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A B S T R A C T

Real-time MR-imaging has b een clinically adapted for monitoring thermal therapies

since it can provide on-the-�y temp erature maps simultaneously with anatomical

information. However, proton resonance frequency based thermometry of moving

targets remains challenging since temp erature artifacts are induced by the respi-

ratory as well as physiological motion. If left uncorrected, these artifacts lead to

severe errors in temp erature estimates and impair therapy guidance.

In this study, we evaluated deep learning for on-line correction of motion related

errors in ab dominal MR-thermometry. For this, a convolutional neural network

(CNN) was designed to learn the apparent temp erature p erturbation from images

acquired during a preparative learning stage prior to hyp erthermia. The input of

the designed CNN is the most recent magnitude image and no surrogate of motion

is needed. During the subsequent hyp erthermia pro cedure, the recent magnitude

image is used as an input for the CNN-mo del in order to generate an on-line

correction for the current temp erature map.

The metho d's artifact suppression p erformance was evaluated on 12 free breath-

ing volunteers and was found robust and artifact-free in all examined cases. Fur-

thermore, thermometric precision and accuracy was assessed for in vivo ablation

using high intensity fo cused ultrasound. All calculations involved at the di�erent

stages of the prop osed work�ow were designed to b e compatible with the clinical

time constraints of a therap eutic pro cedure.

1. Intro duction

MRI is used for monitoring thermal therapies since it can provide on-line anatomical informations (given

by the spatial distribution of the magnitude of the MR-signal) together with temp erature mapping [ 10 ] [ 25 ]

[ 29 ]. Many approaches have b een develop ed for MR-thermometry and the Proton-Resonance-Frequency

shift (PRF) technique is widely used [ 3 ] [ 6 ] [ 19 ]. In the PRF approach, the phase comp onent ' of the MR-

signal, which is acquired using gradient echo sequences, is directly used to estimate voxel-wise temp erature

variations [ 3 ] [ 12 ] [ 15 ]. Due to the spatial phase variations, this signal comp onent needs to b e measured on a

voxel-p er-voxel basis. Let ~r = ( x; y; z) 2 
 b e the voxel co ordinates, 
 b eing the image co ordinates domain.

An estimate of the temp erature change (noted � T ) at a spatial lo cation ~r and at instant t is obtained by

comparing a baseline phase signal acquired at a reference instant t0 to the phase signal acquired and at t ,

as follows:

� T (~r; tn ) = ( ' (~r; t0) � ' (~r; t )) � k (1)

?
Exp eriments presented in this pap er were carried out using the PlaFRIM exp erimental testb ed, supp orted by Inria, CNRS

(LABRI and IMB), Université de Bordeaux, Bordeaux INP and Conseil Régional d'Aquitaine (see https://www.plafrim.fr/).

Computer time for this study was provided by the computing facilities MCIA (Méso centre de Calcul Intensif Aquitain) of the

Université de Bordeaux and of the Université de Pau et des Pays de l'Adour.
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k is a constant parameter, more details on its determination can b e found in [ 18 ]. Note that phase wraps need

to b e comp ensated on a voxel-by-voxel basis by adding (resp. substracing) 2� when ' (~r; t0) � ' (~r; t ) < � �
(resp. ' (~r; t0) � ' (~r; t ) > � ).

While this approach works well on static ob jects, the application of PRF thermometry to moving targets

remains challenging since additional variations of the phase comp onent are induced by: (i) moving the

observed tissue through an inhomogeneous magnetic �eld ; (ii) deforming/changing the tissue so that the

demagnitisation �eld of the tissue changes, which are b oth a consequence of the patient's physiological

activity and the asso ciated organ motion [ 3 ]. If left uncorrected, these additional phase variations enter

Eq. ( 1 ) in full and could lead to severe thermometric errors, leading to ab olute errors exceeding the true

temp erature di�erence by more than a magnitude.

As a mitigation strategy, one of the �rst prop osed approaches has b een respiratory gating. Respiratory

gating consists of intermittent acquisitions p erformed in each exhalation phase of the respiratory cycle

[ 16 ]. As a trigger for the gating, several typ es of respiratory motion descriptors have b een prop osed [ 14 ],

ranging from external pressure sensors [ 16 ], dedicated 1D MR navigator echo es [ 11 ] to self gated sequences

based on MR magnitude images [ 5 ]. Although gating is generally a robust solution to avoid motion induced

thermometric errors, it is nevertheless hamp ered by two drawbacks. First and foremost, the observed motion

pattern must b e strictly rep etitive/p erio dical and secondly considering a go o d spatial coverage of the heated

region, the achiveable temp oral resolution is generally limited to a range of 3 to 6 s [ 28 ] [ 17 ] [ 21 ].

In particular the latter motivated the development of non-gated MR-thermometry correction strategies,

which are able to selectively remove motion-induced phase changes from the MR-phase and thus to provide

artefact-free temp erature maps in real-time. However, the required precise mo deling of the inhomogeneous

magnetic �eld in vivo and the motion asso ciated phase variations, in particular under real-time conditions

for therapy guidance, has b een di�cult to achieve. Most of these early correction strategies can b e coarsely

classi�ed into two di�erent typ es, which are generally referred to as �Referenceless� and �Multi-baseline�

PRF thermometry. The interested reader is referred to [ 7 ] for a pragmatic analysis of inherent advantages

and drawbacks asso ciated with these two correction strategies:

In referenceless PRF thermometry, the baseline phase signal used to compute the current temp erature

map is directly estimated from the current MR phase image. To this end, the phase signal of non-heated

surrounding tissues is used to extrap olate a baseline phase signal in the targeted area [ 20 ] [ 9 ] [ 23 ]. This

approach relies on an a priori choice of a region of interest (ROI) and the quality of the thermometry highly

dep ends on an optimal ROI placement. In practice, the �tting ROI has to: (i) encompass � at least to

some extent � the ablation area ; (ii) b e su�ciently close the target area to allow a precise estimate of the

background phase there ; (iii) b e su�ciently far from the heating zone to b e una�ected by heat di�usion

and conduction ; (iv) not encompass areas prone to strong lo cal susceptibility variations.

In multi-baseline PRF thermometry (illustrated in �gure 1 ) a lo ok-up table obtained in absence of

temp erature variations establishes a relation b etween the phase variations asso ciated with the patient's

physiological motion and a descriptor/detector [ 27 ]. The b ene�t of this approach is evident for application

scenarios that do not p ermit a placement of the �tting ROI ful�lling all ab ove-mentioned four conditions

simultaneously. This is generally the case for minimally invasive ablations, or interventions at the b oundary

of organs. Both MR images and descriptors of motion patterns are continuously and simultaneously acquired

during a p erio d covering several respiratory cycles. A lo ok-up table can then b e used to store each pair

of MR phase image/motion surrogate. During heating, phase artifacts due to the p erio dical motion of

the respiration cycle are addressed by calculating a baseline phase image based on a mo del of the phase

dep endence of the current motion descriptor (red blo ck in �gure 1 ). Using multi-baseline strategies, the

stability of MR-thermometry largely dep ends on: (i) the determination of an accurate and precise motion

surrogate ; (ii) the accuracy of the mo del used to address susceptibility related phase changes, esp ecially in

regions with complex susceptibility distributions or signal discontinuities.

More recent approaches prop osed to fuse these two largely complementary approaches to combined

correction strategies, which comp ensate the resp ective weaknesses in order to achieve b oth increased accuracy

and a less convoluted work-�ow for clinical applications [ 8 ] [ 32 ].

The contribution of the current study is threefold:

1. We intro duce the use of deep learning for on-line correction of motion related errors in ab dominal

MR-thermometry. The existing multi-baseline strategy is extended by a convolutional neural net-

First Author et al.: Preprint submitted to Elsevier Page 2 of 15
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work (CNN) which learns the apparent temp erature p erturbation from images acquired during the

preparative learning stage. The input of the designed CNN is the current magnitude image and as a

consequence no surrogate of motion-state is needed. During the hyp erthermia pro cedure, the most re-

cent magnitude image is used as an input for the pre-built CNN-mo del in order to generate a correction

for the most recent temp erature map.

2. Frequently, inherent computational costs are a ma jor di�culty when dealing with deep learning in

applications requiring adaptive / on-the-�y training. In order to mitigate this problem for clinical

applications of MR-thermometry, a �ne-tuning strategy is prop osed to accelerate calculations during

the preparative learning stage. Moreover, to meet computational requirements for real-time MR-

thermometry, which requires that all calculations have to b e completed within the interval b etween

two successive image acquisitions, we prop ose to pro cess all temp erature images in a sliding temp oral

window within one single CNN-mo del call.

3. The ability of the prop osed approach to remove thermometry artifacts is demonstrated for dynamic

MRI datasets of the the liver of 12 healthy volunteers in absence of temp erature changes. We demon-

strate that the amount of learning images and the CNN training time can b e optimized to the p oint

that clinical thermotherapy interventions are feasible. Thermometric precision and accuracy is demon-

strated with a heating exp eriment p erformed on a p orcine liver using high intensity fo cused ultrasound

(HIFU) [ 1 ]. The prop osed metho d is compared to the two most frequently employed multi-baseline

strategies in terms of temp erature precision, without p enalty in accuracy.

2. Materials and Metho ds

2.1. Metho d overview

The prop osed metho d is detailed in �gure 2 : thermal maps with motion related temp erature artifacts and

magnitude images (noted M ) are combined to establish prior to hyp erthermia a CNN-based temp erature

correction mo del (noted g). During hyp erthermia, the incoming magnitude image is used as an input for

the pre-built CNN-mo del to generate in real time a temp erture correction for the current temp erature map.

Di�erences with existing multi-baseline approaches (�gure 1 ) are: (i) the input of the correction mo del is

the most recent magnitude image, which eliminates the need for surrogates/sensors ; (ii) the �tted data is

the apparent (artifacted) temp erature ; (iii) the mo del is a CNN. The b ene�t of each of these asp ects is

discussed later in the manuscript.

2.2. Datasets

Dynamic MR-imaging was p erformed on a Philips Achieva 1.5 T (Philips Healthcare, Best, The Nether-

lands) under real-time conditions. The metho d was evaluated in 2D and the e�ect of through plane motion

was reduced by setting the imaging plane direction parallel to the principal axis of the organ displacement.

2.2.1. Volunteer study.

An imaging frame rate of 10 Hz was maintained during 5 minutes on the ab domen of 12 healthy human

volunteers under free-breathing conditions. The MR-proto col was comp osed of a learning step of 20 s dedi-

cated to the acquisition of the training data, followed by 4 min-40 s devoted to mimic an interventional pro-

cedure. The MR-sequence was a single-shot gradient recalled echo-planar with the following parameters: one

coronal slice, rep etition time ( T R )=100 ms, echo time ( T E )=26 ms, bandwidth in readout direction=2085

Hz, �ip angle=35

�
, �eld of view ( F OV )= 256� 168 mm

2
, slice thickness=6 mm, matrix= 128� 84, using

a four element phased array b o dy coil. The volunteer studies depicted various SNR conditions: over the

twelve volunteers, the SNR was evaluated as 7 � 3 (min=4, max=14) in the liver.

2.2.2. In vivo heating study in a p orcine liver.

MRI guided HIFU was p erformed in vivo in the liver of a pig under general anesthesia and arti�-

cial breathing. The MR sequence employed the following parameters: single-shot, gradient recalled, echo-

planar imaging, 1000 dynamic sagittal images, �ve slice, T R =250 ms, T E =33 ms, �ip angle=40

�
, in-plane

F OV = 370� 162 mm

2
, voxel size= 2:89 � 2:89 � 7 mm

3
using the integrated three elements phased array

coil of the HIFU system. A MR compatible HIFU ablation system (Sonalleve, Profound Medical, Helskinki,

First Author et al.: Preprint submitted to Elsevier Page 3 of 15
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Figure 1: Illustration of a typical multi-baseline correction scheme. Both motion surrogate(s) and MR-images are used for

this strategy. Both the motion surrogate S(t) and the MR-images are acquired simultaneously in a training phase b efore

the hyp erthermia pro cedure. A multi-baseline collection is used to store each pair of motion surrogate/phase image. During

hyp erthermia, thermometry artifacts due to the p erio dical motion of the respiration cycle are addressed by calculating a

baseline phase (noted f (S(t)) ) based on the current motion surrogate and the training phase images.

Finland) comp osed of a table top containing a 256 elements HIFU transducer, integrated in the 1.5 T

Achieva-Intera MRI was used to p erform a temp erature elevation. The transducer radius and ap erture were

120 mm and 126 mm, resp ectively, creating an ellipsoid fo cal p oint ( 1 � 1 � 7 mm

3
). The animals were

placed in the prone p osition so that the liver was accessible through an unobstructed b eam-path directly

b elow the rib-cage. MR-guided hyp erthermia was p erformed for a duration of 4 minutes on the liver with

HIFU p ower of 160 W during 100 s. All animal studies were p erformed under an approved Animal Care

and Use proto col.

2.3. Prop osed CNN-based correction

2.3.1. Learning motion-related errors in MR-thermometry.

Motion-related errors in MR-thermometry were learned during a preparative learning stage p erformed

b efore hyp erthermia. This step is based on a training set of N dynamically acquired data (each dynamic

data is comp osed by the magnitude, the phase and the apparent temp erature map calculated with Eq. ( 1 )).

The motion cycle has to b e sampled with a su�cient density in order to avoid discretization errors. With a

su�cient imaging frame rate of 5-10 Hz and a respiration frequency of 3-6 seconds this pre-treatment step

can b e completed in a relatively short duration of 15-20 seconds. For the volunteer study, we tested various

First Author et al.: Preprint submitted to Elsevier Page 4 of 15
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Figure 2: Illustration of the prop osed CNN correction scheme. In this approach only MR-images are required and no motion

surrogate(s)/sensors are needed. MR-training data are acquired prior to hyp erthermia in a training phase. Subsequently,

the motion-artifacted thermal maps and the magnitude images are combined to establish a CNN-based correction mo del

of the temp erature (red blo ck). During the hyp erthermia pro cedure, the most recent magnitude image is used as an input

for the pre-built CNN-mo del in order to generate a correction map (noted g(M ) ) for the current temp erature map.

(reconstructed) imaging frame rates � ranking from 1 Hz ( i.e. , N = 20 ) to 10 Hz ( i.e. , N = 200 ) � to

train our CNN-mo del. For the in vivo heating study, we used N = 200 .

2.3.2. Prepro cessing of input images.

During b oth learning and hyp erthermia (thermotherapy) stages, all incoming images ( i,e. anatomical

and temp erature images) were prepro cessed on-the-�y as follows. First, anatomical (magnitude) image

intensities were normalized (z-scoring) using the mean and standard deviation within the complete image

�eld-of-view. Second, thermal maps were registered onto a common reference p osition in order to allow

kinetic analysis. Note that this registration step also allows for cumulative thermal dose calculations, which

may b e b ene�cial for on-line assessment of the therapy endp oint [ 24 ] [ 26 ]. In the scop e of this manuscript, we

registered all incoming phase images using motion estimates of a real-time image optical-�ow (OF) algorithm

applied to magnitude images. Additional details ab out the employed image registration algorithm can b e

found in [ 30 ]. Temp erature calculations were p erformed using Eq. ( 1 ) applied to the registered phase maps.

2.3.3. Implemented deep neural network mo del.

Figure 3 describ es the architecture of the prop osed deep neural network mo del (noted g) designed to

learn motion-related artifacts in MR-thermometry prior to hyp erthermia (red blo ck in �gure 2 ). The input

of the mo del is a magnitude image M and the output is a correction (noted g(M ) ) for the corresp onding

temp erature image ( i.e. , � T ). Note that p otential mis-corrected phase wraps in Eq. ( 1 ) may have a

direct negative impact on the CNN-mo del optimization pro cess. To mitigate this drawback, temp erature

maps used for training were �ltered using a median �lter (kernel 5 � 5). We used a convolutional enco der

with 3 layers p er resolution level, using a basis of 24 �lters of 3 � 3 ( i.e. , 24 �lters for the �rst layer, 48

for the second and so on). We empirically optimized this setting for reduced memory consumption without

impacting p erformance. Each blo ck was comp osed of batch normalization, convolution and ReLU activation.

We employed the following parameters: batch size = 1, optimizer = Adam with default parameters, ep o ch

= 100, loss = Mean Square Error (MSE) and drop out = 0.5 after each blo ck. We used one single input

channel ( i.e. , the actual magnitude image). The implemented CNN-mo del is detailed in the supplementary

material of the manuscript. The output shap e and the numb er of parameters involved in each layer of the

CNN-mo del are given.
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Figure 3: Architecture of the deep neural network prop osed for learning motion-related errors in MR-thermometry b efore

heating (red blo ck in �gure 2 ). The most recent magnitude image ( i.e. , M ) is used as a single input channel. The CNN-

mo del constructs a correction map (noted g(M ) ) for the current temp erature map. Each blo ck of the CNN is comp osed of

batch normalization, convolution and ReLU activation. The numb er of 3 � 3 �lters is indicated on the top of each blo ck.

2.3.4. Prop osed �ne-tuning strategy.

CNN optimization is a complex iterative pro cess which is inherently time consuming and dep ends on

initialization. To reduce these two issues and to meet clinical constraints of a therap eutic work�ow, we

prop ose a �ne-tuning strategy. To this end, a pre-built CNN mo del ( i.e., a CNN-mo del trained on several

data sets) � is loaded and used as a starting p oint for the actual mo del optimization ( i.e., the red blo ck in

�gure 2 ).

2.3.5. On-line CNN-correction of temp erature maps.

At this p oint we have a mo del g designed to predict the actual temp erature p erturbation g(M ) given the

current anatomical image M . The motion comp ensated temp erature image at instant t can b e obtained as

follows (see �gure 2 ):

� Tcor (~r; t ) = � T (~r; t ) � g (M (~r; t )) (2)

2.3.6. Correction of time-p ersistent o�sets.

Once corrected according to section 2.3.5 , the temp erature in a voxel at lo cation ~r is prone to a time

dep endent o�set arising from the presence of noise in the baseline phase image ( i.e. , ' (~r; t0) in Eq. ( 1 )). To

comp ensate for this o�set, we assumed that the temp erature change has to b e identically equal to 0 during

the learning stage (no hyp erthermia). Practically, a pre-built temp erature time average map � based on

data acquired b efore heating � was subtracted from the actual motion comp ensated temp erature image

� Tcor (~r; t ) .

2.4. Implementation details

We evaluated the computational burden of our prop osed metho d using an Intel Xeon E5-2683 2.4 GHz

(2 Hexadeca-core) with 256 GB of RAM equipp ed by a GPU Nvidia Tesla V100. Our implementation was

p erformed using Tensor�ow 1.4 and Keras 2.2.4.

Each of the 13 tested data sets � 12 volunteer data sets + 1 in vivo heating data set � were pro cessed

without �ne-tuning (each data set was pro cessed indep endently of each other) and with �ne-tuning (leave-

one-out strategy).
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To reduce the computation time during the interventional pro cedure, all data in a sliding temp oral

window ( i.e. , a pack of most recent consecutive dynamically acquired images. We denote by � the numb er

of dynamic images) were pro cessed simultaneously within one single CNN-mo del call. In the scop e of this

study, we tested � -values in the following set: f 1; 2; 16g.

The usefulness of the two ab ove-mentioned implementation strategies is analyzed in the discussion section.

2.5. Validation framework

2.5.1. Implemented comp etitive approaches.

The p erformance of two existing multi-baseline solutions � referred to as �lo ok-up-table� approach (or

LUT) [ 27 ] and �linear mo del� approach (or LM) [ 22 ] throughout the rest of the manuscript � were also

evaluated on the same data sets. In the learning stage of b oth LUT and LM, MR-images (magnitude and

phase) were included over several respiratory cycles (identical numb er of training data N were employed

for b oth LUT, LM and the prop osed CNN metho d). The p osition in the respiration cycle ( i.e., the motion

surrogate denoted by S(t) in �gure 1 ) was monitored using a Principal Comp onent Analysis (PCA) applied

to the ab ove-mentioned OF-motion estimates, as describ ed in [ 4 ]. The baseline phase image needed for the

calculation of the actual temp eratures maps with Eq. ( 1 ) was calculated in the following two ways:

Look-up-table approach (LUT): Each collected baseline phase image during the learning stage was indexed

in a lo ok-up-table according to its estimated p osition within the breathing cycle given by S(t) . During the

intervention stage, the baseline phase image in Eq. ( 1 ) was a linear interp olation b etween the closest two

reference phase images allowed for reconstructing a baseline phase image for the current p osition in the

respiration cycle.

Linear model approach (LM): The overall phase variation (denoted by f (S(t)) in �gure 1 ) was approxi-

mated by linear phase changes of the motion surrogate S(t) on a voxel-by-voxel basis as describ ed in [ 4 ].

2.5.2. Statistical analysis.

In the volunteer study, it was assumed that the temp erature change has to b e identically equal to 0

during the testing session (no hyp erthermia was p erformed).

First, the temp erature precision was evaluated for each volunteer by computing on a voxel-by-voxel basis

the temp oral temp erature standard deviation (noted SD) within a manually de�ned mask (noted � , � � 
 )

encompassing the liver and over the duration of the interventional session ( i.e., from the starting instant

ts = 20 s to the �nal instant t f = 5 min):

SD(~r) = � (� T (~r; t )) t 2 [ts; t f ]; ~r 2 � (3)

Second, the temp erature accuracy was evaluated for each volunteer by computing on a voxel-by-voxel

basis the mean absolute temp erature error (noted MAE) within � and over the interventional step:

MAE( ~r) =

�
�
�
�

1
t f � ts

Z t f

t = t s

� T (~r; t )dt

�
�
�
� ~r 2 � (4)

The same analysis was p erformed for the in vivo heating study to assess the thermometry precision and

the accuracy outside the heated region.

For the volunteer study, a paired Wilcoxon test was carried out in order to study whether SD and MAE

di�erences are statistically signi�cant b etween LUT-, LM- and CNN-corrected data sets. A signi�cance

threshold of p = 0 :025 was used. The p ower of the statistical analysis has b een carried out, as describ ed in

[ 2 ].

3. Results

3.1. Volunteer study

Figure 4 shows an example of MR-thermometry results obtained in one volunteer of the examined group

(volunteer #2 ). The leftmost image ( 4 a) depicts the anatomy. The temp erature precision (resp. accuracy)
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is rep orted in the upp er row (resp. b ottom row) for each tested correction solution. Thermometry artifacts

caused by motion-related susceptibility variations were comp ensated using LUT (�rst column), LM (second

column) and CNN (third column). The temp erature precision is visually b etter in the ma jor part of the liver

using LM metho d as compared to LUT (see arrow #1 in 4 b and 4 c). The b est precision is however observable

using the CNN metho d. It can also b e noticed that large susceptibility artifacts render the temp erature

correction di�cult in the upp er part of the liver (see arrow #2 in 4 b, 4 c and 4 d) and in the vicinity of

hepatic arteries (see arrow #3 in 4 b, 4 c and 4 d). In these regions, an improvement of the thermometry

precision by up to 2

�
C could b e obtained using CNN as compared to b oth LUT and LM. This precision

was achieved without negative impact on the accuracy, from a visual p oint of view, as shown in 4 e-g.

Temp erature maps from the individual volunteers were p o oled in order to obtain a group set containing

the temp erature precision (resp. accuracy) from all volunteers. The distribution of the temp erature precision

(resp. accuracy) for the group set is rep orted in �gure 5 a (resp. 6 a) using LUT, LM and CNN. The

distribution of temp erature precision (resp. accuracy) is also detailed for each volunteer in 5 b (resp. 6 b).

The paired Wilcoxon test showed that the temp erature precision was signi�cantly b etter using LM as

compared to LUT (p < 0.001/statistical p ower=1). Furthermore, the temp erature precision was signi�cantly

b etter using CNN as compared to LUT and LM (p < 0.001/statistical p ower=1). Besides, the temp erature

accuracy was signi�cantly b etter using CNN as compared to LM (p=0.008/statistical p ower=1).

Figure 7 analyzes the impact of the amount of learning images: compared to the original 10 Hz imaging

frame rate, a 2 Hz frame rate deteriorated mo derately thermometric precision and accuracy (by less than

30%).

Magnitude

(a)

SD-map (LUT)

(b)

SD-map (LM)

(c)

SD-map (CNN)

(d)

MAE-map (LUT)

(e)

MAE-map (LM)

(f )

MAE-map (CNN)

(g)

Figure 4: Typical temp erature stability maps obtained in the ab domen of volunteer #2 using two existing multi-baseline

approaches ( i.e., LUT and LM) and using the CNN approach: (a) anatomic image, (upp er row) the temp erature standard

deviation map obtained with the LUT (b), the LM (c) and the CNN metho d (d), (lower row) the temp erature mean

absolute error map obtained with LUT (e), LM (f ) and CNN (g). N = 200 images were used for training (an imaging

frame rate of 10 hz was maintained during 20 seconds)
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(a)

(b)

Figure 5: Comparison of temp erature precision obtained using LUT, LM and CNN in the liver of free-breathing healthy

volunteers during 4 minutes and 40 seconds of MR-thermometry. Similar to �gure 4 , N = 200 images were used for

training. Box-and-whisker plots of the temp oral temp erature standard deviation are shown using LUT (dark gray b ox),

LM (light gray b ox) and CNN (white b ox): (a) group analysis over the 12 volunteers, (b) volunteer-wise analysis. The

median is shown by the central mark, the �rst and the third quartiles are rep orted by the edges of the b ox, the whiskers

extend to the most extreme time p oints that are not considered as outliers.

3.2. In vivo heating study in a p orcine liver

Figure 8 shows MR thermometry results obtained on a p orcine liver during HIFU heating. Thermal

maps are rep orted after 80 s of sonication using LUT ( 8 a), LM ( 8 b) and CNN ( 8 c). In absence of any

correction strategy, apparent temp erature �uctuations of up to 13

�
C (p eak-to-p eak) were observed in the

target area. The heated region using the LUT app ears slightly elongated as compared to LM and CNN.

Residual thermometry artifacts are observable in the upp er part of the liver with LUT (see 8 a). These

apparent temp erature �uctuations are however greatly reduced using LM ( 8 b), and even more using CNN

( 8 c). This visual observation is con�rmed in asso ciated SD-maps: in most of the voxels lo cated in the upp er

part of the liver, a temp erature standard deviation higher than 3

�
C using LUT ( 8 d) decreased until 2

�
C using

LM ( 8 e), and reached 1

�
C using CNN ( 8 f ). This precision gain with CNN was achieved without creating

any additional o�set, as shown by the MAE-maps (see 8 h, 8 i and 8 j). The evolution of the temp erature

is shown in a single voxel lo cated at the fo cal p oint p osition using LUT ( 8 k), LM ( 8 l) and CNN ( 8 m).

Higher residual temp oral temp erature �uctuations are observable using the LUT correction as compared

to the other two correction approaches. LM and CNN approaches lead to a comparable observation of the

temp erature evolution: a temp erature increase of 12

�
C was reached after 80 s of HIFU sonication.

3.3. Benchmark

During the learning stage, around 1:5 s were required in average for the accomplishement of one ep o ch.

Figure 9 shows the loss metric as a function of the numb er of ep o chs without and with the prop osed �ne-

tuning strategy. It can b e observed that the use of �ne-tuning stabilized and accelerated the convergence of

the optimization pro cess, and this for all data sets involved in this study.
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(a)

(b)

Figure 6: Comparison of temp erature accuracy obtained using LUT, LM and CNN in the liver of free-breathing healthy

volunteers during 4 minutes and 40 seconds of MR-thermometry. Similar to �gures 4 and 6 , N = 200 images were used

for training. Box-and-whisker plots of the temp oral temp erature mean absolute error are shown using LUT (dark gray

b ox), LM (light gray b ox) and CNN (white b ox): (a) group analysis over the 12 volunteers, (b) volunteer-wise analysis.

Temp erature precision

(a)

Temp erature accuracy

(b)

Figure 7: Analysis of the impact of the amount of learning images on the temp erature stability. The temp erature precision

(a) and accuracy (b) were evaluated using various imaging frame rates for training. Box-and-whisker plots of the temp oral

temp erature standard deviation (a) and mean absolute error (b) obtained over the 12 volunteers are rep orted for imaging

frame rates ranking b etween 1 and 10 Hz. Note that the numb er N of dynamic images used to train the CNN-mo del was

equal to 20 (resp. 40, 60, ..., 200) when an imaging frame rate of 1 Hz (resp. 2, 3, ... 10 Hz) was employed.
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Figure 8: MR thermometry results obtained in a p orcine liver during HIFU heating: (�rst row) Temp erature maps obtained

after 80 s of heating ( t = 100s) overlaid on the anatomic image, (second row) temp oral standard deviation map, (third

row) mean absolute error map, and (b ottom row) temp oral evolution of the temp erature in a single voxel lo cated at the

fo cal p oint p osition. Results are rep orted using LUT (left), LM (middle) and CNN (right).

During the hyp erthermia session, 150 ms were required to generate one single motion comp ensated

temp erature map. In such a case, the GPU usage was however highly under-exploited: interestingly, the

calculation of a pack of � = 16 maps could b e also accomplished within 150 ms.
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Figure 9: Loss metric as a function of the numb er of ep o chs obtained without (a) and with (b) the use of �ne-tuning.

For each numb er of ep o chs, the mean and standard deviation of 13 MSE values ( i.e. , 12 values for the volunteer study +

1 value for the heating study) are rep orted.

4. Discussion

The prop osed metho d is designed to remove motion-related susceptibility e�ects induced by breathing in

real-time ab dominal MR-thermometry. To this end, the existing multi-baseline strategy is extended using

a deep neural network: a CNN learns the apparent temp erature p erturbation during a preparative learning

stage p erformed b efore hyp erthermia.

A ma jor di�culty when dealing with deep learning is the inherent computational cost. One goal of

this study was to investigate if (i) the amount of learning images and (ii) the CNN training time can b e

optimized to the p oint that clinical thermotherapy interventions are feasible. For this, all calculations at

the di�erent stages of the prop osed work�ow ( i.e. , learning stage, CNN mo del optimization, determination

of an o�set map and interventional session) were designed to b e compatible with the constraints of clinical

thermotherapy pro cedures (see section 3.3 ). With resp ect to the learning stage, 20 ep o chs using �ne-tuning

provide a loss similar to the one achieved by 100 ep o chs (see �gure 9 ). The calculation of the CNN-mo del

(red blo ck in �gure 2 ) could thus b e accomplished within less than 30 s (resp. less than 6 s) using our test

platform with a training frame rate of 10 Hz (resp. 2 Hz). The comp ensation of the time-p ersistent o�set

(as describ ed in section 2.3.6 ), which relied on a CNN-correction for each of the N training images, could b e

accomplished within less than a second in all presented exp eriments. Regarding the interventional session,

it is imp erative that all calculations have to b e done within the interval of subsequent image aquisitions in

order to prevent back-log. The use of a sliding temp oral window (as intro duced in section 2.4 ) of size � = 2
dynamic was mandatory in the volunteer study to cop e with a 10 Hz imaging frame rate.

A second ma jor challenge is the presence of noise and wraps in MR-phase images, which hamp ers the

CNN optimization pro cess (red blo ck in �gure 2 ). This drawback was �rst partially addressed by the use of

temp erature maps as inputs for the CNN instead of the phase images. However, a voxelwise time-p ersistent

o�set remained, induced by the the presence of noise in the baseline phase image ' (~r; t0) in Eq. ( 1 ). This

issue was addressed using an o�set correction (as describ ed in section 2.3.6 ), and no additional p enalty in

the accuracy was observable using CNN as compared to LUT and LM.

Using LM, a linear phase mo del is derived from the resolution of an overdetermined system of N ref-

erence images. In comparison with LUT, noise may b e reduced on the resynthesized baseline phase image

in Eq. ( 1 ). Ideally, a �noise-free� resynthesized baseline phase images is pro duced, and the noise contri-

bution on temp erature uncertainty is reduced by a factor

p
2. Moreover, while LUT intrinsically cannot

correct for motion amplitudes higher than the ones observed in the learning stage, LM can still provide an

extrap olation of the reference phase. As a consequence, regarding the precision of MR-thermometry, LM
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outp erformed LUT in all presented exp eriments. Our �ndings show that the multi-baseline strategy can b e

further improved using CNN. It must b e underlined that an inherent drawback with CNN lies in the high

complexity of the �tted mo del, which makes it di�cult to interpret. However, CNN was able to cop e with

complex motion-related thermometry artifacts (as encountered in the upp er part of the liver), for which an

explicit mo deling is very challenging on-line.

The CNN metho d provided accuracte temp erature measurements for imaging frame rate ab ove 2 Hz.

The prop osed CNN metho d was also demonstrated to b e compatible with fast MR acquisition schemes of

up to 10 Hz. Real-time MR-thermometry may thus b e advantageously combined with any suitable real-time

temp oral �ltering to further improve the measurement precision, as describ ed in [ 22 ] or [ 31 ].

It should b e noted that LUT and LM rely on the on-line determination of a motion surrogate, which

can b e provided by various typ es of sensors such as breathing b elt or MR-/ultrasound-based surrogates.

Using CNN, no motion surrogate is required since motion patterns are implicitely extracted from the actual

magnitude image. CNN thereby provides an indep endent thermal information with that provided by LUT

and LM (among others), which op ens great p ersp ectives for the use of the metho d as a �Watchdog� for

on-line quality control (QC).

Several other machine learning mo dels have b een considered (such as Logistic Regression, Naïve Bayes,

Random Forest and Supp ort Machine Vector) to learn motion related errors in ab dominal MR-thermometry

in the current study. However, using such algorithms, the computation cost was consistently much higher

than LM, which relies on a very simple linear mo del. Moreover, the ab ove-mentioned machine learning mo d-

els showed di�culties to interp olate/extrap olate p ositions not observed during training. The LM mo del, as

implemented in the current study, app eared more appropriate for this task, since the pixel wise temp erature

variation with respiratory motion in the ab domen can b e e�ciently approximated in �rst order with a linear

term, as shown in [ 13 ]. As a consequence, we decided to limit the scop e of this pap er to a comparison of the

two already published multi-baseline metho ds: LUT and LM.

The main limitation of the prop osed metho d � as it is common with multi-baseline strategies � is

its inability to comp ensate for thermometry artifacts related to motion / deformation(s), which has not

b een observed during the training p erio d. In practice, this can b e encountered due to physiological drift or

sp ontaneous motion. If during hyp erthermia bulk shofts or ma jor drifts from the calibration p osition are

observed, a recalibration of the correction data is then required.

5. Conclusion

PRF-based MR-thermometry is complicated in ab dominal organs by displacement of the target and

surrounding tissues, which hamp ers direct voxel-by-voxel comparisons. Strong temp erature artifacts are

intro duced by motion-induced additional phase variations via an inhomogeneous and time-variant magnetic

�eld. The prop osed approach extends the existing multi-baseline strategy using CNN to address such

artifacts in ab dominal organs due to breathing. A work�ow is prop osed to solve inherent issues with CNN

asso ciated to computational burden for training. The prop osed metho d outp erformed two existing multi-

baseline strategies in terms of temp erature precision, esp ecially in regions prone to strong susceptibility

artifacts as encountered in the upp er part of the liver. This was achieved without noteworthy additional

p enalty in the temp erature accuracy. Moreover, we have demonstrated that, even under clinical conditions,

the metho d was found robust and artifact-free in all examined cases and well able to follow the temp erature

evolution of an in vivo HIFU ablation.
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