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Generalized Gaussian bounds

for discrete convolution powers

Jean-François Coulombel & Grégory Faye∗

November 19, 2021

Abstract

We prove a uniform generalized Gaussian bound for the powers of a discrete convolution operator
in one space dimension. Our bound is derived under the assumption that the Fourier transform of the
coefficients of the convolution operator is a trigonometric rational function, which generalizes previous
results that were restricted to trigonometric polynomials. We also allow the modulus of the Fourier
transform to attain its maximum at finitely many points over a period.

AMS classification: 42A85, 35K25, 60F99, 65M12.

Keywords: convolution, difference approximation, stability, local limit theorem.

For 1 ≤ q < +∞, we let `q(Z;C) denote the Banach space of complex valued sequences indexed by Z
and such that the `q norm, defined for u : Z→ C by

‖u ‖`q :=

∑
j∈Z
|uj |q

1/q

,

is finite. We also let `∞(Z;C) denote the Banach space of bounded complex valued sequences indexed by
Z and equipped with the norm:

‖u ‖`∞ := sup
j∈Z
|uj | .

Throughout this article, we use the notations

U := {ζ ∈ C | |ζ| > 1} , D := {ζ ∈ C | |ζ| < 1} , S1 := {ζ ∈ C | |ζ| = 1} ,
U := U ∪ S1 , D := D ∪ S1 .

If w is a complex number and ρ a positive real number, the notation Bρ(w) stands for the open ball in C
centered at w and with radius ρ, that is Bρ(w) := {z ∈ C | |z − w| < ρ}.

The notation σ(T ) stands for the spectrum of a bounded operator T acting on a Banach space E. We
also use the notation ‖ · ‖E→E for the operator norm on a Banach space E.
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1 Introduction and main result

1.1 A reminder on Laurent operators

Let us recall a few facts about Laurent operators on `q(Z;C). If a ∈ `1(Z;C), we let La denote the so-
called Laurent (or convolution) operator associated with the sequence a [TE05, Nik02], which is defined
by:

La :
(
uj
)
j∈Z 7−→

(∑
`∈Z

a` uj−`

)
j∈Z

= a ? u , (1)

whenever the defining formula (1) for the sequence La u makes sense. Here and below, ? always stands
for the convolution product of two sequences indexed by Z. In particular, Young’s inequality shows that
La acts boundedly on `q(Z;C) for any q ∈ [1,+∞]:

∀u ∈ `q(Z;C) , ‖La u ‖`q ≤ ‖ a ‖`1 ‖u ‖`q .

The spectrum of La is also well-understood since the celebrated Wiener-Levy theorem, see [New75],
characterizes the invertible elements of `1(Z;C) for the convolution product (and we have the morphism
property La ◦Lb = La?b). Namely, the spectrum of La as an operator acting on `q(Z;C) does not depend
on q and is nothing but the image of the Fourier transform of the sequence a:

σ (La) =

{∑
`∈Z

a` ei ` ξ | ξ ∈ R

}
.

Since a belongs to `1(Z;C), its Fourier transform is continuous on R. It actually belongs to the so-called
Wiener algebra.

Following, among other works, [Tho65, DSC14, RSC15, RSC17], we are interested here in giving
uniform pointwise bounds for the n-th iterated convolution product a ? · · · ? a = a? n as the number n
gets large. We use the convention a? 1 := a and a? n := a? (n−1) ? a for n ≥ 2. Note that, by the morphism
property La ◦ Lb = La?b, we have (La)

n = La?n for any n ∈ N. Beyond their own analytical interest,
sharp bounds for the coefficients (a? n)j or the precise description of their asymptotic behavior are useful
in probability theory and in numerical analysis. In probability theory, the coefficients a` correspond to
the probability P(X = `) where X is a random variable with values in Z. Considering the random walk:

Yn := X1 + · · · + Xn ,

where the Xm’s are identically distributed, independent and follow the same law as X, then

(a? n)j = P(Yn = j) ,

for any n ∈ N∗ and j ∈ Z. In this context, asymptotic expansions for (a? n)j are referred to as local limit
theorems and may be found in [Pet75, Chapter VII]. These expansions involve the Gaussian function
and Hermite polynomials. In numerical analysis, the study of the iterates (La)

n, n ∈ N, arises when
one discretizes an evolutionary linear partial differential equation (set on the real line R) by means of a
finite difference scheme. The transport equation or the heat equation are typical examples. We refer for
instance to [RM67, GKO95]. From Young’s inequality:

‖ (La)
n u ‖`∞ = ‖La?n u ‖`∞ ≤ ‖ a?n ‖`1 ‖u ‖`∞ ,
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one observes that boundedness of the sequence (‖ a?n ‖`1)n∈N is a sufficient condition1 for what is referred
to, in this context, as stability in the maximum norm, that is:

sup
n∈N
‖ (La)

n ‖`∞→`∞ < +∞ .

The fundamental result in [Tho65] characterizes, under suitable assumptions, the elements a ∈ `1(Z;C)
such that the geometric sequence (a? n)n∈N is bounded in `1(Z;C), see also [Hed66, Des08, DSC14, RSC17]
and references therein for further developments. The sufficient part of the characterization in [Tho65] (see
also [Str62a, Des08]) is performed by deriving a suitable “algebraic” pointwise bound for the coefficient
(a? n)j (see [Tho65, Lemma 2.4]). This bound is obtained by integrating by parts the Fourier transform
of a? n, and this manipulation requires the Fourier transform of a to be C 2. For the derivation of these
algebraic bounds, the support of the sequence a may be arbitrary. Refining and optimizing this approach,
the algebraic bound in [Tho65] was turned in [DSC14] into a generalized Gaussian bound, for finitely
supported sequences a, thanks to a suitable contour deformation. The contours chosen in [DSC14] can go
arbitrarily far away from the real line (where the Fourier transform of a is defined at first), which is the
reason why the authors in [DSC14] assume a to have finite support, so that its Fourier transform extends to
a holomorphic function on the whole complex plane. The necessity of the conditions of [Tho65, Theorem
1] for a to be power bounded in `1(Z;C) is proved under the assumption that a is finitely supported. This
assumption on the support was removed in [Hed66].

Our goal in this article is to extend the results in [DSC14] in two directions: we first wish to consider
sequences a with infinite support, since such sequences arise when one considers implicit discretizations
of partial differential equations. We also wish to relax the assumption made in [DSC14] that the modulus
of the Fourier transform of a attains its maximum at only one point over each period (say, at 0, in
the interval [−π, π]). When the modulus of the Fourier transform attains its maximum at more than
one point over a period, the arguments in either [Tho65] or [DSC14], rely on (C∞) partitions of unity
which destroy the holomorphy of the Fourier transform. This is the reason why the bounds obtained in
[DSC14] in that situation are only of “sub-Gaussian” type (compare for instance [DSC14, Theorem 3.1]
with [DSC14, Theorem 3.5]). Actually, the results in [DSC14] were first refined and extended in [RSC15],
where local limit theorems are proved for complex valued sequences a, and then further extended in
[RSC17] to deal with multidimensional situations. Another extension that is achieved in [RSC17] is the
proof of generalized Gaussian bounds for finitely supported sequences a whose modulus of the Fourier
transforms attains its maximum at several points (under a technical assumption that is discussed below).

Our approach in this article is quite different from the one in [Tho65, Des08, DSC14, RSC17] where the
coefficient (a? n)j is represented by an integral involving the Fourier transform of a (to the n-th power).
Here we rather follow an approach which is commonly referred to in the partial differential equation
community as “spatial dynamics”, which amounts to representing (a? n)j in terms of the resolvent of the
operator La. The link between the two comes from the so-called functional calculus [Con90, Chapter VII]
which expresses the temporal Green’s function (here the coefficient (a? n)j) in terms of the spatial Green’s
function, which is the solution to the resolvent equation:(

z I − La
)
u = δ , z 6∈ σ(La) ,

where δ stands for the “discrete” Dirac mass (δj = 1 if j = 0, and 0 otherwise). A detailed analysis of
the spatial Green’s function with sharp holomorphic extensions and bounds is provided in Section 2 of
the present article under conditions that are similar to but, to some extent, less restrictive than those

1It is actually a necessary and sufficient condition, see [Tho65].
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in [DSC14, RSC17]. Our main technical assumption is the fact that we consider nonzero drift velocities,
which enables us to pass smoothly (that is, holomorphically) from “temporal” to “spatial” representations.
Some cases with vanishing group velocities (in the terminology of [Tre82]) are discussed at the end of this
article.

Once we have sharp holomorphic extensions and bounds for the spatial Green’s function, our final
argument relies on a suitable choice of contours in the defining expression of the temporal Green’s function.
The choice of contours can be interpreted as an application of the saddle point method [dB81]. A
fundamental contribution in this direction is [ZH98] (for the stability analysis of viscous shock profiles)
and we also refer to [God03] for an application of this method to the stability analysis of discrete shock
profiles. As a matter of fact, our motivations for deriving generalized Gaussian bounds in the broadest
possible context stems from the stability analysis of discrete shock profiles but also from the theory of
numerical boundary conditions for hyperbolic equations. An application of the techniques developed
in this article to finite rank perturbations of Toeplitz operators (on `2(N;C) rather than `2(Z;C)) is
given in [CF21]. Discrete shock profiles will be considered in a forthcoming work. We now make several
assumptions and state our main result.

1.2 Assumptions and main result

This work is much inspired by the theory of partial differential equations and its numerical approximations.
Hence, instead of sticking to the convolution operators La of the introduction, we shall rather use operators
in the form:

Sb :
(
uj
)
j∈Z 7−→

(∑
`∈Z

b` uj+`

)
j∈Z

,

with b ∈ `1(Z;C). One of the simplest such operators is the so-called shift operator S defined by:

S :
(
uj
)
j∈Z 7−→

(
uj+1

)
j∈Z .

The two definitions of operators La and Sb are closely related. Namely, given b ∈ `1(Z;C), we have
Sb = La where the sequence a ∈ `1(Z;C) is defined by a` := b−` for all ` ∈ Z. Our convention, which
is different from [DSC14, RSC15, RSC17], is the reason for the minus sign in (8) in the term − iαk ξ
(compare, for instance, with [DSC14, equation (3.3)]).

We thus consider from now on two “convolution” operators Q0 and Q1 on Z with finite support :

∀σ = 0, 1 , ∀ j ∈ Z , (Qσ u)j :=

p∑
`=−r

a`,σ uj+` , (2)

where r, p ∈ N and the a`,σ’s are complex numbers2. In what follows, we always write:

Q0 = Lφ0 , and Q1 = Lφ1 , (3)

where φ0 and φ1 are finitely supported elements of `1(Z;C). Both operators Q0 and Q1 act boundedly on
any `q(Z;C), 1 ≤ q ≤ +∞. Our main focus below is on the three cases q = 1, q = 2 and q = +∞. The
integers r, p in (2) define the common stencil of the operators Q0, Q1. They are fixed by enforcing the
conditions:

| a−r,1 | + | a−r,0 | > 0 , | ap,1 | + | ap,0 | > 0 .

Our first assumption is the following.

2When discretizing partial differential equations with real coefficients, these numbers are real.
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Assumption 1. The operator Q1 is an isomorphism on `2(Z;C), that is:

∀κ ∈ S1 , Q̂1(κ) :=

p∑
`=−r

a`,1 κ
` 6= 0 , (4)

and it satisfies furthermore the index condition:

1

2 iπ

∫
S1

Q̂′1(κ)

Q̂1(κ)
dκ = 0 . (5)

The function Q̂1 in (4) is referred to below as the symbol of the convolution operator Q1. We can
similarly define the symbol Q̂0 associated with Q0:

∀κ ∈ S1 , Q̂0(κ) :=

p∑
`=−r

a`,0 κ
` .

Recalling the definition (3) of the sequence φ1, the condition (4) implies that φ1 is invertible in `1(Z;C)
(thanks to the Wiener-Levy theorem [New75]). We are then interested in the operator L := Q−1

1 Q0 and
more specifically in its powers L n as n becomes large. Since φ1 is invertible in `1(Z;C), we can write
L = Lφ with φ := φ−1

1 ? φ0. Since we are interested in L = Q−1
1 Q0, we can always multiply Q0 and

Q1 by the same nonzero complex number, which does not modify L . In view of Assumption 1, we thus
always assume Q̂1(1) = 1 from now on.

We briefly discuss the support of the sequence φ in order to compare our framework with that of
[DSC14] or [RSC17]. The generalized Gaussian bounds in [DSC14] or [RSC17] are obtained by assuming
that φ has finite support (which makes its Fourier transform an entire function). In our case, two situations
occur:

• The support of φ1 is a singleton, that is Q1 = a`,1 S` for some integer ` between −r and p (recall the
notation S for the shift operator). Because of the condition (5), we have ` = 0 so Q1 is a nonzero
multiple of the identity, and our normalization convention Q̂1(1) = 1 makes Q1 be the identity. In
that case, φ = φ0 is finitely supported. In numerical analysis, this situation corresponds to explicit
schemes. In probability theory, this situation corresponds to random walks with finite range.

• The support of φ1 contains at least two elements. Then the inverse φ−1
1 of φ1 for the convolution

product has an infinite support. Apart from “trivial” cases where a factorization is possible, φ =
φ−1

1 ? φ0 will also have infinite support. An example of this situation is provided in Section 4. In
numerical analysis, this situation corresponds to implicit schemes.

As can be expected, a crucial role is played below by the symbol of L which is defined by:

∀κ ∈ S1 , F (κ) :=
Q̂0(κ)

Q̂1(κ)
. (6)

The main difference between [DSC14] or [RSC17] and the present work is that we allow F (exp(i ξ)) to be
a trigonometric rational function of ξ rather than just a trigonometric polynomial in ξ. (Other results,
such as local limit theorems, are derived in [RSC17] under the assumption that F is of class C∞ on S1,
but we focus here on the derivation of generalized Gaussian bounds.) In other words, we deal here with
the class of sequences in `1(Z;C) whose Fourier transforms are trigonometric rational functions. The
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following assumption on F is inspired by the fundamental contribution [Tho65]. The link between our
Assumption 2 below and the classification obtained in [Tho65, page 280] in the case of trigonometric
polynomials is discussed in Appendix A at the end of this article (see Lemma 16).

Assumption 2. The function F defined in (6) satisfies maxκ∈S1 |F (κ)| = 1. Furthermore, there exists
a finite set of points {κ1, . . . , κK}, K ≥ 1, in S1 such that:

∀κ ∈ S1 \
{
κ1, . . . , κK

}
,
∣∣F (κ)

∣∣ < 1 , (7)

and for all index k = 1, . . . ,K, F (κk) belongs to S1. Moreover, for any k = 1, . . . ,K, there exist a nonzero
real number αk, an even integer 2µk ≥ 2 and a complex number βk with positive real part such that:

F
(
κk e i ξ

)
F (κk)

= exp
(
− iαk ξ − βk ξ

2µk + O
(
ξ 2µk+1

))
, (8)

as ξ tends to 0.

As in [Tho65, DSC14, RSC17], the maximum of F on the unit circle S1 is normalized to be 1. Thanks
to Beurling’s result (see [RSN55, page 428]):

∀ a ∈ `1(Z;C) , lim
n→∞

‖ a?n ‖1/n
`1

= max
θ∈R

∣∣∣∣∣ ∑
`∈Z

a` ei ` θ

∣∣∣∣∣ ,
the case where the maximum equals 1 is the limit case where the question of stability is not straightforward.
In view of the result of Lemma 16 in Appendix A, we just wish to exclude in Assumption 2 the case where
F has constant modulus on S1, and we then only consider the so-called points of type γ in the terminology
of [Tho65]. The number αk in (8) is necessarily real since F (κ) belongs to D for all κ ∈ S1. The fact
that all real numbers αk are nonzero is a major assumption that we make. It is fundamental below in the
description of the so-called spatial Green’s function. Examples of operators Q0, Q1 for which Assumptions
1 and 2 are satisfied are provided in Section 4 at the end of this article.

Since F (κ) belongs to D for all κ ∈ S1, the operator L is a contraction on `2(Z;C), that is:

∀u ∈ `2(Z ; C) , ‖L u ‖`2 ≤ ‖u ‖`2 ,

since the `2 norms on both sides can be computed by the Parseval-Bessel identity. Of course, this implies
that every power of L is also a contraction on `2(Z;C). In the field of numerical analysis, this property
is referred to as `2-stability3, or strong stability [Str68, Tad86], for the “numerical scheme”:{

Q1 u
n+1 = Q0 u

n , n ∈ N ,
u0 ∈ `2(Z) .

Let us now define the quantities:

∀ z ∈ C , ∀ ` = −r, . . . , p , A`(z) := z a`,1 − a`,0 . (9)

The following assumption already appears in several works devoted to the stability analysis of numerical
boundary conditions for discretized hyperbolic equations, see, e.g., [Kre68, Osh69, GKS72, GT81, Cou13]
and references therein. Not only does it determine the minimal integers r and p in (2) (by prohibiting
to add artificial zero coefficients), but it is also crucially used below to analyze the so-called resolvent
equation (14). It might be relaxed though, but a more elaborate analysis would be required.

3For scalar problems, this is even equivalent to the so-called von Neumann stability condition [RM67, GKO95].
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Assumption 3. The functions A−r and Ap defined in (9) do not vanish on U .

For instance, if a−r,1 and ap,1 are nonzero, Assumption 3 means that a−r,0/a−r,1 and ap,0/ap,1 belong
to D. If a−r,1 and ap,1 are both zero, then a−r,0 and ap,0 should both be nonzero.

Thanks to Assumption 3, we can define the following companion matrix:

M(z) :=


−Ap−1(z)

Ap(z)
. . . . . . −A−r(z)

Ap(z)
1 0 . . . 0

0
. . .

. . .
...

0 0 1 0

 ∈Mp+r(C) , (10)

which is holomorphic on the set {z ∈ C | |z| > exp(−η)} for some parameter η > 0 which only depends
on the location of the root of Ap (if it exists). A crucial observation is that the upper right coefficient of
M(z) is always nonzero, because of Assumption 3 and up to restricting η, so the matrix M(z) is invertible
for all relevant values of z. We shall repeatedly use the inverse matrix M(z)−1 in what follows.

The analysis in this article heavily relies on a precise description of the spectrum of M(z) as z runs
through U (and even sometimes slightly through D). This description is given in Lemma 1 below, and
uses the following two assumptions.

Assumption 4. Either Q1 is the identity, or a−r,1 and ap,1 are nonzero.

If Q1 is the identity, Assumption 1 is trivially satisfied since Q̂1 ≡ 1. In the other case, the complex
numbers a−r,1 and ap,1 are both nonzero. In that case, Q̂1 is a meromorphic function on C with a single
pole (that is located at 0) of order r. (When r equals zero, there is no pole.) By the residue theorem
[Rud87], the index condition (5) is equivalent to Q̂1 having r zeros (counted with multiplicity) in D \ {0}.
Because κr Q̂1(κ) is a polynomial of degree p+ r, Q̂1 then has p zeros in U .

Assumption 5. For all index k = 1, . . . ,K, let us define zk := F (κk) ∈ S1. Then for any k = 1, . . . ,K,
the set:

Ik :=
{
ν ∈ {1, . . . ,K} | zν = zk

}
(11)

has either one or two elements4. Furthermore, in case it has two elements, which we denote νk,1, νk,2,
then ανk,1 ανk,2 < 0. (Let us recall that the drift parameters αk are given in Assumption 2.)

From now on, we always make Assumptions 1, 2, 3, 4 and 5. Our main result is a partial extension
of [DSC14, Theorem 3.1] and [RSC17, Theorem 1.8]. It gives a uniform, generalized Gaussian bound for
the convolution coefficients of the powers L n. A precise statement is the following.

Theorem 1. Let the operators Q0, Q1 in (2) satisfy Assumptions 1, 2, 3, 4 and 5 and the normalization
condition Q̂1(1) = 1. According to the above two cases in Assumption 4, we have:

• Explicit case. If Q1 is the identity, then there exist two constants C > 0 and c > 0 such that the
operator L = Q0 satisfies the uniform generalized Gaussian bound:

∀n ∈ N∗ , ∀ j ∈ Z ,
∣∣ (L n δ)j

∣∣ ≤ C
K∑
k=1

1

n1/(2µk)
exp

− c ( |j − αk n|
n1/(2µk)

) 2µk
2µk−1

 , (12)

where δ denotes the discrete Dirac mass defined by δj = 1 if j = 0 and δj = 0 otherwise.

4Note that Ik always contains {k}.
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• Implicit case. If Q1 is not the identity, then there exist constants C > 0, L > 0 and c > 0 such
that the operator L = Q−1

1 Q0 satisfies the bounds:

∀n ∈ N∗ , ∀ |j| ≤ Ln ,
∣∣ (L n δ)j

∣∣ ≤ C

K∑
k=1

1

n1/(2µk)
exp

− c ( |j − αk n|
n1/(2µk)

) 2µk
2µk−1

 , (13a)

∀n ∈ N∗ , ∀ |j| > Ln ,
∣∣ (L n δ)j

∣∣ ≤ C exp (−c n − c |j|) . (13b)

A comparison between Theorem 1 and the analogous results in [Tho65, DSC14, RSC17] is provided
in the next Subsection. Otherwise, the rest of this article is organized as follows. In Section 2, we prove
sharp bounds on the so-called spatial Green’s function. This is where Assumptions 3, 4 and 5 are used.
Then we use these preliminary bounds in Section 3 to obtain the uniform bounds (12) and (13) for what
we call the temporal Green’s function. Examples and possible extensions are given in Section 4. The
proofs of some intermediate and related results are gathered in Appendix A.

1.3 What is new ? and what is not ?

Let us first observe that the sequence G := L δ corresponds to the Laurent series expansion of F near
S1:

∀κ ∈ S1 , F (κ) =
∑
j∈Z

Gj κ
j .

In particular, if G satisfies a generalized Gaussian bound of the form:

∀ j ∈ Z , |Gj | ≤ C exp(− c |j|s ) ,

for some positive constants C and c and some exponent s > 1, then F extends to a holomorphic function
on C \ {0}. In our framework, we have F (κ) = Q̂0(κ)/Q̂1(κ). Assuming that Q̂0(κ) and Q̂1(κ) have no
common factor, the only possible case where F extends to a holomorphic function on C \ {0} is when Q̂1

does not vanish on C \ {0}. Because of the form of Q̂1 and the index condition (5), the only situation
in which F extends to a holomorphic function on C \ {0} is when Q1 is the identity5. This argument
explains why, in (13), the bound for (L n δ)j “degenerates” to exp(− c |j|) for any fixed n (e.g., n = 1)
and for large j’s.

We now compare Theorem 1 with [DSC14, Theorem 3.1] and [RSC17, Theorem 1.8] which, to our
knowledge, are the two prior references on generalized Gaussian bounds for convolution powers of complex
sequences. In [DSC14, Theorem 3.1], the authors consider (in our notation) the explicit case (Q1 is the
identity) with K = 1, but they make no assumption on the drift parameter α1 (while we assume α1 6= 0
in Theorem 1). When specifying [RSC17, Theorem 1.8] to one space dimension, the result in [RSC17,
Theorem 1.8] covers the explicit case (Q1 is the identity) with K ≥ 1, but it is then further assumed:

α1 = · · · = αK , µ1 = · · · = µK , β1 = · · · = βK .

As in [DSC14, Theorem 3.1], it is not assumed in [RSC17, Theorem 1.8] that the common value of the
αk’s should be nonzero.

5We assume, of course, that Q0 and Q1 are irreducible.
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In our opinion, the main novelty here consists in considering sequences a such that the αk’s, µk’s
and βk’s are, to some extent, “arbitrary”. This is not entirely true since we assume that the zk’s are
not “too much” equal (Assumption 5) and we further assume that all αk’s are nonzero. We believe that
this restriction on the αk’s in Theorem 1 is purely technical. For instance, in Corollary 2, we give an
example of a general situation in the explicit case where some αk can be zero and where the result of
Theorem 1 can be used to obtain the same bound as in (12). We also note that the theory of numerical
boundary conditions in [GKS72] (see [Cou13] for a thorough exposition) covers cases with vanishing group
velocities (by making use in several occurrences of Puiseux expansions). In the continuous setting, reaction
diffusion equations are another occurence where spatial dynamics and pointwise Green’s function bounds
cover some problems with zero drift velocities, see, e.g., [FH19]. We thus hope that we shall be able to
fully remove the restriction αk 6= 0 as well as Assumption 5 in the future.

Our second improvement is to consider sequences in `1(Z;C) whose Fourier transforms are trigono-
metric rational functions, which is relevant for implicit numerical schemes. Possible extensions of our
work are listed in Section 4.

2 The spatial Green’s function

The spectrum of L as an operator on `2(Z;C) is the parametrized curve F (S1). We know from Assumption
2 that this curve touches the unit circle S1 at the points zk, k = 1, . . . ,K, and that it is located inside the
open unit disk D otherwise. Hence the resolvent set of L contains at least U \ {z1, . . . , zK}. For such
values of z, we can thus define the sequence G(z) ∈ `2(Z;C) (the capital G letter stands for Green, as in
Green’s function) by the formula: (

z I − L
)
G(z) = δ , (14)

where we recall that δ stands for the Dirac mass (δj = 1 if j = 0 and δj = 0 if j ∈ Z \ {0}).
From the definition L = Q−1

1 Q0, the equation (14) can be equivalently rewritten:(
z Q1 − Q0

)
G(z) = Q1 δ ,

and the definitions (2), (9) give the final form:

∀ j ∈ Z ,
p∑

`=−r
A`(z)Gj+`(z) = (Q1 δ)j , (15)

together with the integrability conditions at infinity G(z) ∈ `2(Z;C).

2.1 Spectral properties

We introduce the augmented vectors:

∀ j ∈ Z , Wj(z) :=

Gj+p−1(z)
...

Gj−r(z)

 ∈ Cp+r , e :=


1
0
...
0

 ∈ Cp+r ,

and rewrite equivalently (15) as:

∀ j ∈ Z , Wj+1(z) − M(z)Wj(z) =
(Q1 δ)j
Ap(z)

e . (16)

9



The construction and analysis of the solution to the recurrence relation (16) relies on the following
spectral splitting lemma, which is originally due to Kreiss [Kre68] in the context of finite difference
approximations.

Lemma 1 (Spectral splitting). Let z ∈ U \ {z1, . . . , zK} and let the matrix M(z) be defined as in (10).
Then M(z) has:

• no eigenvalue on S1,

• r eigenvalues in D \ {0},

• p eigenvalues in U (eigenvalues are counted with multiplicity).

Let now k ∈ {1, . . . ,K} be such that the set Ik in (11) is the singleton {k}. Then if αk > 0, the
matrix M(zk) has κk ∈ S1 as a simple eigenvalue, it has r − 1 eigenvalues in D and p eigenvalues in U .
If αk < 0, the matrix M(zk) has κk ∈ S1 as a simple eigenvalue, it has r eigenvalues in D and p − 1
eigenvalues in U .

Eventually, let now k ∈ {1, . . . ,K} be such that the set Ik in (11) has two elements νk,1, νk,2. Then
the matrix M(zk) has κνk,1 and κνk,2 as simple eigenvalues on S1, it has r− 1 eigenvalues in D and p− 1
eigenvalues in U .

The arguments are basically the same as in [Kre68] but we give them here for the sake of completeness.

Proof of Lemma 1. We first recall that the matrix M(z) is given by (10) and that it is invertible for all z
satisfying |z| > exp(−η) (thanks to Assumption 3). Hence 0 will never be an eigenvalue of M(z) for the

relevant values of z. Let us then observe that κ ∈ C \ {0} is an eigenvalue of M(z) for z ∈ U if and only
if z and κ satisfy the so-called dispersion relation:

p∑
`=−r

A`(z)κ` = 0 ,

and the definition (9) of the functions A` yields the equivalent form:

Q̂1(κ) z = Q̂0(κ) . (17)

In particular, for any z in the connected set U \ {z1, . . . , zK}, M(z) has no eigenvalue on the unit circle
S1 for otherwise we would have z = F (κ) for some κ ∈ S1 and z 6∈ {z1, . . . , zK}, which is precluded
by Assumption 2. To obtain the first statement of Lemma 1, it thus remains to count the number of
eigenvalues of M(z) in D \ {0} (we shall call such eigenvalues the stable ones). By the connectedness of
U \ {z1, . . . , zK}, the number of stable eigenvalues of M(z) does not depend on z ∈ U \ {z1, . . . , zK}. In
order to compute the precise number of such eigenvalues, we shall let z tend to infinity and determine
the asymptotic behavior of these eigenvalues. This asymptotic behavior differs completely between the
explicit and implicit cases (though the number of stable eigenvalues will be the same in both cases), which
is the reason why we now deal with those two cases separately.

10



The explicit case (Q1 = I). The dispersion relation (17) then reduces to:

z =

p∑
`=−r

a`,0 κ
` . (18)

If r = 0, then there are no eigenvalues in D \ {0} for any z for otherwise there would be at least one
eigenvalue in D \ {0} for all z ∈ U and the triangle inequality in (18) would imply:

| z | ≤
p∑
`=0

| a`,0 | .

which is impossible because |z| can be arbitrarily large. The result is thus proved in the case r = 0 so
we assume r ≥ 1 from now on (Assumption 3 then yields a−r,0 6= 0). Following [Kre68] (see also [Cou13]
for the complete details), the number of eigenvalues of M(z) in D \ {0} is computed by letting z tend to
infinity for in that case, all such (stable) eigenvalues of M(z) collapse to zero. Indeed, an eigenvalue of
M(z) in D \ {0} cannot remain uniformly away from the origin for otherwise the right hand side of (18)
would remain bounded while the left hand side tends to infinity.

The final argument is the following (see [HP05, Theorem 4.2.1] for a general statement). For any
z ∈ U \ {z1, . . . , zK}, the eigenvalues of M(z) are those κ 6= 0 such that:

κr =
1

z

p∑
`=−r

a`,0 κ
r+` ,

which is just an equivalent way of writing (18). Hence for z large, the small eigenvalues of M(z) behave
at the leading order like the roots of the reduced equation:

κr =
a−r,0
z

,

and there are exactly r distinct roots close to 0 of that equation. Hence M(z) has r eigenvalues in D \ {0}
for any z ∈ U \ {z1, . . . , zK}.

The implicit case (Q1 6= I). We then know that a−r,1 6= 0 and ap,1 6= 0. Moreover, the function Q̂1

satisfies the index condition (5). By the residue theorem [Rud87], this means that Q̂1 has as many poles
as roots in D and since it only has a pole of order r at 0, we can conclude that Q̂1 has r roots in D \ {0}.
Since κr Q̂1(κ) is a polynomial of degree p + r, we also conclude that Q̂1 has p roots in U , as already
explained in the introduction.

From the definition (9), we compute:

lim
z→∞

M(z) =


−ap−1,1

ap,1
. . . . . . −a−r,1

ap,1
1 0 . . . 0

0
. . .

. . .
...

0 0 1 0

 ,

and the eigenvalues of that (invertible) matrix are exactly those κ 6= 0 that satisfy Q̂1(κ) = 0. Hence for
any sufficiently large z, M(z) has r eigenvalues in D \ {0} and p eigenvalues in U (which are close to the
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roots of Q̂1). This completes the proof of the first statement in Lemma 1. It now remains to examine the
situation at the points zk, k = 1, . . . ,K. The arguments below are the same for the explicit and implicit
cases so we stop distinguishing between the two from now on. We thus consider a point zk for 1 ≤ k ≤ K.

Case I. We assume that the index k ∈ {1, . . . ,K} is such that the set Ik in (11) is the singleton {k}
and we assume for now αk > 0 in (8). Since the eigenvalues of M(zk) are the roots of the dispersion
relation:

Q̂1(κ) zk = Q̂0(κ) ,

we first observe that the only eigenvalue of M(zk) on S1 is κk and we are now going to show that this
eigenvalue is algebraically (and therefore geometrically) simple. The relation (8) gives:

F ′(κk) = − zk αk
κk

6= 0 .

Moreover, the characteristic polynomial of M(z) at κ equals z − F (κ) up to a nonvanishing holomorphic
function of (z, κ) close to (zk, κk). This means that κk is an algebraically simple eigenvalue of M(zk)
and can therefore be extended holomorphically with respect to z in a sufficiently small neighborhood of
zk. We let κk(z) denote this holomorphic extension, which satisfies z = F (κk(z)) for any z close to zk.
Performing a Taylor expansion, we compute:

κk
(
zk (1 + ε)

)
= κk

(
1 − ε

αk

)
+ O(ε2) .

In particular, κk
(
zk (1 + ε)

)
belongs to D for ε > 0 small enough.

To conclude, we observe that the p + r − 1 eigenvalues of M(zk) which differ from κk lie in D ∪ U .
Those eigenvalues remain in D ∪U as zk is perturbed into zk (1 + ε) for a sufficiently small ε > 0. Using
the previous step of the analysis, we know that M

(
zk (1+ε)

)
has r eigenvalues in D and p eigenvalues in U

so the reader will easily get convinced that the only possible situation for the location of the eigenvalues
of M(zk) is the one stated in Lemma 1.

Cases II and III. It remains to deal with the case where Ik is the singleton {k} and αk < 0 (Case
II), and the final case where Ik has two elements (Case III). The argument for Case II is the same as for
Case I except that now the Taylor expansion of κk shows that κk

(
zk (1 + ε)

)
belongs to U for ε > 0 small

enough. The remaining details for that case are easily filled in. For Case III, M(zk) has two eigenvalues
on S1, which are, in our usual notation, κνk,1 and κνk,2 . The same argument as in Case I or Case II shows
that one of these eigenvalues moves into D as z is perturbed from zk to zk (1+ε), and the other eigenvalue
moves into U . This situation thus mixes Cases I and II. The conclusion follows and the proof of Lemma
1 is now complete.

2.2 Estimates for the spatial Green’s function

This section is devoted to the analysis of the solution to the recurrence relation (16), which we recall is
an equivalent formulation of (15). More precisely, our aim is to derive pointwise estimates on the spatial
Green’s function Gj(z). We will divide the analysis depending on the position of z in the complex plane.
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Away from the tangency points z1, . . . , zK , we expect to obtain a uniform exponential decay while near
the tangency points only some kind of local boundedness is expected. We will rely on the spectral splitting
given by Lemma 1 to compute pointwise estimates of the augmented vector Wj(z).

We start with the estimates away from the tangency points.

Lemma 2 (Bounds away from the tangency points). Let z ∈ U \ {z1, . . . , zK}. Then there exists an
open ball Bδ(z), δ > 0, centered at z and there exist two constants C > 0, c > 0 such that:

∀ z ∈ Bδ(z) , ∀ j ∈ Z ,
∣∣Gj(z) ∣∣ ≤ C exp

(
− c |j|

)
.

Proof. We first introduce some notation. Let z ∈ U \ {z1, . . . , zK} be fixed. We know that M(z) in (10)
is well-defined and holomorphic in a sufficiently small neighborhood of z (including in the case where
z belongs to S1). Moreover, because of the spectral splitting shown in Lemma 1, the matrix M(z) has
no eigenvalue on S1 for z close to z, and it has r, resp. p, eigenvalues in D, resp. U , for z close to
z. Consequently, for z close to z, the so-called stable subspace, which is spanned by the generalized
eigenvectors of M(z) associated with eigenvalues in D, has constant dimension r. Similarly, the unstable
subspace, which is spanned by the generalized eigenvectors of M(z) associated with eigenvalues in U , has
constant dimension p. We let Es(z), resp. Eu(z), denote the stable, resp. unstable, subspace of M(z) for
z close to z. We have the decomposition:

∀ z ∈ Bδ(z) , Cp+r = Es(z)⊕ Eu(z) ,

for some sufficiently small radius δ > 0. The associated projectors are denoted πs(z) and πu(z). The
dynamics of (16) is therefore of hyperbolic type for any z ∈ Bδ(z).

The projectors πs(z) and πu(z) are given by contour integrals. For instance, we have:

πs(z) =
1

2 iπ

∫
γ

(w I − M(z))−1 dw ,

where γ is a contour that encloses the stable eigenvalues (those in D) of M(z) (for instance, S1 is such a
contour). A similar formula holds for πu(z) with a contour that encloses the unstable eigenvalues. This
formula shows that πs(z) depends holomorphically on z in the ball Bδ(z) and consequently, the stable
and unstable subspaces Es(z) and Eu(z) depend holomorphically6 on z.

Up to restricting δ, any complex number z in the open ball Bδ(z) lies in the resolvent set of the
operator L , hence there exists a unique solution (Wj(z))j∈Z ∈ `2(Z;Cp+r) to (16). Since the dynamics
of the iteration (16) for such z enjoys a hyperbolic dichotomy, the solution to (16) is given by integrating
either from j to +∞, or from −∞ to j − 1, depending on whether we compute the unstable or stable
components of the vector Wj(z). This leads to the expression:

∀ j ∈ Z , πu(z)Wj(z) = − 1

Ap(z)
∑
`≥0

(Q1 δ)j+` M(z)−1−` πu(z) e , (19)

for the unstable components, and to the expression:

∀ j ∈ Z , πs(z)Wj(z) =
1

Ap(z)

j−1∑
`=−∞

(Q1 δ)` M(z)j−1−` πs(z) e , (20)

6Following the analysis of spectral projectors in [Kat95], we shall say that a vector space E(z) ⊂ CN that depends on
a complex variable z for z in an open set O ⊂ C and that has constant dimension n, depends holomorphically on z if, for
any z ∈ O, there exists a neighborhood V of z in O and a basis e1(z), . . . , en(z) of E(z) that depends holomorphically on
z in V . This amounts to saying that the vector bundle defined by E over O is holomorphic. A typical example is the case
E(z) = P (z)CN where P (z) is a projector on CN that depends holomorphically on z in an open set O.
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for the stable components.
At this stage, we observe that the sequence Q1 δ only has finitely many nonzero coefficients, which

are given by:

∀ j ∈ Z , (Q1 δ)j =

{
a−j,1 , if j ∈ {−p, . . . , r},
0 , otherwise.

Hence we see from (19) that πu(z)Wj(z) vanishes for j ≥ r + 1, and we see from (20) that πs(z)Wj(z)
vanishes for j ≤ −p. For j ≤ r, we get:

πu(z)Wj(z) = − 1

Ap(z)

r−j∑
`=max(−p−j,0)

a−j−`,1 M(z)−1−` πu(z) e ,

and since the sequence (M(z)−` πu(z))`≥1 is exponentially decreasing, uniformly with respect to z ∈ Bδ(z),
we get the uniform bound7:

∀ z ∈ Bδ(z) , ∀ j ∈ Z ,
∣∣∣πu(z)Wj(z)

∣∣∣ ≤ {0 , if j ≥ r + 1,

C exp(− c |j|) , if j ≤ r.
(21)

Similar arguments, using the uniform exponential decay of the sequence (M(z)` πs(z))`≥1, yield the
bound:

∀ z ∈ Bδ(z) , ∀ j ≥ 1 ,
∣∣∣πs(z)Wj(z)

∣∣∣ ≤ {0 , if j ≤ −p− 1,

C exp(− c |j|) , if j ≥ −p.
(22)

Adding (21) and (22) gives the claim of Lemma 2 since the spatial Green’s function Gj(z) is just one
coordinate of the vector Wj(z) ∈ Cp+r.

We are now going to examine the behavior of the spatial Green’s function G(z) close to any of the
points zk, k = 1, . . . ,K, where the spectrum of L is tangent to the unit circle. Let us first recall that
the exterior U of the unit disk belongs to the resolvent set of L hence the spatial Green’s function
G(z) is well-defined in the “half-ball” Bδ(zk) ∩ U for any radius δ > 0. Our goal below is to extend
holomorphically G(z) to a whole neighborhood of zk for each k, which amounts to passing through the
(essential) spectrum of L . Our results are the following two lemmas.

Lemma 3 (Bounds close to the tangency points – Cases I and II). Let k ∈ {1, . . . ,K} be such that the
set Ik in (11) is the singleton {k}. Then there exists an open ball Bε(zk) and there exist two constants
C > 0 and c > 0 such that, for any integer j ∈ Z, the component Gj(z) defined on Bε(zk) ∩ U extends
holomorphically to the whole ball Bε(zk) with respect to z, and the holomorphic extension satisfies the
bound:

∀ z ∈ Bε(zk) , ∀ j ∈ Z ,
∣∣Gj(z) ∣∣ ≤

C exp
(
− c |j|

)
, if j ≤ 0,

C
∣∣∣κk(z)∣∣∣j , if j ≥ 1,

if αk > 0 (Case I),

and

∀ z ∈ Bε(zk) , ∀ j ∈ Z ,
∣∣Gj(z) ∣∣ ≤

C
∣∣∣κk(z)∣∣∣|j| , if j ≤ 0,

C exp
(
− c j

)
, if j ≥ 1,

if αk < 0 (Case II),

7Here we also use Assumption 3 to get a uniform local bound for Ap(z)−1, including in the case z ∈ S1 for which z can
come inside the unit disk.
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where, in either case, κk(z) denotes the (unique) holomorphic eigenvalue of M(z) defined close to zk and
that satisfies κk(zk) = κk.

Lemma 4 (Bounds close to the tangency points – Case III). Let now k ∈ {1, . . . ,K} be such that the set
Ik in (11) has two elements {νk,1, νk,2} which are fixed by the convention ανk,1 < 0 < ανk,2. Then there
exists an open ball Bε(zk) centered at zk and there exists a constant C > 0 such that, for any integer
j ∈ Z, the component Gj(z) defined on Bε(zk)∩U extends holomorphically to the whole ball Bε(zk) with
respect to z, and the holomorphic extension satisfies the bound:

∀ z ∈ Bε(zk) , ∀ j ∈ Z ,
∣∣Gj(z) ∣∣ ≤

C
∣∣∣κνk,1(z)

∣∣∣|j| , if j ≤ 0,

C
∣∣∣κνk,2(z)

∣∣∣j , if j ≥ 1,
(Case III),

where κνk,1(z), resp. κνk,2(z), denotes the (unique) holomorphic eigenvalue of M(z) defined close to zk
and that satisfies κνk,1(zk) = κνk,1, resp. κνk,2(zk) = κνk,2.

The proofs of Lemma 3 and Lemma 4 are mostly identical so we just give the proof of Lemma 3 and
indicate the minor refinements for the proof of Lemma 4.

Proof of Lemma 3. Most ingredients of the proof are similar to what we have already done in the proof
of Lemma 2. We assume from now on αk > 0, the case αk < 0 being left to the interested reader. We just
need to slightly adapt the notation used in the proof of Lemma 2 since the hyperbolic dichotomy of M(z)
does not hold any longer in a whole neighborhood of zk. Since κk is a simple eigenvalue of M(zk), we can
extend it holomorphically to a simple eigenvalue κk(z) of M(z) in a neighborhood of zk. This eigenvalue
is associated with the eigenvector:

Ek(z) :=


κk(z)

p+r−1

...
κk(z)

1

 ∈ Cp+r ,

which also depends holomorphically on z in a neighborhood of zk. The vector Ek(z) contributes to the
stable subspace of M(z) for z ∈ U close to zk but the situation is unclear as z goes inside D (it actually
depends on the position of z with respect to the spectrum of L ). The remaining p+ r− 1 eigenvalues of
M(z) enjoy the now familiar hyperbolic dichotomy, uniformly with respect to z close to zk. We let below
Ess(z), resp. Eu(z), denote the strongly stable, resp. unstable, subspace of M(z) associated with those
eigenvalues that remain uniformly inside D, resp. U , as z belongs to a neighborhood of zk. In particular,
Ess(z), resp. Eu(z), has dimension r − 1, resp. p, thanks to Lemma 1, and we have the decomposition:

∀ z ∈ Bε(zk) , Cp+r = Ess(z) ⊕ Span Ek(z) ⊕ Eu(z) , (23)

for a sufficiently small radius ε > 0. We let below πss(z), πk(z) and πu(z) denote the holomorphic
projectors associated with the decomposition (23).

We first consider a point z ∈ Bε(zk)∩U so that the decomposition (23) holds and the Green’s function
G(z) ∈ `2(Z;C) is well-defined as the only solution to (15). We use the equivalent formulation (16) and
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derive the following expressions that are entirely similar to those found in the proof of Lemma 2:

∀ j ∈ Z , πu(z)Wj(z) = − 1

Ap(z)
∑
`≥0

(Q1 δ)j+` M(z)−1−` πu(z) e , (24a)

πss(z)Wj(z) =
1

Ap(z)

j−1∑
`=−∞

(Q1 δ)` M(z)j−1−` πss(z) e , (24b)

πk(z)Wj(z) =
1

Ap(z)

j−1∑
`=−∞

(Q1 δ)` κk(z)
j−1−` πk(z) e . (24c)

The strongly stable (πss(z)Wj(z)) and unstable (πu(z)Wj(z)) components obviously extend holomor-
phically to the whole neighborhood Bε(zk) of zk since the projectors πss(z) and πu(z) depend holomor-
phically on z on that set and the sums on the right hand side of (24a) and (24b) are, at most, finite.
Furthermore, by using the same type of bounds as in the proof of Lemma 2, we obtain:

∀ z ∈ Bε(zk) , ∀ j ∈ Z ,
∣∣πu(z)Wj(z) + πss(z)Wj(z)

∣∣ ≤ C exp(− c |j|) , (25)

for some appropriate constants C > 0 and c > 0. We now focus on the vector πk(z)Wj(z) in (24c) which
is aligned with the eigenvector Ek(z). We see from (24c) that πk(z)Wj(z) vanishes for j ≤ −p. For j in
the finite set {−p+ 1, . . . , r}, we have:

πk(z)Wj(z) =
1

Ap(z)

j−1∑
`=−p

a−`,1 κk(z)
j−1−` πk(z) e ,

and for j ≥ r + 1, we have:

πk(z)Wj(z) =
1

Ap(z)

r∑
`=−p

a−`,1 κk(z)
j−1−` πk(z) e .

In either case, we see that the component πk(z)Wj(z) extends holomorphically to the whole neighborhood
Bε(zk) of zk and we have a bound of the form8:

∀ z ∈ Bε(zk) , ∀ j ∈ Z ,
∣∣πk(z)Wj(z)

∣∣ ≤ { 0 , if j ≤ −p,
C |κk(z)|j , if j ≥ 1− p.

(26)

In order to conclude, we can always assume that the ball Bε(zk) is so small that the modulus |κk(z)|
belongs to the interval9 [exp(−c), exp c] (it equals 1 at zk). It then remains to add the bounds in (25)
and (26) and to compare which is the largest. This completes the proof of Lemma 3 in the case αk > 0.
The remaining Case II (αk < 0) is handled similarly except that now the eigenvector Ek(z) contributes
to the unstable subspace of M(z) for |z| > 1. The minor modifications are left to the reader.

Proof of Lemma 4. The proof of Lemma 4 is a mixture between Cases I and II in which now M(z) has
two (holomorphic) eigenvalues whose modulus equals 1 at zk. One contributes to the stable subspace of
M(z) and the other one contributes to the unstable subspace of M(z) for |z| > 1. The same ingredients
as in the proof of Lemma 3 can then be applied with minor modifications.

8Here we use again that Ap(z) does not vanish in the ball Bε(zk) up to restricting the radius ε.
9The constant c here refers to the same one as in (25).
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Let us remark that all the claims in Lemma 2, Lemma 3 and Lemma 4 do not distinguish between
the explicit and implicit case since they only rely on Lemma 1. In the implicit case, for the forthcoming
estimates of the temporal Green’s function of Section 3, we will also need to obtain bounds of the spatial
Green’s function G(z) for large values of z. These bounds are provided by the following result.

Lemma 5 (Bounds at infinity – Implicit case). If Q1 is not the identity, then there exist a radius R ≥ 2
and two constants C > 0, c > 0 such that there holds:

∀ z 6∈ BR(0) , ∀ j ∈ Z ,
∣∣Gj(z) ∣∣ ≤ C exp

(
− c |j|

)
.

Proof. The proof is basically the same as that of Lemma 2. Indeed, we recall that in the implicit case,
the matrix M(z) has a limit at infinity, given by:

−ap−1,1

ap,1
. . . . . . −a−r,1

ap,1
1 0 . . . 0

0
. . .

. . .
...

0 0 1 0

 ,
and this matrix has a hyperbolic dichotomy because of Assumption 1. We can thus apply the same
argument as in the proof of Lemma 2 for z in a neighborhood of infinity. In particular, we can use the
fact that the sequences (M(z)−` πu(z))`≥1 and (M(z)` πs(z))`≥1 are exponentially decreasing, uniformly
with respect to z in a neighborhood BR(0)c of infinity. The conclusion of Lemma 5 follows.

Let us observe that we can extend holomorphically each scalar component Gj(z) to a neighborhood
Bε(zk) of zk, but that does not necessarily mean that the extended sequence G(z) lies in `2(Z;C). For
instance, in Case I of Lemma 3, the eigenvalue κk(z) contributes to the stable subspace of M(z) for
|z| > 1 but it starts contributing to the unstable subspace of M(z) as z crosses the spectrum of L (which
coincides with the curve F (S1)). Hence the holomorphic extension G(z) ceases to be in `2(Z;C) as z
crosses the spectrum of L for it then has an exponentially growing mode in j at +∞.

We finally end this section with the following corollary, which is a direct consequence of Lemma 2,
Lemma 3, Lemma 4 and Lemma 5 above by applying a standard compactness argument. We refer to
Figure 1 for a geometrical representation of this result.

Corollary 1. There exists some ε? > 0 such that for each ε ∈ (0, ε?) there exists some δε > 0 such that
the Green’s function G(z), defined initially as the unique solution G(z) ∈ `2(Z;C) to (15) for each z in
the resolvent set of L , has a unique holomorphic extension (also denoted G(z)) to the set

S :=
{
ζ ∈ C | e− δε < |ζ| ≤ eπ

}
∪

K⋃
k=1

Bε(zk).

Moreover there are constants C > 0 and c > 0 such that

• Whenever z ∈ S \
⋃K
k=1Bε(zk),

∀ j ∈ Z ,
∣∣Gj(z) ∣∣ ≤ C exp

(
− c |j|

)
. (27)

• Whenever z ∈ Bε(zk) for k = 1, · · · ,K, the Green’s function G(z) satisfies one of the bounds in
Lemma 3 or 4 depending on the cardinal of Ik and the sign of αk.

Furthermore, in the implicit case, the above uniform exponential bound (27) extends to all |z| ≥ eπ.
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Figure 1: Geometrical illustrations of the set S given in Corollary 1 in the case K = 3. The curve of
essential spectrum σ(L ) (dark red curve) is tangent to the unit circle precisely at zk for k = 1, 2, 3 (black
crosses) and otherwise strictly contained in the unit disk D. For ε ∈ (0, ε?), each ball Bε(zk) intersects
σ(L ) at two points (black stars in the right panel) and the dashed dark blue line represents the circle
passing through the point with largest modulus. We then fix δε > 0 such that the circle {z | |z| = e−δε}
(magenta curve) is contained in between the unit circle and the circle passing through the point with
largest modulus.

3 The temporal Green’s function

The starting point of the analysis is to use the inverse Laplace transform formula to express the so-called
Green’s function G n := L n δ as the following contour integral

∀n ∈ N∗ , ∀ j ∈ Z , G n
j = (L n δ)j =

1

2 iπ

∫
Γ̃
znGj(z) dz , (28)

where Γ̃ is a closed curve in the complex plane surrounding the unit disk D and lying in the resolvent set
of L . The idea will be to deform Γ̃ in order to obtain sharp pointwise estimates on the temporal Green’s
function using our pointwise estimates on the spatial Green’s function given in Lemma 2, Lemma 3,
Lemma 4 and Lemma 5 above. To do so, we first change variable in (28), by setting z = exp(τ), such
that we get

G n
j =

1

2 iπ

∫
Γ

en τ Gj(τ) dτ , (29)

where without loss of generality Γ = {s+ i ` | ` ∈ [−π, π]} for some s > 0 (and actually any s > 0 thanks
to Cauchy’s formula), and Gj(τ) is given by

∀ j ∈ Z , Gj(τ) := Gj(e
τ ) eτ .

The remaining of this section is devoted to the proof of Theorem 1. For the sake of clarity, we first treat
the explicit case with K = 1, and then deal with the implicit case still with K = 1. And finally, we
explain how the results generalize to K > 1 in both cases. (Let us recall that K denotes the number of
tangency points of the spectrum of L within the unit circle S1).
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In the explicit case (when Q1 is the identity), the analysis below uses the fact that each velocity
αk lies in the open interval (−p, r). This fact is stated in the following lemma, which can be seen as a
variation on the so-called Courant-Friedrichs-Lewy condition [CFL28] and/or the Bernstein inequality for
trigonometric polynomials. A proof of Lemma 6 is provided in Appendix A.

Lemma 6. Under Assumptions 1 and 2, if Q1 is the identity, then there holds:

∀ k = 1, . . . ,K , − p < αk < r ,

where the αk’s are the drift velocities arising in (8).

We now deal with the proof of Theorem 1.

3.1 The explicit case with K = 1

We first remark that, since L = Q0 is a convolution operator with finite stencil, for each n ≥ 1, there
holds

G n
j = 0 , for j > r n or j < − p n .

As a consequence, throughout this section, we assume that j and n satisfy

n ≥ 1 , − p n ≤ j ≤ r n .

We also assume without loss of generality that κ1 = z1 = 1 together with α1 > 0 (the case α1 < 0 being
handled similarly). In that case, we have from (8) that

F
(

e i ξ
)

= exp
(
− iα ξ − β ξ 2µ + O

(
ξ 2µ+1

))
as ξ → 0, (30)

where we dropped the index 1 to simplify our notations. Now, using Lemma 3, bounds close to the
tangency point z = 1 for Gj(z) translate into bounds near the origin τ = 0 for Gj(τ). More precisely, we
have the following lemma which combines Lemma 3 and Corollary 1.

Lemma 7. There exist ε∗ > 0 and two constants 0 < β∗ < Re(β) < β∗ such that for each ε ∈ (0, ε∗) there
exist some width ηε > 0 together with two constants, still denoted C > 0, c > 0, such that, for any integer
j ∈ Z, the component Gj(τ) extends holomorphically on Bε(0) with bounds:

∀ τ ∈ Bε(0) , ∀ j ∈ Z ,
∣∣Gj(τ)

∣∣ ≤ {C exp
(
− c |j|

)
, if j ≤ 0,

C exp
(
j Re($(τ))

)
, if j ≥ 1,

(31)

where $ is holomorphic on Bε(0) and has the Taylor expansion:

$(τ) = − 1

α
τ + (−1)µ+1 β

α2µ+1
τ2µ + O

(
|τ |2µ+1

)
, ∀ τ ∈ Bε(0) , (32)

together with

Re($(τ)) ≤ − 1

α
Re(τ) +

β∗

α2µ+1
Re(τ)2µ − β∗

α2µ+1
Im(τ)2µ , ∀ τ ∈ Bε(0) . (33)

Furthermore, we have

∀ τ ∈ Ωε := {− ηε < Re(τ) ≤ π } \Bε(0) , ∀ j ∈ Z ,
∣∣Gj(τ)

∣∣ ≤ C exp
(
− c |j|

)
. (34)
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Proof. The first part of the proof simply relies on writing κ(z) = exp(ω(z)) near z = 1 and using
z = exp(τ), such that after identification we have $(τ) = ω(exp(τ)). Indeed, the function κ is holomorphic
in the ball Bε0(1) for some ε0 > 0. Upon reducing the size of ε0, we can define a holomorphic function
ω : Bε0(1) → C such that κ(z) = exp(ω(z)) for each z ∈ Bε0(1), and ω(1) = 0. We now let ε∗ > 0
small enough be such that for each ε ∈ (0, ε∗) and τ ∈ Bε(0), we have exp(τ) ∈ Bε0(1). We can now
define $ : Bε(0) → C as $(τ) := ω(exp(τ)) which is holomorphic in Bε(0) by construction. Finally, we
remark that Gj(τ) extends holomorphically on Bε(0) for any j ∈ Z since Gj(z) extends holomorphically
on Bε0(1).

Next, we explain how to use the expansion (30) to obtain the desired Taylor expansion (32) for $(τ)
near τ = 0. We first remark that for each ε ∈ (0, ε∗) and τ ∈ Bε(0) we have the identity

eτ = F (κ(eτ )) = F (e$(τ)).

As a consequence, we get the expansion

τ = −α$(τ) + β(−1)µ+1$(τ)2µ +O
(
|$(τ)|2µ+1

)
,

as τ → 0. Since $ is holomorphic in Bε(0) with $(0) = 0, we can use the above equality to obtain, by
identification, each term of its Taylor expansion and recover (32). Note that we can always reduce the
size of ε∗ such that the expansion is valid for each ε ∈ (0, ε∗) and τ in Bε(0).

To complete the proof we now prove the existence of two positive real numbers β∗ and β∗ verifying
0 < β∗ < Re(β) < β∗ such that inequality (33) holds true in Bε(0) for each ε ∈ (0, ε∗). First we compute

(−1)µ+1 Re
(
βτ2µ

)
= (−1)µ+1 Re(β) Re

(
τ2µ
)
− (−1)µ+1 Im(β) Im

(
τ2µ
)

= −Re(β) Im(τ)2µ − (−1)µ Re(β) Re(τ)2µ

− Re(β)

µ−1∑
m=1

(−1)m
(

2µ
2m

)
Re(τ)2m Im(τ)2 (µ−m)

− Im(β)

µ−1∑
m=0

(−1)m+1

(
2µ

2m+ 1

)
Re(τ)2m+1 Im(τ)2 (µ−m)−1.

Next using Young’s inequality with some δ > 0, we get

Re(τ)k Im(τ)2µ−k ≤ k

2µ δ
2µ
k

Re(τ)2µ +
2µ − k

2µ
δ

2µ
2µ−k Im(τ)2µ, k = 1, · · · , 2µ− 1 .

And, we also note that the remainder term can be bounded as

O
(
|τ |2µ+1

)
≤ C ε∗

(
|Re(τ)|2µ + |Im(τ)|2µ

)
, τ ∈ Bε(0) ,

for each ε ∈ (0, ε∗) for some constant C > 0 independent of ε. We finally remark that δ > 0 can be taken
arbitrarily small and that the leading order term in Im(τ)2µ comes with a negative sign since we assume
Re(β) > 0. As a consequence, upon eventually reducing the size of ε∗, we can find 0 < β∗ < Re(β) < β∗

(depending only on ε∗) such that inequality (33) holds true in Bε(0) for each ε ∈ (0, ε∗).

Using Lemma 7, we readily see that when −np ≤ j ≤ 0, our estimates (31)-(34) from Lemma 7 can
be combined to

∀ τ ∈ Ωε ∪Bε(0) , ∀ j ≤ 0 ,
∣∣Gj(τ)

∣∣ ≤ C e− c |j| ,
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from which we automatically obtain the following estimate, using the contour Γ = {−η + i ` | ` ∈ [−π, π]} ⊂
Ωε ∪ Bε(0) in (29) for any 0 < η < ηε. Modifying the contour in (29) is legitimate thanks to Cauchy’s
formula and also because the integrals on the segments {−υ ± iπ | υ ∈ [−η, π]} compensate one another.

Lemma 8. For each ε ∈ (0, ε∗) there exists constants C > 0 and c > 0 such that for all −n p ≤ j ≤ 0
with n ≥ 1, there holds ∣∣G n

j

∣∣ ≤ C e−n η− c |j| ,

for any η ∈ (0, ηε) with ηε > 0 the width given in Lemma 7.

From now on, we assume that 1 ≤ j ≤ nr. It turns out that we will need again to divide the analysis
in two pieces. We will consider first the medium range where 1 ≤ j ≤ nδ where δ := α

2 . In that case we
can prove the following lemma.

Lemma 9. For each ε ∈
(

0,min

(
ε∗,
(
α2µ

2β∗

) 1
2µ−1

))
there exists a constant C > 0 such that for n ≥ 1

and 1 ≤ j ≤ n δ, the following estimate holds:∣∣G n
j

∣∣ ≤ C e−n
η
4 ,

for each η ∈ (0, ηε) with ηε > 0 the width given in Lemma 7.

Proof. For each ε ∈
(

0,min

(
ε∗,
(
α2µ

2β∗

) 1
2µ−1

))
and for η ∈ (0, ηε) with ηε > 0 given in Lemma 7, we

use again the segment Γ = {−η + i ` | ` ∈ [−π, π]} ⊂ Ωε ∪ Bε(0) in (29). We denote by Γin and Γout

the portions of the segment Re(τ) = −η which lie either inside Bε(0) or outside Bε(0) with |Im(τ)| ≤ π.
Standard computations (using Lemma 7) lead to∣∣∣∣ 1

2 iπ

∫
Γout

en τ Gj(τ) dτ

∣∣∣∣ ≤ C e−n η− c j ,

and ∣∣∣∣ 1

2 iπ

∫
Γin

en τ Gj(τ) dτ

∣∣∣∣ ≤ C e−n η
∫

Γin
e j Re($(τ)) |dτ |

2π
.

Next, we recall the estimate (33) on Re($(τ)) from Lemma 7, that is

Re($(τ)) ≤ − 1

α
Re(τ) +

β∗

α2µ+1
Re(τ)2µ − β∗

α2µ+1
Im(τ)2µ , ∀ τ ∈ Bε(0) .

As a consequence, for all τ ∈ Γin ⊂ Bε(0), we have

Re($(τ)) ≤ η

α
+

β∗

α2µ+1
η2µ .

Here, we crucially used the fact that the term in Im(τ)2µ in the estimate for Re($(τ)) comes with a
negative sign. Summarizing, we have obtained that

−n η + j Re($(τ)) ≤ n η

(
− 1

2
+

β∗

2α2µ
η2µ−1

)
for each τ ∈ Γin and 1 ≤ j ≤ nα

2 . Finally, since 0 < η < ε <
(
α2µ

2β∗

) 1
2µ−1

, there holds that
β∗

2α2µ
η2µ−1 < 1

4 ,

and we get the final estimate

e−n η
∫

Γin
e j Re($(τ)) |dτ |

2π
≤ e−n

η
4 .

This concludes the proof of the lemma.
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Figure 2: Illustration of the geometry of the family of parametrized curved Γp within the ball Bε(0) for
different values of τp ∈ [−η/2, ε0]. The extremal curves are given when τp = −η/2 to the left (magenta
curve) and when τp = ε0 to the right (light blue curve) where 0 < ε0 < ε is precisely defined such that
Γp with τp = ε0 intersects the segment {−η + i ` | ` ∈ [−π, π]} on the boundary of Bε(0). The dashed
dark red curve represents the logarithm of the spectrum σ(L ). Note that with our careful choice of
parametrization, we have that Γp with τp = 0 (dark blue curve) lies to the right of the spectral curve with
tangency at the origin.

We now turn to the last case where n ≥ 1 and n δ ≤ j ≤ n r (recall δ = α/2 and α < r). Our
generalized Gaussian estimates will precisely come from this part of the analysis. In order to proceed, we
follow the strategy developed in [ZH98] in the fully continuous case (see also [God03] in a fully discrete
case that corresponds to µ = 1 in our notation), and introduce a family of parametrized curves given by

Γp :=

{
Re(τ)− β∗

α2µ
Re(τ)2µ +

β∗
α2µ

Im(τ)2µ = Ψ (τp) | − η ≤ Re(τ) ≤ τp
}

(35)

with Ψ (τp) := τp − β∗

α2µ τ
2µ
p . Note that the curves Γp intersect the real axis at τp. We now explain how

we choose η > 0 and τp > −η in the above definition of Γp.
First, for each ε ∈ (0, ε∗), we fix η ∈ (0, ηε) with ηε > 0 given in Lemma 7 such that the curve Γp

with τp = 0 intersects {−η + i ` | ` ∈ [−π, π]} inside the open ball Bε(0). Then, we let ε0 ∈ (0, ε) which is
uniquely defined as the value of τp for which Γp with τp = ε0 intersects the segment {−η + i ` | ` ∈ [−π, π]}
precisely on the boundary10 of Bε(0) with η fixed previously. And finally, the specific value of τp is fixed

depending on the ratio ζ
γ as follows

τp :=



ρ

(
ζ

γ

)
if − η

2
≤ ρ

(
ζ

γ

)
≤ ε0 ,

ε0 if ρ

(
ζ

γ

)
> ε0 ,

−η
2

if ρ

(
ζ

γ

)
< −η

2
.

10This is possible because the curves Γp are symmetric with respect to the real axis.
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We refer to Figure 2 for an illustration of the geometry of Γp for different values of τp. There only remains
to define ζ, γ and the function ρ. We let

ζ :=
j − nα

2µn
, and γ :=

j

n

β∗

α2µ
> 0 ,

and ρ
(
ζ
γ

)
is the unique real root to the equation

− ζ + γ x2µ−1 = 0 ,

that is

ρ

(
ζ

γ

)
:= sgn

(
ζ

γ

) (
|ζ|
γ

) 1
2µ−1

.

The motivation for introducing such quantities comes from the estimate (33) from Lemma 7. More
precisely, for all τ ∈ Γp ⊂ Bε(0), we have

j Re($(τ)) ≤ j

(
− 1

α
Re(τ) +

β∗

α2µ+1
Re(τ)2µ − β∗

α2µ+1
Im(τ)2µ

)
= j

(
− τp
α

+
β∗

α2µ+1
τ2µ
p

)
= −n τp +

n

α

(
− 2µ ζ τp + γ τ2µ

p

)
,

and our careful choice of τp will always allow us to handle the terms inside the final parenthesis.
We remark that − α

4µ ≤ ζ ≤
r−α
2µ , and our generalized Gaussian estimates will come from those values

of ζ ≈ 0. Before proceeding with the analysis, we note that for all τ ∈ Γp, we have

Re(τ) ≤ τp − c∗ Im(τ)2µ , (36)

for some constant c∗ > 0. Indeed, we remark that the function Ψ, defined as Ψ(t) = t− β∗

α2µ t
2µ, satisfies

Ψ′(0) = 1 such that for each t ∈ [−η, ε] one has Ψ′(t) ≤ c0 for some c0 > 0. As a consequence, for each
τ ∈ Γp one has

− β∗
α2µ

Im(τ)2µ = Ψ(Re(τ)) − Ψ(τp) = −
∫ τp

Re(τ)
Ψ′(t) dt ≥ c0 (Re(τ)− τp) ,

which gives the desired estimate (36) with c∗ = β∗
c0 α2µ . Furthermore, a straightforward application of the

implicit function theorem gives the following result on the parametrization of the curves Γp that we will
be using in our estimates below.

Lemma 10. There exist ε∗∗ ∈ (0, ε∗), some analytic function Φ : (−ε∗∗, ε∗∗)× (−ε∗∗, ε∗∗)→ R and some
constant C > 0 such that for any ε ∈ (0, ε∗∗) and τp ∈ (−ε, ε) the curve Γp can be parametrized as

Γp = {τ ∈ Bε(0) | Re(τ) = Φ(Im(τ), τp)} ,

with

Re(τ) = τp −
β∗

α2µ
Im(τ)2µ + O

(
|Im(τ)|2µ+1 + |τp|2µ+1

)
,

together with ∣∣∣∣∂Φ(Im(τ), τp)

∂Im(τ)

∣∣∣∣ ≤ C , for each |Im(τ)| ≤ ε and |τp| ≤ ε .
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Figure 3: Illustration of the contour used in the case −η
2 ≤ ρ

(
ζ
γ

)
≤ ε0 when n δ ≤ j ≤ n r. The contour

is composed of Γout− ∪ Γin− ∪ Γp ∪ Γin+ ∪ Γout+ . The contours Γin± and Γout± are the portions of the segment
Re(τ) = −η which lie either inside Bε(0) or outside Bε(0) with |Im(τ)| ≤ π while Γp is defined in (35)
and intersects the real axis at τp.

Finally, in what follows, we will use the notation f . g whenever f ≤ C g for some constant C > 0
independent of j and n.

• We first treat the case −η
2 ≤ ρ

(
ζ
γ

)
≤ ε0. For all τ ∈ Γp ⊂ Bε(0) we obtain

nRe(τ) + j Re($(τ)) ≤ n (Re(τ)− τp) +
n

α

(
− 2µ ζ τp + γ τ2µ

p

)
≤ −n c∗ Im(τ)2µ +

n

α

(
− 2µ ζ τp + γ τ2µ

p

)
.

For the second term, we will use the specific form of τp = ρ
(
ζ
γ

)
= sgn(ζ)

(
|ζ|
γ

) 1
2µ−1

to get that

− 2µ ζ τp + γ τ2µ
p = − γ (2µ− 1)

(
|ζ|
γ

) 2µ
2µ−1

< 0 .

24



As a consequence, we can derive the following bound∣∣∣∣∣ 1

2 iπ

∫
Γp

en τ Gj(τ) dτ

∣∣∣∣∣ .
∫

Γp

enRe(τ)+jRe($(τ))|dτ |

. e
−n
α

(2µ−1)γ
(
|ζ|
γ

) 2µ
2µ−1

∫
Γp

e−nc∗Im(τ)2µ |dτ |

.
e
−n
α

(2µ−1)γ
(
|ζ|
γ

) 2µ
2µ−1

n
1
2µ

.

In the last inequality, assuming that ε ∈ (0, ε∗∗), we have used Lemma 10 to get∫
Γp

e−nc∗Im(τ)2µ |dτ | .
∫ `∗

−`∗
e−nc∗x

2µ
dx .

1

n
1
2µ

,

where `∗ ∈ (0, ε) is defined as `∗ :=
(
α2µ

β∗ (Ψ(τp)−Ψ(−η))
) 1

2µ
, which is the positive root of

− η − β∗

α2µ
η2µ +

β∗
α2µ

`2µ∗ = Ψ(τp) = τp −
β∗

α2µ
τ2µ
p .

Next we denote by Γin± and Γout± the portions of the segment Re(τ) = −η which lie either inside Bε(0)
or outside Bε(0) with |Im(τ)| ≤ π. We refer to Figure 3 for an illustration. Usual computations
lead to ∣∣∣∣∣ 1

2 iπ

∫
Γout±

en τ Gj(τ) dτ

∣∣∣∣∣ ≤ C e−n η− c j .

For all τ ∈ Γin± , we use that Im(τ)2 ≥ Im(τ∗)
2 where τ∗ = −η+i `∗ with `∗ =

(
α2µ

β∗ (Ψ(τp)−Ψ(−η))
) 1

2µ
.

That is τ∗ = −η + i `∗ lies at the intersection of Γp and the segment {−η + i ` | ` ∈ [−π, π]} with
τ∗ ∈ Bε(0). As a consequence, for all τ ∈ Γin± we have

Re($(τ)) ≤ − 1

α
Re(τ) +

β∗

α2µ+1
Re(τ)2µ − β∗

α2µ+1
Im(τ)2µ

= − τp
α

+
β∗

α2µ+1
τ2µ
p − β∗

α2µ+1

(
Im(τ)2µ − `2µ∗

)︸ ︷︷ ︸
≥0

≤ − τp
α

+
β∗

α2µ+1
τ2µ
p .

Thus, we have

nRe(τ) + j Re($(τ)) ≤ −n η + j

(
− τp
α

+
β∗

α2µ+1
τ2µ
p

)
=

n

α

[
− η α +

j

n

(
− τp +

β∗

α2µ
τ2µ
p

)]
≤ n

α

[
− (η + τp)α − 2µ ζ τp + γ τ2µ

p

]
=

n

α

[
−(η + τp)α − (2µ− 1) γ

(
|ζ|
γ

) 2µ
2µ−1

]
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for all τ ∈ Γin± . Finally, as −η
2 ≤ ρ( ζγ ) = τp we have η + τp ≥ η

2 , we obtain an estimate of the form∣∣∣∣∣ 1

2 iπ

∫
Γin±

en τ Gj(τ) dτ

∣∣∣∣∣ ≤ C e
−n η

2
−n
α

(2µ−1) γ
(
|ζ|
γ

) 2µ
2µ−1

.

Summarizing, we have obtained

∣∣G n
j

∣∣ ≤ ∣∣∣∣∣ 1

2 iπ

∫
Γp

en τ Gj(τ) dτ

∣∣∣∣∣+

∣∣∣∣∣ 1

2 iπ

∫
Γout±

en τ Gj(τ) dτ

∣∣∣∣∣+

∣∣∣∣∣ 1

2 iπ

∫
Γin±

en τ Gj(τ) dτ

∣∣∣∣∣
≤ C

e
−n
α

(2µ−1)γ
(
|ζ|
γ

) 2µ
2µ−1

n
1
2µ

+ e−n η− c j + e
−n η

2
−n
α

(2µ−1) γ
(
|ζ|
γ

) 2µ
2µ−1

 .

• Next, we consider the case ρ(ζ/γ) > ε0 for which we choose τp = ε0. The contour Γ is decomposed
into Γp ∪ Γout± where Γout± are the portions of the segment Re(τ) = −η which lie outside Bε(0) with
|Im(τ)| ≤ π. In that case, we have that for all τ ∈ Γp

nRe(τ) + j Re($(τ)) ≤ −n c∗ Im(τ)2µ +
n

α

(
− 2µ ζ τp + γ τ2µ

p

)
= −n c∗ Im(τ)2µ +

n

α

(
− 2µ ζ ε0 + γ ε2µ0

)
since τp = ε0 in this case. But as ρ(ζ/γ) > ε0 we get that ζ > 0 and ζ > ε2µ−1

0 γ, the last term in
the previous inequality is estimated via

− 2µ ζ ε0 + γ ε2µ0 < − (2µ− 1) γ ε2µ0 < 0 .

As a consequence, we can derive the following bound∣∣∣∣∣ 1

2 iπ

∫
Γp

en τ Gj(τ) dτ

∣∣∣∣∣ . e−
n
α

(2µ−1)γε2µ0

n
1
2µ

.

With our careful choice of ε0 > 0, the remaining contribution along segments Γout± with Re(τ) = −η
can be estimated as usual as ∣∣∣∣∣ 1

2 iπ

∫
Γout±

en τ Gτ (j)dτ

∣∣∣∣∣ ≤ C e−n η− c j ,

as |τ | ≥ ε for τ ∈ Γout± . Summarizing, we have obtained

∣∣G n
j

∣∣ ≤ ∣∣∣∣∣ 1

2 iπ

∫
Γp

en τ Gj(τ) dτ

∣∣∣∣∣+

∣∣∣∣∣ 1

2 iπ

∫
Γout±

en τ Gj(τ) dτ

∣∣∣∣∣ ≤ C

(
e−

n
α

(2µ−1)γε2µ0

n
1
2µ

+ e−n η− c j

)
.

• It remains to handle the last case ρ(ζ/γ) < −η/2 for which we choose τp = −η/2, and we readily
note that in this setting ζ < 0. The contour Γ is decomposed into Γp ∪ Γout± ∪ Γin± where once again
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Γin± and Γout± are the portions of the segment Re(τ) = −η which lie either inside Bε(0) or outside
Bε(0) with |Im(τ)| ≤ π. For all τ ∈ Γp ⊂ Bε(0), we find that

nRe(τ) + j Re($(τ)) ≤ −n c∗ Im(τ)2µ +
n

α

(
µ ζ η + γ

(η
2

)2µ
)
.

Using that ρ(ζ/γ) < −η/2 which is equivalent to ζ/γ < −
(η

2

)2µ−1
, we get that

µ ζ η + γ
(η

2

)2µ
< − (2µ− 1) γ

(η
2

)2µ
.

As a consequence, we can derive the following bound∣∣∣∣∣ 1

2 iπ

∫
Γp

en τ Gj(τ) dτ

∣∣∣∣∣ . e−
n
α

(2µ−1)γ( η2 )
2µ

n
1
2µ

.

As usual, we have that ∣∣∣∣∣ 1

2 iπ

∫
Γout±

en τ Gj(τ) dτ

∣∣∣∣∣ ≤ C e−n η− c j .

It only remains to estimate the contribution on Γin± . We proceed as before, and we have that for all
τ ∈ Γin±

nRe(τ) + j Re($(τ)) ≤ n

α

[
− (η + τp) α − 2µ ζ τp + γ τ2µ

p

]
≤ n

α

[
− η

2
α − (2µ− 1) γ

(η
2

)2µ
]

= −n
(
η

2
+

(2µ− 1) γ

α

(η
2

)2µ
)
,

and this time we obtain ∣∣∣∣∣ 1

2 iπ

∫
Γin±

en τ Gj(τ) dτ

∣∣∣∣∣ ≤ C e
−n
(
η
2

+
(2µ−1)γ

α ( η2 )
2µ
)
.

In conclusion, we have obtained

∣∣G n
j

∣∣ ≤ ∣∣∣∣∣ 1

2 iπ

∫
Γp

en τ Gj(τ) dτ

∣∣∣∣∣+

∣∣∣∣∣ 1

2 iπ

∫
Γout±

en τ Gj(τ) dτ

∣∣∣∣∣+

∣∣∣∣∣ 1

2 iπ

∫
Γin±

en τ Gj(τ) dτ

∣∣∣∣∣
≤ C

(
e−

n
α

(2µ−1)γ( η2 )
2µ

n
1
2µ

+ e−n η− c j + e
−n
(
η
2

+
(2µ−1)γ

α ( η2 )
2µ
))

.

As a summary, gathering the above estimates, we can deduce the following result.

Lemma 11. For each ε ∈ (0, ε∗∗) there exist constants C > 0 and c > 0 such that for n ≥ 1 and
n δ ≤ j ≤ n r the following estimate holds:

∣∣G n
j

∣∣ ≤ C

n
1
2µ

exp

(
−c
(
|j − αn|

n
1
2µ

) 2µ
2µ−1

)
,

where ε∗∗ > 0 is given in Lemma 10.
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Figure 4: Illustration for the explicit (left) and implicit (right) cases of the different domains in the (j, n)
plane where generalized Gaussian estimates are obtained; here K = 3 with α1 < 0 and α2 6= α3 > 0.
Generalized Gaussian estimates are derived near each j ≈ nαk, k = {1, 2, 3} in the interior of the sectors
delimited by the magenta lines. In the explicit case, below the lines j = −n p and j = n r (blue), the
Green’s function G n

j vanishes.

Proof. One only needs to check that the purely exponentially decaying in n contributions obtained when

ρ
(
ζ
γ

)
> ε0 or ρ

(
ζ
γ

)
< −η

2 can be subsumed into generalized Gaussian estimates. For example, in the

case ρ
(
ζ
γ

)
> ε0, there exists some small constant c > 0 such that

−n ≤ − c
(
|j − αn|

n
1
2µ

) 2µ
2µ−1

,

as
β∗

2α2µ−1
≤ γ ≤ β∗

α2µ
r ,

and
j

nα
− 1 =

2µ ζ

α
>

2µ

α
γ ε2µ−1

0 ≥ µβ∗

α2µ
ε2µ−1
0 .

All other cases can be dealt with in a similar way.

Proof of Theorem 1. Combining Lemma 8, Lemma 9 and Lemma 11 proves our main Theorem 1 in the

explicit case with K = 1. Indeed, we first fix ε ∈
(

0,min

(
ε∗∗,

(
α2µ

2β∗

) 1
2µ−1

))
with 0 < ε∗∗ < ε∗ from

Lemma 10, and then we fix η ∈ (0, ηε) with ηε > 0 given in Lemma 7 such that the curve Γp with τp = 0
intersects {−η + i ` | ` ∈ [−π, π]} inside the open ball Bε(0). As a consequence, we can apply estimates
from Lemma 8, Lemma 9 and Lemma 11 with this specific choice of ε and η, which gives the proof since
purely exponentially decaying in n bounds obtained in Lemma 8 and Lemma 9 can be subsumed into
generalized Gaussian estimates.

3.2 The implicit case with K = 1

The main difference compared with the explicit case is that now it is no longer true that G n
j vanishes for

j > n r or j < −p n. Nevertheless we observe that the results of Lemma 8, Lemma 9 and Lemma 11 still
hold true. Actually, the proofs of Lemma 8, Lemma 9 and Lemma 11 naturally extend to −nL ≤ j ≤ 0
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(Lemma 8), 1 ≤ j ≤ n δ (Lemma 9, unchanged) and n δ ≤ j ≤ nL (Lemma 11) for any large constant
L ≥ max(p, r) that is fixed a priori. As a consequence, one only needs to consider the case n ≥ 1 and
|j| > nL for some large constant L > 0 to be determined. To obtain the desired estimate in that case, we
use the bound at infinity obtained in Lemma 5. More precisely, there exists R ≥ π/2 and two constants
C > 0, c > 0 such that there holds

∀ τ ∈ {ζ ∈ C | Re(ζ) ≥ logR} , ∀ j ∈ Z ,
∣∣Gj(τ)

∣∣ ≤ C exp
(
− c |j|

)
. (37)

We then have the following result.

Lemma 12. Let L ≥ max(p, r) > 0 be large enough such that L > 2 logR/ c with R and c as in (37).
Then, there exists C > 0, such that for n ≥ 1 and |j| > nL, we have

∣∣G n
j

∣∣ ≤ C exp

(
−n cL

4
− c

2
|j|
)
.

Proof. In (29), we now use the contour Γ =
{
c |j|
2n + i ` | ` ∈ [−π, π]

}
. With our choice of L, we have that

for all τ ∈ Γ, Re(τ) = c |j|
2n ≥

cL
2 > logR and so∣∣∣∣ 1

2 iπ

∫
Γ

en τ Gj(τ) dτ

∣∣∣∣ ≤ C e−
c
2
|j| .

Finally, we notice that

− c

2
|j| ≤ −n cL

4
− c

4
|j| , for |j| > nL .

This completes the proof of the lemma.

The proof of Theorem 1 in the implicit case (for K = 1) then follows from the combination of the slight
extensions of Lemma 8, Lemma 9 and Lemma 11 (once the large constant L is fixed as in Lemma 12).

3.3 The explicit and implicit cases with K > 1

We now briefly explain how to handle the general case with K > 1 and refer to Figures 4-5 for illustrations.
From Assumption 2, we have the existence of K tangency points κk with associated nonzero real numbers
αk. We will distinguish two cases:

A. All αk are distinct from one and another.

B. There exist two or more αk which are equal.

We only discuss the explicit case here, as the implicit case does not distinguish between Cases A and

B. First, we let be τk = i θk := log(zk) for θk ∈ [−π, π] and θ̃k ∈] − π, π] be such that κk = ei θ̃k for
each k = 1, · · · ,K. In order to proceed, we need the following lemma which is a direct consequence of
Corollary 1 and whose proof is identical to Lemma 7.

Lemma 13. There exist some ε∗ > 0 and two constants 0 < β∗ < Re(βk) < β∗ for k = 1, · · · ,K such
that for each ε ∈ (0, ε∗) there exist some width ηε > 0 together with two constants, still denoted C > 0,
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c > 0, such that, for any integer j ∈ Z, the component Gj(τ) extends holomorphically on each Bε(τk)
with bounds:

∀ τ ∈ Bε(τk) , ∀ j ∈ Z ,
∣∣Gj(τ)

∣∣ ≤ {C exp
(
− c |j|

)
, if j ≤ 0,

C exp
(
j Re($k(τ))

)
, if j ≥ 1,

(Case I)

or

∀ τ ∈ Bε(τk) , ∀ j ∈ Z ,
∣∣Gj(τ)

∣∣ ≤ {C exp
(
j Re($k(τ))

)
, if j ≤ 0,

C exp
(
− c |j|

)
, if j ≥ 1,

(Case II)

or

∀ τ ∈ Bε(τk) , ∀ j ∈ Z ,
∣∣Gj(τ)

∣∣ ≤ {C exp
(
j Re($νk,1(τ))

)
, if j ≤ 0,

C exp
(
j Re($νk,2(τ))

)
, if j ≥ 1,

(Case III)

where each $k is holomorphic on Bε(τk) and has the Taylor expansion:

$k(τ) = i θ̃k −
1

αk
(τ − τk) + (−1)µk+1 βk

α2µk+1
k

(τ − τk)2µk + O
(
|τ − τk|2µk+1

)
, ∀ τ ∈ Bε(τk) ,

together with

Re($k(τ)) ≤ − Re(τ)

αk
+

β∗

α2µk+1
k

Re(τ)2µk − β∗

α2µk+1
k

(Im(τ)− θk)2µk , ∀ τ ∈ Bε(τk) . (38)

Furthermore, we have

∀ τ ∈ Ωε := {− ηε < Re(τ) ≤ π } \
K⋃
k=1

Bε(τk) , ∀ j ∈ Z ,
∣∣Gj(τ)

∣∣ ≤ C exp
(
− c |j|

)
.

Case A. This is precisely the case depicted in Figure 4 with K = 3. Without loss of generality we label
the αk by increasing order such that

−p < α1 < · · · < αk < · · · < αK < r.

For each k = 1, · · · ,K we define two real numbers δk < δk such that we have the ordering

−p < δ1 < α1 < δ1 < · · · < δk < αk < δk < · · · < δK < αK < δK < r ,

with sgn(δk) = sgn(δk) = sgn(αk). For each k = 1, · · · ,K, we define the following sectors in the (j, n)-
plane:

Dk :=
{

(j, n) ∈ Z× N∗ | n δk ≤ j ≤ n δk
}
,

together with

D∗ := {(j, n) ∈ Z× N∗ | − n p ≤ j ≤ n r} \
K⋃
k=1

Dk .

Our first lemma pertains at obtaining exponential bounds in the region D∗. We introduce two quantities

Λ∗1 := min
k=1,··· ,K

(
α2µk
k

2β∗

) 1
2µk−1

> 0 , and Λ∗2 := min
k=1,··· ,K

(
(δk − αk)α2µk

k

2 r β∗

) 1
2µk−1

> 0 .
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Figure 5: Left: typical contour used when (j, n) ∈ D3 in the case depicted in Figure 4 where all αk
are distinct α1 < α2 < α3 (case A). Middle: typical contour used when (j, n) ∈ D2 = D3 in the case
α1 < α2 = α3 (case B). Right: typical contour used when (j, n) ∈ D1 = D2 = D3 in the case α1 = α2 = α3

(case B). Here K = 3.

Lemma 14. For each ε ∈ (0,min(ε∗,Λ
∗
1,Λ

∗
2)), there exist C > 0 and δ > 0 such that for each (j, n) ∈ D∗

the following estimate holds: ∣∣G n
j

∣∣ ≤ C e−n δ .

Proof. We only sketch the proof as it is almost identical to the proofs of Lemma 8 and Lemma 9. Let
ε ∈ (0,min(ε∗,Λ

∗
1,Λ

∗
2)) and consider η ∈ (0, ηε). We select the contour Γ = {−η + i ` | ` ∈ [−π, π]} and

we denote by Γink the portion of Γ which lie within Bε(τk) and Γout the union of the remaining portions.
As a consequence, we have Γ = Γin1 ∪ · · · ∪ ΓinK ∪ Γout, and we get∣∣∣∣ 1

2 iπ

∫
Γ

en τ Gj(τ) dτ

∣∣∣∣ ≤ K∑
k=1

∣∣∣∣∣ 1

2 iπ

∫
Γink

en τ Gj(τ) dτ

∣∣∣∣∣+

∣∣∣∣ 1

2 iπ

∫
Γout

en τ Gj(τ) dτ

∣∣∣∣ .
Our objective is to bound each above term separately. Along Γout, we get an estimate of the form∣∣∣∣ 1

2 iπ

∫
Γout

en τ Gj(τ) dτ

∣∣∣∣ ≤ C e−n η− c |j| , ∀ (j, n) ∈ D∗ ,

as along Γout the Green’s function Gj(τ) enjoys the pointwise exponential bound from Lemma 13.
We now derive pointwise bound for each contour integral along Γink , k = 1, · · · ,K. We first handle

the case where Ik = {k}, and assume without loss of generality that αk > 0. Then Case I of Lemma 13
reads

∀ τ ∈ Bε(τk) , ∀ j ∈ Z ,
∣∣Gj(τ)

∣∣ ≤ {C exp
(
− c |j|

)
, if j ≤ 0,

C exp
(
j Re($k(τ))

)
, if j ≥ 1,

(39)

with

Re($k(τ)) ≤ − Re(τ)

αk
+

β∗

α2µk+1
k

Re(τ)2µk − β∗

α2µk+1
k

(Im(τ)− θk)2µk , ∀ τ ∈ Bε(τk) .
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If (j, n) ∈ D∗ is such that j ≤ 0, then we directly get∣∣∣∣∣ 1

2 iπ

∫
Γink

en τ Gj(τ) dτ

∣∣∣∣∣ ≤ C e−n η− c |j| .

From now on, we therefore consider (j, n) ∈ D∗ with j ≥ 1. As in the proof of Lemma 9, we use the above
estimate (38) to get that

Re($k(τ)) ≤ η

αk
+

β∗

α2µk+1
k

η2µk

for each τ ∈ Γink ⊂ Bε(τk). As a consequence, for all (j, n) ∈ D∗ with 1 ≤ j ≤ n δk, we have

−n η + j Re($k(τ)) ≤ n η

(
−1 +

j

nαk
+

j

n

β∗

α2µk+1
k

η2µk−1

)

≤ −n η

1− δk
αk︸ ︷︷ ︸

>0

− β∗

α2µk
k

η2µk−1


≤ − n η

2

(
1− δk

αk

)
,

since η is chosen such that 0 < η < ηε < ε < Λ∗1. And we have obtained the estimate∣∣∣∣∣ 1

2 iπ

∫
Γink

en τ Gj(τ) dτ

∣∣∣∣∣ ≤ C exp

(
− n η

2

(
1− δk

αk

))
.

For the remaining cases (j, n) ∈ D∗ and n δk ≤ j ≤ n r, we use a different contour near the ball Bε(τk).
We refer to Figure 6 for an illustration. We introduce the contour

Γkεk :=

{
Re(τ)− β∗

α2µk
k

Re(τ)2µk +
β∗

α2µk
k

(Im(τ)− θk)2µk = Ψk (εk) | − η ≤ Re(τ) ≤ εk

}
,

with Ψk (εk) := εk− β∗

α
2µk
k

ε2µkk and where 0 < εk < ε is chosen such that Γkεk intersects Γink precisely on the

boundary of Bε(τk). We note that there exists some constant ck > 0 such that for any τ ∈ Γkεk ⊂ Bε(τk),
one has

Re(τ) ≤ εk − ck (Im(τ)− θk)2µk ,

which yields

nRe(τ) + j Re($k(τ)) ≤ nRe(τ) + j

(
− Re(τ)

αk
+

β∗

α2µk+1
k

Re(τ)2µk − β∗

α2µk+1
k

(Im(τ)− θk)2µk

)
= nRe(τ) − j

αk
Ψ(εk)

≤ −n ck (Im(τ)− θk)2µk +
n εk
αk

(
αk −

j

n
+

j

n

β∗

α2µk
k

ε2µk−1
k

)

≤ − n εk
αk

δk − αk︸ ︷︷ ︸
>0

− r β∗

α2µk
k

ε2µk−1
k


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Figure 6: Illustration of the contour Γkεk used in the proof of Lemma 14 and Lemma 15.

for each τ ∈ Γkεk . Now, since δk − αk > 0 and 0 < εk < ε < Λ∗2, we have∣∣∣∣∣ 1

2 iπ

∫
Γink

en τ Gj(τ) dτ

∣∣∣∣∣ ≤ C exp

(
−n εk (δk − αk)

2αk

)
,

which gives the desired estimate in the region (j, n) ∈ D∗ and n δk ≤ j ≤ n r.
Let finally comment on the case where Ik = {νk,1, νk,2} with ανk,1 < 0 < ανk,2 . This time, Lemma 13

gives

∀ τ ∈ Bε(τk) , ∀ j ∈ Z ,
∣∣Gj(τ)

∣∣ ≤ {C exp
(
j Re($νk,1(τ))

)
, if j ≤ 0,

C exp
(
j Re($νk,2(τ))

)
, if j ≥ 1.

The analysis for (j, n) ∈ D∗ and j ≥ 1 is unchanged, and we apply the same strategy for (j, n) ∈ D∗ and
j ≤ 0 without any difficulty. As a conclusion, we have obtained that there exist C > 0 and δ > 0 such
that for each k = 1, · · · ,K we have∣∣∣∣∣ 1

2 iπ

∫
Γink

en τ Gj(τ) dτ

∣∣∣∣∣ ≤ C e−n δ , ∀(j, n) ∈ D∗ ,

which ends the proof.

We prove in the next Lemma that we obtain generalized Gaussian estimates in each sector Dk, k =
1, · · · ,K.
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Lemma 15. There exists ε̂∗ ∈ (0, ε∗) such that for each ε ∈ (0, ε̂∗) there are constants C > 0 and c > 0
such that for any k = 1, · · · ,K and (j, n) ∈ Dk, the following estimate holds:

∣∣G n
j

∣∣ ≤ C

n
1

2µk

exp

− c ( |j − αk n|

n
1

2µk

) 2µk
2µk−1

 .

Proof. Let (j, n) ∈ Dk, that is n ≥ 1 and n δk ≤ j ≤ n δk. Assume without loss of generality that αk > 0.
We first consider the case where Ik = {k}. Once again, we introduce a family of parametrized curves Γkp
given by

Γkp :=

{
Re(τ)− β∗

α2µk
k

Re(τ)2µk +
β∗

α2µk
k

(Im(τ)− θk)2µk = Ψk (τp,k) | − η ≤ Re(τ) ≤ τp,k

}

with Ψk (τp,k) = τp,k − β∗

α
2µk
k

τ2µk
p,k and η > 0, τp,k > −η are chosen as follows. For each ε ∈ (0, ε∗) we fix

η ∈ (0, ηε) such that the curve Γkp with τp,k = 0 intersects the ray {−η + i ` | ` ∈ [−π, π]} inside the ball

Bε(τk). Furthermore, we let 0 < ε0,k < ε be defined as the value of τp,k for which Γkp with τp,k = ε0,k
intersects the ray {−η + i ` | ` ∈ [−π, π]} on ∂Bε(τk) with η fixed previously. Finally, τp,k is now defined
as

τp,k :=



ρk

(
ζk
γk

)
if − η

2
≤ ρk

(
ζk
γk

)
≤ ε0,k ,

ε0,k if ρk

(
ζk
γk

)
> ε0,k ,

−η
2

if ρk

(
ζk
γk

)
< −η

2
,

where ζk, γk and the function ρk are set to

ζk :=
j − nαk

2µk n
, and γk :=

j

n

β∗

α2µk
k

> 0 ,

with ρk

(
ζk
γk

)
given by

ρk

(
ζk
γk

)
:= sgn

(
ζk
γk

) (
|ζk|
γk

) 1
2µk−1

.

In our estimate, we use a contour Γk which consists of Γkp in Bε(τk) and the ray {−η + i ` | ` ∈ [−π, π]}
otherwise (see Figure 5, left panel for an illustration in the case K = 3). Depending on the ratio ζk

γk
,

there exists (or not) a portion of the ray {−η + i ` | ` ∈ [−π, π]} within the ball Bε(τk) that we denote

Γink . Note that when ρk

(
ζk
γk

)
> ε0,k we have Γink = ∅. The analysis along Γkp ∪ Γink is exactly the same as

the one conducted in the proof of Lemma 11 and we get that there exists ε∗∗ ∈ (0, ε∗) such that for all
ε ∈ (0, ε∗∗) one has∣∣∣∣∣ 1

2 iπ

∫
Γkp∪Γink

en τ Gj(τ) dτ

∣∣∣∣∣ ≤ C

n
1

2µk

exp

−c ( |j − αk n|

n
1

2µk

) 2µk
2µk−1

 , (j, n) ∈ Dk .
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The fact that one needs to eventually decrease the size of ε comes from Lemma 10 which is needed to
obtain the generalized Gaussian bound and prove that∫

Γkp

e−nc
∗
k(Im(τ)−θk)2µk |dτ | ≤ C

n
1

2µk

.

Along the ray {−η + i ` | ` ∈ [−π, π]}, we denote by Γout all portions that lie outside the balls Bε(τυ) with
υ 6= k, and we get ∣∣∣∣ 1

2 iπ

∫
Γout

en τ Gj(τ) dτ

∣∣∣∣ ≤ e−n η− c |j| , (j, n) ∈ Dk .

Thus, it only remains to estimate the contour integral along the ray {−η + i ` | ` ∈ [−π, π]} within a ball
Bε(τυ) with υ 6= k, that we denote Γinυ . Let assume first that Iυ = {υ}. We split the analysis in two
cases.

(i) If αυ < 0, then we have the estimate

|Gj(τ) | ≤ C e− c j , τ ∈ Γinυ ,

as 0 < nδk ≤ j ≤ n δk, and we obtain∣∣∣∣∣ 1

2 iπ

∫
Γinυ

en τ Gj(τ) dτ

∣∣∣∣∣ ≤ C e−n η− c j , (j, n) ∈ Dk .

(ii) If αυ > 0, then we have the following estimates for each τ ∈ Γinυ ⊂ Bε(τυ)

|Gj(τ) | ≤ C e j Re($υ(τ)) , τ ∈ Γinυ ,

and

Re($υ(τ)) ≤ − Re(τ)

αυ
+

β∗

α2µυ+1
υ

Re(τ)2µυ − β∗

α2µυ+1
υ

(Im(τ)− θυ)2µυ .

As a consequence, we readily obtain that

−n η + j Re($υ(τ)) ≤ n η
(
− 1 +

j

nαυ
+

j

n

β∗

α2µυ+1
υ

η2µυ−1

)
.

Thus if αυ > αk, we get that

−n η + j Re($υ(τ)) ≤ −n η

1 − δk
αυ︸ ︷︷ ︸

>0

− δk β
∗

α2µυ+1
υ

η2µυ−1

 ≤ − n η

2

(
1 − δk

αυ

)
,

provided that η is chosen small enough, which is always possible by eventually reducing the size of
ε∗∗. This gives ∣∣∣∣∣ 1

2 iπ

∫
Γinυ

en τ Gj(τ) dτ

∣∣∣∣∣ ≤ C e
−n η

2

(
1− δk

αυ

)
.
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Finally, if αυ < αk we use a different contour inside the ball Bε(τυ). Namely, we use the contour

Γυευ :=

{
Re(τ)− β∗

α2µυ
υ

Re(τ)2µυ +
β∗

α2µυ
υ

(Im(τ)− θυ)2µυ = Ψυ (ευ) | − η ≤ Re(τ) ≤ ευ
}
,

with Ψυ (ευ) := ευ − β∗

α2µυ
υ

ε2µυυ and where 0 < ευ < ε is chosen such that Γυευ intersects the segment

Γinυ precisely on the boundary of Bε(τυ). We note that there exists some constant cυ > 0 such that
for any τ ∈ Γυευ ⊂ Bε(τυ), one has

Re(τ) ≤ ευ − cυ (Im(τ)− θυ)2µυ ,

which yields

nRe(τ) + j Re($υ(τ)) ≤ −n cυ (Im(τ)− θυ)2µυ − n ευ
αυ

(
δk − αυ − δk

β∗

α2µυ
υ

ε2µυ−1
υ

)
,

for each τ ∈ Γυευ . Now, since δk − αυ > αk − αυ > 0 and 0 < ευ < ε, we can always further reduce
the size of ε∗∗ such that∣∣∣∣∣ 1

2 iπ

∫
Γinυ

en τ Gj(τ) dτ

∣∣∣∣∣ ≤ C

n
1

2µυ

exp

(
−n ευ (δk − αυ)

2αυ

)
,

which gives the desired estimate.

If now Iυ = {νυ,1, νυ,2}, then we have ανυ,1 < 0 < ανυ,2 and for 0 < nδk ≤ j ≤ n δk, we get

|Gj(τ) | ≤ C exp
(
j Re

(
$νυ,2(τ)

) )
, τ ∈ Γinν ,

such that the analysis is similar to the above case (ii). Finally, when Ik = {νk,1, νk,2}, we necessarily
have that ανk,1 < 0 < ανk,2 = αk and the analysis remains unchanged. As there exists some ε̂∗ ∈ (0, ε∗∗)
such that for all ε ∈ (0, ε̂∗) we have proved the desired generalized Gaussian bound.

Case B. In that case, two or more αk are equal. Note that for (j, n) ∈ D∗ the analysis remains
unchanged and Lemma 14 still holds true in that case. Let us assume for simplicity that αν1 = αν2 for
some couple of integers ν1 6= ν2, and all other αk’s are distinct. The estimate from Lemma 15 is still
valid for (j, n) ∈ Dk for each k 6∈ {ν1, ν2}. For (j, n) ∈ Dν1 = Dν2 , in the ball Bε(τν1) we use the contour
Γν1p and in the ball Bε(τν2) we use the contour Γν2p . And we refer to Figure 5 for an illustration of such
contours. Reproducing the analysis of Lemma 15, we obtain the existence of C > 0 and c > 0 such that
for (j, n) ∈ Dν1 = Dν2 the following estimate holds:

∣∣G n
j

∣∣ ≤ C
∑

ν∈{ν1,ν2}

1

n
1

2µν

exp

(
− c

(
|j − αν n|

n
1

2µν

) 2µν
2µν−1

)
.

Finally, we remark that Lemma 12 naturally extends to the case K > 1 in the implicit setting. This
concludes the proof of Theorem 1.
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4 Examples and extensions

We first give several examples of operators (2) that fit into the framework of Theorem 1, and that arise
when discretizing the transport equation:

∂tu + ∂xu = 0 , (t, x) ∈ R+ × R , (40)

with Cauchy data at t = 0. We refer to [GKO95, Gus08] for a detailed analysis and more examples of
finite difference schemes in that context.

4.1 Example 1: the Lax-Friedrichs scheme

The Lax-Friedrichs scheme is an explicit finite difference approximation of (40), which corresponds to the
operators:

Q1 := I , Q0 :=
1 + λ

2
S−1 +

1 − λ

2
S , (41)

where here and below, λ is a real parameter11 and S still denotes the shift operator defined by:

S :
(
uj
)
j∈Z 7−→

(
uj+1

)
j∈Z .

We now restrict to λ ∈ (0, 1) so that both coefficients in the definition (41) are positive and they sum
to 1. In probability theory, this corresponds to a random walk with probability (1 + λ)/2 to jump of +1
and probability (1− λ)/2 to jump of −1 at each time iteration (recall our convention on the coefficients
a` which differs from the standard convolution product).

In the notation of (2), we have r = p = 1. Since we are dealing here with an explicit scheme,
Assumptions 1 and 4 are trivially satisfied. The definition (6) reduces here to:

F
(

e i ξ
)

= cos(ξ) − iλ sin(ξ) .

Computing: ∣∣∣F ( e i ξ
) ∣∣∣2 = cos2(ξ) + λ2 sin2(ξ) ,

we find that F (κ) belongs to D for all κ ∈ S1, and F (κ) belongs to S1 for such κ if and only if κ = ±1.
We thus have (7) with κ1 := 1 and κ2 := −1, and the reader can check that (8) is satisfied with:

α1 = α2 = λ , β1 = β2 =
1 − λ2

2
, µ1 = µ2 = 1 ,

which means that Assumption 2 is satisfied. Since the modulus of F (κ) attains its maximum at two points
of S1, we cannot apply the uniform Gaussian bound from [DSC14]. The improvements of Theorem 1 and
[RSC17, Theorem 1.8] are relevant in that case. Note that [RSC17, Theorem 1.8] can be used for the
Lax-Friedrichs scheme (41) since we are in the case where α1 = α2, β1 = β2 and µ1 = µ2. The spectral
curve F (S1) (an ellipse) is illustrated in Figure 7 in the case λ = 1/2.

We now turn to Assumption 3 and compute (see the general definition (9)):

A−1(z) = − 1 + λ

2
, A1(z) = − 1 − λ

2
.

11In the theory of finite difference schemes, it is referred to as the Courant-Friedrichs-Lewy parameter [CFL28].
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Figure 7: Left: Spectrum (blue curve) σ(L ) = F (S1) for the Lax-Friedrichs scheme (41) with λ = 1/2.
Right: The Green’s function (marked points) at different time iterations for the Lax-Friedrichs scheme
(41) compared with a fixed Gaussian profile centered at j = λn (solid lines). We started with an initial
condition given by the Dirac mass δ.

Hence Assumption 3 is satisfied too.
At last, Assumption 5 is satisfied since we have here K = 2, z1 = 1 and z2 = −1 6= z1, which

means that both sets I1 and I2 in (11) are singletons. Overall, the conclusion of Theorem 1 for the
Lax-Friedrichs scheme in (41) is the uniform bound12:

G n
j ≤

C√
n

exp

(
− c (j − λn)2

n

)
.

This behavior is illustrated in Figure 7 in the case λ = 1/2.
For readers who are familiar with the theory of the transport equation (see [GKO95] otherwise), the

parameter λ stands for the ratio ∆t/∆x of the time and space steps. Hence the bound of Theorem 1
equivalently reads (with new constants that are still denoted C and c):

G n
j ≤

C√
n

exp

(
− c (j∆x− n∆t)2

∆x (n∆t)

)
,

which corresponds to the heat kernel at point j∆x, time n∆t with a diffusion coefficient proportional to
∆x.

4.2 Example 2: an implicit scheme

Our second example is based on the so-called method of lines for discretizing (40) (see [GKO95, Gus08]
for a detailed exposition of the method and its outcome). Here we first apply the centered finite difference
for the spatial derivative and we then apply the implicit Euler scheme for the time integration. As in the

12We do not use the absolute value here since all coefficients G n
j are nonnegative.
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case of the Lax-Friedrichs scheme (41), we introduce a positive parameter λ > 0 (which plays the role of
the ratio ∆t/∆x but its origin is meaningless here), and we use the operators:

Q1 := I +
λ

2

(
S − S−1

)
, Q0 := I . (42)

In the notation of (2), this corresponds again to r = p = 1, but the scheme is now implicit because Q1 is
not the identity. We compute:

Q̂1

(
e i ξ
)

= 1 + iλ sin(ξ) 6= 0 ,

which means that Q1 is an isomorphism on `2(Z;C). The index condition (5) is also satisfied since the
complex number Q̂1(κ) has positive real part for all κ ∈ S1 so we can write:

Q̂1(κ) = exp q(κ) ,

thanks to the standard determination of the logarithm (which implies the validity of (5)). The operator
L is given by:

L =
1√

1 + λ2

∑
`≥0

x` S−` +
∑
`≥1

(−1)` x` S`

 ,

where x ∈ (0, 1) is given by:

x :=

√
1 + λ2 − 1

λ
.

We are thus dealing with a convolution operator with infinite support.
We compute:

F
(

e i ξ
)

=
1

1 + iλ sin(ξ)
,

which means that F (κ) belongs to D for all κ ∈ S1 and, again, F (κ) belongs to S1 if and only if κ = ±1
(K = 2 in the notation of Assumption 2). Setting κ1 = 1 and κ2 = −1, we find that the relation (8) is
satisfied with:

α1 = λ , β1 = β2 =
λ2

2
, α2 = −λ .

Assumption 2 is thus satisfied but we now have z1 = z2 = 1, and we immediately see that Assumption
5 is also satisfied: both sets I1 and I2 equal {1, 2} and α1 α2 = −λ2 < 0. The spectral curve F (S1) is
illustrated in Figure 8 in the case λ = 1/2.

As far as Assumption 3 is concerned, we compute:

A−1(z) = − λ
2
z , A1(z) =

λ

2
z ,

so Assumption 3 is satisfied again. We also note that Assumption 4 is satisfied since we have a−1,1 = −λ/2
and a1,1 = λ/2. We can therefore apply Theorem 1 which, in the case of (42), yields the uniform Gaussian
bound: ∣∣G n

j

∣∣ ≤ C√
n

(
exp

(
− c (j + λn)2

n

)
+ exp

(
− c (j − λn)2

n

))
, | j | ≤ Ln .

This behavior is illustrated in Figure 8 in the case λ = 1/2. Since we have an explicit formula for G 1
j , it

is clear that the bound: ∣∣G 1
j

∣∣ ≤ C exp(− c | j |) ,
for large j’s cannot be improved to some generalized Gaussian bound. This justifies why we need to
distinguish the cases |j|/n� 1 and |j|/n = O(1) in (13).
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Figure 8: Left: Spectrum (blue curve) σ(L ) = F (S1) for the implicit scheme (42) with λ = 1/2. Right:
The absolute value of the Green’s function (marked points) at different time iterations for the implicit
scheme (42) compared with two fixed Gaussian profiles centered at j = λn and j = −λn (solid lines).
We started with an initial condition given by the Dirac mass δ.

4.3 Example 3: the O3 scheme

Next, as a third example, we consider the O3 scheme [Des08, Des09] which is an explicit scheme of
order 3 obtained as the convex combination of the Lax-Wendroff scheme [LW62] and the Beam-Warming
scheme [WB81]. The Lax-Wendroff scheme is an explicit finite approximation of (40) corresponding to
the operators:

QLW1 := I, QLW0 := (1− λ2)I +
λ+ λ2

2
S−1 +

−λ+ λ2

2
S ,

for some λ ∈ (0, 1). On the other hand, the Beam-Warming scheme is an explicit scheme given by

QBW1 := I, QBW0 :=

(
1− 3

2
λ+

1

2
λ2

)
I +

(
2λ− λ2

)
S−1 +

−λ+ λ2

2
S−2 ,

for some λ ∈ (0, 1). In both cases, λ stands for the ratio ∆t/∆x. The O3 scheme is then defined as the
following convex combination of the above two schemes

QO3
1 := I, QO3

0 := (1− δ)QLW0 + δQBW0 , with δ =
1 + λ

3
. (43)

The expression for QO3
0 can be simplified and we have

QO3
0 =

(2− λ)(1− λ2)

2
I +

λ(2− λ)(1 + λ)

2
S−1 − λ(1− λ2)

6
S−2 +

λ(2− λ)(λ− 1)

6
S.

In the notation of (2), this corresponds to r = 2 and p = 1. Once again, since we are dealing here with
an explicit scheme, Assumptions 1 and 4 are trivially satisfied. The definition (6) gives in that case

FO3
(

e i ξ
)

= (1− δ)FLW
(

e i ξ
)

+ δFBW
(

e i ξ
)
,
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Figure 9: Left: Spectrum (blue curve) σ(L ) = F (S1) for the O3 scheme (43) with λ = 1/2. Right: The
absolute value of the Green’s function (marked points) at different time iterations for the O3 scheme (43)
compared with a fixed generalized Gaussian profile H n

j (44) centered at j = λn (solide lines). We started
with an initial condition given by the Dirac mass δ.

with
FLW

(
e i ξ
)

= 1− λ2 + λ2 cos(ξ)− iλ sin(ξ),

and

FBW
(

e i ξ
)

= 1− 3

2
λ+

1

2
λ2 +

(
2λ− λ2

)
e− i ξ +

−λ+ λ2

2
e− i 2 ξ.

And after some computations, we get∣∣∣FLW ( e i ξ
)∣∣∣2 = 1− 4λ2(1− λ2) sin4

(
ξ

2

)
,∣∣∣FBW ( e i ξ

)∣∣∣2 = 1− 4λ(2− λ)(1− λ)2 sin4

(
ξ

2

)
,

from which we deduce by convexity that FO3(κ) belongs to D for all κ ∈ S1. In fact, further computations
lead to ∣∣∣FO3

(
e i ξ
)∣∣∣2 = 1− 4

9
λ(2− λ)(1− λ2) sin4

(
ξ

2

)(
3 + 4λ(1− λ) sin2

(
ξ

2

))
,

such that FO3(κ) belongs to S1 only when κ = 1, that is K = 1 in the notation of Assumption 3 with
κ1 = 1. We find that the relation (8) is satisfied with:

α1 = λ , β1 =
λ(2− λ)(1− λ2)

24
, µ1 = 2,

and that β1 > 0 for λ ∈ (0, 1). Furthermore, note that Assumption 5 is trivially satisfied since I1 = {z1}
with z1 = 1. The spectral curve FO3(S1) is illustrated in Figure 9 in the case λ = 1/2.

Next, we have that

A−2(z) =
λ(1− λ2)

6
, and A1(z) =

λ(2− λ)(1− λ)

6
,
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Figure 10: Illustration of the scaling factor in the generalized Gaussian bounds provided by Theorem 1 in

the case of the O3 scheme (blue circles) and the∞ scheme (orange squares). We plot log10

(
supj∈Z

∣∣G n
j

∣∣)
as a function of log10(n) together with a best linear fit for each scheme for n ranging from 1 to 103. For
the O3 scheme we find a slope of −0.2496 while for the ∞ scheme we find a slope of −0.4983 which
compare well with the theoretical −1/4 and −1/2 scaling factors.

such that Assumption 3 also holds true for each λ ∈ (0, 1). We can therefore apply Theorem 1 which, in
the case of (43), yields the uniform generalized Gaussian bound:

∣∣G n
j

∣∣ ≤ C

n
1
4

exp

(
− c |j − λn|

4
3

n
1
3

)
, n ≥ 1 , j ∈ Z .

This behavior is illustrated in Figure 9 in the case λ = 1/2 where we compare the Green’s function G n
j

to the generalized Gaussian profile H n
j defined as

H n
j :=

C

n
1
4

exp

(
− c |j − λn|

4
3

n
1
3

)
, n ≥ 1 , j ∈ Z , (44)

with two fixed constants C > 0 and c > 0 independent of j and n which we have set to C = 0.8 and
c = 1.1765 respectively. Note that the scaling factor n−

1
4 in the generalized Gaussian bound is further

demonstrated in Figure 10 where we represent supj∈Z
∣∣G n

j

∣∣ in logarithmic scale. Using a best linear fit,
we numerically obtain a slope of −0.2496 which is in good agreement with the theory.

4.4 Example 4: the ∞ scheme

We complete our series of examples with a last explicit scheme, which we shall call the ∞ scheme in
reference to the spectral curve associated with it (see Figure 11 for an illustration). The ∞ scheme
corresponds to the operators:

Q∞1 := I, Q∞0 :=
1

16
S−3 +

1

4
S−2 +

7

16
S−1 +

7

16
S− 1

4
S2 +

1

16
S3 , (45)
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such that we have r = p = 3 in that case. The definition (6) reduces here to:

F∞
(

e i ξ
)

=
7

8
cos(ξ) +

1

8
cos(3 ξ) − i

2
sin(2 ξ) .

Computing: ∣∣∣F ( e i ξ
) ∣∣∣2 = 1− sin2(ξ)

(
1− sin2(2ξ)

16

)
,

we find that F (κ) belongs to D for all κ ∈ S1, and F (κ) belongs to S1 for such κ if and only if κ = ±1.
We thus have (7) with κ1 = 1 and κ2 = −1, and the reader can check that (8) is satisfied with:

α1 = 1 , α2 = −1 , β1 = β2 :=
1

2
, µ1 = µ2 = 1 ,

which means that Assumption 2 is satisfied. As a consequence, we also have z1 = z2 = 1, and we
immediately see that Assumption 5 is also satisfied: both sets I1 and I2 equal {1, 2} and α1 α2 = −1 < 0.
This is entirely similar to the behavior of the implicit scheme (42) except that (45) corresponds to a finitely
supported convolution operator. The spectral curve F (S1) is illustrated in Figure 11. Since the modulus
of F (κ) attains its maximum at two points of S1 and that α1 6= α2, we cannot apply the uniform Gaussian
bound from [DSC14] or [RSC17]. The improvement of Theorem 1 is thus meaningful here.

As far as Assumption 3 is concerned, we compute:

A−3(z) = − 1

16
, A3(z) = − 1

16
,

so Assumption 3 is satisfied again. We also note that Assumptions 1 and 4 are satisfied since the ∞
scheme is explicit. We can therefore apply Theorem 1 which, in the case of (45), yields the uniform
Gaussian bound:∣∣G n

j

∣∣ ≤ C√
n

(
exp

(
− c (j + n)2

n

)
+ exp

(
− c (j − n)2

n

))
n ≥ 1 j ∈ Z .

This behavior is illustrated in Figure 11. Note that the scaling factor n−
1
2 in the Gaussian bound is

further demonstrated in Figure 10 where we represent supj∈Z
∣∣G n

j

∣∣ in logarithmic scale. Using a best
linear fit, we numerically obtain a slope of −0.4983 which is in good agreement with the theory.

4.5 Extending Theorem 1 to the case where some αk can be zero

In the explicit case, it is possible to extend Theorem 1 to the case where some αk can be zero. The idea
is to shift the operator L = Q0 such that for some integer J ∈ Z the shifted operator L̃ := SJQ0 verifies
the assumptions of Theorem 1 for which we obtain a generalized Gaussian estimate which is necessarily
of the form

∀n ∈ N∗ , ∀ j ∈ Z ,
∣∣ (L̃ n δ

)
j

∣∣ ≤ C

K∑
k=1

1

n1/(2µk)
exp

− c ( |j − (αk + J)n|
n1/(2µk)

) 2µk
2µk−1

 .

But we observe that
∀n ∈ N∗ , ∀ j ∈ Z ,

(
L̃ n δ

)
j

= (L n δ)j−nJ ,

which gives a generalized Gaussian estimate for L n δ. More precisely, we introduce a relaxed version of
Assumption 2 where some αk could vanish.
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Figure 11: Left: Spectrum (blue curve) σ(L ) = F (S1) for the ∞ scheme (45). Right: The absolute
value of the Green’s function (marked points) at different time iterations for the∞ scheme (45) compared
with two fixed Gaussian profiles centered at j = n and j = −n (solid lines). We started with an initial
condition given by the Dirac mass δ.

Assumption 6. The function F defined in (6) satisfies Assumption 2 but possibly with some αk in (8)
that can be zero.

We then have the following corollary.

Corollary 2. Assume that Q1 is the identity, and that Q0 satisfies Assumption 6. If there exists some
J ∈ Z such that SJ Q0 satisfies Assumptions 2, 3 and 5, then there exist two constants C > 0 and c > 0
such that

∀n ∈ N∗ , ∀ j ∈ Z ,
∣∣ (L n δ)j

∣∣ ≤ C

K∑
k=1

1

n1/(2µk)
exp

− c ( |j − αk n|
n1/(2µk)

) 2µk
2µk−1

 .

Typically, when Q1 is the identity and K = 1 with α1 = 0 in Assumption 2, we can always apply
Corollary 2 by choosing J sufficiently large (in that case, we have r = 0 and p > 0 for the shifted operator
SJ Q0, A0(z) = z and Ap(z) is a nonzero constant).

4.6 Further extensions

For the sake of clarity, we have focused here on the case of scalar iterations, but the techniques developed
in this article should apply to some multistep iterations of the form{

Qs+1 u
n+s+1 = Qs u

n+s + · · · + Q0 u
n , n ∈ N ,

u0, . . . , us ∈ `2(Z) ,

where s ∈ N is a given fixed integer and there are now s + 2 convolution operators with finite sup-
port involved. Of course, the statement of the assumptions should be suitably modified (for instance,
Assumption 1 now bears on Qs+1 and not on Q1).
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We have focused here on numerical schemes for which the modulus of the amplification factor F is
not constant on S1 and such that the local behavior of F near a point where its modulus attains its
maximum is dictated as in [Tho65]. We recall that for explicit operators (Q1 = I) of the form (2), the
main result in [Tho65] shows that Assumption 2 is necessary and sufficient for Q0 to be power bounded
from `1(Z;C) to `1(Z;C) (or equivalently from `∞(Z;C) to `∞(Z;C)). A major advantage of the approach
developed in this article is that it gets rid (more or less) of Fourier analysis. In particular, we have used
the above strategy in [CF21] for proving a sharp stability result on a discretized transport equation with
numerical boundary conditions under a degenerate version of the so-called Kreiss-Lopatinskii condition
(see [GKS72, KW93, GKO95] for some background on numerical boundary conditions for hyperbolic
equations). The problem considered in [CF21] is set in `2(N;C) rather than `2(Z;C), which makes many
Fourier based techniques useless. Eventually, the above strategy is used in [Cœu21] to sharpen the local
limit theorem of [RSC15] and prove generalized Gaussian estimates for the remainder in the local limit
theorem of [RSC15].
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A Appendix. Proof of intermediate and related results

A.1 Behavior of the amplification factor on the unit circle

The aim of this subsection is to prove the following result, which generalizes the classification obtained by
Thomée [Tho65, page 280] for trigonometric polynomials. Lemma 16 below shows that this classification
only depends on the holomorphy of the considered function on a neighborhood of the unit circle.

Lemma 16. Let δ > 0 and let f be a holomorphic function on the annulus:{
ζ ∈ C | e− δ < |ζ| < e δ

}
,

that satisfies:
sup
κ∈S1

|f(κ)| = 1 . (46)

Then one of the following is satisfied:

• f(κ) has modulus 1 for any κ ∈ S1,

• there exists a finite set of points {κ1, . . . , κK}, K ≥ 1, in S1 such that f(κk) has modulus 1 for any
k ∈ {1, . . . ,K} and:

∀κ ∈ S1 \
{
κ1, . . . , κK

}
,
∣∣ f(κ)

∣∣ < 1 .

Assumption 2 in our work thus excludes the case where the rational function F in (6) has modulus 1 on
the whole unit circle S1 (an example of such functions are the so-called Blaschke products [Rud87]).
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Proof of Lemma 16. We first consider a point κ ∈ S1 such that f(κ) has modulus 1. Writing:

f
(
κ e ζ

)
= f(κ) exp ( g(ζ) ) ,

for some holomorphic function g on a neighborhood of 0, we can conclude that there exists a power series∑
an x

n with real coefficients and a positive radius of convergence, such that for any sufficiently small
real number ξ, there holds: ∣∣ f(κ e i ξ

) ∣∣ = exp

(
+∞∑
n=0

an ξ
n

)
.

Since f(κ) has modulus 1, we have a0 = 0. Using now the condition (46), we can conclude that either all
the coefficients an, n ∈ N, are zero or there exists a smallest nonzero even integer 2 p such that:

a2 p < 0 and a0 = a1 = · · · = a2 p− 1 = 0 .

In particular, for any ξ in some interval (−α, α) with α > 0, there holds:∣∣ f(κ e i ξ)
∣∣ ≤ 1 − |a2 p|

2
ξ 2 p .

If all the coefficients an are zero, we can conclude that there exists an interval (−α, α) with α > 0, such
that for any ξ ∈ (−α, α), the modulus of f(κ exp(i ξ)) equals 1. We have thus classified the two possible
behaviors of the modulus of f near any point κ ∈ S1 at which the modulus of f attains its maximum.

With this preliminary fact at our disposal, let us now consider the set:

O :=
{
κ ∈ S1 | ∃α > 0 , ∀ ξ ∈ (−α, α) ,

∣∣ f(κ e i ξ
) ∣∣ = 1

}
.

The set O is clearly open and the previous argument on the local behavior of |f | near any point of S1

where it attains its maximum shows that the set O is closed. Since S1 is connected, O is either empty or
equal to S1.

Let us now prove the claim of Lemma 16. The case O = S1 corresponds to the first possibility where
f(κ) has modulus 1 for any κ ∈ S1. We thus assume that the modulus of f is non-constant on S1 and
therefore O is empty. Then any point κ admits an open neighborhood V in S1 such that:

∀κ ∈ V \ {κ} , | f(κ) | < 1 .

The conclusion follows from the compactness of S1.

A.2 The Bernstein type inequality

This subsection is devoted to the proof of Lemma 6. A proof of Lemma 6 is provided in [CF21] in
the particular case where the coefficients a`,0 are real and K = 1, κ1 = 1. We explain below why the
result holds in the broader context of complex valued sequences and an arbitrary number K of tangency
points. The result of Lemma 6 is a variation on the so-called Courant-Friedrichs-Lewy condition for
numerical approximations of hyperbolic equations [CFL28]. This condition, which bears on continuous
and numerical domains of dependence, is known to be related to the von Neumann stability condition and
the Bernstein inequality for trigonometric polynomials, see, for instance, [QZ19] for a proof and historical
comments on the Bernstein inequality. We refer to [Str62b, page 152] for the link between the CFL
condition and the Bernstein inequality.
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Proof of Lemma 6. Since Q1 is the identity, we have F = Q̂0. Given an integer k ∈ {1, . . . ,K}, we
introduce a polynomial function Pk defined by:

∀ z ∈ C , Pk(z) := z r
F (z κk)

F (κk)
=

1∑p
`=−r a`,0 κ

`
k

p∑
`=−r

a`,0 κ
`
k z

`+ r .

Assumption 2 implies that Pk is a non-constant holomorphic function on C and, furthermore, the modulus
of Pk is not larger than 1 on S1. By the maximum principle for holomorphic functions [Rud87, chapter
12], Pk maps D onto D. In particular, there holds:

∀ ε ∈ (0, 1) , |Pk(1− ε)| < 1 ,

and we easily obtain Pk(1) = 1. We now use (8) and compute:

Pk(e
i ξ) = exp

(
i (r − αk) ξ − βk ξ

2µk + O
(
ξ 2µk+1

))
, (47)

from which we get P ′k(1) = r − αk and the asymptotic expansion:

|Pk(1− ε)| = 1− (r − αk) ε + O(ε2) ,

as (the real number) ε tends to zero. Arguing by contradiction, this gives r − αk ≥ 0 since Pk maps D
onto D. We now show that αk can not equal r and argue again by contradiction. Assuming αk = r, (47)
reduces to:

Pk(e
i ξ) = exp

(
−βk ξ 2µk + O

(
ξ 2µk+1

))
,

and we thus obtain13, for real positive values of ε tending to zero:

Pk(e
i ε exp(iπ/(2µk))) = exp

(
βk ε

2µk + O
(
ε 2µk+1

))
.

This leads to a contradiction because exp(i ε exp(iπ/(2µk))) belongs to D for any ε > 0 and βk has
positive real part.

In order to prove the inequality αk > − p, we introduce the complex reciprocal polynomial Qk of Pk
(see, again, [QZ19]):

Qk(z) := z p+ r Pk(1/z) =
1∑p

`=−r a`,0 κk
`

p∑
`=−r

a`,0 κk
` z p− ` .

By the same argument as the one used for Pk, we have Qk(1) = 1 and Qk maps D onto D. We also
compute:

Q′k(1) = p + r − P ′k(1) = p + αk ,

and we therefore have p + αk ≥ 0 because Qk maps D onto D. We now show that αk can not equal − p
and argue again by contradiction. Assuming αk = − p, we use (47) and compute:

Qk(e
i ε exp(iπ/(2µk))) = e i (p+ r) ε exp(iπ/(2µk)) Pk

(
e i ε exp(− iπ/(2µk))

)
= e i (p+ r) ε exp(iπ/(2µk)) exp

(
i (r − αk) ε exp(− iπ/(2µk)) + βk ε 2µk +O

(
ε 2µk+1

))
= exp

(
βk ε

2µk + O
(
ε 2µk+1

))
.

We are again led to a contradiction. The proof of Lemma 6 is thus complete.

13The crucial fact here is that (47) holds for either real or complex values of ξ.
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[QZ19] H. Queffélec and R. Zarouf. On Bernstein’s inequality for polynomials. Anal. Math. Phys.,
9(3):1181–1207, 2019.

[RM67] R. D. Richtmyer and K. W. Morton. Difference methods for initial value problems. Interscience
Publishers John Wiley & Sons, 1967.

[RSC15] E. Randles and L. Saloff-Coste. On the convolution powers of complex functions on Z. J.
Fourier Anal. Appl., 21(4):754–798, 2015.

[RSC17] E. Randles and L. Saloff-Coste. Convolution powers of complex functions on Zd. Rev. Mat.
Iberoam., 33(3):1045–1121, 2017.

[RSN55] F. Riesz and B. Sz.-Nagy. Functional analysis. Frederick Ungar Publishing Co., New York,
1955.

[Rud87] W. Rudin. Real and complex analysis. McGraw-Hill, 1987.

[Str62a] G. Strang. Polynomial approximation of Bernstein type. Trans. Amer. Math. Soc., 105:525–535,
1962.

[Str62b] G. Strang. Trigonometric polynomials and difference methods of maximum accuracy. J. Math.
Phys., 41:147–154, 1962.

[Str68] G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer. Anal.,
5:506–517, 1968.

[Tad86] E. Tadmor. Complex symmetric matrices with strongly stable iterates. Linear Algebra Appl.,
78:65–77, 1986.

49



[TE05] L. N. Trefethen and M. Embree. Spectra and pseudospectra. Princeton University Press, 2005.
The behavior of nonnormal matrices and operators.

[Tho65] V. Thomée. Stability of difference schemes in the maximum-norm. J. Differential Equations,
1:273–292, 1965.

[Tre82] L. N. Trefethen. Group velocity in finite difference schemes. SIAM Rev., 24(2):113–136, 1982.

[WB81] R. F. Warming and R. M. Beam. Recent advances in the development of implicit schemes for
the equations of fluid dynamics. In Seventh International Conference on Numerical Methods in
Fluid Dynamics, pages 429–433. Springer, 1981.

[ZH98] K. Zumbrun and P. Howard. Pointwise semigroup methods and stability of viscous shock waves.
Indiana Univ. Math. J., 47(3):741–871, 1998.

50


	Introduction and main result
	A reminder on Laurent operators
	Assumptions and main result
	What is new ? and what is not ?

	The spatial Green's function
	Spectral properties
	Estimates for the spatial Green's function

	The temporal Green's function
	The explicit case with K=1
	The implicit case with K=1
	The explicit and implicit cases with K>1

	Examples and extensions
	Example 1: the Lax-Friedrichs scheme
	Example 2: an implicit scheme
	Example 3: the O3 scheme
	Example 4: the  scheme
	Extending Theorem 1 to the case where some k can be zero
	Further extensions

	Appendix. Proof of intermediate and related results
	Behavior of the amplification factor on the unit circle
	The Bernstein type inequality


