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ABSTRACT

In recent years, neural networks have emerged as data-
driven tools to solve problems which were previously ad-
dressed with model-based methods. In particular, image
processing has been largely impacted by convolutional
neural networks (CNNs) [BT09]. Recently, CNN-based
autoencoders have been successfully employed for lossy
image compression [BLS17, TSCH17, RB17, BMS*18].
These end-to-end optimized architectures are able to dra-
matically outperform traditional compression schemes in
terms of rate-distortion trade-off. The autoencoder first
applies an analyzing transform to the input data to pro-
duce a latent representation with minimum entropy after
quantization. The latent representation, derived through
several convolutional layers composed of filters and acti-
vation functions, is multi-channel (the output of a par-
ticular filter is called a channel or a feature) and non-
linear. The representation is then quantized to pro-
duce a discrete-valued vector. A standard entropy cod-
ing method losslessly compress this discrete-valued vec-
tor from a model of the representation probability dis-
tribution. The analyzing transform and the representa-
tion distribution model are both learned from the data
by minimization of a rate-distortion trade-off. The as-
sumed representation probability distribution, leading to
a particular entropy model, is a key element of these
frameworks. In earlier works [BLS17, TSCH17, RB17],
the learned representation was assumed independent and
identically distributed within each channel and the chan-
nels were assumed independent of each other, resulting
in a fully-factorized entropy model. Moreover, a fixed
entropy model was learned once, from the training set,
prohibiting adaptation to the input image during the op-
erational phase. The variational autoencoder proposed
in [BMS™18] used an auxiliary autoencoder. This au-
toencoder estimates the hyper-parameters of the repre-
sentation distribution, for each input image even in op-
erational phase. It does not require the assumption of a

fully-factorized model which conflicts with the need for
context modeling. This variational autoencoder achieves
compression performance close to the one of BPG (Bet-
ter Portable Graphics) [Bell5] at the expense of a con-
siderable increase in complexity. However, in the con-
text of on-board compression, a trade-off between com-
pression performance and complexity has to be consid-
ered to take into account the strong computational con-
straints. For this reason, the computational requirements
of the CCSDS (Consultative Committee for Space Data
Systems) [Boo05] have been considerable reduced with
respect to JPEG2000. This work follows the same logic,
however in the context of learned image compression.
The aim of this paper is to design a simplified version
of the variational autoencoder proposed in [BMS*18] in
order to meet the on-board constraints in terms of com-
plexity while preserving high performance in terms of
rate-distortion. Apart from straightforward simplifica-
tions of the transform (e.g. reduction of the number of
filters in the convolutional layers), we mainly propose a
simplified entropy model that preserves the adaptability
to the input image. A preliminary reduction of the num-
ber of filters reduces the complexity by 62 % the number
of floating point operations per pixel (FLOPp) with re-
spect to [BMS™18]. It also reduces the number of learned
parameters with a positive impact on the memory occu-
pancy. The entropy model simplification exploits a sta-
tistical analysis of the learned representation for satellite
images, also performed in [DRG18] for natural images.
This analysis reveals that most of the features are well fit-
ted by centered Laplacian distributions and by Gaussian
distributions to a lesser extent. The computationally ex-
pensive auxiliary autoencoder in [BMS™ 18] is replaced
by a classical and simple estimation of a single parame-
ter referred to as the scale (resp. the standard deviation).
Our simplified entropy model reduces the complexity of
the variational autoencoder coding part by 18 % and out-
performs the autoencoder proposed in [BLS17] for the
relatively high target rates.
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1. INTRODUCTION

The spatial resolution of Earth observation satellite im-
ages regularly increases thanks to the sensor technolog-
ical evolution. In order to save transmission channel
bandwidth, memory storage and data-transmission time,
on-board compression needs to cope up with this in-
creasing volume of digital data [Huall]. Compression
techniques can be classified into two categories: loss-
less and lossy compression. Lossless compression is a
reversible technique that compress data without loss of
information. However, lossless compression rates are
limited: for optical satellite images, the typical loss-
less compression rate that can be achieved is less than
3:1 [Qial3]. Lossy compression achieves high compres-
sion rates through transform coding [Goy01] and the opti-
mization of a rate-distortion criterion. Traditional frame-
works for lossy image compression operate by linearly
transforming the data into an appropriate continuous-
valued representation, quantizing its coefficients inde-
pendently, and then encoding this discrete representa-
tion using a lossless entropy coder. To give an on-
ground example, JPEG uses a discrete cosine transform
(DCT) on blocks of pixels followed by a Huffman coder
whereas JPEG2000 uses an orthogonal wavelet decom-
position followed by an arithmetic coder. In the context
of on-board compression, the consultative committee for
space data systems (CCSDS), drawing on the on-ground
JPEG2000 standard, recommends the use of the orthogo-
nal wavelet transform. However, the computational re-
quirements of the CCSDS have been considerably re-
duced with respect to JPEG2000, taking into account the
huge hardware constraints on satellites. This work fol-
lows the same logic, however in the context of learned
image compression. In recent years, neural networks
have emerged as powerful data-driven tools to solve prob-
lems previously addressed with model-based methods. In
particular, image processing has been largely impacted
by convolutional neural networks (CNNs). CNNs have
proven to be successful in many computer vision appli-
cations [BT09] such as classification [HSS18], object
detection [RDGF16], segmentation [KWL*17], denois-
ing [ZZC™17] and feature extraction [WB17]. Recently,
CNNs have been successfully employed for lossy im-
age compression [BLS17, TSCH17, RB17, BMS*18].
CNN end-to-end optimized architectures are able to dra-
matically outperform traditional compression schemes in
terms of rate-distortion trade-off, however at the cost
of a high computational complexity. In this paper, we
start from the state-of-the-art CNN image compression
scheme proposed in [BMS'18] to design a reduced-
complexity framework in order to adapt to satellite im-
age compression. Apart from a straightforward network
reduction, we mainly propose a simplified entropy model
that preserves the adaptability to the input image. The
entropy model simplification exploits a statistical analy-
sis of the learned representation for satellite images, also

performed in [DRG18] for natural images. The paper
is organized as follows. Section 2 presents some back-
ground on learned image compression. Section 3 presents
the proposed reduced-complexity compression scheme.
Section 4 quantitatively assesses its performance on a set
of real satellite images and performs a comparative com-
plexity study. Section 5 concludes the paper.

2. LEARNED COMPRESSION BACKGROUND

2.1. Autoencoder structure

Autoencoders have been initially designed for data di-
mension reduction similar to e.g. Principal Component
Analysis (PCA) [BT09]. In the case of image compres-
sion, the goal is not only to reproduce the image, but to
produce a representation with low entropy after quanti-
zation. The autoencoder is composed of an analyzing
transform denoted by G, and a synthesis transform de-
noted by G both learned from the data. The interface
between the analysis transform and the synthesis trans-
form is called the bottleneck. In the case of compression,
this bottleneck is composed of a quantizer, an entropy en-
coder and its associated decoder. The analysis transform
is applied to the input data x to produce a representation
y = Gq(x). This representation, derived through sev-
eral convolutional layers composed of filters and activa-
tion functions, is multi-channel (the output of a particular
filter is called a channel or a feature) and non-linear. At
the input of the bottleneck, the representation is quantized
to produce a discrete-valued vector y = Q(y) with min-
imum entropy. A standard entropy coding method, such
as arithmetic, range or Huffman coding [RL81] uses the
entropy model inferred from the representation, denoted
by py (¥), to losslessly compress y. The last step consists
in decoding and transforming back the quantized repre-
sentation into the original space: X = G4(¥) by means
of the synthesis transform, composed of so-called trans-
pose convolutional layers. In [BLS17, BMS™18] the ac-
tivation functions in G, (resp. G,) are generalized di-
visive normalizations (GDN) (resp. Inverse Generative
Divisive Normalizations (IGDN)). Contrarily to usual ac-
tivation functions (e.g. ReLU, sigmoid,...), GDN and
IGDN are parametric functions that implement an adap-
tive normalization. The learning of their parameters is
thus required. They have been shown to reduce statisti-
cal dependencies [Ball8, ML10, Lyul0] and thus appear
particularly appropriate for transform coding. According
to [Ball8], the GDN better estimates the optimal trans-
form than conventional non-linearities for a wide range
of rate-distortion trade-offs. Although the GDN increases
the number of parameters to be learned, this increase rep-
resents a percentage of less than 2% of the overall struc-
ture with respect to conventional non-linearities. For that
purpose, our complexity reduction does not target the
GDN/IGDN.



2.2. Autoencoder learning

The autoencoder parameters (filter weights, GDN/IGDN
and representation distribution model parameters) are
jointly learned by optimization of a loss function that es-
tablishes a trade-off between the rate R(y) and the dis-
tortion D(x,X) between the original image x and the re-
constructed image X. The rate-distortion criterion then
writes as the weighted sum:

J = AD(x,%) + R(3), (1)

where parameter A tunes the rate-distortion trade-off. The
rate achieved by an entropy coder is lower-bounded by
the entropy derived from the actual discrete probabil-
ity distribution of the quantized vector y, denoted as
m(y). The rate increase comes from the mismatch be-
tween the probability distribution model py (y) required
for the coder design and m(y): the smallest bit-rate is
given by the Shannon cross entropy between the two dis-
tributions:

H(y) = Egm [~logapy ()] - 2

The probability model py (¥) has thus a strong impact on
the coder performance.

The distortion measure is chosen to account for im-
age quality as perceived by a human observer. Due to
its many desirable computational properties, the mean
square error (MSE) is generally selected. However,
a measure of perceptual distortion may also be em-
ployed such as the multi-scale structural similarity in-
dex (MS-SSIM) [WSBO03]. The autoencoder parameters
are learned by minimizing the loss function defined in
Equation 1 through gradient descent with backpropaga-
tion [BT09] on a representative image training set. How-
ever, this requires the loss function to be differentiable. In
the specific context of compression, a major hurdle is that
the derivative of the quantization function is zero every-
where except at integers, where it is undefined. To over-
come this difficulty, Ballé et al. (2016) [BLS17] proposed
to replace the quantization by the addition of an inde-
pendent and identically distributed (i.i.d.) uniform noise,
while Theis et al. (2017) [TSCH17] proposed to replace,
in the backward pass (i.e. when back-propagating the
error), the derivative of the quantization function with a
smooth approximation. In both cases, the quantization is
kept as it is in the forward pass (i.e. when processing an
input data). Note that, in the following, we will consider
the first approach [BLS17].

2.3. Entropy model

As stressed above, a key element in the end-to-end
learned image compression frameworks is the entropy
model defined through the probability distribution model
py(¥) assigned to the quantized representation for cod-
ing. The bit-rate is minimized if the distribution model
py(¥) is equal to the actual distribution m(¥). Unfor-
tunately, this distribution may differ from the actual un-
known distribution of the quantized representation m(y),

arising from the actual distribution of the input image and
from the analysis transform G|, .

As mentionned previously, for back-propagation deriva-
tion during the training step, Ballé approximates the
quantization process (y = Q(y)) by the addition of an
i.i.d uniform noise Ay, whose range is defined by the
quantization step. Due to the adaptive local normaliza-
tion performed by GDN non-linearities, the quantization
step can be set to one without loss of generality. Hence
the quantized representation y, which is a discrete ran-
dom variable taking values in Z, is modelled by the con-
tinuous random vector

y=y+Ay 3)

taking values in R.

In [BLS17, TSCH17], this approximated quantized rep-
resentation was assumed independent and identically dis-
tributed within each channel and the channels were as-
sumed independent of each other, resulting in a fully-
factorized distribution:

Pyl (¥]¥) = Hpg,;\qp(i) (), (4)

where index ¢ runs over all elements of the representa-
tion, through channels and spatial locations, ¥(%) is the
distribution model parameter vector associated to each
element. The addition of the uniform quantization noise
leads to the following expression for py. ) (9;) defined
through a convolution by a uniform distribution on the
interval [—1/2,1/2]:

Py (Ui) = Py, (i) xU (=1/2,1/2) . (5)

In [BLS17, TSCH17], the parameter vectors are learned
from data during the learning phase. This learning, per-
formed once and for all, prohibits adaptivity to the input
images during operational phase. Moreover, the simpli-
fying hypothesis of a fully factorized distribution is very
strong. In particular, elements of y show spatial depen-
dency in practice, as observed in [BMS™18].

To overcome these limitations and thus to obtain a more
realistic and more adaptive entropy model, [BMS™18]
proposed a variational autoencoder which takes into ac-
count possible spatial dependency in each input image.
Auxiliary random variables z, conditioned on which the
quantized representation y elements are independent, are
derived from y by an additional autoencoder, connected
in parallel with the bottleneck. The hierarchical model
hyper-parameters are learned for each input image in op-
erational phase. Firstly, the hyperprior transform anal-
ysis H, produces the set of auxiliary random variables
z. Secondly, z is transformed by the hyperprior synthe-
sis transform H into a second set of random variables o.
In [BMS™18], z distribution is assumed fully-factorized
and each representation element ¢;, knowing z, is mod-
eled by a zero-mean Gaussian with its own standard de-
viation o;. Finally, taking into account the quantization
process, the conditional distribution of each quantized
representation element is given by:

gi|z~N(07ai2)*u<—;,;>. (6)



The rate computation involves this distribution model as
well as the prior distribution of z, that will have to be
transmitted to the decoder with the compressed data, as
side information. This variational autoencoder allows to
reach state-of-the-art compression performance, close to
the one of BPG (Better Portable Graphics) [Bell5] at the
expense of a considerable increase in complexity with re-
spect to [BLS17], reflected by a runtime increase between
20% and 50%. The two reference architectures [BLS17]
and [BMS™18] are compactly displayed on Figure 1.
The left column represents the autoencoder [BLS17]
whereas the combination of left and right columns rep-
resents the variational autoencoder [BMST18]. NV repre-
sents the number of filters which is common to all lay-
ers except the ones directly connected to the bottleneck.
These layers are generally composed of M filters with
M > N to obtain a so-called wide bottleneck [CSTK19],
for increased performance.
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Figure 1. Architecture of the autoencoder [BLSI17] (left
column) and variational autoencoder [BMSV18] (left
and right columns).

3. REDUCED-COMPLEXITY
AUTOENCODER

VARIATIONAL

In the literature, the design of learned image compres-
sion frameworks hardly takes into account the computa-
tional complexity: the objective is merely to obtain the

best performance in terms of rate/distortion. However, in
the context of on-board compression, a trade-off between
performance and complexity must be considered to take
into account the strong computational constraints. Our
focus here is to propose a complexity-reduced alternative
to the state-of-the-art structure [BMS* 18] while min-
imizing the impact on the rate-distortion performance.
Note that this complexity reduction is particularly rele-
vant when it operates on the coding part of the frame-
work, the one subject to the on-board constraints.

3.1. Reduction of the number of filters

A straightforward simplification to be first considered is
the reduction of the number of filters composing the con-
volutional layers. The state-of-the-art frameworks gener-
ally involve a large number of filters with the objective of
increasing the network approximation capacity, which is
needed at high bit rates [BLS17, BMS™18]. However, the
learning of the associated parameters (e.g. the filter coef-
ficients) is computationally demanding, in addition to the
increased memory it requires. Moreover, a reduction in
the number of filters indirectly implies a reduction in the
number of parameters and operations in the GDN/IGDN,
as it reduces the depth of the tensors (equal to the number
of filters) at their input. However, the impact of reducing
the number of filters depends on the convolutional layers
it applies. Indeed, a high number of filters M has to be
maintained in the last layer of the encoder and in the first
layer of the decoder, following the so-called wide bottle-
neck strategy [CSTK19]. For the other layers, the num-
ber N of filters can be subsequently reduced. The same
strategy benefits to the auxiliary autoencoder implement-
ing the hyperprior illustrated in Figure 1 (right column).
We consider the number of parameters NV, and the float-
ing point operations per pixel (FLOPp) to compare the
proposed and reference frameworks in terms of complex-
ity. These quantities are provided in [CSTK19] for the
convolution layers including GDN/IGDN. Quantization
is parameter free.

3.2. Simplified parametric entropy model

The entropy model simplification aims at achieving
a compromise between simplicity and performance
while preserving the adaptability to the input image.
In [BLS17], the representation distribution is assumed
fully-factorized and the statistical model for each fea-
ture is non-parametric to avoid the a priori choice of
a given distribution shape. Note that ’non-parametric”
means that the shape of the distribution is not known
in advance, however it is defined by some parameters.
These parameters are learned once, during the learning
step. In [BMS™ 18], the strong independence assumption
leading to a fully-factorized model is avoided by the in-
troduction of the hyperprior distribution, whose parame-
ters are learned for each input image even in the opera-
tional phase. Both models are general and thus suitable



to a wide variety of images, however the first one im-
plies a strong hypothesis of independence and prohibits
adaptivity while the second one is computationally ex-
pensive. This paper exploits a statistical analysis of each
feature of the learned representation in the particular case
of real satellite images. A similar statistical analysis has
been previously conducted in the case of natural images
in [DRGI18] with the objective to properly design the
quantization step in [BLS17]. The probability density
function related to each feature was estimated through a
normalized histogram from a representative set of natu-
ral images. The study showed that most features can be
accurately modelled as Laplacian random variables. A
similar result has also been obtained in [LG0O0] for block-
DCT coefficients of natural images under the assumption
that the variance is constant on each image block and
that its values on the different blocks are distributed ac-
cording to an exponential or an halfnormal distribution.
We conducted this statistical analysis on the represen-
tation obtained by the end-to-end framework [BLS17]
when trained on a representative dataset of satellite im-
ages and for the highest rates obtained with this frame-
work (between 2.5bpp and 3bpp as displayed on Figure
5). According to Kolmogorov-Smirnov goodness-of-fit
test [PG81], most features follow a Laplacian distribution

defined by:
S (-'C_”') forc eR.  (7)

f(¢,p,b) = ) 2

where p is the mean value and b > 0 is a scale param-
eter related to the variance by Var(¢) = 2b%. As an
illustration, let consider the satellite image displayed on
Figure 2. This image of the city of Cannes (French Riv-
iera) is a 12-bit simulated panchromatic Pléiade image
with size 512 x 512 and resolution 70cm. According
to the Kolmogorov-Smirnov goodness-of-fit test [PG81],
93% of the features follow a Laplacian distribution with
a significance level o = 5%. Figure 3 shows a particular
32 x 32 feature derived from the Cannes image and its
normalized histogram with Laplacian fitting.

Figure 2. Simulated 12-bit Pléiade image of Cannes with
size 512 x 512 and resolution T0cm

This statistical analysis has been performed for each of
the 16 simulated 512 x 512 Pléiade images of the test
set (the set used for performance analysis in section 4).
For all images, most of the features can be modelled by
Laplacian random variables with relatively small mean

(a). One feature derived from Cannes Pléiade image
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(b). Associated normalized histogram and Laplacian fitting

Figure 3. An example of feature from Cannes Pléiade im-
age and its normalized histogram with Laplacian fitting.

value and scale varying according to the considered fea-
ture and to the kind of image. Note that the Gaussian fit-
ting is also appropriate albeit to a lesser extent. We thus
propose to consider the following parametric model for
all the j' feature elements, denoted as y;, for i; € I,
where I; denotes the set of indexes covering the j" fea-
ture:

yi, ~ Laplace(0, b;) (resp. yl ~ N(0, 0]2»))

, ®
with: b = /Var(y])/2 (resp. o7 = Var(y!)).

The problem then boils down to the estimation of a
single parameter per feature referred to as the scale b;
(respectively the standard deviation o) in the case of
the Laplacian (resp. Gaussian) distribution. Starting
from [BMST18], this proposal reduces the complexity
at two levels. First, the hyperprior autoencoder, includ-
ing the analysis H, and synthesis H transforms, is re-
moved. Second, the side information initially composed
of the compressed auxiliary random variable set (z) of
size 8 X 8 x M now reduces to a M x 1 vector of vari-
ances. The auxiliary network simplification is displayed
on the right part of Figure 4.
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Figure 4. Architecture of the proposed simplified entropy
model: autoencoder handling the input image (left col-
umn) and proposed simplification of the autoencoder im-
plementing the hyperprior (right column).

4. PERFORMANCE ANALYSIS

4.1. Implementation setup

To assess the relevance of the proposed complexity re-
ductions, experiments were conducted using TensorFlow.
The batch size (i.e. the number of training samples to
work through before the parameters are updated) was set
to 8 and up to 1M iterations were performed. Both train-
ing and validation datasets are composed of simulated 12-
bit Pléiades panchromatic images provided by the CNES,
covering various landscapes (i.e. desert, water, forest, in-
dustrial, cloud, port, rural, urban). The training dataset is
composed of 8M of patches (of size 256 x 256) randomly
cropped from 112 images (of size 585 x 585). The valida-
tion dataset is composed of 16 images (of size 512 x 512).
MSE was considered as the distortion metric for train-
ing. The rate and distortion measurements were averaged
across the validation dataset for a given value of A. In ad-
dition to the MSE, we also evaluate those results in terms
of MS-SSIM. Note that they exhibit a similar behavior
even if the models were trained for the MSE only. The
proposed framework is compared with the CCSDS 122.0-
B [Boo05], JPEG2000 and with the reference methods
AE-N128 [BLS17] and VAE-N192 [BMS™18].

4.2. TImpact of the number of filter reduction

Starting from [BMST18] denoted as VAE-N192, the
number of filters is reduced from N = 192 to N = 64
for all layers, in the main autoencoder and in the hyper-
prior one, except from the two layers on both sides of the
bottleneck composed of M = 192 filters. The resulting
architecture is termed VAE-N64. The complexity of this
model is detailed in Table 1.

Table 1. Detailed complexity of VAE-N64

Layer Kernel Cl 1 Output Np FLOPp

h w Cin Cout H’ w

convl 5 5 1 64 128 128 1664 4.12 x 102
GDN1 4160 1.03 x 10°
conv2 5 5 64 64 64 64 102464  6.39 x 10°
GDN2 4160 2.59 x 102
conv3 55 64 64 32 32 102464  1.58 x 10°
GDN3 4160 2.59 x 102
convd 55 64 192 16 16 307392 1.19 x 10°
Hconvl 3 3 192 64 16 16 110656  4.27 x 10>
Hcow2 5 5 64 64 38 8 102464  0.91 x 102
Hcow3 5 5 64 192 4 4 307200  0.61 x 102
HTcomwl 5 5 192 192 8 3 921792 9.00 x 102
HTcon2 5 5 192 64 16 16 307264  1.19 x 10°
HTcom3 3 3 64 192 16 16 110784  4.27 x 10>
Tcowl 5 5 192 192 32 32 921792  1.43 x 10*
IGDNI 37056 5.79 x 102
Tcow2 5 5 192 64 64 64 307264  1.92 x 10*
IGDN2 4160 2.59 x 102
Tcow3 5 5 64 64 128 128 102464  2.55 x 10~
IGDN3 4160 1.03 x 10°
Tcowd 5 5 64 1 256 256 1601 1.60 x 10°
Total 3765118 7.69 x 107

Compared with VAE-N192, the VAE-N64 complexity is
62% lower in terms of FLOPp, as displayed in Table
2. Note that the subsequent reduction of the number
of learned parameters has also a positive impact on the
memory occupancy. Moreover, as displayed on Figure 5,
VAE-NG64 achieves a rate-distortion performance close to
the one of VAE-N192 [BMS™ 18], both in terms of MSE
and MS-SSIM, even at relatively high rates, contrary to
what was stated in [BLS17, BMST18, Ball8].

4.3. Impact of the entropy model simplification

The proposed simplified models Laplacian-N64 and
Gaussian-N64 are compared with the original VAE-
N192 of [BMS*18], with VAE-N64, and with the non-
variational method AE-N128 [BLS17]. Figure 5 shows

Table 2. Comparative complexity of the global architec-

tures
Method Np FLOPp Relative
VAE-N192 9889793 | 1.98 x 10° 1.00
VAE-N64 3765118 | 7.69 x 10% 0.38
Laplacian/Gaussian-N64 1904958 | 7.37 x 107 0.371
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Figure 5. Rate-distortion curves for the considered
learned frameworks and for the CCSDS and JPEG2000
standards for MSE and MS-SSIM (dB) (derived as
—101log¢(1—MS-SSIM)).

the rate-distortion averaged over the validation dataset for
the trained models for both MSE and MS-SSIM qual-
ity measures. Recall that the architecture was trained
for MSE only. The proposed simplified entropy model
achieves an intermediate performance between the varia-
tional model with a reduced number of filters (VAE-N64)
and the non-variational model AE-N128 [BLS17]. Obvi-
ously, due to the entropy model simplification, Laplacian-
N64 and Gaussian-N64 underperform the more general
and thus more complex VAE-N64 model. However,
the proposed entropy model, even if simpler, preserves
the adaptability to the input image, unlike the model
AE-N128 [BLS17]. Note that the simplified entropy
models perform close to the hyperprior models at rela-
tively high rates such as targeted for satellite image com-
pression. One possible explanation for this behaviour
can be the increased amount of side information re-
quired by the hyperprior model [BMS™18] for increas-

ing rates [HYML?20]. Table 3 shows that the coding part
complexity of Laplacian-N64 and Gaussian-N64 is 22%
lower than the one of Hyperprior-N64.

Table 3. Reduction of the encoder complexity induced by
simplified entropy model on the coding part
Method Np FLOPp Relative

VAE-N64 2386621 | 1.42 x 107 1
Laplacian/Gaussian-N64 | 526461 1.11 x 10% 0.78

5. CONCLUSION

By combining the reduction of the number of filters,
and by proposing a simplified entropy model, we have
developed a reduced-complexity compression architec-
ture for satellite images that outperforms the CCSDS
122.0-B [Boo05] while maintaining a competitive per-
formance for medium to relatively high rates in compar-
ison with the previous learned image compression mod-
els [BLS17, BMST18]. In future research, we plan to
improve the performance of the learned satellite com-
pression models at high bit-rates and high resolutions by
fine-tuning the size of the network (e.g. number of fil-
ters) according to the target rates. Preliminary results are
given in Figure 5, for MSE distortion measure only, the
MS-SSIM shows the same behaviour. They have been
obtained by an increase of the number of filters on both
sides of the bottleneck only (from M = 192 to M = 256)
keeping N = 64. Theses curves show that the simpli-
fied learned architecture outperforms the JPEG2000 and
CCSDS standard even at higher rates subject to a fine-
tuning of the network dimensioning, in each rate range,
for a good trade-off between performance and complex-

1ty.
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Figure 6. Rate-distortion curves at higher rates for
learned frameworks and for the CCSDS and JPEG2000
standards for MSE in log-log scale.

ACKNOWLEDGMENTS

This work has been carried out under the financial sup-
port of the French space agency CNES and Thales Alenia
Space.



REFERENCES

[BT09]

[Ball8]

[Bell5]

[BLS17]

[BMS*18]

[Boo05]

[CSTK19]

[DRG18]

[Goy01]

[HSS18]

[Huall]

[HYML20]

[KWL*17]

Yoshua Bengio et al. Learning deep archi-
tectures for ai. Foundations and trends in
Machine Learning, 2(1):1-127, 2009.

Johannes Ballé. Efficient nonlinear trans-
forms for lossy image compression. In 2018
Picture Coding Symposium (PCS), pages
248-252. IEEE, 2018.

Fabrice Bellard. Bpg image format.
https://bellard. org/bpg, 1, 2015.

Johannes Ballé, Valero Laparra, and Eero
Simoncelli. End-to-end optimized image
compression. International Conference on
Learning Representations, 2017.

URL

Johannes Ballé, David Minnen, Saurabh
Singh, Sung Jin Hwang, and Nick John-
ston. Variational image compression with a
scale hyperprior. [International Conference
on Learning Representations, 2018.

Blue Book. Consultative Committee for
Space Data Systems (CCSDS), Image Data
Compression CCSDS 122.0-B-1, ser. Blue
Book, Nov. 2005. CCSDS Secretariat, 2005.

Zhengxue Cheng, Heming Sun, Masaru
Takeuchi, and Jiro Katto. Deep residual
learning for image compression. In Proceed-
ings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops,

2019.

Thierry Dumas, Aline Roumy, and Christine
Guillemot. Autoencoder based image com-
pression: can the learning be quantization
independent? In 2018 IEEE International
Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 1188-1192.
IEEE, 2018.

Vivek K Goyal. Theoretical foundations of
transform coding. IEEE Signal Processing
Magazine, 18(5):9-21, 2001.

Jie Hu, Li Shen, and Gang Sun. Squeeze-
and-excitation networks. In Proceedings
of the IEEE conference on computer vision
and pattern recognition, pages 7132-7141,
2018.

Bormin Huang. Satellite Data Compression.
Springer Science & Business Media, 2011.

Yueyu Hu, Wenhan Yang, Zhan Ma, and Ji-
aying Liu. Learning end-to-end lossy image
compression: A benchmark. arXiv preprint
arXiv:2002.03711, 2020.

Pascal Kaiser, Jan Dirk Wegner, Aurélien
Lucchi, Martin Jaggi, Thomas Hofmann,
and Konrad Schindler. Learning aerial im-
age segmentation from online maps. [EEE
Transactions on Geoscience and Remote

Sensing, 55(11):6054-6068, 2017.

[LGOO]

[Lyul0]

[ML10]

[PGS81]

[Qial3]

[RB17]

[RDGF16]

[RL81]

[TSCH17]

[WB17]

[WSBO03]

(ZZC*T17]

Edmund Y Lam and Joseph W Goodman.
A mathematical analysis of the dct coeffi-
cient distributions for images. [EEE trans-

actions on image processing, 9(10):1661—
1666, 2000.

Siwei Lyu. Divisive normalization: Justifi-
cation and effectiveness as efficient coding
transform. In Advances in neural informa-
tion processing systems, pages 1522-1530,
2010.

Jesis Malo and Valero Laparra.  Psy-
chophysically tuned divisive normalization
approximately factorizes the pdf of natural
images. Neural computation, 22(12):3179—
3206, 2010.

John W Pratt and Jean D Gibbons.
Kolmogorov-smirnov two-sample tests. In

Concepts of nonparametric theory, pages
318-344. Springer, 1981.

Shen-En Qian. Optical satellite data com-
pression and implementation. In SPIE—Int.
Soc. Opt. Eng. SPIE, 2013.

Oren Rippel and Lubomir Bourdev. Real-
time adaptive image compression. In Inter-
national Conference on Machine Learning,
pages 2922-2930, 2017.

Joseph Redmon, Santosh Divvala, Ross Gir-
shick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Pro-
ceedings of the IEEE conference on com-
puter vision and pattern recognition, pages

779-1788, 2016.

Jorma Rissanen and G Langdon. Universal
modeling and coding. IEEE Transactions on
Information Theory, 27(1):12-23, 1981.

Lucas Theis, Wenzhe Shi, Andrew Cunning-
ham, and Ferenc Huszar. Lossy image com-
pression with compressive autoencoders. In-
ternational Conference on Learning Repre-
sentations, 2017.

Thomas Wiatowski and Helmut Bolcskei.
A mathematical theory of deep convolu-
tional neural networks for feature extraction.
IEEE Transactions on Information Theory,
64(3):1845-1866, 2017.

Zhou Wang, Eero P Simoncelli, and Alan C
Bovik. Multiscale structural similarity for
image quality assessment. In The Thrity-
Seventh Asilomar Conference on Signals,
Systems & Computers, 2003, volume 2,
pages 1398-1402. Teee, 2003.

Kai Zhang, Wangmeng Zuo, Yunjin Chen,
Deyu Meng, and Lei Zhang. Beyond a gaus-
sian denoiser: Residual learning of deep cnn
for image denoising. IEEE Transactions on
Image Processing, 26(7):3142-3155, 2017.



