
HAL Id: hal-03065629
https://hal.science/hal-03065629

Submitted on 14 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MemOpLight: Leveraging application feedback to
improve container memory consolidation

Francis Laniel, Damien Carver, Julien Sopena, Franck Wajsburt, Jonathan
Lejeune, Marc Shapiro

To cite this version:
Francis Laniel, Damien Carver, Julien Sopena, Franck Wajsburt, Jonathan Lejeune, et al.. MemOp-
Light: Leveraging application feedback to improve container memory consolidation. NCA 2020 - 19th
IEEE International Symposium on Network Computing and Applications, Nov 2020, Cambridge /
Virtual, United States. pp.1-10, �10.1109/NCA51143.2020.9306717�. �hal-03065629�

https://hal.science/hal-03065629
https://hal.archives-ouvertes.fr


MemOpLight: Leveraging application feedback to
improve container memory consolidation

Francis Laniel∗‡, Damien Carver∗‡, Julien Sopena∗‡, Franck Wajsburt∗, Jonathan Lejeune∗‡ and Marc Shapiro∗‡
‡INRIA, DELYS Team, Paris, France

∗Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Index Terms—Linux, container, memory, memory consolida-
tion

Abstract—The container mechanism amortizes costs by con-
solidating several servers onto the same machine, while keeping
them mutually isolated. Specifically, to ensure performance iso-
lation, Linux relies on memory limits. These limits are static,
despite the fact that application needs are dynamic; this results in
poor performance. To solve this issue, MemOpLight uses dynamic
application feedback to rebalance physical memory allocation
between containers focusing on under-performing ones. This
paper presents the issues, explains the design of MemOpLight,
and validates it experimentally. Our approach increases total
satisfaction by 13% compared to the default.

I. INTRODUCTION

A cloud provider is allowed to consolidate the logical
servers of different clients on the same underlying machine,
thus amortizing cost [1]. Each client has the responsibility to
correctly size the virtual resources that they rent in order to
ensure that they execute smoothly [2], [3], [4]. However, there
is a trade-off. The execution of one logical server should not
disturb the others: the logical servers should remain isolated
from one another. In self-managed clouds, the goal is to
maximize, on any single machine, the number of applications
that respect their SLO (Service Level Objectives) with the
minimal amount of hardware.

To ensure both consolidation and isolation, a common
approach is to use Virtual Machines (VM). Unfortunately, a
VM is heavyweight and waste resources. Resource transfer
between VM is complex and difficult to automate [5], [6]. A
recent alternative is the “container”, a group of processes with
sharing and isolation properties [7], [8], [9], [10]. Containers
support security (e.g., a file in one container cannot be
accessed by another), ease of deployment (e.g., it is possible to
start a container with a simple shell command) and fine-grain
resource control (e.g., a container can be pinned to a specific
CPU core) [11].

To ensure memory performance isolation, i.e., guaranteeing
to each container enough memory for it to perform well, the
administrator limits the total amount of physical memory that
the container’s processes can use. If it exceeds its limits, some
of its memory will be reclaimed, making it available to others.
Notably, the Linux kernel reclaims pages from the file page
cache, resulting in a performance decrease in containers that
perform I/O [12].

In previous work, we showed that the memory consoli-
dation provided by the limit mechanism is imperfect [13].

Moreover, the limits size are static, and do not adapt to the
containers’ dynamic behavior. This is a problem, because it
is hard to estimate, a priori, the required amount of memory
satisfying an application’s performance objectives [14], [15].
Furthermore, the metrics available to the kernel to evaluate
its policies (e.g., frequency of page faults, I/O requests, use
of CPU cycles, etc.) are not directly relevant to performance.
Indeed, the application performance is better characterized by
application-level metrics, such as response time or throughput
[16].

To solve these problems, we propose a new approach,
called the Memory Optimization Light1 (MemOpLight). It
is based on application-level feedback from containers. Our
mechanism aims to rebalance memory allocation in favor of
unsatisfied containers, while not penalizing the satisfied ones.
As a side effect, this improves overall resource consumption
while consolidating memory. MemOpLight is intended to be
used by cloud providers, to make better use of the underlying
infrastructure, while guaranteeing good performance to client
tasks. The memory of containers receiving low load can be
reclaimed, in order to improve performance of these receiving
high ones. Our experiments show that MemOpLight increases
throughput up to 29.2% compared to the default for the
sysbench benchmark accessing a mysql database.

Our main contributions are the following: (i) The design
of a simple feedback mechanism, from application to kernel.
(ii) An algorithm for adapting container memory allocation.
(iii) An implementation in Linux and its experimental eval-
uation. We organize the remainder of our paper as follows.
Section II presents some technical background. Section III
summarizes the issues with existing Linux mechanisms. Sec-
tion IV presents MemOpLight. Section V compares its per-
formance with existing Linux mechanisms. In Section VI, we
review related work. Finally, we conclude and discuss future
work in Section VII.

II. TECHNICAL BACKGROUND

Containers are based on the Linux cgroup structure for
grouping a number of processes [17], [18], [19], [20]. A
cgroup limits the collective resource usage of its processes.
Particularly, the total amount of physical memory used across
all the processes of a cgroup is capped by the max and soft

1Our solution uses the colors of traffic lights to indicate container perfor-
mance.



limits, which we describe later. In the rest of this section, we
study how Linux manages the memory of containers under
memory pressure, i.e. when free physical memory is scarce.

A. No limits

When memory pressure occurs, and if the max and the
soft limits are not set, memory is reclaimed from all
containers. For instance, if the memory requirements of some
container decreases, the kernel reallocates unused memory
to another container. This constitutes memory consolidation.
Unfortunately, as Linux allocates unused memory to the file
cache, it does not enforce memory performance isolation [12].
Therefore, I/O of one container can impede another container’s
performance without increasing the performance of the former.
In summary, when no limits are set, memory consolidation
occurs, at the expense of memory performance isolation.

B. The max and soft limit mechanism

To solve this problem, Linux provides the max and the
soft limits to guide the memory reclamation of containers.
By default, these limits are unset; it is up to the user to set
them through sysfs. A container’s memory footprint cannot
exceed its max limit. Even if there are free pages, the kernel
will not allocate them to a container that has reached its max
limit. If a process needs physical memory, and its container
has already reached its max limit, the kernel may reallocate
memory from another process of the same container, but not
from another container. This mechanism ensures isolation, by
avoiding that some container would starve the others.

The soft limit is similar, except that it is active only when
there is memory pressure. A container’s allocation may occa-
sionally exceed its soft limit if there is free physical memory.
To guarantee good performance under memory pressure, the
administrator should set the soft limit to approximate the
container’s Working Set (WS) size [21]. Unfortunately, it is
hard to estimate WS size [14], [15].

To summarize, container memory footprint is limited by the
soft limit when memory pressure occurs, and by its max
limit at all times. However, these settings are not dynamically
related to the containers’ current memory needs; they may be
higher (impeding memory consolidation) or lower (impeding
memory performance isolation).

III. MEMORY CONSOLIDATION VS. MEMORY
PERFORMANCE ISOLATION

In this Section, we recapitulate our previous experiment
showing that containers do not ensure memory performance
isolation and memory consolidation at the same time [13].

To highlight this problem, we stressed a mysql database,
widely used in industry, with a dynamic load generated by
sysbench, an OLTP benchmark well-known in research
[22], [23]. We first run a reference experiment with a single
container, to establish a baseline for the ideal performance
and resource consumption of the application. Then, we run
the same experiment with two containers using different limits
configurations. We compared their performance and resource

TABLE I: Summary of memory consolidation and memory
performance isolation of existing mechanisms in Linux

Mechanism used Memory consolidation Memory performance isolation
limits not set weak no
max limit no yes
soft limit no (under memory pressure) yes

consumption to the baseline. The containers’ memory needs
fluctuated over time due to variation in received load.

When the limits are not set, memory consolidation occurs,
but imperfectly and there is no memory performance isolation.
The max limit ensures memory performance isolation, but
thwarts memory consolidation. The soft limit is similar
under memory pressure, but allows memory consolidation
when memory abounds. We conclude from this experiment
that existing mechanisms are insufficient as they do not ensure
memory consolidation and memory performance isolation.
Table I summarizes these results.

Furthermore, the max and soft limit are static and thus
cannot adapt to dynamic behaviors, especially when the ap-
plication has a low level of activity, as opposed to being
completely stopped [24], [25], [26], [27].

IV. MEMORY OPTIMIZATION LIGHT (MEMOPLIGHT)
A. MemOpLight’s functioning

It is difficult to do better with the static limits and the limited
information available to the kernel. The kernel only has access
to low-level metrics such as the CPU cycles used or the I/O
bandwidth. Theses are, at best, proxies for application-level
Quality of Service (QoS), and are not representative of the
needs of modern applications.

Instead, we propose to base memory reclamation on per-
formance metrics perceived by the application. The container
itself declares its current level of QoS, according to its own,
application-specific metrics (e.g. latency for a web server,
frame rate for a streaming application, etc.), compared to some
performance objectives. We associate a traffic light color to
different states of performance:

• GREEN: The container has reached its maximum level
and would not benefit from more resources. For instance,
a web server has no requests waiting.

• YELLOW: The container is satisfied with its QoS, but it
would do better with more resources. For example, a web
server has pending requests in a queue but has answered
the earlier with sufficiently low response time.

• RED: The container is not satisfied, e.g. a web server is
not able to answer requests under a certain latency.

Initially a container starts in the RED state.
Our approach is based on three components.

a) User-kernel communication: We develop a commu-
nication mechanism between user and kernel, so a container
can communicate its state of performance to the kernel. The
Linux kernel provides multiple mechanism for this purpose
(e.g., syscall, ioctl, sysfs, socket, etc.). We choose the sysfs
because it is less intrusive for the kernel and has a file-oriented
API which is easy to use by users.



TABLE II: The different reclamation cases of MemOpLight

Red cgroups Yellow cgroups Result
0 0 No cgroups are reclaimed

from.
0 ≥ 1 Green cgroups are reclaimed

from.
≥ 1 0 Green cgroups are reclaimed

from.
≥ 1 ≥ 1 Green cgroups are reclaimed

from first then yellow ones.

b) Probe: A container is equipped with an application
probe, which indicates its color, based on some application-
specific. The probe could either exploit existing information in
the application, or be a separate script that collects information
about the application. For mysql, we developed a script that
reads the database log and analyzes the request latency. In
our prototype, the probe compares the transaction latency of
mysql, which executes inside the container, to some SLO
and informs Linux through sysfs every second. Specifically,
a container with high throughput declares itself green if its
throughput equals the SLO and has no transactions waiting.
With low throughput, it is green if it handles ≈ 200 t/s.
If it cannot respect its SLO, it is red. Otherwise, if it has
transactions waiting, it is yellow.

c) MemOpLight: Our third component is an algorithm
that executes when memory is scarce. MemOpLight extends
the Linux Page Frame Reclaim Algorithm (PFRA) [28]. When
a container needs memory, it takes it from the free physical
pages. The PFRA activates when a memory threshold is
reached, i.e. when free physical memory becomes scarce. It
aims to reclaim memory and bring the free physical memory
above the threshold. Regarding containers, the PFRA has two
parts. The first one consists in recycling memory from one
container (local reclaim) while the other reclaims memory
from all containers (global reclaim). MemOpLight modifies
the PFRA behavior and reclaims memory from containers
based on their colors, there are multiple cases shown in Table
II.

We make two design decisions. The first is to reclaim from
both green and yellow containers when there is a red one.
By doing so, we hope to maximize the number of satisfied
containers quickly. The other is to limit the rate of reclamation
to a small fraction of each container’s footprint (we chose
2% each second) in order to avoid performance oscillations.
Indeed, if a container declares itself as green or yellow, this
must mean that its WS fits into its current physical memory
allocation.

This mechanism tends to adapt the amount of memory to
what is required for each container to be satisfied. Memory
reclaimed from one container can be used by other containers
to improve their own performance and satisfaction.

Other, more detailed, technical decisions are documented by
comments in the code itself. We implemented as a modification
of Linux code to invoke the MemOpLight algorithm once per
second when there is memory pressure. If MemOpLight fails
to reclaim memory, the soft limit mechanism activates and

so the PFRA. Our modifications amount to ≈ 400 lines of
code [29].

B. Probes

The probe can be seen as a MAPE loop which takes places
in user space while our modifications to the Linux kernel
correspond to another loop which executes in kernel space
[30]. In more detail, the probe does three different things:

1) It collects information about the application.
2) It compares this to a SLO, which was provided by con-

tainer’s owner at its startup, to evaluate its performance
state.

3) Finally, it communicates the application’s performance
state as the green, yellow or red colour to the Linux
kernel.

For a web server, a probe might simply read the response
time from the server’s log and compare it to the SLO. If
the response time is higher, then the web server performance
is declared to be RED, otherwise GREEN. Another simple
example is a streaming application: in this case using all three
colours is appropriate. If streaming application sustains the
SLO frame rate with high video quality, its state of perfor-
mance is GREEN. If it has to degrade video quality to sustain
the SLO, its declares its state as YELLOW. Otherwise, i.e. if
it cannot respect its SLO, its performance is declared RED.
There is a trade-off between precision (which is important in
cloud environment where clients are charged for the memory
they use) and the overhead of communicating the colour
frequently [31], [32].

V. EVALUATION

A. Description of the experiment

The goal of our experiment is to show that MemOpLight
ensures both memory performance isolation and memory
consolidation as opposed to existing Linux kernel mechanisms
[33].

1) Metrics and baseline: Our experiment studies three
metrics: throughput, memory footprint and disk I/O. We define
throughput as the number of transactions that the benchmark
is able to process in one second. A transaction is a set of
SQL requests that read from a database. Memory footprint is
the amount of memory used by the container during a given
one-second period. Disk I/O counts the number of reads done
by the container during a second. Throughput is measured
from the benchmark output; memory size and disk activity are
gathered by docker. To compare fairly, we need reference
numbers for these metrics. These numbers were collected by
running a reference experiment with a single container that
executes the scenario of container A as described in Table III.

2) Two-container experiments: Our experiments feature
two concurrent containers, A and B, executing an OLTP work-
load. Both experience changes in activity. To test satisfaction,
we arbitrarily set the SLO of container A to processing 1700 t/s
and B 1100 t/s. By doing so, we simulate the fact that A bought
a better cloud offer than B. The SLO are pictured as colored
dashed lines in figures 1a to 4a [34]. When both containers are



TABLE III: Summary of memory consolidation and memory
performance isolation of existing mechanisms in Linux

Phases Container A Container B
ϕ1(h, h) high load high load
ϕ2(h, l) high load low load
ϕ3(h, i) high load intermediate load
ϕ4(l, l) low load low load
ϕ5(i, h) intermediate load high load
ϕ6(s, h) stopped high load

offered high load, we expect to observe memory performance
isolation. When one of the containers receives high load, and
the other receives low load or is stopped, we expect memory
consolidation to let the former reach the maximum throughput.
Accordingly, the experiment goes through six phases, each
lasting 180 seconds, as described in Table III.

We use the notation: ϕn(a, b) where n is the phase number,
a corresponds to the load of container A and b that of
container B. Possible values for a and b are h (high), l (low),
i (intermediate) and s (container is stopped). During phase
ϕ1(h, h), physical memory is smaller than the combined size
of the databases, hence memory pressure occurs. The size of
the page cache decreases, causing an increase in physical disk
I/O, hence a decrease in application throughput. In ϕ2(h, l),
if memory consolidation is effective, A should be able to take
memory from B, and increase its throughput. We expect both
containers to have low throughput in ϕ3(h, i), similarly to
ϕ1(h, h). In ϕ4(l, l), containers should be able to answer all
the transactions. ϕ5(i, h) mirrors ϕ3(h, i). During ϕ6(s, h),
as A stops completely, B should be able to reach maximum
performance.

We run this scenario ten times and compute the mean and
standard deviation of throughput, memory and disk I/O every
second, plotted in Figure 1 to Figure 4.

3) Experimental environment: Our experimental machine
is part of the Grid’5000 testbed [35], [36]. It has two In-
tel®Xeon®Gold 6130 CPU clocked at 2.1GHz, with 192GB
of DDR4 memory and an SSD [37]. To create memory
pressure, we artificially limit memory size, by running the
experiments within a VM restricted to 4 CPU cores and 3GB
of memory.

We use qemu 3.1.0 as the VM hypervisor, docker
19.03.2 and its python library docker-py 4.0.2 to
manage containers [38], [39], [40], [41]. Our benchmark is
sysbench oltp [23]. We modified the benchmark code in
order to be able to vary the throughput [42]. The benchmark
reads requests from a mysql 5.7 database [22], [43]. We
run our experiments on Linux 4.19 [44].

Our two containers (A and B) run with two cores each. Each
one reads a database of 4GB.

B. Baseline experiment with one container

After running the reference experiment, we measure the
maximum throughput to be 2000 transactions per second (t/s).
The maximum memory footprint and maximum disk I/O are
measured at 2.8GB and 100 reads per second respectively.

These values are pictured in Figures 1 to 4 as dashed black
horizontal lines.

We arbitrarily set “low” throughput to 10% of high through-
put, i.e., 200 t/s. Low throughput is depicted as horizontal
dotted black lines in Figure 1a to Figure 4a. We also define
“intermediate” throughput as 1500 t/s.

C. Conventionnal mechanisms with two containers
Let us briefly interpret figures 1 to 3. A more detailled

analysis is available in previous work [13].
Without any limit set, ϕ1(h, h) of Figure 1a shows that there

is no isolation, since containers have the same throughput. In
this figure, in ϕ2(h, l), A increases its performance, because
B receives low load, but it does not reach its reference level.
During ϕ6(s, h), as A stops, B is able to increase its memory
footprint, as shown in Figure 1b, and so reaches the reference
performance.

Figure 2a depicts the situation when the max limit is set
to 1.8GB for A and 1GB for B. A has better performance
than B in ϕ1(h, h). This can be explained by looking at
the same phase in Figure 2b. Indeed, container footprints
follow their max limits, so A has more memory than B. Note
that, in ϕ6(s, h), where A is stopped, B cannot increase its
performance because its footprint is blocked by its max limit.

The soft limit results are similar to that of max limit.
The only difference occurs in ϕ6(s, h) of Figure 3a, where B
reaches reference performance. Indeed, as A is stopped, there
is no more memory pressure and B can increase its footprint
as shown in Figure 3b.

Table I, presented earlier, summarizes these results.

D. MemOpLight with two containers
MemOpLight is designed to consolidate memory while

ensuring memory performance isolation. To verify this, we run
again the experiment this time enabling MemOpLight. We plot
the results in Figure 4.

ϕ1(h, h), ϕ3(h, i) and ϕ5(i, h) in Figure 4a follow the
same pattern as the same phases in Figure 3a. Figure 4b
shows that, like Figure 3b, when both containers receive high
or intermediate load, their memory footprints follow their
soft limits (ϕ1(h, h), ϕ3(h, i) and ϕ5(i, h)). A has then a
larger footprint than B, this shows that MemOpLight ensures
memory performance isolation. Moreover, in these phases,
performance of containers A and B are better than with max
and soft limits. On average, container A answers to 1351,
1362 and 1370 transactions per second compared to 1290,
1314 and 1358 with the max limit; this represents an increase
of respectively 4.7%, 3.7% and 0.9%. With MemOpLight,
container B handles almost 933, 999 and 1036 transactions per
second while it processes only 894, 968 and 978 transactions
per second with the max limit; resulting in an increase of
4.4%, 3.2% and 5.9%. These increases can be explained
because MemOpLight permits converging to a balance where
containers stop stealing memory each other.

Like ϕ6(s, h) in Figure 3b, when A stops completely, there
is no more memory pressure, B’s footprint grows and permits
it to increase its performance to the maximum throughput.



(a) Throughput (b) Physical memory footprint (c) Disk I/O

Fig. 1: No limits set

(a) Throughput (b) Physical memory footprint (c) Disk I/O

Fig. 2: Max limits set to 1.8GB (A) and 1GB (B)

(a) Throughput (b) Physical memory footprint (c) Disk I/O

Fig. 3: Soft limits set to 1.8GB (A) and 1GB (B)

(a) Throughput (b) Physical memory footprint (c) Disk I/O

Fig. 4: MemOpLight with soft limits set to 1.8GB (A) and 1GB (B)



MemOpLight’s dynamic nature brings a real benefit in
ϕ2(h, l). During this phase, B receives low load and A a
high one. As shown in Figure 4b, there is a memory transfer
from container B to container A. Since container B has no
requests in its queue, its memory is reclaimed until finding the
threshold where it can still answer to 200 t/s. The application
feedback permits finding this memory configuration without
previous static analysis. MemOpLight maximizes memory
consolidation so container A’s throughput equals its SLO.

Table IV summarizes all the previous measurements. B has
lower performance with MemOpLight and would have better
performance with no limits set. This behavior is normal, since
in the latter case there is no memory performance isolation.
Nonetheless, this is not expected in cloud since a client could
have paid more than another so one client would have a better
offer than the other.

In summary, MemOpLight increases performance of con-
tainers by redistributing memory following their needs.

E. MemOpLight with eight containers

To confirm that MemOpLight adapts to application loads
thanks to application feedback, we now run an experiment
with 8 containers. Along the phases, which each lasts for 120
seconds, containers receive high, intermediate or low load. The
container loads were chosen randomly to cover different cases
and put MemOpLight in difficulty.

The scenario and its characteristics are described in Table
V. The first column is SLO. The second one shows the values
for max and soft limits. The other columns describe the
load at each phase of the experiment. Throughput can have
multiple values:

• High: The container receives 2500 t/s. Black cells, in
Table V, depicts phases where containers receive high
load.

• Intermediate : The container receives its SLO ±5% t/s.
In Table V, gray and light gray cells show phases with
intermediate load.

• Low: The container sustains only 200 t/s.
The different phases of the scenario can be grouped to form

4 different periods. In ϕ1 and ϕ2, the system is highly loaded.
ϕ3 is a transition between highly and lowly loaded. In ϕ4, the
containers receive low loads. During ϕ5 to ϕ9, the system is
moderately busy but container loads increase over time.

In this experiment, we focus on the respect of SLO and the
global performance. Figure 5 plots the average throughput of
containers generated across 10 runs for different mechanisms.
The global throughput is depicted by the height of the bars
while the different colors indicate the throughput of each
container. Hatched colors emphasize throughput that is above
SLO. Figure 6 focuses on the respect of the SLO. It plots
the colors of containers over time during the sixth run of our
experiment. To plot this Figure, we activate the probes for all
mechanisms. As we discussed in Section IV-B, the probe has
no overhead.

In ϕ1 and ϕ2, the system is overloaded since almost all
containers receive high or intermediate loads. The global per-

formance is lower with limits not set, e.g. 836453 transactions
(t.) compared to 895317.8 t. and 898728 t. for max and soft
limits, because containers are fighting for memory so it is used
ineffectively. For these phases, MemOpLight achieves the best
global performance (927651 t. in ϕ1 and 937413 t. in ϕ2).
Indeed, with MemOpLight, once containers reach a memory
balance they stop fighting for memory. Even containers which
have less memory have better performance because they use
it effectively.
ϕ3 is a transition phase between highly and lowly loaded.

This phase shows if mechanisms are able to adapt to this
change. During this phase, max and soft limits permit better
performance than limits not set in ϕ3 (779570 t. and 762521
t. compared to 729834 t.). As depicted in Figure 5d, MemOp-
Light permits a better global performance (788909), thanks
to its dynamic behavior. Figure 6d shows that MemOpLight
permits to containers to converge faster to their SLO.

In ϕ4, containers continue to receive low loads. In this
phase, the max and soft limits activate so they block memory
consolidation and impede container performance (583156 t.
and 580914 t. compared to 714737 t. without limits set).
MemOplight offers the same performance as with limits not set
(723084 t. vs. 714737 t.). With MemOpLight, all containers
are satisfied, since there are only green containers in ϕ4 in
Figure 6d. It also permits to more containers to exceed their
SLO since hatched zones are bigger.

In ϕ5 to ϕ9, the system is moderately busy but container
loads increase over time. Figure 6d shows that MemOpLight
maximizes container satisfaction. Moreover, at the beginning
of each phase, we can see that containers reach satisfaction
more quickly thanks to the dynamic application feedback.
During these phases, note that peaks of red can be explained
because the benchmark offers an average load, not a constant
one.

This experiment shows that MemOpLight permits consol-
idation and isolation as shown in Table VI and Table VII.
Table VI presents performance for each container with all the
tested mechanisms. One can see that MemOpLight supports
better performance for five of the eight containers. Where
MemOpLight performs worse, the difference is only about
0.6%, 2.3% and 1.9% for container B, G and H compared
to the experiment with limits not set. Overall, MemOpLight
reaches 122.6 millions t. which is 8.9% better than with limits
not set. Table VII shows fraction of time where containers
are satisfied. This time is the sum of yellow and green time.
MemOpLight maximizes the number of satisfied containers.
It also increases the time passed satisfied throughout the
whole experiment from 44% to 57%. Thus, MemOpLight
enhances efficiency, since it improves performance with the
same hardware.

In summary, MemOpLight improves throughput and enables
containers to be more satisfied.

F. Study of MemOpLight parameters

MemOplight has two parameters that can be tuned: the
percent of memory reclaimed each period and the duration



TABLE IV: Median value of measured throughput, averaged over 10 runs, in each phase of each experiment (in t/s rounded
to the nearest integer)

Transactions
Phases

ϕ1(h, h) ϕ2(h, l) ϕ3(h, i) ϕ4(l, l) ϕ5(i, h) ϕ6(s, h)

Container A B A B A B A B A B B
Input load 2000 2000 2000 200 2000 1500 200 200 1500 2000 2000
Limits not set 1053 1043 1374 196 1054 1168 195 197 1195 1145 1751
Max limit 1290 894 1411 196 1314 968 196 660 1358 978 962
Soft limit 1268 879 1423 197 1299 969 196 794 1360 970 974
MemOpLight 1351 933 1670 195 1362 999 196 197 1370 1036 1723

TABLE V: Throughput in each phase of experiment (in transactions per second)

Containers SLO (t/s) Limit (if set) ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9

A 1800 1400MB 2500 1710 2500 200 1890 200 200 200 2500
B 1600 1000MB 1520 2500 2500 200 2500 200 1520 2500 200
C 1400 800MB 1330 1470 200 1470 2500 1330 1470 200 1470
D 1400 800MB 2500 1470 200 200 200 1470 200 2500 2500
E 1200 600MB 1140 1140 200 2500 1260 2500 2500 2500 200
F 1200 600MB 2500 1260 200 2500 200 2500 1260 1260 2500
G 1000 400MB 2500 200 2500 200 200 200 200 950 950
H 800 400MB 840 2500 200 200 760 200 760 760 2500

TABLE VI: Total containers’ throughputs (in million of requests with different mechanisms, averaged over 10 runs)

Mechanism
Containers A B C D E F G H Total

No limits set 15.2 14.5 17.3 11.9 18.7 15.9 8.8 10.3 112.6
Max limit 13.6 13.8 13.8 8.5 14.9 9.9 4.6 6.8 85.9
Soft limit 17.1 17.4 17.6 12.6 17.5 13.4 7.3 9.5 112.4
MemOpLight 17.5 17.3 18.4 13.7 20.2 16.8 8.6 10.1 122.6

TABLE VII: Fraction of time (in percent) where container is satisfied (i.e. yellow or green) according to mechanisms (averaged
over 10 runs)

Mechanism
Containers A B C D E F G H Total

No limits set 42 23 8 35 69 39 62 71 44
Max limit 60 35 5 37 73 15 53 35 39
Soft limit 56 42 11 35 64 16 53 32 39
MemOpLight 58 44 42 52 76 53 67 67 57

of a period. In its implementation, we also chose to reclaim
memory from yellow containers, this choice can be discussed.

In this subsection, we first study the impact of these param-
eters on MemOpLight’s performance. For that, we run again
the experiment featuring two containers. Then, we modify
MemOpLight to create MemOpLightNoYellow where yellow
containers are not reclaimed. To compare them, we use again
the experiment with eight containers. Unfortunately and due
to lack of space, we cannot display the associated figures.

First, we set the reclaim period to be 1 s, and the percent
to the following values: 1%, 2%, 5% and 10%. The results
for this different values are quite the same. This behavior
is due to the using of the PFRA to reclaim memory. This
mechanism offers a function which has a memory size to
reclaim as parameter. But, this parameter is only indicative,
the kernel does whatever it can.

We now fix the memory percent to 2% and use this values
for the reclaim period: 1 s, 2 s, 5 s and 10 s. This time, the
results are totally different and a reclaim period of 10 s shows
bad performance. Particularly, for ϕ2(h, l), a period of 10 s
leads to a median throughput of 1456 t/s compared to the

1638 t/s offered by a period of 1 s. This represents a decrease
of 10.6%. So, the reclaim period has to conform with the
application activity, if the application reacts quickly to event,
the period has to be short, otherwise it can be longer.

To finish, we study the impact of not reclaiming memory
from yellow containers by comparing MemOpLight and Mem-
OpLightNoYellow. MemOplight performs better than Mem-
OpLightNoYellow, because containers exceed more their SLO
in some phases. More precisely, the averaged total transactions
is 122.6 millions for MemOpLight and 118.9 for MemOp-
LightNoYellow. The global satisfaction also drops from 57%
to 52%.

If yellow containers are not reclaimed, there are fewer
containers to reclaim, so red containers can less improve their
performance. Moreover, yellow containers could need a lot of
memory to become green. For these reasons, the yellow state
is important and the performance results proved it.

VI. RELATED WORK

Since MemOpLight scales memory according to containers
needs, we relate our work to auto-scaling. Auto-scaling con-



sists in adding or removing resources or replicas to follow
application needs.

Products with auto-scaling already exist [45], [46], [47],
[48], [49]. The majority of the existing approaches use hori-
zontal scaling (i.e. add or delete a VM or a container).

Amazon’s approach is particularly relevant, because it sup-
ports vertical scaling, i.e., giving to or taking resources from
a VM or a container [45]. Compared to our solution, Amazon
focus on all resources. Allocated resources can be modified
dynamically thanks to prediction. This dynamic scaling will
add or remove resources to maintain their use at fixed levels.
The predictive scaling analyzes up to 14 days of a metric use
and is able to make predictions 2 days in the future. The pre-
diction grain is one hour. This auto scaling will add or delete
resources to conform with the prediction. If the prediction was
too weak the dynamic scaling will be activated. The predictive
scaling is based on machine learning. MemOpLight can extend
this scaling in case of memory pressure or to increase precision
since it activates each second.

In research, auto-scaling also exist [50], [51], [52], [53].
Some use horizontal scaling [50], [52]. Lorido-Botran et al.
do horizontal scaling for containers [51]. They monitor the
requests received by their web application during a given
period. They analyze and predict the number of requests to
come during the next period. Then, they compute the number
of containers needed to face those requests. Our approach can
extend theirs by adding memory scaling to horizontal scaling.

Dupont et al. base their approach on MAPE-K loop [54].
Their approach is innovative in the way that, when a peak
of load occurs, they scale the software running by either
add/remove function (e.g. security features, logging, etc.) or
increase/decrease quality of execution (e.g. decreasing video
quality). Their work can be related to us in the sense that we
do not scale horizontally or vertically, we just do better with
what we have.

Carver et al. focus on containers [55]. Since, under memory
pressure, all memory cgroups are reclaimed they propose
to modify Linux memory reclamation algorithm, to target
first the least recently active container. This solution avoids
performance drop of active containers because they are not
reclaimed anymore. As they do not take into account applica-
tion feedback, it is possible that a green container is always
recently activated and thus, never gives up its memory under
their solution. MemOpLight could be used in combination
with this solution to decide from which green container the
kernel should reclaim memory based on the activity.

Compared to all these works, ours is unique in the way that
we ensure container satisfaction. MemOpLight is also original
in the way that it bases its reclaim on containers’ performance
as reported by probes. Our mechanism is implemented into the
Linux kernel and profits from a global view of resources usage,
compared to user space solutions which only have access to
the application resources usage.

VII. CONCLUSION AND FUTURE WORK

In this paper, we showed that current Linux mechanisms
do not combine memory consolidation and memory perfor-
mance isolation. By default, there is no memory performance
isolation. Memory consolidation is only partially effective.
Memory performance isolation can be achieved, at the expense
of memory consolidation, using the max and soft limits.

We presented MemOpLight to provide memory consolida-
tion. An application probe gives information about a con-
tainer’s satisfaction to the kernel. The kernel reacts by re-
allocating memory in favor of unsatisfied containers, without
overly depriving the others. Evaluation shows that containers
are satisfied more often thanks to memory consolidation.

In future work, we will test MemOpLight with a real
web server application. We also plan to modify the probe to
compute an average on feedback instead of giving an instant
one. Another perspective is to be able to estimate the WS
size of containers by using an application probe. Indeed,
it is possible to reclaim memory from a container until it
indicates it has “bad” performance. The memory footprint
before the transition from “good” performance to “bad” one
equals approximately the WS size. We also plan to scale other
resources (e.g. CPU time or disk bandwidth) according to
containers needs.

REFERENCES

[1] Y. Xing and Y. Zhan, “Virtualization and Cloud Computing,” in
Future Wireless Networks and Information Systems, Y. Zhang, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, vol. 143,
pp. 305–312. [Online]. Available: http://link.springer.com/10.1007/
978-3-642-27323-0_39

[2] Amazon, “Amazon Compute Service Level Agreement.” [Online].
Available: https://aws.amazon.com/compute/sla/?nc1=h_ls

[3] Microsoft, “SLA summary for Azure services.” [Online]. Available:
https://azure.microsoft.com/en-us/support/legal/sla/summary/

[4] OVH, “CONDITIONS PARTICULIÈRES DU SERVICE OVH
PUBLIC CLOUD.” [Online]. Available: https://www.ovh.com/fr/
support/documents_legaux/contractPartOVHCloudFr.pdf

[5] KVM, “Automatic Ballooning,” 2013. [Online]. Available: https:
//www.linux-kvm.org/page/Projects/auto-ballooning

[6] I. Mammedov, “Features/CPUHotplug,” Jan. 2017. [Online]. Available:
https://wiki.qemu.org/Features/CPUHotplug

[7] Amazon, “Amazon Elastic Container Service.” [Online]. Available:
https://aws.amazon.com/ecs/?nc1=h_ls

[8] Microsoft, “Microsoft Web App for Containers.” [Online]. Available:
https://azure.microsoft.com/en-us/services/app-service/containers/

[9] Alibaba, “Alibaba Container Service.” [Online]. Avail-
able: https://www.alibabacloud.com/product/container-service?spm=
a2c5t.10695662.1996646101.searchclickresult.55a3212bnXyv1v

[10] OVH, “OVH Kubernetes.” [Online]. Available: https://www.ovh.com/fr/
kubernetes/

[11] Docker Inc., “What is a Container?” [Online]. Available: https:
//www.docker.com/resources/what-container

[12] The kernel development community, “Concepts overview.” [On-
line]. Available: https://www.kernel.org/doc/html/latest/admin-guide/
mm/concepts.html

[13] F. Laniel, D. Carver, J. Sopena, F. Wajsburt, J. Lejeune, and M. Shapiro,
“Highlighting the Container Memory Consolidation Problems in Linux,”
in 2019 IEEE 18th International Symposium on Network Computing
and Applications (NCA). Cambridge, MA, USA: IEEE, Sep. 2019, pp.
1–4. [Online]. Available: https://ieeexplore.ieee.org/document/8935034/

[14] B. Gregg, “Working Set Size Estimation,” Feb. 2018. [Online].
Available: http://www.brendangregg.com/wss.html



[15] V. Nitu, A. Kocharyan, H. Yaya, A. Tchana, D. Hagimont,
and H. Astsatryan, “Working Set Size Estimation Techniques in
Virtualized Environments: One Size Does not Fit All,” Proceedings
of the ACM on Measurement and Analysis of Computing Systems,
vol. 2, no. 1, pp. 1–22, Apr. 2018. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=3203302.3179422

[16] J. Weiner, “PSI - Pressure Stall Information,” Apr. 2018. [Online].
Available: https://www.kernel.org/doc/html/latest/accounting/psi.html

[17] K. Hiroyu, “Cgroup And Memory Resource Controller,” Nov.
2008. [Online]. Available: https://www.static.linuxfound.org/jp_uploads/
seminar20081119/CgroupMemcgMaster.pdf

[18] Rami Rosen, “Namespace and cgroups, the basis of Linux containers,”
Seville, Spain, Feb. 2016. [Online]. Available: https://www.netdevconf.
org/1.1/proceedings/slides/rosen-namespaces-cgroups-lxc.pdf

[19] Linux, “Memory Resource Controller.” [Online]. Available: https:
//www.kernel.org/doc/Documentation/cgroup-v1/memory.txt

[20] Zhenyun Zhuang, Cuong Tran, J. Weng, H. Ramachandra, and
B. Sridharan, “Taming memory related performance pitfalls in
linux Cgroups,” in 2017 International Conference on Computing,
Networking and Communications (ICNC). Silicon Valley, CA,
USA: IEEE, Jan. 2017, pp. 531–535. [Online]. Available: http:
//ieeexplore.ieee.org/document/7876184/

[21] P. J. Denning, “The working set model for program behavior,” in
Proceedings of the ACM symposium on Operating System Principles -
SOSP ’67. Not Known: ACM Press, 1967, pp. 15.1–15.12. [Online].
Available: http://portal.acm.org/citation.cfm?doid=800001.811670

[22] “mysql.” [Online]. Available: https://dev.mysql.com/doc/refman/5.7/en/
[23] Alexey Kopytov, “sysbench.”
[24] L. A. Barroso, J. Clidaras, and U. Hölzle, “The Datacenter

as a Computer: An Introduction to the Design of Warehouse-
Scale Machines, Second edition,” Synthesis Lectures on
Computer Architecture, vol. 8, no. 3, pp. 1–154, Jul. 2013.
[Online]. Available: http://www.morganclaypool.com/doi/abs/10.2200/
S00516ED2V01Y201306CAC024

[25] L. A. Barroso and U. Hölzle, “The Case for Energy-Proportional
Computing,” Computer, vol. 40, no. 12, pp. 33–37, Dec. 2007. [Online].
Available: http://ieeexplore.ieee.org/document/4404806/

[26] D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: eliminating
server idle power,” ACM SIGARCH Computer Architecture News,
vol. 37, no. 1, p. 205, Mar. 2009. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2528521.1508269

[27] H. Liu, “A Measurement Study of Server Utilization in Public
Clouds,” in 2011 IEEE Ninth International Conference on Dependable,
Autonomic and Secure Computing. Sydney, Australia: IEEE, Dec.
2011, pp. 435–442. [Online]. Available: http://ieeexplore.ieee.org/
document/6118751/

[28] D. P. Bovet and M. Cesati, Understanding the Linux kernel: from I/O
ports to process management, 3rd ed. Beijing: O’Reilly, 2006, oCLC:
255008440.

[29] Francis Laniel, “Thesis_linux,” 2020. [Online]. Available: https:
//gitlab.com/eiffel_thesis/thesis_software/thesis_linux

[30] J. Kephart and D. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003. [Online]. Available:
http://ieeexplore.ieee.org/document/1160055/

[31] Amazon, “Amazon EC2 Pricing,” Tech. Rep. [Online]. Available:
https://aws.amazon.com/ec2/pricing/on-demand/?nc1=h_ls

[32] Google, “VM instances pricing,” Tech. Rep., Feb. 2020. [Online].
Available: https://cloud.google.com/compute/vm-instance-pricing

[33] F. Laniel, “Thesis_experiments,” 2020. [Online]. Available: https:
//gitlab.com/eiffel_thesis/thesis_software/thesis_experiments

[34] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Site reliability engi-
neering: how Google runs production systems, 2016, oCLC: 930683030.

[35] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot,
E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum,
O. Richard, C. Pérez, F. Quesnel, C. Rohr, and L. Sarzyniec, “Adding
virtualization capabilities to the Grid’5000 testbed,” in Cloud Computing
and Services Science, ser. Communications in Computer and Information
Science, I. I. Ivanov, M. van Sinderen, F. Leymann, and T. Shan, Eds.
Springer International Publishing, 2013, vol. 367, pp. 3–20.

[36] F. Laniel, “Thesis_g5kscripts,” 2019. [Online]. Available: https:
//gitlab.com/eiffel_thesis/thesis_software/thesis_g5kscripts

[37] Intel, “Intel Xeon Processor gold 6130,” 2017. [On-
line]. Available: https://ark.intel.com/content/www/us/en/ark/products/
120492/intel-xeon-gold-6130-processor-22m-cache-2-10-ghz.html

[38] Qemu, “Qemu,” May 2019. [Online]. Available: https://wiki.archlinux.
org/index.php/QEMU

[39] Docker, “Docker CE.” [Online]. Available: https://github.com/docker/
docker-ce

[40] “docker-py.” [Online]. Available: https://github.com/docker/docker-py
[41] F. Laniel, “Thesis_scripts,” 2020. [Online]. Available: https://gitlab.

com/eiffel_thesis/thesis_software/thesis_scripts
[42] ——, “Thesis_sysbench,” 2019. [Online]. Available: https://gitlab.com/

eiffel_thesis/thesis_software/thesis_sysbench
[43] ——, “Thesis_images,” 2020. [Online]. Available: https://gitlab.com/

eiffel_thesis/thesis_software/thesis_images
[44] Greg Kroah-Hartman, “Linux 4.19,” Oct. 2018. [Online]. Available:

https://lkml.org/lkml/2018/10/22/184
[45] Amazon, “AWS Auto Scaling Guide de l’utilisateur,”

Amazon, Tech. Rep., Nov. 2018. [Online]. Avail-
able: https://docs.aws.amazon.com/fr_fr/autoscaling/plans/userguide/
as-plans-ug.pdf#auto-scaling-getting-started

[46] J. Barr, “New AWS Auto Scaling – Uni-
fied Scaling For Your Cloud Applications,” Jan.
2018. [Online]. Available: https://aws.amazon.com/fr/blogs/aws/
aws-auto-scaling-unified-scaling-for-your-cloud-applications/

[47] “Microsoft Azure: Autoscaling,” May 2017. [Online]. Available: https://
docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling

[48] “Google Cloud : Équilibrage de charge et scaling,” Dec.
2018. [Online]. Available: https://cloud.google.com/compute/docs/
load-balancing-and-autoscaling#policies

[49] “kubernetes/autoscaler,” Feb. 2019. [Online]. Available: https://github.
com/kubernetes/autoscaler/blob/master/cluster-autoscaler/FAQ.md

[50] M. Kriushanth and L. Arockiam, “Load balancer behavior identifier
(LoBBI) for dynamic threshold based auto-scaling in cloud,” in 2015
International Conference on Computer Communication and Informatics
(ICCCI). Coimbatore, India: IEEE, Jan. 2015, pp. 1–5. [Online].
Available: http://ieeexplore.ieee.org/document/7218115/

[51] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A Review
of Auto-scaling Techniques for Elastic Applications in Cloud
Environments,” Journal of Grid Computing, vol. 12, no. 4, pp.
559–592, Dec. 2014. [Online]. Available: http://link.springer.com/10.
1007/s10723-014-9314-7

[52] L. R. Moore, K. Bean, and T. Ellahi, “Transforming reactive
auto-scaling into proactive auto-scaling,” in Proceedings of the 3rd
International Workshop on Cloud Data and Platforms - CloudDP
’13. Prague, Czech Republic: ACM Press, 2013, pp. 7–12. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2460756.2460758

[53] J. Rao, X. Bu, C.-Z. Xu, and K. Wang, “A Distributed Self-Learning
Approach for Elastic Provisioning of Virtualized Cloud Resources,”
in 2011 IEEE 19th Annual International Symposium on Modelling,
Analysis, and Simulation of Computer and Telecommunication Systems.
Singapore, Singapore: IEEE, Jul. 2011, pp. 45–54. [Online]. Available:
http://ieeexplore.ieee.org/document/6005367/

[54] S. Dupont, J. Lejeune, F. Alvares, and T. Ledoux, “Experimental
Analysis on Autonomic Strategies for Cloud Elasticity,” in 2015
International Conference on Cloud and Autonomic Computing.
Boston, MA, USA: IEEE, Sep. 2015, pp. 81–92. [Online]. Available:
http://ieeexplore.ieee.org/document/7312143/

[55] D. Carver, J. Sopena, and S. Monnet, “ACDC: Advanced consolidation
for dynamic containers,” in 2017 IEEE 16th International Symposium
on Network Computing and Applications (NCA). Cambridge, MA:
IEEE, Oct. 2017, pp. 1–8. [Online]. Available: http://ieeexplore.ieee.
org/document/8171363/



Tr
a
n
sa
ct
io
n
s

(a) Limits not set

Tr
a
n
sa
ct
io
n
s

(b) Max limits

Tr
a
n
sa
ct
io
n
s

(c) Soft limits

Tr
a
n
sa
ct
io
n
s

(d) MemOpLight

Fig. 5: Average throughput of eight containers during each
phase with different mechanisms

(a) Limits not set

(b) Max limits

(c) Soft limits

(d) MemOpLight

Fig. 6: Containers’ colors during the 5th run with different
mechanisms


