, yields
P

o0 < 0(0) + Bl |

0

o(t) < 29(t) + (2[ Lip + (C'dp [0 ]Lip)Q) Jt o(s)ds.

0

It follows from Gronwall’s Lemma that, for every t€ [0, 7]
o(t) < 2@+l CRP 7y, (1)

which completes the proof.
(b)-(c) Having in mind that | - |, < [ - [|v2, it follows from Lemma[3.3]that
¢

15 = X7l < Spoate) ([ Vs + ol [[55)™) = 500 (300 + 22 0.

Lemma A.2. (a) Let ® : RY — (E,| - |) be a Borel function with values in a normed vector space E and let
V :R? — (0, +00) be a function such that V'V is Lipschitz continuous. If

|| < C-V"  forsomeC, r >0,
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then, for any LP(P)-integrable R-valued random vectors Y, Z, pe [1, +x),

w (2©)] < Cove (V) AV 41y - 218;,).

(b) Assume that the diffusion coefficients b and o are Lipschitz continuous and satisfy |b|* + |o|?> < C.V where
V'V is Lipschitz. Then, there exists a real constant for every Co v,p o.p.5 such that, for every ye (0,7),

sup o8] Hp < C@,v7b,g7p7;yVl/2 (). (A.44)

sup |H
ge(Xz,Xz)

fEJ:Xm

Proof. (a) This follows from the fact that /V" is Lipschitz continuous owing to assumption (S) so that, for every
§e (Y, 2),
VV(6) = VV(Z) < WV]Lipl€ — Z] < [VV]LplY — Z|
and in turn
V(E) < 2@V (V(Z)" + WVIELIY - 27).

One concludes using LP-Minkowski’s inequality.

(b) Note that by LemmaB.4(a), | X¥ — x,, < 32 S,p .o () < 72 V2 (2) which yields the bound for the first
term on the left hand side. As for the second term, one proceeds likewise using Lemma[3.4(b). O

A.3 Technical lemmas on the steps
Lemma A.3. Let (v,)n>1 be a non-increasing positive sequence such that

= limsup w < +0o0.

n FY'n,Jrl

(i) Let p > w and let (up,)n>0 be the sequence defined by ug = 0 and, for everyn > 1, by
Z y2e PTn=Tx),

n
Then, lim sup 2 < +oo.

n Tn

(13) For every T > 0, we have

lim supM < 4w

n F)/’n,
(where N (t) is defined in (IL3)).

(1i1) Assume p > wo. Then for any a€ (O, %),

e I = o0(y%) asn — +oo.
Proof. (i) Setv,, = 2=, n > 1. We have:
Unt1 = Upbp + Y1 with 6, = Tn e Pin+t, (A.45)

Tn+1
Under the assumption, there exists c€ (w, p) and ng € N such that for all n = ny,

Tn
Tn+1

<1+ cypyr < eIt (A.46)

Thus, for n > ng, 0, < e(©~P)Im+1 5o that plugging this inequality into (A.43), we deduce

Upy1 < 0TI Ly
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or, equivalently,
e(P_C)F7l+1Un+1 < e(P_C)FnUn + C/e(P_C)Fn/yn+1

where C" = supy- e(P=9)7_ Hence, by induction

I'n

=Ty < (P=Ongyy J =gy < o=y, 4 oo
r p—c
no
which clearly implies the announced boundedness.
(1) By (A.46), for large enough n,
n—1
INEn=T) _ Mk ¢ eCa=Cnr,-1) ¢ T+,

Tn k=N (T —T) VYk+1

(iii) Set wy, = e PT'n /4. Let e > 0 be such that a(w + ) < p. Note that, for n > ny, such that R
n+1

w + ¢ for every n = nyg,

a In—Vn+41

Wpt1 = wne#ﬂﬁl( - ) = wne*p%“ealog(uﬁ)
Tn+1

< wne @+ Vst < gy (a(TH)=p)(TrirTrg).

Hence, lim,, w,, = 0 since a(w + €) — p < 0 and Zk>1 Vg = +00. O

B Proof of Domino-Malliavin Theorem

The aim of this section is to prove Theorem[3.71 The proof is achieved in Subsection [B.1] but strongly relies on
a series of Malliavin bounds established in Subsection[B.2l Note that w.l.g., we may only prove the result for h
small enough. Actually, since the left-hand side of the inequality is bounded by 2, we can always extend to h
larger than h by artificially bounding the left-hand side by 2715*2h%_8 for any h; greater than .

B.1 Proof of Theorem

By classical density arguments, it is enough to prove the result for a smooth function f : R* — R with bounded
derivatives as soon as the constant C' of Inequality (3.33) only depends on | f] . Throughout the proof, f :
R? — R is thus assumed to be C*®, bounded with bounded derivatives.

Step 1 (Expansion of (P, — Pp,) f(€)). Let £ € R? and let h > 0. We have

h

h
PO = BF(X]) = £6)+ | BITAXDIBOXEds + 5 | BIT(D (XS )0 (X))

Again by It6 formula, for every i € {1,...,d},

S

B[O (XX = AFOB(E) + | ELVEIXEID) + FTHDOufb)o") (XN

and forevery i,j € {1,...,d},

E[(D*f(X{)oo#)ii(X3)] = (D*foo*)ii(€) +J0 E[L((D*foo*)u)(X5)]du.

Thus,
h prs 4
Puf(€) =Ef(XS) = F(€) + hLf(€) + f f E[0f(X$)6a(XE)lds,  (BAT)

0 YO k=1 |a|=k
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where for any k, the functions ¢, are polynomial functions (which may be made explicit) of b, o and their partial
derivatives up, respectively, to order 2. Now, for the Euler scheme, let us introduce, for a positive M, a smooth
and radial function s : Ry — R4 equalto 1 on B(0, M) and 0 on B(0,2M )¢ and such that the derivatives of
Ty are uniformly bounded. Then,

Puf(&) = E[f(Xp)Tae(Wi)] + raar(f), with [ ar(F)] < [ flooP(|Wh| > M).

Note that the rotation-invariance combined with the independence of the coordinates of the Brownian motion
implies that for any (a1, ...,aq) € N% with at least one odd integer, E [(W,})%1 ... (W)@ Ty (Wy)] = 0
Setting By®* = 3}, (Bi,....i,)Vi, - - - ye for a an element B of (R%)*, we deduce that

E[D?f(€)(o ()W) ®*Tar(Wi)] = a(M, h)Tr(D*foo*)(§) and  E[D’f(&)(a(§)Wn)®*Tar (Wi)] = 0,

where
a(M, h) = E[(W;)*Ta (Wh)].

Then, it follows from the Taylor formula applied to f(X 2) that

E[f(X5)Tar (Wh)] = ETar(Wi) (£(6) + H(VF(E)Ib())) + a(M, h)Tr(D* foo*)(E) (B.48)
e ()

R[S )] (SO HOUOIEO) +hE D) 3,0 G000 + (007),0) ©))

ZJk
1

+ i E[D'F (€4 0(Rb(E) + (W) (hb(E) + (&) We) ™ Tas (Wh) ]df.

O\ (6.0,W),)
Thus, noting that 1 — E [T3,(W})] < P(|Wy| > M), we deduce from what precedes and from (B.47), we get
E[f(X;)] - E[f(X))] = onu(&)
where  on ni(€) = mna (f) + O(hP([Wy| > M))(VF(€)[b(€))
+ 50— <M 1)) Te(D? foo*)(€) — h2E [Tar (Wi)]eh ()

1
f f (0% F(XE)ba (XS — o | B[0P (€, 0, W) do.

k= 1\04 k 24 Jo

Step 2: Assume now that & = X;, _,, the Euler scheme at time #,,_; related to the step sequence (h, :=
tn — tn—1)n>1 Starting from x € R, Let o <., denote the Malliavin matrix of thfl (whose definition is

recalled in Equation (B:36)). For n e (0,1], let \IJ denote a smooth function on R such that W ( ) = 0on

(—o0,7/2) and 1 on (n, +-c0). We can furthermore assume that for every integer ¢, H\I/ Hoo < Cn~* where C'is
a universal constant. Using that W, — W;, _, is independent from X;, , and that 0 < 1 — ¥, (u) < Tusnys

[Pay 020 Py 0 (Pa, = Pi) 0 f(2)] < 20 f|ooP(detos, | <n) + [E[on, (K, ) Up(detox, ]|

Let us denote the unique solution at time w starting from x of (LI) by X(u, =) ((u, z) — X(u, x) is the stochastic
2
flow related to (L.I)). Note that P(|W},| > M) = O(e~ " ) and that

2

0<h—a(Mh)=E[(WH)2(1 = Ta(Wi)] <E[(Wp)* L, =] < Che™ 7,

by Cauchy-Schwarz and (exponential) Markov inequalities. Then, using the expansion of ¢}, s obtained at the
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end of Step 1, we get,

Py, 0---0P,, _,0(Py, — Py, )o f(:v)’ < 2| flw (67% + P(det ox, | < 77)) (B.49)
O(hne=#0) ) [EL716)(Xe, )Wy (det o, ]| (B.50)
+ O(hpe ¥7) ’E [Te(D2foo*)(Xy, )W, (det a;(tnfl)]‘ (B.51)

+O(h ‘]E (X, )0, (det oy, 1)]‘ (B.52)

)]‘ ds (B.53)

n—1

j f B[00 f (X(u, i, ,)ba(X(u Ko, ) U(deto,
0 k= 1|a| k

24J ‘E o2 (Ko s 0, W, —thfl)\Iln(detathil)]‘dG. (B.54)

Let us now consider all the above terms separately. We begin by the first term related to the probability of
“degeneracy” of o, . By Proposition B.3(:) applied with » = 2 a given positive T', we know that if T/2 <
tn—1 < T, we have for every p > 0,

(BB < Clf oo (0 + 13 +97) < Clf oo (13 + 7).

where in the second inequality, we used that e < Cpa? for x € (0,1]. For (B:30) and (B31), we use
Lemma [B.2[i) with F = X, _,. First, note that, owing to Proposition [B.3|(77) and to the fact that b and o
are C%, Assumption of this lemma holds true with £ < 4. Then, one remarks that it is enough to apply
Lemma B.2(¢) with || = 1 and G = b;(F) (i = 1,...,d) for (B.30), and, |o| = 2 and G = o0, joyi(F),
(i,k) € {1,...,d} for (B3I). Since b; has linear growth and bounded derivatives, it follows from Proposi-
tion B3(ii) that [b;(X;, )13 < C(1 + E[|X,, ,|?]?) whereas, since o and its derivatives are bounded,
loijor.i(Xt, 1)|2,3 < C, where C does not depend on n. By Lemma [B.2](i) and a Gronwall argument, it
follows that a constant C' exists (depending on T') such that

_ M2 ; > 1
(B3| + |BID] < Chne™ 5 [ flaon™ (1 + Eo[| Xe, 4 1) (1 + Eo[|Xe, ., []7).
< ORE[ fllaon™ (L + |z]?).
or (B.32)), this is a direct application of Lemmal[B.2|(ii) combined with Proposition[B.3] (). This leads to
(B3| < Chin (1 + Eo[| e, P)%) < Chn°(1+ [a[°).

For any « involved in (B.33), we can apply LemmaB.2|(iii) with F' = X; |

into the definition of ¢, one can check that for any «, forany ¢ € {0, ..., ||}, |¢((f) (z)] < C(1 + |z|?). Thus,
taking the worst case |a| = 4 in Lemma[B2)(ii7), we get:

and ¢ = ¢,. Looking carefully

— 1 — L
(B3| < Chll flaon™ (1 + E[IXe, , D) (1 + E[IXe, 1) ™ < ChIlfloon™ (1 + [2[°).

Finally, the control of (B.54) relies on Lemma[B.2{iv) with ' = X;_,. Once again, this statement holds true
by Proposition [B3(i7). We have

(B3| < C|floohin™>(1+ B[ X, ,[**])5 < Clflchin™ (1 +|af*)
by using again that E[|X,, ,|P] < C(1 + |z|P).

Combining all the above controls, we deduce that there exists h > 0and T > 0 such that if T/2<t,1<T,
then,

Ppy o0 P,y 0 (Ph, = Pr,)o f(2)| < O floc(? + hin (1 + [2]*))
For a given € > 0, it is now enough to fix n = hlliz and p = 24~ to conclude the proof.

36



B.2 Malliavin bounds

In this section, we detail the arguments which lead to the controls of the terms to (B.34) involved in the
decomposition of |Pj,, o -+~ 0 P, _, o (P, — Py, ) o f(z)|. All these terms are managed with the help of
Malliavin-type arguments.

Without going into the details (for this, see e.g. [Nua06]), let us recall some basic notations of Malliavin calculus
on Wiener space. We set H = L%(R,,R?) and denote by W = {W(h), h € H}, an isonormal Gaussian process
on H which is assumed to be defined on a complete filtered probability space (2, F,P), and that F is generated
by W. We also denote by (F;);>0 the completed natural filtration of (W;);>o.

The Malliavin operator is denoted by D and its domain by D! for a given p > 1 (closure of S, space
of smooth random variables, in LP()) for the norm || . |1, defined in (B.33)). For a (F-measurable) random
variable F in DP"!, DF is a random variable with values in 7 such that E [| DF|},] < +co. For every multi-
index a € {1,...,d}*}, the iterated derivative D®F is defined on H®*. The space D** denotes the closure of
S in LP(Q) for the norm || . |1, defined for a given real-valued random variable F' by

k
1 .
|Fllxp =E[FE]? with |Flg = |F|+|Flo, where |Fluo= Y] [DYFlyer, (B.55)
(=1

and for every £ > 1,

HD(Z)FH?H@,Z = Z J |DS , F|*dsy ... dsq.
\a\:f [0.,+00)e

For arandom variable F' = (F!,... F™), |F o = pIVN |Eilios Fle = >t |Fi| and HFHZ’p =y E[|FF].

Furthermore, for such R"-valued Malliavin-differentiable random variable F', the Malliavin matrix, denoted by

o, is defined by _ .
or = ((DF*, DF?)%)1<ij<m- (B.56)

For any element A of R™""", we will denote by | .| the L?-norm defined by

|A| = D VZ P (B.57)

1<iy,...ip41<d

Note that when ¢ = 1, this corresponds to the Frobenius norm on the space of m x m matrices.

B.2.1 Bounds for a general random variable F'

In this subsection, we consider an JF-measurable random variable F' and establish some useful bounds under
appropriate Malliavin assumptions. Then, since in the proof of Theorem[.7] we will use them with F' = X; _,,
we will prove in the next subsection that the assumptions of the results of this section hold true.

In the following lemma, we recall that X(u, ) is the unique solution at time u starting from x (more precisely,
(u,x) — X(u,x) is the stochastic flow related to (LI)). Furthermore, we implicitly assume that if F is an
Fi-measurable random variable, X(u, x) is built with the increments of Wi, — Wi. In particular, X(u, x) is
viewed as an Fi,, random variable.

Lemma B.1. Let t > 0 Let F denote an R%-valued Fi-measurable Malliavin-differentiable random variable.
Assume b and o have bounded first partial derivatives. Then,

(1) For every p = 1 and ) > 0, a constant € exists (which does not depend on F) such that

sup E[|det(oxw,m)| "Lidetop=ny] < € "
ue[0,1]

z) = x + 0(ub(z) + o(x)(Wisw — Wi)). Then, some positive M, h and € exist such that for

(1%) Set 3_€9(u,_
0,h] and 6 € (0,1],

everyu € (

E[|det (o5, (u,m)| " Ydet orzn, [ Wes—wi<my] < €077,
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Remark B.1. In (7), we state that on the set where o is not degenerated, nor is X(u, F') (with a non-degeneracy
which is quantified along the parameter n). In (i7), we show that for the Euler scheme, this property is still true
but up to a truncation of the Brownian increments (by M ). Here, one retrieves that unfortunately, the Malliavin
matrix of the Euler scheme is not invertible everywhere (see Proposition B3|(z) for a control of the lack of
invertibility of 0%, ).

Proof. (i) As mentioned before the lemma, we implicitly assume that X(u, z) is built with the increments of
Wiy — Wi. Thus X(u, F) is a functional of (Ws,0 < s < T + u). Then, owing to the chain rule for Malliavin

calculus, we remark that for any s € [0, 7], forany i and j € {1,...,d},
Di%i(u,F) = Y Y“FDIF", (B.58)
=1

where we recall that Y% = 0,, X* (where X** stands for the ith coordinate of X2). It follows that
trn U
T (ur) = J Y, D F(Y,D,F)*ds + J DX (u, F)(DyX(u, F))*ds.
0 tn
Since for two symmetric positive matrices A and B, det(A + B) > max(det A, det B), we deduce that
tn
det oy, py = |det(Y,])[?det ( f DSF(DSF)*ds) = |det(Y,])2det(oF).
0
Thus,

E [det Ux(u,F)l{dct UF>7,}] < nipE [|det(YuF)|72p] < Cpnipu

where C), = sup,cga (0,17 E [|det(Y,7)| 7] < +co (the fact that V" = I, and that Vb and Vo are bounded
implies that C), is finite, with the help of a Gronwall argument, similar to the one used in (#17)).

(#ii) The map x > Xg(u, ) is differentiable on R%. Then, owing to the chain rule for Malliavin calculus, for
every j € {1,...,d}, N B ‘
D!Xp(u, F) = V;Xg(u, F) o DIF,

and with the same arguments as in (7),
det 0%, () = |det(VaXo(u, F))|*(det o).

Now, -
ViXg(u,z) =1g + 0(uVb(z) + Vo (x)(Wip, — Wh)),

and one checks that

[0(uVb(z) + Vo (z)(Wipu = W) r < ud| Vo + d| Voo Wepu — Wi.

Thus, setting
1

M=—"
4d([Valeo A 1)

1

and h= ——,
4d[Vb|lo

we conclude the proof by noting that, on the event {det o = n},

inf detox > 272y,
he(0,h] Xo(u,F) n
Lemma B.2. Let k be a positive integer. Assume that |b(z)| < C(1 + |z|) and that o is bounded. Let t > 0. Let
F be an R¥%valued Fi-measurable random variable, Malliavin-differentiable up to order k + 2, such that for
everyp = 1,
o PI)F . gk +2)
sup sup  sup (E[|DS , FI'])" =0, 7 < +o. (B.59)
1<U<k+2 |a|=L s1,...,50€[0,t]
Let U, denote a smooth function on R such that ¥, (x) = 0 on (—o0,n/2) and 1 on (n,+m). Then, some
positive C and M exist such that for any n > 0
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(1) Forany ac € {1,...,d}* with |a| = k, for any G in D3,
[E [0af (F)G¥,(det op)]| < Clf [ocn™* (1 + E [|F[*]3) |G-
(ii) Assume that b and o are C3 with bounded existing partial derivatives.

E[¢}) (F)W, (detop)]| < Cn (1 + E[|1F)3)

where C depends on b, o, T and DS,Z for a given p (which could be made explicit).
(iii) Assume that b and o are C**2 with bounded existing partial derivatives. Let ¢ : R? +— R denote a

C*-function such that |¢(x)| + Zle IVOp(z)| < C(1 + |x|?). Then, for any a € {1,...,d}¥,

sup_ B[00 f (X(u, F))$(X(u, F)) Ty (det op)]| < O o™ (1 + E[[FI™]8) (1 + E[|F[*]) ™.

(iv) Let Z be a N (0, 1;)-random variable independent of F'. For any 0 € [0, 1],
E [0 (F, 0, VhZ) W, (det or)]| < O floh®n 12 (1 + E[IFP)".
Proof. The proof strongly relies on [BCP20, Lemmas 2.3, 2.4].
(i) Let o denote a multi-index. By Lemmas 2.3 and 2.4(i¢) of [BCP20] (applied with k¥ = 0 and n = |a]),
E[0af(F)GUy(detor)] = E[f(F)Ha(F, GV, (detor))],
where for some random variables F and G in Dol
|Ho(F, G, (detor)] < O~ 2 (|F|aps1no + 1LFla)'™ (14 1Flalr10) Gl jay-

where | F| ¢ is defined in (B33) and L denotes the Ornstein-Uhlenbeck operator. Thus, using Holder inequality,
we deduce that

—2la 3|a o
E[|Ho(F, GV, (detor))|] < Cp 2 E [(|F| (4100 + [LFal) SR+ |F) (el +110) 24113 G 1o 5-

Now, on the one hand, by the definition of |F|;\o and Assumption (B.39), one easily checks that for every
positive integer k and positive p > 1,
1
E[|F[7,]7 < Cp . (B.60)

p,t

On the other hand, the term involving the Ornstein-Uhlenbeck operator L can be classically controlled by Meyer
inequalities (see e.g. [Nua06, Theorem 1.5.1] or [BC19} Section 2.4]), which ensures for every integer m and
positive p, the existence of a constant C,,, ,, such that

| LEmp < Crm,p

Flmt2p < Cope (EIIFIF]F +207). (B.61)

p,t

where ||, [, is defined by (B.33). Thus, by the Minkowski inequality, we deduce that a constant C' exists

oU*2) Guch that,

depending on 7', || and 12d|al,t

E[|Ha(F, GV, (detor))|] < Oy 21 (1 + E[|F[1]3) G0 s

(%) We have to apply () for some multi-indices o with || = 2 or |«| = 3. More precisely, on the one hand, the

first term of <p§I )(F) can be written as follows:

(D F(EW(EF)B(F)) = 2,00,/ (F)Gig - with - Gij = bi(F)b;(F).

Thus, since |b(z)] < C(1 + |z|) and b has bounded derivatives, one checks (using the chain rule for Malliavin
calculus and (B.60) that,

|G jllas < C(1+E[|FI5]3),
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where C' depends on 7" and 0(42 with p = 6. Thus, it follows from (i) (applied with |«| = 2) that

[E (D> (F)b(F)[b(F)) W, (det o)]| < C| flon™* (1 + E[|F|°]%)

where C' depends on 7" and DS?HZ) with p = 24d. On the other hand, the second term of gpgll)(F) has the
following form:

- Z 0}k f(F)Gij with  Gyjg = (bi(bsbr + (00%)1)) (F).

5,k

Using the assumptions on b and o, one checks (using the chain rule for Malliavin calculus and (B.60)) that,

|Gijlzs < CL+E[|F[°]%),

(5)

where C depends on T" and ,; with p = 9. Thus, it follows from (i) (applied with |a| = 3) that for every

(i,5.k) € {1,...,d}%
E[03; . f(F)Gij W, (detor)] < On~S(1 + E[|F°]3),

(

where, once again, C' depends on 7" and DJ?HQ) for a given value of p (p = 36d). The result follows.

(#44) For this statement and the following, we use Lemma 2.4(7) of [BCP20], which states that for some random
variables F and G in DlolP,

E[0of(F)G] = E[f(F)H.(F,G)], (B.62)

where, on the set det o7 > 0,

ol _
_ FPAa-t Flia + |LF)|, F|2d P1
H(F.C) < C G0 (Flgat+nio + [LFlja) <Y Gl <1+ | |(|a|+1)\0> |

det oz det oz
F p1+p2<|af F

It follows that on the set {det o5 > 0},

Yo (F)

_ f _ ol o wlal la
|Ho(F,G)| < C (1 +detop + |F|?\i\+1)\o) ((IFl(a+1p00 + ILE o) |Gl (1 + (det o) " ‘) :
By Holder inequality, we deduce that
%

160 J(FIGI < BITo(FPIH 1G] B | (1+ etas) ) Lgroo] B.63)

Let us upper-bound E [TQ(F)?’]% by a simpler quantity. First, denoting the largest eigenvalue of a symmetric
matrix A by A4, we remark that -
detop| < A2, < Clog|?
F

where | . || stands for the Frobenius norm and where the second inequality follows from the equivalence of norms
in finite dimension. But, one easily checks that

lop|* < CIFR,

so that 3 _

Thus, by the elementary inequality [u + v|l*l < 2l=2(jy|lol 4 jy[lel), we get:

_ d o — =l
T.(F)<C [(1 + |F| |2a|111)|\0|) (1+ |F|%|i|+1)\0)|LF|IaI] :
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Thus, using (B:61) (Meyer inequality) and Cauchy-Schwarz inequality, we deduce that

= d « d|a 1 16| 1
E[Ta(F)’] < C (E[L+ |FIRCHNT + B[+ B FEDFP,1)

and, hence, if

E[Ya(F)*]F < CE[(1+|Fljajrio) 205 (1 + E[|F0,19).

Thus, we get the following inequality (where as usual, C' denotes a constant which may change from line to
line):

120 f(F)G]| < CAHE[F| 7)o A EF L) Gliar 51+ E [(det o)~ 1i10] ). (B.64)

We now want to apply Inequality (B.64) with F' = X(u, F) and G = ¢(X(u, F))V,,(det o). Note that as in
Lemma[B.1] we implicitly assume that X (u, F') is an Fr,-measurable random variable. On the one hand,

1

—6|la 1 —6|a = —2|a
E[(det o)~ gm0]? < E[(det oxqur) 0 laeropsa]® < Cn2l, (B.65)

2

by Lemma[B1I(#). Now, since = — X(u, ) is C¥*2 (since b and o are C¥*2), one derives that if F is Malliavin-
differentiable up to order k, then X(u, F') so is. Furthermore, since b and o have bounded derivatives, one can
check that for every multi-index § such that 1 < |5| < |a/, for every p > 0, for every 7 > 0,

sup sup E[|0PX(u,)|?] < +c0. (B.66)

zeR4 uel0,7]

Then, using Assumption (B.59), the boundedness of o and the Holder inequality, a tedious computation of the
Malliavin derivatives of X(u, F') shows that for every p > 0,

sup B [|X(u, F)[

alionol < Cp < +00. (B.67)
o] (laf+2n0] S &P

Thus, in view of (B.64), we deduce that a constant C exists (which does only depend on 7) such that

E[1X(u, F)| (o] <C and E[|X(u, F)[{],] < C(1+ E[|X(u, F)|%°T).

Now, by a classical Gronwall argument, for every 7 > 0, for every p > 0,
E[1X(u, 2)[P] < C( + [a]"), (B.68)

so that
E[|X(u, F)|%*] < C(1+ E[|F[5]). (B.69)

At this stage, we thus deduce from (B.64),

|E [0/ (X(u, F)$(X(u, F)¥,(det op)]| < Oyl (1 + E[|F[1])5)

(2w, )W, (det o7)] )5

(B.70)
It thus remains to bound the last right-hand term. We again use chain rule for Malliavin calculus. In view of
the application of the Leibniz formula (for the derivative of the product of functions), we study the Malliavin
derivatives of ¢(X(u, F')) and ¥, (det or) separately. For ¢(X(u, F')), we choose to write the arguments in
the one-dimensional case (the extension to multidimensional case involves technicalities but leads to the same
conclusion (B.72) below). In this case, D“) (X (u, F)) takes the form:

4
DOY(X(u, F)) = > ¢ (X(u, F))Q" (DX (u, F), ..., DV % (u, F)), (B.71)

r=1

where Q") denotes a multivariate polynomial function (with degree lower than r). Since |¢(") ()| < C(1+]|z|?),
it follows from a Gronwall argument that for every p > 0, for every 7 > 0, a constant C' exists such that

EEP]E [ (X(u, F))[P] < C(1L + E[|F*]).
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On the other hand, by (B.67) and Assumption (B.39), one deduces that for every positive p and 7 , a constant C
exists such that

sup sup E[|Qg:)1____rsl(D%(u,F),...,D(é)f{(u,F))V)] < 4o00.

u€e[0,7] s1,82,...,5¢€[0,t+7]

By Cauchy-Schwarz inequality, one deduces that for every positive t, 7 and p

sup sup  E[IDY  ¢(X(u, F))|P]7 < C(1+E[|F|*]%). (B.72)
ue[0,7] (81,82, s¢)E[0,t+7] '

Let us now consider ¥, (det o). We have H\II#) oo < Cn~*. Then, using that det is a polynomial function and
Assumption (B.59), one can deduce that

su etop % < Cnt. B.73
p E[|DS). s, Uy(detor)|”] n (B.73)

81,000,582
(s1,82,...,8¢)€[0,t]

Then, by Leibniz formula and Cauchy-Schwarz inequality, we deduce from (B.72) and (B.73) (applied with
p = 6) that forevery £ € {1,...,|af},

sup sup E[IDY ., (¢(X(u, F))W,(detop)) [P]5 < Cp~“ (1 + E[|F[*]52).
u€el0,7] (s1,82,...,5¢)€[0,t+7]

Now, since ¥,, is bounded, one easily checks that

S%p]ﬂ*l [e(X(u, )Py (det op)|P] < C(1 + E[|F*7]).

It follows from the two previous inequalities that

sup [o(X(u, F)) ¥, (det oF)||a),3 < Cnplela +E[|F|24]%),

uel0,7]
Plugging this inequality into (B-71), the result follows.

(1v) We have:
E (i) (F.0.VhZ)U,(detop)] = Y. E[0af(Xo(h. F))Gal

a,|al=4
where for a given o = (av1,...,a4)
4
Go = | [ (hba,(F) + 0w, (F) (Wi — W0) Tns (Wi — W)W (det op).
i=1

The strategy is then quite similar to (144). More precisely, for any o = (ay, . . . , g ), we start by applying (B-62)
with F' = Xy(h, F') and G = G, which leads to the inequality (B.64). Then, as in (i44), it remains to control
each term of the right-hand side of (B.64). Let us begin by the last one. Noting that (with the definition of Tpy),

(|G| > 0} < {detop > g (Wi — Wi| < 2M},
we deduce from Lemmal[B{(:7) that
—6|a 1 —6la
E [det Uig‘(h}F):l'GabO]s < Cn 6lal,

Then, since > Xg(h,z) admits similar bounds as  ~ X(u,z) (in particular (B.66) and (B.68)), some
arguments similar to (74¢) lead to an inequality similar to (B.Z0) (with |a| = 4): Va = (a1, ..., 04),

IE [Oaf(Xo(h, F))Ga]| < Cy3(1 + E[|F[*])7 |Gyl

4,3-

It remains to control |Gy [4,3. The strategy of proof follows the lines of the ones for the control of |G|||q) 3
in (4i7). Once again, a tedious computation using that b has sublinear growth and the fact Ty, is smooth with
bounded derivatives leads to:

Gallas < Ch*n~* (1 + E[|F[*])?.

The result follows. O
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B.2.2 Bounds of Malliavin derivatives and Semi-nondegeneracy for the Euler scheme

Proposition B.3. Let (X;,) denote a Euler scheme starting from x with non-increasing step sequence (hy, :=
tn —tn_1)n=1. Let £ = 1. Assume that b and o are C* with bounded partial derivatives and o satisfies (56)08.

(1) Let the smoothness assumption hold with £ = 1. Then, for any p > 0, there exists a real constant h > 0 such
that, for any T,r > 0, there is areal constant € = C(T,p, h,r) > 0 satisfying: if hy < h, for any n > 0 and
any n such that T /2 < t, < T,

P(detog, <mn)<€(hi+nP).

(1) Furthermore, if smoothness assumption holds for £ > 1,

sup E[|DY ., X0, |7l <oy < +o0,
n€[0,TT, (51, s52)€[0,tn]

where 0, ¢ is a finite positive constant.

Proof. (i) Let s € [0,T). Using the chain rule for Malliavin derivatives, one checks that DX formally
satisfies for any u > 0:

ifu<s—s

DXoiu =17 X ) o ot Luse (B.74)
Xo) + .7 Vb(Xy) Dy Xydv + §. 7 Vo (Xy) D XydW,  ifu>5—s.

By “formally”, we mean that we do not detail the rules for the operations between tensors. With some more

precise notations, this yields in the case u > 5 — s: forevery £ and i € {1,...,d},
DX, =0 Z f Okbi(Xy) DX Y dv + Z f k0 j(Xy) DEX AW
k,j=1

For the sake of readability, we keep such formal notations in the sequel of the proof. Let us denote by (Y)i=0
the “pseudo-tangent” process: Y; = (02, X Ni<i, j<d Where ()_( +)t=0 18 the continuous-time Euler scheme defined
by (L3). One checks that (Y;);> is recursively defined by: Y = I4 and for any ¢ > 0:

Y/t = (Id + Aﬁt)ifév
where - -
A;t = (t — E)Vb(XE) + VO'(XL)(Wt — WE)

Set

n—1

Q= (V{ sw JAwl<c}, ¢e1], (B.75)

k=0 = UE[tr,tri1)

where | - | stands for the Frobenius norm and ¢ will be specified later (see (B.Z8)) as a constant only depending
on d. On ()¢, Y is invertible (as a product of invertible matrices), for every s € [0, t,], and one checks that

DX, =Y, sV to(Xy).

Lett, € (0,T] and let F,, = X;,. The Malliavin matrix o, of F}, is given by:

tn

OoF, = D.F, DsF}ds,

0

which, after classical computations yields:
— — — — tn — — —
or, =Y, U, Y with Uy, = f Yo (oo®)(X) (Vs H)*ds.
0

For anyn > O and p > 0,
P(det or, <) < P(QF) +nPE [det 0’;:194]. (B.76)
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On the one hand, using that the partial derivatives of b and ¢ are bounded, we remark that

sup HAEtH < O(hk + sup |Wt — Wtk71 |),

te[ty—1,tx) te[tp—1,tr]

where C' = C}, , 4 > 0 is areal constant depending on d, | Vb|« and |Vo| . Hence, owing to the independence
and the stationarity of the increments of the Brownian motion, we get

Q) = H (1 —P( sup [Wy|=¢C' - hk))
k=1

te[O,hk]

Moreover, if B denotes a standard one-dimensional Brownian motion, one has for every i and v > 0,

]P)(tes[%,%] |We| = u) < q]P’(tes[légl] |B:| = %) < QqP(tes[%Bl] B > %) = QqP(tes[l(lJpl] B > 7)

where we used that B 4 _p, |x| = max(x, —x) in the second inequality and the scaling property in the equality.
Now supyefo,1) Bt = |Z| with Z = N(O 1)and P(|Z| = ~% forevery z > 0 and we deduce that

©ot-np?

= n e
P(Qc) = ]}:[1 (1 — 2(]6 T2d%hy ) 1:[ (1 — Koe 2% 2hk)

_ < _ _
where kg = 2ge ©<* and k1 = C<22 > only depend on ¢, d, b and o. For hy € (0, h] with h small enough (and

< T) so that that /@06_% < 2, we have kge i < 3 L for every k > 1 since (hy) is non-increasing. Thus,
combining this with the elementary inequalities log(1 +u) = 2uon [—1/2,0]and 1 — e~ < won [0, +0), we

deduce that . .
P(Qz)<1fexp(f250267’%) < 2Ko Z s
k=1 k=1

Now, for any r > 0, there exists a constant C' such that e~ < Crx" T for any z € [0, B]. Thus,

P(Q8) < 260 Cp Y byt < 260 Cotnhl] < Cropc bodig * B
k=1

Let us now turn to the second term of (BX76). Recall that det is log-concave on S+ (d,R), hence M +—
det P (M) is convex on S**(d, R) for any p > 0. Thus, by Jensen’s inequality, we get

tn
E[detoz o] < t;?d—lf E[det™? (Y, Y Y(oo®)(Xs) (Y 1)*Y*) 10]ds. (B.77)
0

Using that c0* > 031, and det is also non-decreasing on ST (d, R), we get
E[det o5 1] < gg P, 7" sup E[|det(Y;, Yy )| *1q]
s€[0,tr]

< o PR [|det(V,7Y) P10 sup E [Jdet( AL
s€(0,

< Crag ™t B [|det(V2, )|~ 10]
where in the last line we used that sup o 7 E [|det(Y5)[*?] < Cr (using that the moments of Y; can be

uniformly bounded on [0, 7] with the help of a Gronwall argument). Then, having in mind that the Trace operator
is the differential of the determinant at I, yields a constant C' such that, for M e M = {Me M(d,R) : [ M| <

1/2},
det(Iy + M) =1+ Te(M) — C|M|>.

Furthermore, one can choose ( = (4 > 0 small enough in such a way that

IM| < ¢q=1+Tr(M)—C|M|*=1/2. (B.78)
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Thus, taking such a ¢ in (B.73) and using again that log(1 + ) > 2x on [—1/2, 0], we obtain:

E [det U;flg] < CTga2pdt;pdE H(l + ’I‘r(Atk—ltk) - CHAtk—ltk H2)—p
k=1

< Cra B exp (=20 Y (Tr(An_ i) - ClA 1))
k=1

< Crog "B exp (Cp(1 - ﬁ(ﬂn Vo(X)dW:) + Vol i Wi, = Wa 1)),
k=1

where in the last line, we used that Vb is a bounded function. Now, using that for all (u,v) € R2 such that

v < 1/2, ]EZ~N(O,1) [GUZ+UZ2
that if Cp|Vo|ohy < 1/4,

w2
] = (1- 2’0)_%62(1’2”) , we deduce from a chain rule of towered expectations

- n —q/2
E [det03"10] < Crag 2, exp [C,,,Tuvaugotn] ( [T —2Cp|Voun(ti - tk_l))) !
k=1

n
< Cp7Tg52pdt;pd exp (2Cpq|| Vo w Z hi) < Cp7Tg52pdt;pd exp (2Cpq|| Vo T),
k=1

where in the penultimate inequality, we again used that log(1 + z) > 2z on [—1/2, 0] (and where as usual, the
constants may have changed from line to line). Hence, taking t,, € [T /2, T] yields

E [det 0" 10] < Cpgrey PH(T/2) 77,
where C),  stands for a finite constant depending on p, ¢ and 7. The statement follows.

(i7) For the sake of simplicity, we only prove the result in the one-dimensional case. For ¢ = 1, we start with the
formula (B.74) which implies, for any s € [0, ¢,,] and any p > 0,

n—1 P
2

|Ds X, [P = (UQ( ) [ (0 (e — )V (Xo) + 0 (X ) (W, — Wtk))Q)
k=N{(s)+1

with N(s) = max{k,t; < s} and the convention [ [, = 1. Thus, using the elementary inequality log (1 +
<

z)?) =log(l + 2z + 2?) < 2z + 22 on R (with the convention log(0) = —o0), we get for any p > 0,
B p n—1
E[|Ds X, [P] < |o|Eexp 5 Z (2Atktk+1 + |Atktk+l|2)
k=N(s)+1

with Atktk+1 = (tk+1 - tk)b/( 72) + U/(th)(wtk+l - Wtk) Then,

- pT p*T
E[1D,X, 171 < Il exp (50101 + 20 o' 2,

owing to standard estimates for exponential of stochastic integrals.
When £ > 1, the idea is to iterate the Malliavin differentiation in (B.74). We give the main ideas when £ = 2

but do not detail the general case. When £ = 2, one can deduce from the chain rule and (B.74)) that for any ¢ > 0
and (s,v) € [0,t]?,

o' (Xp) Do Xy ifo<t<s<t,
D2 Xy = Dy(DsXy) = { 0/ (X)DuXs + §. Dy Xu Do Xu (0 (X du + 0" (Xu)dW,,)
+ 50 D2 X, (0 (Xu)du + o (Xy)dW,,) if0<s,v<t.

Thus, applying Itd formula to | D2 X;|? with p > 2, we easily deduce from martingale arguments and the
boundedness of the derivatives that if s, v < ¢
¢
E[|D}X["] < E[lo"(Xs) Do X, [P] + Cpf E[|D3XulP~ Dy Xy D Xy|]du
t B ’ B t B B B
+op [ BIDLLPIDE Kl + e, [ EIDELP? (14D, XD X du).

3 3
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Then, by the Young inequality and the control of the moments of D_X,, previously established, we get by setting
St = SUPyelo,t] |D35XU |p’

t

E[S:] <C, +f (1+E[S.])du.

S

The result then follows from Gronwall’s inequality. O

Before proving Theorems 2.2(b) and 23|(b), let us make the connection between (Hyy, ) and its TV-
counterpart for uniformly elliptic diffusions.

C Proof of Theorem 3.1l and of Propositions 2.1}, 2.6 and 3.2]

C.1 Proof of extended BEL identity (Theorem 3.1)

Let M > 0 and far(z) = f(2)1(¢(z)<m}- Set dar(x) = Pifu(x). First, since f(X[) belongs to L' for
any x since f has polynomial growth and b and o are Lipschitz continuous. We deduce from the dominated
convergence theorem that ¢5; converges simply to ¢ = P, f. Furthermore, as f); is bounded,

t

(@) = E[ a0 |

(U(Xs)_le(””))*dWs].
0

We wish to prove that ¢, converge uniformly on compact set K i.e.

t
S“}?E[|f(XZ”)|1{|f<X:E>\>M} UO (o(Xs) 7 Y aw
xTe

] M—+ow
— 0.

It follows from Cauchy-Schwarz inequality that
' —1 * 2 3 t 1 2 3
L(U(Xf) Y. )) dWSH < []E|f(Xf)| l{lf(Xg:)‘>M}:| [EJO ‘U(Xf) y(® ds]

st]%

E [|f(Xf)|1{f<Xf>|>M}

< \/LM[EU(Xf)P]%[J:E’a(Xf)_IYS(m)

1
Uo\/M

where | f(£)[> < C¢(1 + |€|>"). Now, as b and o have bounded partial derivatives (hence Lipschitz continuous),
it is classical background that E | X7[*" < Cy.¢(1 + |z|*) and sup,cga 0,4 E ‘YS(I)‘Q < +o0. This shows that
the right hand side goes to 0 as M — +00 uniformly on compact sets of R<.

1
2
<

[1 +C4E |X§”|3T] : Ut IE\YS(””)]st]
0

C.2  Proof of Proposition

Owing to Remark[2.2] we may assume that (Hyy, ) holds starting from ¢ = 0. Let ¢ty > 0 being fixed. Let ¢ > ¢
and let f : R? — R be a bounded Borel function. By the Markov property,

E[f(X]) — f(X))] = E [Py f(X[y,) — P f(X{,)]-
By BEL identity (see Proposition[3.1), for any z; and z, € R?,

Pufa) = Puf() = (VP ()| 22— ) = o8 [ s [ o (xrio a2 - 1) |

0

where & € (z1, 22) (geometric interval) and (YS(E))QO denotes the tangent process of (X¢). But since b and o
have bounded derivatives and (Yg(z))sgo starts from /4, a Gronwall argument (see [Kun97]) shows that

sup IEHYS(E)HQ < +o0.
£eR?, s€[0,t0]
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By a standard martingale argument and the ellipticity condition (€ Z)U%, we deduce that x — P, f(x) is Lipschitz
continuous and that -

[Pro flLip < Col floo-

Then, it follows from the Kantorovich-Rubinstein representation of the L!-Wasserstein distance and the defini-
tion of total variation distance that

IXy — XY rv < CQWI(Xf—toanj—to)'
But under (Hyy, ) it follows from what precedes, for every ¢ > to,
Wl (Xffto ’ Xtyftg) < ce—p(t—to) ’
for some real constant ¢ > 0. Hence, there exists a constant C' > 0 such that, for every t > t,

| X7 = XY |rv < Clz —yle™". O

C.3 Proof of Proposition 2.6

We need to check that g = e~V satisfies the stationary Fokker-Planck equation £*g = 0 where £* denotes the
adjoint operator of £ = L, reading on C? test functions g

d d
Lrg == 0 (big)+ 3 Y. 2, ((00%)i9).
i=1 i,j=1
Temporarily set a = oo *. Forevery i, j€ {1,...,d}, elementary computations show that
eV | 2 2
Oa; (big) = —5— D740, V) (00, V) = (02,0i) (02, V) = (02,01) (02, V) — ai(03,,, V) + 03 s
j=1

32 0 (aiig) = €7V |02, 015 = (20,000)(00,V) = (22,065) (20, V) + i3 (00, V)00, V) = 55 (22, V) |

Iiiﬂj ]
One checks from these identities that £*g = 0. Hence v, = C,, e~V (®) . \y(dz) is an invariant distribution for
SDE (2.13). Uniqueness of the invariant distribution follows from uniform ellipticity.
C.4 Proof of Proposition 3.2]

(a) Start from

oubuf(e) = JE[ 1060 [ (0 (i ram, |

—eon @) = B[ nre ) [ ooy

so that, using that sup sup IE[|YS(I) |2] < C < +oo since b and o have bounded first partial derivatives,
zeR s€[0,T7]

Cy
azP < —— su
|02 P f ()] gO\/inH p

and (with s = 5)

0% P f(x) = %%E [P;f (X%) f (al(Xﬁ)Yﬁ)*qu] (€.79)
0
- 28 |apy s | 2<ol<X5>st>>*qu]+§E PLAXD) [Tt Y aw, |
0 0
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Let us denote (A) and (B) the two terms on the right hand side of the above equation. Using the above upper-
bound for the first derivative, we obtain (with real constants varying from line to line denoted by capital letter C'
depending on b and o and T')

[\

(4)] <

c’
! = —5 5 .
2 il €= gl

As for the second term .
2

2
(B < 1 sup [ | Bl (v P

Using that b an o have bounded existing partial derivatives, we derive by standard computations that
Sup,epa B[ SUPse[0,77] |8IYS($) |?] < C < 400 so that (still using the o3-ellipticity of oo*)

; _ N N "t
L E|0:(o 7 (X)Y™)Pdu < —

g9

which finally implies that
Gy
1022 Pef (2)] < =5 [ flsup-
oyt

One shows likewise with similar arguments that
Cs
025 Pef ()] < — =5 | llsup-
apt?
(b) If f is Lipschitz continuous, note that

arufte) = S| (1060 - 1) [ o7 xpyriyram |

0

so that ,

C
il XE — 22 < =2[f]LipSa(x).
0\[[ JLip| X¥ — 7|2 < o [fLipS2(x)

For the second differentiation, we still rely on (C.79) and its decomposition into two terms (A) and (B).
Using the above bound for the first derivative, we derive like above that

|0 P f ()| <

As for (B) we first note that

(B) = 7E

(P%f fa “L(xoy, >)*qu].

NI#H

Now
[Py F(XT) — ()| < [B[F(XF) — F(2) | X3]] < [l | X7 — 2] | X

so that, using Cauchy-Schwarz inequality, the L?-contraction property of conditional expectation and the above
bound for the stochastic integral yields

1
2

2
|(B)] < S [l X5 — xy2U E |0, (" (XD)Y, u(””))|2du1

iS22V 4 [ St < CLfTuipSa(@).

ety
More generally, if k = 1,2, 3, there exist real constants C, such that
k Gy
|0 P f ()] < k—é[f]mpsz(x)

agt 2
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