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ABSTRACT 26 

The distribution of marine organisms is strongly influenced by climatic gradients 27 

worldwide. The ecological niche (sensu Hutchinson) of a species, i.e. the combination of 28 

environmental tolerances and resources required by an organism, interacts with the environment 29 

to determine its geographical range. This duality between niche and distribution allows climate 30 

change biologists to model potential species’ distributions from past to future conditions. While 31 

species distribution models (SDMs) have been intensively used over the last years, no 32 

consensual framework to parametrise, calibrate and evaluate models has emerged. Here, to 33 

model the contemporary (1990-2017) spatial distribution of seven highly harvested European 34 

small pelagic fish species, we implemented a comprehensive and replicable numerical 35 

procedure based on 8 SDMs (7 from the Biomod2 framework plus the NPPEN model). This 36 

procedure considers critical issues in species distribution modelling such as sampling bias, 37 

pseudo-absence selection, model evaluation and uncertainty quantification respectively through 38 

(i) an environmental filtration of observation data, (ii) a convex hull based pseudo-absence 39 

selection, (iii) a multi-criteria evaluation of model outputs and (iv) an ensemble modelling 40 

approach. By mitigating environmental sampling bias in observation data and by identifying 41 

the most ecologically relevant predictors, our framework helps to improve the modelling of fish 42 

species’ environmental suitability. Not only average temperature, but also temperature 43 

variability appears as major factors driving small pelagic fish distribution, and areas of highest 44 

environmental suitability were found along the north-western Mediterranean coasts, the Bay of 45 

Biscay and the North Sea. We demonstrate in this study that the use of appropriate data pre-46 

processing techniques, an often-overlooked step in modelling, increase model predictive 47 

performance, strengthening our confidence in the reliability of predictions. 48 

 49 
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Highlights: 53 

• Temperature (mean and variability) are major species distribution drivers 54 

• Small pelagic species have high environmental suitability along western Europe 55 

• Environmental filtering compensates spatial sampling bias 56 

• The convex hull method is a robust pseudo-absence selection strategy 57 

  58 
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1. INTRODUCTION 59 

Fish species distribution and assemblages are strongly influenced by both climatic and 60 

physical gradients (Ben Rais Lasram et al. 2010, Beaugrand et al. 2011, Raybaud et al. 2017). 61 

Temperature is known as a master parameter driving fish distribution at a macroecological level 62 

(Lenoir et al. 2011, Beaugrand et al. 2018). This parameter influences a large range of biological 63 

processes such as growth, reproduction, larval development, recruitment, and act as a major 64 

stressing factor depending on species thermal tolerance (psychrophile or thermophile species; 65 

Angilletta 2011, Beaugrand and Kirby 2018). Salinity, oxygen concentration, primary 66 

production (that are indirectly influenced by changes in temperature; e.g. Kirby and Beaugrand 67 

2009) or the physical habitat (e.g. sediment type; Poloczanska et al. 2013) may also highly 68 

influence marine fish species at different spatial scales. 69 

 70 

Hutchinson (1957) conceptualised the ecological niche as the “n-dimensional ensemble 71 

of environmental conditions that enable a species to live and reproduce” and subsequently made 72 

a distinction between the fundamental and the realised niche (Hutchinson 1978). Due to biotic 73 

interactions, dispersal limitation and/or historical factors (Soberon and Peterson 2005), species 74 

generally occupy only their realised niche, i.e. the subset of their fundamental niche that 75 

represents the response of all physiological processes of a species to the synergistic effects of 76 

environmental conditions (Helaouet and Beaugrand 2009, Beaugrand et al. 2013). By defining 77 

the niche as an attribute of species instead of a portion of the environment, the Hutchinson’s 78 

concept enables duality between niche and distribution (Pulliam 2000, Colwell and Rangel 79 

2009). Such a relationship is of major interest in biogeography as each georeferenced species 80 

occurrence, i.e. where a given species has been observed, can be related to several 81 

environmental parameters such as temperature, salinity and primary production. When species 82 

are in equilibrium with their environment, associating environmental conditions and observed 83 
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distributions permits climate change biologists to estimate species’ potential niche (Jiménez-84 

Valverde et al. 2008). 85 

 86 

The relationship between species occurrences, environmental conditions and species’ 87 

potential niche has become intensively studied over the last two decades, using a wide range of 88 

modelling techniques - hereafter referred to as Species Distribution Models (SDMs) to assess 89 

past, contemporary and future species distribution in both marine and terrestrial ecosystems 90 

(e.g. Cheung et al. 2009, Bellard et al. 2016, Cristofari et al. 2018). SDMs rely on several 91 

ecological assumptions, such as species distribution in equilibrium or habitat saturation 92 

(Soberon and Peterson 2005), niche conservatism (Crisp et al. 2009), unlimited dispersal 93 

abilities (Wiens et al. 2009) or the non-influential role of biotic interactions in shaping large-94 

scale distributions (i.e. the Gleasonian vision of biotic communities; Gleason 1926, Guisan and 95 

Thuiller 2005, Wiens et al. 2009). Superimposed to these assumptions, several sources of errors 96 

and uncertainties may lead to variation – sometimes conflicting – in the outputs of SDMs for a 97 

given species (Beaumont et al. 2008): (i) accuracy of observation data and (ii) lack of true 98 

absences (Proosdij et al. 2016), (iii) identification of ecologically meaningful environmental 99 

predictors with high explanatory power (Guisan and Thuiller 2005), (iv) choice of the modelling 100 

algorithm (Buisson et al. 2010) and (v) SDMs’ evaluation processes (Leroy et al. 2018). While 101 

tremendous progresses have been made on both the building and evaluation of SDMs in recent 102 

years with a plethora of new methods for modelling species’ distribution (Araújo and Guisan 103 

2006, Leroy et al. 2018, Støa et al. 2018), the development of further procedures is still required 104 

for improving the quality of SDMs. 105 

 106 

Species distribution models are known to be very sensitive to different sources of 107 

uncertainties and sustained attention should be devoted to each step of the modelling procedure, 108 
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from the pre-processing of species occurrences data to model evaluation. Such an approach is 109 

essential to increase confidence in model outputs (Porfirio et al. 2014): for most areas of the 110 

world and species, survey effort often exhibits strong spatial and temporal bias, occurrence 111 

records being frequently too scarce, constrained to presence-only data or both. Working with 112 

biased observation datasets may result in under- or over-estimated species distributional ranges 113 

(Araújo and Guisan 2006, Dormann et al. 2007), leading therefore to inaccurate modelled 114 

contemporary distributions, which are inadequate for assessing potential future range shifts or 115 

for defining conservation measures. Similarly, biased pseudo-absence datasets (e.g. multiple 116 

pseudo-absences selected in the same environmental conditions or coinciding with 117 

environmental conditions where the species is observed) may lead to a distorted estimation of 118 

species distributional ranges (e.g. Wisz and Guisan 2009, Lobo and Tognelli 2011). A 119 

modelling framework that includes a preliminary stage devoted to the construction of a 120 

representative calibration dataset – as well as its associated level of uncertainty assessment – is 121 

therefore essential (e.g. Varela et al. 2014). 122 

 123 

Here, we developed a framework that encompasses recent advances on the building, 124 

calibration and evaluation of SDMs with the aim of (i) selecting the most relevant 125 

environmental parameters, (ii) generating consistent pseudo-absence data and (iii) validating 126 

representative model outputs (Cornwell et al. 2004, Varela et al. 2014, Leroy et al. 2018). 127 

 128 

We applied this framework on seven economically important European Small Pelagic 129 

Fish (SPF) species (Mediterranean horse mackerel Trachurus mediterraneus, Atlantic horse 130 

mackerel Trachurus trachurus, European pilchard Sardina pilchardus, round sardinella 131 

Sardinella aurita, European sprat Sprattus sprattus, European Anchovy Engraulis encrasicolus 132 

and bogue Boops boops). These seven SPF species are widely distributed planktonic feeders 133 
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known for their central role in marine food webs (Cury 2000, Checkley et al. 2009). Moreover, 134 

they are of major economic importance and represent a large part of the Mediterranean and 135 

Black Sea commercial landings (more than 50% between 2000 and 2013; FAO 2016). 136 

However, while SPFs are ideal candidates for SDMs because of their sensitivity to 137 

environmental factors (Perry et al. 2005), their European distribution is far from being 138 

exhaustively documented and available records originated from diverse and/or non-139 

standardised monitoring surveys (FAO 2016).  140 

 141 

2. MATERIAL AND METHODS 142 

2.1. Biological and environmental data 143 

2.1.1. Small pelagic fish occurrence data 144 

Occurrence records (e.g. fisheries independent trawl surveys, discrete research 145 

samplings) for the seven SPF species (Mediterranean horse mackerel, Atlantic horse mackerel, 146 

European pilchard, round sardinella, European sprat, European Anchovy and Bogue) were 147 

compiled from three available public databases: the Ocean Biogeographic Information System 148 

Mapper (OBIS, http://www.iobis.org/mapper/), the Global Biodiversity Information Facility 149 

(GBIF, https://www.gbif.org/) and Fishbase (http://www.fishbase.org/). When possible, we 150 

included observations retrieved from the literature to construct the most up-to-date datasets 151 

encompassing their entire distribution range (see Supplementary material 1). Biological data 152 

retrieved for our study ranged from 1950 to 2017, recent records (since 1990) prevailing 153 

(83.2±6.7 %) over both past (1950-1990; 12.2±8.7 %) and undated observations (4.6±3.6 %). 154 

Past or undated records were only considered along the distribution edge when the species 155 

presence was confirmed by recent records. This precautionary approach avoided over- or under-156 

predictions of the model due to low quality presence data (Kramer‐Schadt et al. 2013). The 157 

observation records pre-processing consisted in a data cleaning procedure applied on each 158 
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species dataset to (i) remove unreliable observations (e.g. preserved specimen; Newbold 2010) 159 

and false identifications (e.g. taxonomic confusion), (ii) discard duplicate occurrences and (iii) 160 

ensure the temporal and locational reliability at the edge of the observed distribution (e.g. data 161 

on land, longitudinal and/or latitudinal inversion, historical or undated data). According to the 162 

ecology of SPFs – species cannot be observed below 300 m depth (Checkley et al. 2009) – 163 

while remaining permissive, a precautionary bathymetry threshold (-1000 m) was applied to 164 

remove inconsistent occurrences. Following this pre-processing, we obtained seven clean 165 

datasets, with a number of observations ranging from 1314 (for Mediterranean horse mackerel) 166 

to 24806 (for European sprat). For the seven SPFs, occurrences were aggregated on a 0.1° x 167 

0.1° spatial grid (from 70°N to 70°S and 180°E to 180°W) that corresponds to that of 168 

environmental parameters. 169 

 170 

2.1.2 Environmental data 171 

To calculate the ecological niche (sensu Hutchinson, 1957) of each SPF, we collected 172 

environmental parameters from different databases (see Table 1 for details). Environmental 173 

parameters values for each spatial grid cell were first calculated for each year and then averaged 174 

on the 1990-2017 period. The environmental parameters presented in Table 1 were retrieved in 175 

different spatial resolutions ranging from 0.1° to 0.5°. For modelling purpose, all variables were 176 

therefore interpolated to a 0.1° × 0.1° grid using a bilinear interpolation in the geographical 177 

domain available for all environmental parameters, ranging from 70°N to 70°S and 180°E to 178 

180°W. 179 

 180 

2.2. Description of the models 181 

We used two approaches to model the potential environmental suitability (i.e. spatialised 182 

index between 0 and 1, defined as a probability of presence based on environmental parameters) 183 
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of each SPF species over the 1990-2017 period: (i) the Non-Parametric Probabilistic Ecological 184 

Niche (NPPEN; Beaugrand et al. 2011) model and (ii) seven modelling algorithms available 185 

within the BIOMOD2 package (Thuiller et al. 2016). The NPPEN model is a presence only 186 

model based on the Mahalanobis generalised distance (Mahalanobis 1936) and on a modified 187 

version of the Multiple Response Permutation Procedure (MRPP; Mielke et al. 1981). The 188 

BIOMOD2 framework allows ensemble modelling of species distribution (i.e. an average 189 

model of a wide range of algorithms; Thuiller et al. 2009). Here, seven algorithms were 190 

considered: (i) Generalised Linear Model (GLM), (ii) Generalised Additive Model (GAM), (iii) 191 

Generalised Boosting Model (GBM), (iv) Artificial Neural Network (ANN), (v) Flexible 192 

Discriminant Analysis (FDA), (vi) Multiple Adaptive Regression Splines (MARS) and (vii) 193 

Random Forest (RF). Because the models used in this study have been already described and 194 

discussed in several publications (e.g. Beaugrand et al. 2011, Lenoir et al. 2011, Raybaud et al. 195 

2015 for NPPEN, e.g. Thuiller et al. 2009, Albouy et al. 2012, Bellard et al. 2013 for 196 

BIOMOD2), we refer the reader to this literature for further information. The algorithms were 197 

calibrated using the default parameters in BIOMOD2, optimised for species distribution 198 

modelling (details in Thuiller et al. 2016). By including this large range of algorithms within 199 

an ensemble model approach, we quantified the uncertainty related to the selection of SDMs 200 

(Pearson et al. 2006, Buisson et al. 2010) by calculating the standard deviation (SD) and the 201 

coefficient of variation (CV) among SDM outputs.  202 

 203 

2.3. Data preparation and ensemble model selection 204 

2.3.1. Pre-selection of the environmental parameters and assessment of multicollinearity 205 

To model the ecological niche of the seven SPFs, we first constructed the full dataset of 206 

environmental parameters based on our knowledge of the ecology of SPFs. A variable selection 207 

process (Figure 1, step 1) was then applied to identify, at the species level, the most 208 
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parsimonious dataset that explained each species distribution. This process follows the 209 

procedure described in Leroy et al. (2014) and Bellard et al. (2016). Because most of the 210 

algorithms (especially regression-based models such as GLM) are sensitive to multicollinearity 211 

– that may distort model estimation (Dormann et al. 2013) – relations among environmental 212 

parameters were assessed by means of the Pearson correlation coefficient, using a threshold r > 213 

0.7 to reduce the initial environmental matrix. When two or more environmental parameters 214 

showed correlation values above this threshold, only one variable was retained (details in 215 

Supplementary material 2). 216 

 217 

We subsequently assessed the relative importance of each environmental parameter by 218 

sequentially randomising each variable and by calculating the resulting current distribution 219 

(Leroy et al. 2014). The variables that best predicted SPF distribution were sea surface 220 

temperature annual mean (SST), temperature variability (sea surface temperature annual range 221 

or monthly variance, depending on the targeted species), bathymetry and distance to coast (see 222 

Supplementary material 2). In order to avoid model over-parameterisation (that affects model 223 

performance, model transferability and assessment of variable importance), we chose not to 224 

include bathymetry and distance to coast directly in the models, but in a hierarchical filtering 225 

approach (Hattab et al. 2014): for a given geographical cell, environmental conditions were 226 

considered as suitable for a marine species only if a probability of occurrence coincided with a 227 

distance to coast less than 50km or up to a 300m depth for oceanic cells, i.e. outside the 50km 228 

wide coastal area. Concerning environmental predictors, we systematically considered 229 

temperature (mean and variability) in our models. Finally, we tested the relevance of including 230 

sea surface salinity (SSS) and/or primary production (log_PP) as a potential third explanatory 231 

environmental parameter in the models. Each run is detailed in Supplementary material 3. 232 

 233 
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2.3.2. Environmental filtration and pseudo-absence selection 234 

Because sampling effort is neither homogeneous and nor standardised over marine 235 

regions, occurrence data may not be representative of the whole populations, a requirement to 236 

increase the reliability of SDMs (Lobo and Tognelli 2011). While under-sampling is commonly 237 

observed at the edge of species range (Varela et al. 2014), observation datasets can also be 238 

biased toward regions more comprehensively investigated due to an easy access or a long 239 

tradition of monitoring (Fithian et al. 2015). 240 

To consider the risk of over-sampling, and the ensuing over-representation of 241 

environmental features (Kramer‐Schadt et al. 2013), we first homogenised species datasets to 242 

assign the same weight to over- and under-sampled regions (Figure 1, step 2). A 243 

multidimensional matrix was designed for each species and each combination of environmental 244 

parameters, a dimension reflecting an environmental factor. Each cell of the homogenised 245 

matrix was considered as an environmental stratum, i.e. a combination of a set of parameters, 246 

with the following resolution: 0.5°C for temperature-related parameters, 0.5 for SSS and 0.5 247 

mol.m-2.s-1 (in log) for primary production. In case an environmental stratum contained multiple 248 

occurrences, only one occurrence (i.e. one 0.1° x 0.1° geographical cell with the corresponding 249 

environmental conditions) was kept in the homogenised dataset. 250 

We also considered the lack of absence data. To assess this gap, we generated pseudo-251 

absences using the convex hull method (Cornwell et al. 2004, Getz and Wilmers 2006). The 252 

convex hull was defined here as the smallest convex hyper-volume in the environmental space 253 

containing all species observation records. A restricted convex hull (see Figure 2) has been 254 

defined as a convex hull excluding occurrence points within the 2.5% and 97.5% percentiles 255 

for each environmental parameter (i.e. excluding observations in the most extreme 256 

environmental conditions). This restricted convex hull is considered as a proxy of the suitable 257 

environmental conditions outside which, pseudo-absences were randomly generated in equal 258 
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number to the filtered occurrences as recommended by the “D-designs”theory (Montgomery 259 

2005): the optimal design to minimise prediction variance is when an equal number of 260 

observations are at opposite value extremes (Montgomery 2005, Hengl et al. 2009) and when 261 

there is a high spreading in the feature space. Finally, for each species, pseudo-absence were 262 

projected back in geographical cells showing environmental conditions outside SPF species’ 263 

environmentally favourable areas (Figure 2; Varela et al. 2014). Finally, model outputs 264 

obtained from our environmental filtration approach were compared with outputs for which 265 

neither environmental filtration nor the convex hull pseudo-absence selection method was 266 

applied (Figure 3). 267 

 268 

2.3.3. Validation and selection of the best models 269 

We then quantified the performance of our models using five commonly used evaluation 270 

metrics: (i) the Continuous Boyce Index (CBI; Hirzel et al. 2006), a metric specifically designed 271 

for presence-only models and insensitive to pseudo-absences, (ii) the Area Under the Curve 272 

(AUC; Swets 1988, Fielding and Bell 1997), (iii) the True Skill Statistic (TSS; Allouche et al. 273 

2006), (iv) the Jaccard and (v) the Sørensen similarity indices (Jaccard 1908, Sørensen 1948). 274 

However, because all evaluation metrics – except the CBI – require both presence and absence 275 

data (see discussion in Leroy et al. 2018 about the use of pseudo-absence to evaluate the 276 

performance of models) and because some may be affected by prevalence (i.e. the ratio between 277 

the number of observed presence and generated pseudo-absence; Leroy et al. 2018) we based 278 

our selection process of the best models on CBI values only. We considered models to be wrong 279 

when CBI values were below -0.5, “average to random” for values ranging from -0.5 to 0.5, 280 

and good for values above 0.5 (Faillettaz et al. 2019). 281 

For each model, we computed evaluation metrics by performing a cross-validation 282 

procedure with 10 repetitions. We randomly sampled 70% of the occurrence data to calibrate 283 
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the model and kept the remaining 30% for model validation (Merow et al. 2013). Following the 284 

“evaluation strip method” detailed by Elith et al. (2005), the adequacy between observed and 285 

modelled spatial distributions was also assessed by means of response curves. For a given 286 

environmental parameter, the corresponding response curve was calculated, while keeping the 287 

other parameters constant (i.e. at the mean value corresponding to their occurrence points). By 288 

doing this, we identified spurious results (e.g. we do not expect bimodal responses to 289 

temperature) and/or unexpected distribution ranges (e.g. large portions of predicted range in 290 

regions where the species has never been observed, and vice-versa; Supplementary material 4). 291 

 292 

 293 

3. RESULTS 294 

3.1. SDMs and parameters selected in the ensemble models 295 

Based on the calculation of the CBI values and the examination of species response 296 

curves (Supplementary material 3 and 4), we identified the best models for each SPF species. 297 

Our results showed that both GLM and NPPEN models were almost always selected in the 298 

ensemble model, except for the European anchovy. 299 

Ensemble models showed that temperature-related variables were essential to assess the 300 

spatial distribution of SPFs’. For virtually all species, the models that considered mean 301 

temperature and variability showed high ability to reproduce the overall SPFs distributions 302 

(Table 2, Supplementary material 3) with CBI values always above 0.5 (Faillettaz et al. 2019). 303 

However, some discrepancies were observed among species. While Mediterranean horse 304 

mackerel, Atlantic horse mackerel and European anchovy distributions were more related to 305 

mean monthly temperature variance (SSTvar), European pilchard, round sardinella, European 306 

Sprat and bogue distributions were better reproduced when mean annual temperature range 307 

(SSTr) was considered. Despite the high correlation between SSTr and SSTvar (r=0.80, 308 
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Supplementary material 2), both variables have dissimilar ecological influences (seasonality 309 

versus short-term climatic variability respectively). Primary production also emerged as 310 

important to model species’ spatial distribution. Finally, we highlighted the important role of 311 

sea surface salinity (SSS) for both European pilchard and European anchovy, by discriminating 312 

both the Baltic and the Black seas from other regions (Table 2). 313 

 314 

By applying our environmental filtration framework, we substantially improved the 315 

modelling of most of the SPFs spatial distributions (Figure 3, individual contributions of the 316 

filtration process and the convexhull are presented in Supplementary material 5), except for the 317 

European pilchard (Figure 3b). Specifically, we observed an increase in mean CBI values that 318 

ranged from +0.05 to +0.23 (Figure 3). For most SPFs, lower Environmental Suitability Index 319 

(ESI) values were obtained (-0.2 without filtration to -0.6 with filtration), suggesting that our 320 

procedure alleviated the risk of over-prediction, especially in the Black and Baltic seas, and 321 

beyond 60°N where species have never been observed (Figure 4, left panels). By increasing 322 

ESI values from +0.4 to +0.6, environmental filtration also emphasised regions known to be 323 

highly suitable for SPF species, but in which occurrences were only scarcely available (e.g. in 324 

the eastern Mediterranean Sea for Atlantic horse mackerel, round sardinella and bogue; Figure 325 

4a, f and g).  326 

3.2. Contemporary (1990-2017) environmental suitability of small pelagic fishes 327 

We then represented the contemporary (1990-2017) spatial distribution of the seven 328 

SPFs in the spatial domain ranging from 10 to 70°N and from 30°W to 45°E (Figure 4, middle 329 

panel) Environmental suitabilities at the calibration range (i.e. the entire distribution range) are 330 

provided in Supplementary material 6. 331 

 332 
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According to the observed and modelled distributions (Figure 4, left and middle 333 

panels), two species groups were identified with respect to their environmental suitability along 334 

the European coasts. The first group encompassed temperate-to-cold water species (hereafter 335 

“temperate-cold” species; i.e. Atlantic horse mackerel, European pilchard, European sprat and 336 

European anchovy; Figure 4a-d) that were more likely to be present in northern Europe. The 337 

second grouped temperate-to-warm water species (hereafter “temperate-warm” species; i.e. 338 

Mediterranean horse mackerel, round sardinella and bogue; Figure 4e-g) located along the 339 

Mediterranean coasts down, to North Africa.  340 

The four temperate-cold species showed the highest ESI values in the North Sea, in the 341 

Celtic Sea, in the Bay of Biscay (ESI values > 0.8) and to a lesser extent along Norwegian 342 

coasts (ESI values ranging from 0.2 to 0.8). For all temperate-cold species, but European 343 

pilchard, high ESI values (from 0.4 to 0.8) were expected in the western and central regions of 344 

the Baltic Sea (Figure 4), suggesting that these species can tolerate a wide salinity range (from 345 

8 to 38) and a high thermal variability (up to 20°C annual range). All temperate-cold species, 346 

but European sprat, showed high ESI values (from 0.6 to 0.8) in the north-western part of the 347 

Mediterranean basin (Figure 4). For all temperate-cold species, the modelled ESIs are in 348 

accordance with the observation data except in southern Iceland, western Norway and to a lesser 349 

extent in the eastern Black Sea where positive ESI values (between 0.05 to 0.6) are predicted 350 

while no observed distribution is available. 351 

The three temperate-warm species showed the highest ESI values (from 0.4 to 0.8) in 352 

nearly all the regions of the Mediterranean Sea and medium to low ESI values (from 0.2 to 0.7) 353 

in the Black Sea and along the north-western African coasts. However, some discrepancies 354 

among species were detected (Figure 4). Round sardinella appears as the most southern SPF 355 

species with no suitable conditions north of the Portuguese coast. On the contrary, 356 

Mediterranean horse mackerel and bogue showed high ESI values (from 0.6 to 0.8) along the 357 
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Atlantic coasts from the Celtic sea down to northern Africa, up to 0.8 in the Bay of Biscay. 358 

While bogue showed maximum ESI values (> 0.8) in the whole Mediterranean Sea, only the 359 

north-western regions of the Mediterranean Sea were highly suitable for Mediterranean horse 360 

mackerel and round sardinella. The modelled ESIs are in accordance with the observation data 361 

except in the North Sea for Mediterranean horse mackerel and Bogue and to a lesser extent in 362 

the eastern Black Sea for all temperate-warm species. These regions highlight positive ESI 363 

values (between 0.05 and 0.6) while no observations are available. These discrepancies may 364 

result from an absence of sampling in these regions or external factors hindering species 365 

establishment despite suitable environmental conditions. 366 

 367 

3.3. Model uncertainties 368 

Two main sources of uncertainties in projected species distributions were considered in 369 

our study: (i) biological uncertainties, related to the quality of occurrence datasets and (ii) 370 

numerical uncertainties, inherent to the selection of different modelling algorithms (Pearson et 371 

al. 2006, Buisson et al. 2010). Standard deviations (SD) – computed, for each species, from 372 

outputs that originated from both selected algorithms and cross-validation runs – ranged from 373 

0.1 to 0.4, indicating a convergence between models (Figure 4, right panels). The lowest SD 374 

values (close to 0.2) were found in the north-western Mediterranean Sea for virtually all SPFs, 375 

and in the Bay of Biscay and in the North Sea when temperate-cold species were studied 376 

(Figure 4, a-d). The highest SD values (close to 0.4) were observed in the Mediterranean Sea 377 

for Mediterranean horse mackerel, European pilchard and round sardinella (Figure 4, e-g). For 378 

all species, the coefficient of variation (CV; Supplementary material 7) highlighted very low 379 

CV variations (< 20%) towards their centre of distribution (in the Mediterranean Sea for all 380 

species and North Sea for temperate-cold species) while showing high variations at the leading 381 
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or the trailing edge of their distribution (up to 100% in the Black, Baltic and the Norwegian 382 

seas). 383 

 384 

4. DISCUSSION 385 

By combining several numerical techniques such as the convex hull method, the 386 

ensemble models approach and an examination of species response curves in a comprehensive 387 

modelling framework, we modelled the contemporary (1990-2017) environmental suitability 388 

of seven of the most commercially and ecologically important European small pelagic fish. By 389 

relying on both an understanding of the ecological requirements of species and on the use of 390 

innovative statistical tools, our framework allowed us to focus only on the best models, to 391 

improve the way species distribution modelling is carried out, and therefore to produce more 392 

robust ecological scenarios. 393 

 394 

At a macroecological level, thermal-induced effects have been frequently related to 395 

latitudinal mean temperature gradients (Angilletta 2011). While our analysis showed that mean 396 

temperature (SST) had a major influence on species distributions, we also revealed the key role 397 

of temperature seasonality (SSTr) and short-term temperature variations (SSTvar) in shaping 398 

distributional ranges (Table 2). Small pelagic fishes are marine ectotherms, that mainly depend 399 

on external heat sources, their body temperature being directly controlled by environmental 400 

conditions directly (Checkley et al. 2009). Changes in temperature may therefore affect SPFs’ 401 

physiological performances (i.e. their fitness; Perry et al. 2005, Payne et al. 2016). Because the 402 

relationship between temperature and fitness occurred through species’ thermal optimum and 403 

range, and because SPFs are short lifespan species (Checkley et al. 2009), annual temperature 404 

changes may affect several life stages (especially reproduction and larval development; e.g. 405 

Peck et al. 2013), with long-term consequences on population dynamics (Fréon et al. 2005). 406 
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Small pelagic fishes may also experience ontogenetic shifts in thermal tolerance during their 407 

development (Peck et al. 2013) and temperature seasonality (here SSTr) may either favour or 408 

perturb species development, with potential consequences on distributional patterns (Figure 4, 409 

middle panels; Peck et al. 2013). This is especially noticeable in regions characterised by an 410 

important thermal variability, such as in the Black and Azov seas, in the Northern Adriatic Sea, 411 

in the Baltic Sea and to a lesser extent in the eastern part of the North Sea. Considering thermal 412 

variability in SDMs (e.g. the monthly SST variance) may therefore help to better define species 413 

environmental suitability and to minimise the risk of over-prediction at the leading and the 414 

trailing edges of their distributions (Lenoir et al. 2011). 415 

 416 

When used in distribution modelling, regression-based algorithms such as GLM, are 417 

known to be rather sensitive to environmental sampling bias, which may induce type I errors 418 

(i.e. false positive), with consequences on projected species environmental suitability (Araújo 419 

and Guisan 2006, Dormann et al. 2007). However, as for many other species (e.g. Boakes et al. 420 

2010), commonly available databases of SPFs provide a distorted view of their actual 421 

distribution because of spatial and temporal bias in species observations (e.g. Beck et al. 2014). 422 

When the time comes to evaluate the quality of biodiversity datasets, three major issues have 423 

been raised in the literature (e.g. Kramer‐Schadt et al. 2013, Guillera‐Arroita et al. 2015): the 424 

influence of (i) prevalence, i.e. the proportion of sites in which the species was recorded as 425 

present, (ii) imperfect species detection and (iii) sampling bias. Despite an increasing 426 

availability of information, the biogeographic distribution of most species remain still 427 

frequently incomplete (Bini et al. 2006); a shortcoming explained, inter alia, by heterogeneous 428 

sampling effort among surveys, or the inaccessibility of some areas. For all SPF datasets, this 429 

effect is undeniable when comparing the north-western Mediterranean Sea, the Bay of Biscay, 430 

the North Sea with other European regions. (Figure 4, left panels). To lower this issue, a 431 
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plethora of data sources (e.g. standardised scientific surveys, biodiversity portals) are now 432 

available in collaborative databases (e.g. GBIF), offering more cohesive summaries of species’ 433 

distributions although leading – sometimes – to enhanced spatial and environmental biases 434 

(Kramer‐Schadt et al. 2013, Beck et al. 2014). Considering independent distributional data (i.e. 435 

from private collections or from the literature; Beck et al. 2013) along with the associated pre-436 

processing (e.g. Kramer‐Schadt et al. 2013, Varela et al. 2014, Aiello‐Lammens et al. 2015, 437 

Fithian et al. 2015), can contribute to cover the ecological niches of species more 438 

comprehensively and to improve model accuracy. By coupling these procedures with our 439 

restricting convex hull pseudo-absence selection, we (i) assigned the same weight to 440 

environmental conditions independently of the observation density (i.e. alleviating observation 441 

sampling bias), (ii) lowered the weight of presence records at the distribution edge (i.e. avoiding 442 

the risk of over-prediction) and (iii) selected unbiased pseudo-absence (i.e. independent of the 443 

observation bias). 444 

 445 

Applying environmental filtering and the restricted convexhull pseudo-absence 446 

selection method resulted in ensemble models characterised by a reduced ESI in over-sampled 447 

areas and an increased ESI in undersampled areas. Our results are consistent with our 448 

expectations and in line with previous studies that suggested that random generation of pseudo-449 

absences and/or a selection process based on geographical criterion may lead to lower 450 

predictability (e.g. Wisz and Guisan 2009, Hattab et al. 2014). Although real absences lead to 451 

higher model accuracy (Wisz and Guisan 2009), they are rarely available (Boakes et al. 2010) 452 

and determining the location of pseudo-absences on the basis of a statistical analysis such as 453 

the convex hull is a reliable alternative (Hattab et al. 2013). Finally, our approach limits 454 

spurious species response curves (i.e. overfitted or bimodal curves; Supplementary material 4) 455 

and decreases the risk of over-predictions towards the edge of the species range. We 456 
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acknowledge that we may have slightly underpredicted the European pilchard distribution in 457 

Kattegat (i.e. strait between Denmark and Sweden); the high amount of occurrence records 458 

slightly outside the modelled distribution in this region may have biased the calculation of the 459 

CBI. Despite the well-known robustness of this index (Breiner et al. 2015, Faillettaz et al. 2019), 460 

our result highlight that no evaluation metric is optimal and that both comparison between 461 

observed and modelled distributions and examination of species responses curves are essential 462 

for assessing the reliability of model outputs. 463 

 464 

While the assessment of the environmental suitability for a given species may differ – 465 

slightly or markedly – from one SDM to another (Pearson et al. 2006, Buisson et al. 2010), it is 466 

still challenging to identify the most appropriate model (see discussion in Buisson et al. 2010). 467 

Even if several methods have been recently proposed, no consensus has emerged (see 468 

discussion in Leroy et al. 2018). and the use of different – well-fitted and evaluated – SDMs 469 

may help to better simulate potential species distributions, for past, contemporary and future 470 

environmental conditions (Araújo and New 2007). In complementarity with a multi-SDM 471 

approach, we think that researchers should examine species response curves during the 472 

evaluation process (e.g. Elith and Leathwick 2009, Jarnevich et al. 2018, Erauskin-Extramiana 473 

et al. 2019). As observed for Mediterranean horse mackerel (see details in Supplementary 474 

material 4), we invalidated response curves that were statistically significant but not in 475 

agreement with the ecological niche theory. Without this complementary evaluation method, 476 

the corresponding algorithms would have been considered in the ensemble model, therefore 477 

potentially resulting in spurious patterns of ESIs. Therefore, this multi-criteria evaluation 478 

procedure is of great interest from a (i) numerical (i.e. metric adapted to presence-only datasets) 479 

and an ecological (i.e. validation of the species-environment relationships) perspective. Note 480 

that the seven SPFs we chose are representative of a large spectrum of environmental 481 



21 

conditions, from temperate-to-cold waters (e.g. European sprat) to temperate-to-warm waters 482 

(e.g. bogue and round sardinella).To conclude, our framework has been faced with a wide range 483 

of environmental conditions, allowing us to better evaluate its robustness, sensitivity and 484 

possible transferability to other species and ecosystems. 485 

 486 

In this work, we have estimated species’ potential niche and not the realised niche 487 

(Soberón and Nakamura 2009). We caution that additional environmental parameters, 488 

biological interactions and species life traits (e.g. dispersal abilities) may explain why we 489 

detected environmentally suitable conditions in regions where SPFs were not observed (e.g. the 490 

Norwegian Sea; Pulliam 2000, Pearman et al. 2008). Considering the role of biotic interactions 491 

in shaping species distributions (Chaalali et al. 2016) would improve the reliability of SDMs 492 

outputs by better estimating and simulating the realised niche of species (Wisz et al. 2013, 493 

Louthan et al. 2015). Including dispersal mechanisms while accounting for oceanic currents 494 

and physical barriers after the potential distribution modelling step may help to refine the 495 

distributional range of species (Engler and Guisan 2009). These approaches require an 496 

exhaustive ecological understanding of the interaction process at a macroecological scale and a 497 

deep knowledge of species life traits to implement metrics that simulate the ability of species 498 

to disperse (e.g. Petitgas et al. 2012). Moreover, it is important to notice that no direct 499 

correlations between ESI (potential or realised) and spatialised biomass or official catches have 500 

been established in the literature although temporal correlations have been suggested however 501 

(e.g. Chaalali et al. 2016). Therefore, discrepancies between SPF’s ESI, biomass and official 502 

catches (e.g. FAO 2016) may be explained by population-related parameters (e.g. recruitment, 503 

growth, biotic interaction) or management policies and stock status (e.g.  under or over-fishing), 504 

respectively. Finally, inter-specific absolute ESI comparison is challenging because of the 505 

monospecific nature of SDMs. 506 
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 507 

Our study presents a detailed environmental suitability assessment of seven of the most 508 

heavily harvested European SPFs. By focusing on the most common sources of errors and 509 

uncertainties in SDMs, we designed a comprehensive - fully transferable to other species and 510 

ecosystems - modelling framework which is intended to elaborate more robust ecological 511 

scenarios. Our framework addressed several critical steps in SDMs, i.e. the treatment of 512 

sampling biases in observation records, the generation relevant pseudo-absences and a dual 513 

assessment of model outputs that proposes to evaluate models from both a numerical and an 514 

ecological perspective. In a conservation decision-making perspective, these different steps are 515 

essential to increase confidence in SDMs, a prerequisite to propose effective resource 516 

management measures (e.g. accounting for environmental stress) or to measure the 517 

effectiveness of protected areas (e.g. regarding environmental resilience). Moreover, when used 518 

in combination with scenarios of future environmental conditions (i.e. IPCC climate scenarios), 519 

this framework provides robust contemporary predictions to assess possible changes in species 520 

distribution in the context of global climate change. Despite the growing literature on the 521 

development and testing of new modelling and evaluation processes, the use of SDMs in 522 

quantitative resource management and scientific surveys is still a great challenge. 523 

 524 
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TABLES AND FIGURES 774 

 775 

Name 
(Period) 

Description Reference 

Bathymetry Spatial seafloor depth (m) 
Global seafloor topography (Smith and Sandwell 
1997) 

Distance to 
coast 

Distance to the nearest coast 
(km) 

NASA Goddard Space Flight Center (2009) 
(https://oceancolor.gsfc.nasa.gov/docs/distfromcoa
st/) 

SSS 
(1990-2017) 

Sea Surface Salinity 
Levitus’ climatology (Levitus 2011) completed with 
(http://www.ices.dk/) 

PP 
(1990-2017) 

Sea Surface Primary Production 
(mol.m-2.s-1). Averaged from five 
general circulation models (IPSL, 
MPI, CNRM, HadGEM and 
GISS). 

IPSL (Dufresne et al. 2013, Hourdin et al. 2013), MPI 
(Stevens et al. 2013, Giorgetta et al. 2013), CNRM 
(Voldoire et al. 2013), HadGEM (Jones et al. 2011) 
and GISS (Schmidt et al. 2014) models. 

Log_PP 
(1990-2017) 

Log10-transformed Sea Surface 
Primary Production 

SST 
(1990-2017) 

Mean annual Sea Surface 
Temperature (°C) 

AVHRR Very High Resolution Radiometer (Casey et 
al. 2010) 

SSTmax 
(1990-2017) 

Mean sea surface temperature of 
the hottest month (°C) 

SSTmin 
(1990-2017) 

Mean sea surface temperature of 
the coldest month (°C) 

SSTr 
(1990-2017) 

Mean annual sea surface 
temperature range (°C). 
Difference between SSTmax and 
SSTmin. 

SSTvar 
(1990-2017) 

Mean monthly sea surface 
temperature variance (°C). 
Calculated using monthly SST 
data. 

 776 

Table 1: Environmental parameters used to model SPF distribution. 777 
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 780 

 781 

Figure 1: Sketch diagram of the modelling framework applied to model SPFs species. “ENV.” = environmental 782 

parameters and “OBS.” = georeferenced presence data.  783 
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 785 

 786 

Figure 2: Example of pseudo-absences generation for the Mediterranean horse mackerel (environmental 787 

parameters = SST + SSTr, 1°C resolution). A-C: Species occurrences (black dots) in (A) the geographical domain 788 

and (C) the environmental space. B-D: Species occurrences (black dots) and pseudo-absences (red dots) generated 789 

from the restricted convex hull method in (B) the geographical domain and (D) the environmental space. 790 
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 793 

 794 

Mediterranean 
horse mackerel 
  
  

Parameters: SST, SSTvar, log_PP 

Models: GLM, RF, NPPEN 

CBI (mean): 0.71 

Atlantic horse 
mackerel 
  
  

Parameters: SST, SSTvar, log_PP 

Models: GLM,  NPPEN 

CBI (mean): 0.95 

European 
pilchard 
  
  

Parameters: SST, SSTr, SSS 

Models: GLM, GAM, NPPEN 

CBI (mean): 0.75 

Round 
sardinella 
  
  

Parameters: SST, SSTr, log_PP 

Models: GLM, RF, FDA, NPPEN 

CBI (mean): 0.88 

European sprat 
  
  

Parameters: SST, SSTr, log_PP 

Models: GLM, MARS, NPPEN 

CBI (mean): 0.92 

European 
anchovy 
  
  

Parameters: SST, SSTvar, SSS 

Models: GLM, FDA, MARS 

CBI (mean): 0.88 

Bogue 
  
  

Parameters: SST, SSTr 

Models: GLM, ANN, NPPEN 

CBI (mean): 0.65 

 795 

Table 2: Environmental parameters and SDMs selected by our procedure.  796 

The selected SDMs had a CBI>0.5 and satisfying response curves. Parameters: (SST) Sea Surface Temperature, 797 

(SSTr) annual range of Sea Surface Temperature, (SSTvar) monthly variance of Sea Surface Temperature, 798 

(log_PP) log-transformed Primary Production and (SSS) Sea Surface Salinity. Models: (GLM) Generalised 799 

Linear Model, (GAM) Generalised Additive Model, (GBM) Generalised Boosting Model, (ANN) Artificial 800 

Neural Network, (FDA) Flexible Discriminant Analysis, (MARS) Multiple Adaptive Regression Splines, (RF) 801 

Random Forest and (NPPEN) Non Parametric Probabilistic Ecological Niche model. 802 
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 805 

 806 

 807 

Figure 3: Environmental suitability index and CBI differences between ensemble models originating from our 808 

modelling framework and ensemble models constructed without data filtration and random pseudo-absence 809 

selection for (a) Atlantic horse mackerel, (b) European pilchard, (c) European sprat, (d) European anchovy, (e) 810 

Mediterranean horse mackerel, (f) round sardinella and (g) bogue. 811 
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 814 

Figure 4: Contemporary (1990-2017) observed distribution (left panels), modelled environmental suitability index 815 

(0 to 1, middle panels) and its associated standard deviation (0 to 1, based on all validated SDMs and cross-816 

validation runs, right panels) for (a) Atlantic horse mackerel, (b) European pilchard, (c) European sprat, (d) 817 

European anchovy, (e) Mediterranean horse mackerel, (f) round sardinella and (g) bogue. 818 




