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ABSTRACT 62 

Admixture is a fundamental evolutionary process that has influenced genetic patterns in numerous 63 

species. Maximum-likelihood approaches based on allele frequencies and linkage-disequilibrium have 64 

been extensively used to infer admixture processes from dense genome-wide datasets mostly in human 65 

populations. Nevertheless, complex admixture histories, beyond one or two pulses of admixture, remain 66 

methodologically challenging to reconstruct, especially when large datasets are unavailable. We develop 67 

an Approximate Bayesian Computations (ABC) framework to reconstruct complex admixture histories 68 

from independent genetic markers. We built the software package MetHis to simulate independent SNPs 69 

in a two-way admixed population for scenarios with multiple admixture pulses, or monotonically 70 

decreasing or increasing admixture at each generation; drawing model-parameter values from prior 71 

distributions set by the user. For each simulated dataset, we calculate 24 summary statistics describing 72 

genetic diversity and moments of individual admixture fraction. We coupled MetHis with existing ABC 73 

algorithms and investigate the admixture history of an African American and a Barbadian population. 74 

Results show that Random-Forest ABC scenario-choice, followed by Neural-Network ABC posterior 75 

parameter estimation, can distinguish most complex admixture scenarios and provide accurate model-76 

parameter estimations. For both admixed populations, we find that monotonically decreasing 77 

contributions over time, from the European and African sources, explain the observed data more 78 

accurately than multiple admixture pulses. Furthermore, we find contrasted trajectories of introgression 79 

decay from the European and African sources between the two admixed populations. This approach will 80 

allow for reconstructing detailed admixture histories in numerous populations and species, particularly 81 

when maximum-likelihood methods are intractable. 82 

 83 
   84 
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INTRODUCTION 85 

 86 

Hybridization between species and admixture between populations are powerful mechanisms 87 

influencing biological evolution. Genetic admixture patterns have thus been extensively studied 88 

to understand migrations and admixture-related adaptation (HELICONIUS GENOME CONSORTIUM 89 

2012; HELLENTHAL et al. 2014; SKOGLUND et al. 2015; BRANDENBURG et al. 2017). The 90 

increasing availability of genome-wide data in numerous species, and particularly humans (e.g. 91 

1000 GENOMES PROJECT CONSORTIUM 2015), further provides unprecedented opportunities to 92 

understand the genomic architecture of admixture, characterize the contribution of admixture 93 

to adaptive evolution, and infer demographic histories of admixture from genetic data. 94 

Based on a long history of statistical developments aimed at investigating admixture patterns 95 

from genetic data (BERNSTEIN 1931; CAVALLI-SFORZA and BODMER 1971; CHAKRABORTY and 96 

WEISS 1988; LONG 1991; FALUSH et al. 2003; PATTERSON et al. 2012), population geneticists 97 

recently developed methods to reconstruct the genomic architecture of admixed segments 98 

deriving from each source population, and to describe admixture linkage-disequilibrium (LD) 99 

patterns (SANKARARAMAN et al. 2008; PRICE et al. 2009; LAWSON et al. 2012; MAPLES et al. 100 

2013; GUAN 2014; SALTER-TOWNSHEND and MYERS 2019). In Homo sapiens, these methods 101 

have been extensively used to infer populations’ ancestral genetic origins and map local 102 

ancestry along individual genomes, often for disease-mapping purposes (e.g. SHRINER et al. 103 

2011). Furthermore, by coupling admixture mapping approaches with natural selection scans, 104 

sometimes accounting for ancient and recent demographic history, it is possible to identify 105 

signatures of adaptive introgression or post-admixture selection having influenced genomic 106 

diversity patterns in human populations (JEONG et al. 2014; RACIMO et al. 2015; PATIN et al. 107 

2017).  108 

In this context, several maximum-likelihood approaches have been developed to estimate the 109 

parameters of admixture models (time of admixture events and their associated intensities) that 110 

vastly improved our understanding of detailed admixture histories in particular for human 111 

populations (e.g. PICKRELL and PRITCHARD 2012; HELLENTHAL et al. 2014). The two classes 112 

of methods most extensively deployed in the past rely, respectively, on the moments of allelic 113 

frequency spectrum divergences among populations (REICH et al. 2009; PATTERSON et al. 2012; 114 

PICKRELL and PRITCHARD 2012; LIPSON et al. 2013), and on admixture LD patterns (POOL and 115 

NIELSEN 2009; MOORJANI et al. 2011; GRAVEL 2012; LOH et al. 2013; HELLENTHAL et al. 2014; 116 

CHIMUSA et al. 2018). They allow for identifying admixture events in a given set of populations, 117 
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estimating admixture fractions, and inferring time since each pulse of admixture. Notably, 118 

Gravel (GRAVEL 2012) developed an approach to fit the observed curves of admixture LD decay 119 

to those theoretically expected under admixture models involving one or two possible pulses of 120 

admixture from multiple source populations. This major advance significantly improved our 121 

ability to reconstruct detailed admixture histories using genetic data, for instance among several 122 

populations descending from the Transatlantic Slave Trade (TAST) across the Americas (e.g. 123 

MORENO-ESTRADA et al. 2013; BAHARIAN et al. 2016; FORTES-LIMA et al. 2017).  124 

Despite the unquestionable importance of these previous developments, existing admixture 125 

history inference methods somewhat suffer from inherent limitations acknowledged by the 126 

authors (GRAVEL 2012; LIPSON et al. 2013; HELLENTHAL et al. 2014). First, most likelihood 127 

approaches can only consider one or two pulses of admixture in the history of the hybrid 128 

population. Nevertheless, admixture processes in numerous species are known to be often much 129 

more complex, involving multiple admixture-pulses or periods of recurring admixture over time 130 

from each source population separately. It is not yet clear how these methods might behave 131 

when they can consider only simplified versions of the true admixture history underlying the 132 

observed data (GRAVEL 2012; LIPSON et al. 2013; LOH et al. 2013; HELLENTHAL et al. 2014; 133 

MEDINA et al. 2018; NI et al. 2019). Second, while it is possible to compare maximum-134 

likelihood values obtained from fitting one or two admixture pulses to the observed data as a 135 

guideline to find the “best” scenario, formal statistical comparison of model posterior 136 

probabilities is often out of reach of these approaches (GRAVEL 2012; FOLL et al. 2015; NI et 137 

al. 2019). Finally, admixture-LD methods, in particular, rely on fine mapping of local ancestry 138 

segments in individual genomes and thus require substantial amounts of genomic data (typically 139 

several hundred thousand to several millions of SNPs), and, sometimes, accurate phasing. 140 

These still represent major challenges for most species, including humans.  141 

To overcome these limitations, Approximate Bayesian Computation (ABC) approaches 142 

(TAVARÉ et al. 1997; PRITCHARD et al. 1999; BEAUMONT et al. 2002) represent a promising 143 

class of methods to infer complex admixture histories from observed genetic data. Indeed, ABC 144 

has been successfully used previously in different species (including humans), and using 145 

different types of genetic data, to formally test alternative demographic scenarios hypothesized 146 

to be underlying observed genetic patterns, and to estimate, a posteriori, the parameters of the 147 

winning models (VERDU et al. 2009; BOITARD et al. 2016; FRAIMOUT et al. 2017).  148 
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ABC model-choice and posterior parameter inference rely on comparing observed summary 149 

statistics to the same set of statistics, calculated from a usually large number of genetic 150 

simulations explicitly parametrized by the user, and produced under competing demographic 151 

scenarios (BEAUMONT et al. 2002; WEGMANN et al. 2009; BLUM and FRANÇOIS 2010; CSILLÉRY 152 

et al. 2012; PUDLO et al. 2016; SISSON et al. 2018). Each simulation, and corresponding vector 153 

of summary statistics, is produced using model-parameters drawn randomly from prior 154 

distributions informed adequately by the user. Therefore, the flexibility of ABC relies mostly 155 

on explicit genetic data simulations set by the user. This makes ABC a priori particularly well 156 

suited to investigate highly complex historical admixture scenarios for which likelihood 157 

functions are very often intractable, but for which simulation of genetic data is feasible 158 

(PRITCHARD et al. 1999; VERDU and ROSENBERG 2011; GRAVEL 2012). However, ABC has 159 

until now seldom been used to investigate admixture processes beyond a single admixture pulse 160 

or constant migrations (BUZBAS and ROSENBERG 2015; BUZBAS and VERDU 2018).  161 

In this paper, we show how ABC can be successfully applied to reconstruct, from genetic data, 162 

highly complex admixture histories beyond exploring models with a single or two pulses of 163 

admixture. In particular, we focus on evaluating how a relatively limited number of independent 164 

SNPs can be used for accurately distinguishing major classes of historical admixture models, 165 

such as multiple admixture-pulses versus recurring increasing or decreasing admixture over 166 

time, and for conservative posterior parameter inference under the winning model. 167 

Furthermore, we show that the quantiles and higher moments of the distribution of admixture 168 

fractions in the admixed population are highly informative summary-statistics for ABC model-169 

choice and posterior-parameter estimation, as expected analytically (VERDU and ROSENBERG 170 

2011; GRAVEL 2012; BUZBAS and VERDU 2018).  171 

In order to do so, and since genetic data simulation under highly complex admixture models is 172 

not trivial using existing coalescent approaches (WAKELEY et al. 2012), we propose a novel ad 173 

hoc forward-in-time genetic data simulator and a set of parameter-generator and summary-174 

statistics calculation tools embedded in an open source C software package called MetHis. It is 175 

adapted to conduct primarily ABC inferences with existing ABC tools implemented in the R 176 

(R DEVELOPMENT CORE TEAM 2017) packages abc (CSILLÉRY et al. 2012) and abcrf (PUDLO et 177 

al. 2016; RAYNAL et al. 2019).  178 

We exemplify our approach by reconstructing the complex admixture histories underlying 179 

observed genetic patterns separately for the African American (ASW) and Barbadian (ACB) 180 
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populations from the 1000 Genomes Project Phase 3 (1000 GENOMES PROJECT CONSORTIUM 181 

2015). Both populations are known to be admixed populations of European and African descent 182 

in the context of the TAST (e.g. GRAVEL 2012; BAHARIAN et al. 2016; MARTIN et al. 2017). 183 

We find admixture histories much more complex than previously inferred for these populations 184 

and further reveal the diversity of admixture histories undergone by populations descending 185 

from the TAST in the Americas.  186 

 187 

  188 
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MATERIAL AND METHODS 189 

We aimed at evaluating how ABC model-choice and posterior parameter estimation could 190 

allow reconstructing highly complex historical admixture processes using independent genome-191 

wide SNPs. To do so, we chose to focus on the recent admixture history of populations of 192 

African and European ancestry, descending from European colonization and the TAST in the 193 

Americas. This case-study represents an appropriate setting for empirically testing our ABC 194 

approach, since this period of history starting in the late 15th century has been extensively 195 

studied in population genetics based on the same publicly available datasets.  196 

First, we describe the targeted case-study population and genetic datasets. Second, we present 197 

in detail the complex admixture processes here investigated and the associated demographic 198 

parameters. Third, we describe the novel simulation and summary statistics calculation software 199 

package called MetHis, here proposed to investigate these admixture processes. Fourth, we 200 

detail the Random-Forest ABC procedure used for scenario-choice inference and the 201 

performance of this approach both in general for the tested models and specifically for the real 202 

data here investigated. Finally, we detail the Neural Network ABC procedure deployed to 203 

estimate posterior parameter distributions, its parameterization, and the cross-validation 204 

procedures conducted to evaluate its power and accuracy. 205 

Population Genetics Dataset 206 

We considered the admixture histories of the African American (ASW) and Barbadian (ACB) 207 

population samples from the 1000 Genomes Project Phase 3 (1000 GENOMES PROJECT 208 

CONSORTIUM 2015). Previous studies identified, within the same database, the West European 209 

Great-Britain (GBR) and the West African Yoruba (YRI) population samples as reasonable 210 

proxies for the genetic sources of the admixture of both ACB and ASW populations, 211 

consistently with the macro-history of the TAST in the former British colonial empire in Africa 212 

and the Americas (BAHARIAN et al. 2016; MARTIN et al. 2017; VERDU et al. 2017).  213 

We excluded from our sample set, individuals previously identified to be more closely related 214 

than first-degree cousins in the four populations separately (VERDU et al. 2017). We also 215 

excluded the three ASW individuals showing traces of Native American or East-Asian 216 

admixture beyond that from Europe and Africa, as reported in previous studies (MARTIN et al. 217 

2017). This allows us to consider only two source populations for the admixture history of both 218 

admixed populations investigated here. Among the remaining individuals we randomly drew 219 
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50 individuals in the targeted admixed ACB and ASW populations, respectively, and included 220 

the remaining 90 YRI individuals and 89 GBR individuals.  221 

We extracted biallelic polymorphic sites (SNPs as defined by the 1000 Genomes Project Phase 222 

3) from the merged ACB+ASW+GBR+YRI data set, excluding singletons. Furthermore, we 223 

focused only on independent SNPs by LD pruning the data set using the PLINK (PURCELL et 224 

al. 2007) --indep-pairwise option with a sliding window of 100 SNPs, moving in increments of 225 

10 SNPs, and r2 threshold of 0.1 (ALEXANDER et al. 2009). Finally, we randomly drew 100,000 226 

SNPs from the remaining SNP set.  227 

Competing complex admixture scenarios 228 

We aimed at investigating comprehensive admixture histories with, after the original 229 

foundation of the admixed population, possibly multiple pulses (>1) of admixture, or recurring 230 

monotonically increasing or decreasing admixture, from each source population separately. To 231 

do so, we chose to work under the general mechanistic model presented in Verdu and Rosenberg 232 

(VERDU and ROSENBERG 2011), henceforth called the VR2011 model, derived from Ewens and 233 

Spielman (EWENS and SPIELMAN 1995). Briefly (Supplementary Figure S1), the VR2011 234 

general model considers, for diploid organisms, a panmictic admixture process, discrete in 235 

generations, where M source populations Sm contribute to the hybrid population H at the 236 

following generation g + 1 with proportions 𝑠𝑚,𝑔 each in [0,1], and where the hybrid population 237 

H contributes to itself with proportion ℎ𝑔 in [0,1] with ℎ0 = 0, satisfying, for each value of g ≥ 238 

0, ∑ 𝑠𝑚,𝑔 + ℎ𝑔𝑚∈[1,𝑀] =1.  239 

Here, we adapted the two source-populations version of the general VR2011 (M = 2), and 240 

define, next, the nine competing complex admixture scenarios considered to reconstruct the 241 

history of introgression from Africa and Europe into the gene-pool of the ACB and ASW 242 

admixed populations (see above), separately (Figure 1). 243 

Foundation of the admixed population H 244 

For all scenarios (Figure 1, Table 1) we chose a fixed time for the foundation (generation 0, 245 

forward-in-time) of population H occurring 21 generations before present, with admixture 246 

proportions sAfr,0 and sEur,0 from the African and the European sources respectively, with sAfr,0 247 

+ sEur,0 = 1, and sAfr,0 in [0,1]. This corresponds to the first arrival of European permanent settlers 248 

in the Americas and Caribbean in the late 15th and early 16th centuries, considering 20 or 25 249 
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years per generation and the sampled generation born in the 1980s. Note that simulations 250 

considering a parameter sAfr,0 close to 0, or alternatively 1, correspond to foundations of the 251 

population H from either one source population, therefore delaying the first “real” genetic 252 

admixture event to the next, more recent, demographic event. Following foundation, we 253 

consider three alternative scenarios for the admixture contribution of each source population S, 254 

African or European in our case, separately.  255 

Admixture-pulse(s) scenarios 256 

For a given source population S, African (Afr) or European (Eur), scenarios S-2P consider two 257 

possible pulses of admixture into population H occurring respectively at time tS,p1 and tS,p2 258 

distributed in [1,20] with tS,p1 ≠ tS,p2, with associated admixture proportion sS,tS,p1 and sS,tS,p2 in 259 

[0,1] satisfying, at all times t, ∑ 𝑠𝑆,𝑡𝑆∈(𝐴𝑓𝑟,𝐸𝑢𝑟) ≤1  (Figure 1, Table 1). Note that for one of 260 

either sS,t parameter values close to 0, the two-pulse scenarios are equivalent to single pulse 261 

scenarios after the foundation of H. Furthermore, for both sS,t values close to 0, scenarios S-2P 262 

are nested with scenarios where only the founding admixture pulse 21 generations ago is the 263 

source of genetic admixture in population H. Alternatively, sS,t parameter values close to 1 264 

consider a virtual complete genetic replacement of population H by source population S at that 265 

time. Finally, certain S-2P scenarios with two consecutive pulses from a given source S (tS,p1 = 266 

tS,p2 - 1), may be strongly resembling single-pulse scenarios (after foundation). 267 

Recurring decreasing admixture scenarios 268 

For a given source population S, scenarios S-DE consider a recurring monotonically decreasing 269 

admixture from source population S at each generation between generation 1 (after foundation 270 

at generation 0) and generation 20 (sampled population) (Figure 1, Table 1). In these scenario, 271 

sS,g, with g in [1..20], are the discrete numerical solutions of a rectangular hyperbola function 272 

over the 20 generations of the admixture process until present as described in Supplementary 273 

Note S1. In brief, this function is determined by parameter uS, the “steepness” of the curvature 274 

of the decrease, in [0,1/2], sS,1, the admixture proportion from source population S at generation 275 

1 (after foundation), in [0,1], and sS,20, the last admixture proportion in the present, in [0,sS,1/3]. 276 

Note that we chose the boundaries for sS,20 in order to reduce the parameter space and nestedness 277 

among competing scenarios, and explicitly force scenarios S-DE into a substantially decreasing 278 

admixture process. Indeed, defining sS,20 in [0,sS,1] instead would have also allowed for both 279 

decreasing admixture processes and relatively constant recurring admixture processes. 280 

Furthermore, note that parameter uS values close to 0 create pulse-like scenarios occurring 281 
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immediately after foundation of intensity sS,1, followed by constant recurring admixture at each 282 

generation until present of intensity sS,20. Alternatively, parameter uS values close to 1/2 create 283 

scenarios with a linearly decreasing admixture between sS,1 and sS,20 from source population S 284 

at each generation after the foundation of population H. 285 

Recurring increasing admixture scenarios 286 

Finally, for a given source population S, scenarios S-IN mirrors the S-DE scenarios by 287 

considering instead a recurring monotonically increasing admixture from source population S 288 

(Figure 1, Table 1). Here, sS,g, with g in [1..20], are the discrete numerical solutions of the 289 

same function as in the S-DE decreasing scenarios (see above), flipped over time between 290 

generation 1 and 20. In these scenarios, sS,20 is defined in [0,1] and sS,1 in [0,sS,20/3], and u in 291 

[0,1/2] parametrizes the “steepness” of the curvature of the increase. Note that in this case, 292 

parameter u values close to 0 create pulse-like scenarios occurring in the present of intensity 293 

sS,20, preceded by constant recurring admixture of intensity sS,1 at each generation since 294 

foundation. Alternatively, parameter uS values close to 1/2 create scenarios with a linearly 295 

increasing admixture between sS,1 and sS,20 from source population S at each generation after 296 

the foundation of population H. 297 

Combining admixture scenarios from either source populations 298 

We combine these three scenarios to obtain nine alternative scenarios with two source 299 

populations, African (Afr) and European (Eur) respectively, for the admixture history of 300 

population H (Figure 1, Table 1), the ASW or ACB alternatively, with the only condition that, 301 

at each generation g in [1..20], parameters satisfy sAfr,g + sEur,g + hg = 1, with hg, in [0,1], being 302 

the remaining contribution of the admixed population H to itself at the generation g. Four 303 

scenarios (Afr2P-EurDE, Afr2P-EurIN, AfrDE-Eur2P, and AfrIN-Eur2P) consider a mixture 304 

of pulse-like and recurring admixture from each source. Three scenarios (Afr2P-Eur2P, AfrDE-305 

EurDE, and AfrIN-EurIN), consider symmetrical classes of admixture scenarios from either 306 

source. Two scenarios (AfrIN-EurDE and AfrDE-EurIN) consider mirroring recurring 307 

admixture processes. Importantly, this scenario design considers nested historical scenarios in 308 

specific parts of the parameter space, as exemplified above. 309 

Forward-in-time simulations with MetHis 310 

Simulation of genome-wide independent SNPs under highly complex admixture histories is 311 

often not trivial under the coalescent and using classical existing software (WAKELEY et al. 312 
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2012). In this context, we developed MetHis, a C open-source software package available at 313 

https://github.com/romain-laurent/MetHis, to simulate large amounts of genetic data under the 314 

two-source populations VR2011 model and calculate summary statistics of interest to 315 

population geneticists interested in complex admixture processes. MetHis, in its current form, 316 

can be used to simulate any number of independent SNPs in the admixed population H. 317 

However, MetHis does not allow simulating the source populations for the admixture process. 318 

Instead, this can be done efficiently using coalescent-based simulations with existing software 319 

such as fastsimcoal2 (EXCOFFIER and FOLL 2011; EXCOFFIER et al. 2013), or other forward-in-320 

time genetic data simulators such as SLIM v3 (HALLER and MESSER 2019).  321 

Simulating source populations 322 

Here, we wanted to focus our investigation specifically on the admixture process undergone by 323 

the admixed population descending from the TAST. Therefore, we made several ad hoc 324 

simplification choices for simulating source population genetic data under the nine competing 325 

models described next. 326 

We consider that the African and European populations at the source of the admixture processes 327 

are very large populations at the drift-mutation equilibrium, accurately represented by the 328 

Yoruban YRI and British GBR datasets here investigated. Therefore, we first build two separate 329 

datasets each comprising 20,000 haploid genomes of 100,000 independent SNPs, each SNP 330 

being randomly drawn in the site frequency spectrum (SFS) observed for the YRI and GBR 331 

datasets respectively. These two datasets are used as fixed gamete reservoirs for the African 332 

and European source population datasets separately, at each generation of the forward-in-time 333 

admixture process. From these reservoirs, at each generation separately, we build an effective 334 

individual gene-pool of diploid size Ng (see below), by randomly pairing gametes avoiding 335 

selfing. These virtual source populations provide the parental pool for simulating individuals in 336 

the admixed population H, at each generation separately. Thus, while our gamete reservoirs are 337 

fixed over the 21 generations of the admixture processes here considered, the parental genetic 338 

pools are randomly built anew at each generation of the admixture process. 339 

Simulating the admixed population 340 

At each generation, MetHis performs simple Wright-Fisher (FISHER 1922; WRIGHT 1931) 341 

forward-in-time simulations, individual-centered, in a panmictic admixed population H of 342 

diploid effective size Ng. For a given individual in the hybrid population at the following 343 
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generation (g + 1), MetHis independently draws each parent from the source populations with 344 

probability 𝑠𝑆,𝑔 (Figure 1, Table 1), or from the hybrid population with probability ℎ𝑔, 345 

randomly builds a haploid gamete of 100,000 independent SNPs for each parent, and pairs the 346 

two constructed gametes to create the new individual. Here, we decided to neglect mutation 347 

over the 21 generations of admixture considered. This is reasonable when studying relatively 348 

recent admixture histories. Nevertheless, this will be improved in future versions of the 349 

software, in particular to allow studying much more ancient admixture histories. Finally, while 350 

we chose explicitly to simulate only the individuals in the admixed population H here, note that 351 

future developments of MetHis will allow to also simulate individual genetic data in the source 352 

populations in the same way. 353 

Effective population size in the source and the admixed populations 354 

To focus on the admixture process itself without excessively increasing the parameter space, 355 

we consider, for each nine-competing model, both source populations and the admixed 356 

population H with constant effective population size Ng = 1000 diploid individuals at each 357 

generation. Nevertheless, note that MetHis software readily allows the user to easily 358 

parameterize changes in the effective size of population H at each generation.  359 

Sampling simulated unrelated individuals 360 

After each simulation, we randomly draw individual samples matching sample sizes in our 361 

observed dataset: 90 and 89 individuals respectively from the African and European sources, 362 

and 50 individuals in the admixed population H. We sample individuals until our sample set 363 

contains no individuals related at the 1st degree cousin within each population and between the 364 

admixed population and either source populations, based on explicit parental flagging during 365 

the last 2 generations of the simulations. 366 

Simulating by randomly drawing parameter values from prior distributions 367 

With this implementation of MetHis, we performed 10,000 independent simulations under each 368 

nine competing scenarios described above and in Figure 1, drawing the corresponding model-369 

parameters (pulse-times and associated admixture intensities, “steepness” of the recurring 370 

admixture-increases or decreases and associated initial and final admixture intensities), in prior-371 

distributions detailed in Table 1. Although the user can perform MetHis simulations with an 372 

external parameter list, we readily provide ad hoc scripts in MetHis, which allow to easily 373 

generate parameter lists for a large number of complex admixture scenarios set by the user. 374 
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For the best models identified using Random-Forest ABC model-choice approach (PUDLO et 375 

al. 2016) for the ACB and ASW admixed populations respectively (see Results), we conducted 376 

an additional 90,000 independent simulations with the same parameter priors as in the 10,000 377 

simulations already conducted. Thus, we considered 100,000 simulations for the best scenarios 378 

for the ACB and ASW respectively, to be used for ABC posterior parameter inference (see 379 

below). 380 

Summary Statistics 381 

We considered 24 summary statistics for ABC model-choice and posterior parameter inference, 382 

computed on each simulated dataset with MetHis. Four statistics were strictly within-383 

populations; four statistics were strictly between-populations; and 16 statistics were specifically 384 

calculated to describe the distribution of admixture among individuals within the admixed 385 

population H. Indeed, previous theoretical works have shown that this distribution and all its 386 

moments carried signatures of the underlying complex historical process (VERDU and 387 

ROSENBERG 2011; GRAVEL 2012). Numerous descriptive statistical approaches have been 388 

successfully developed to estimate admixture fractions from genetic data in admixed 389 

populations (e.g. ALEXANDER et al. 2009; PATTERSON et al. 2012; PICKRELL and PRITCHARD 390 

2012). However, most methods remain computationally costly when iterated for large to very 391 

large sets of simulated genetic data. Therefore, only a few previous ABC historical inference 392 

approaches have considered the distribution of admixture fraction as a summary statistics 393 

(BUZBAS and ROSENBERG 2015; BUZBAS and VERDU 2018), although some admixture-related 394 

statistics have been embedded in ABC software packages (CORNUET et al. 2014). 395 

Distribution of admixture fractions as a summary statistic 396 

We estimated individual admixture distribution based on allele-sharing-dissimilarity (ASD) 397 

(BOWCOCK et al. 1994) and multidimensional scaling (MDS) (PASCHOU et al. 2007; PRICE et 398 

al. 2009). For each simulated dataset, we first calculated a pairwise inter-individual ASD matrix 399 

using asd software (https://github.com/szpiech/asd) on all pairs of sampled individuals and all 400 

100,000 independent SNPs. Then we projected in two dimensions this pairwise ASD matrix 401 

with classical unsupervised metric MDS using the cmdscale function R (R DEVELOPMENT CORE 402 

TEAM 2017). We expect individuals in population H to be dispersed along an axis joining the 403 

centroids of the two proxy source populations on the two-dimensional MDS plot. We projected 404 

individuals orthogonally on this axis, and calculate individual’s relative distance to each 405 

centroid. We considered this measure to be an estimate of individual average admixture level 406 
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from either source population. Note that by doing so, some individuals might show “admixture 407 

fractions” higher than one, or lower than zero, as they might be projected on the other side of 408 

the centroid when being genetically close to 100% from one source population or the other. 409 

Under an ABC framework, this is not a difficulty since this may happen also on the real data a 410 

priori, and our goal is to use summary statistics that mimic the observed ones. This individual 411 

admixture estimation method has been shown to be highly concordant with cluster membership 412 

fractions as estimated with ADMIXTURE (ALEXANDER et al. 2009) in real data analyses (e.g. 413 

VERDU et al. 2017). Considering the real data here investigated, we confirm these previous 414 

findings since we obtain a Spearman correlation (calculated using the cor.test function in R), of 415 

rho = 0.950 (p-value < 2.10-16) and rho= 0.977 (p-value < 2.10-16) between admixture estimates 416 

based on ASD-MDS and on ADMIXTURE, for the ACB and ASW respectively 417 

(Supplementary Figure S2).  418 

We used the mean, mode, variance, skewness, kurtosis, minimum, maximum, and all 10%-419 

quantiles of the admixture distribution obtained this way in population H, as 16 separate 420 

summary statistics for further ABC inference.  421 

Within population summary statistics 422 

We calculated SNP by SNP heterozygosities (NEI 1978) using vcftools (DANECEK et al. 2011), 423 

and considered the mean and variance of this quantity across SNPs in the admixed population 424 

as two separate summary statistics for ABC inference. Note that, these quantities are fixed for 425 

each source population, respectively, and thus uninformative in our case study, since source 426 

populations are simulated only once and used for all subsequent simulations under the nine 427 

competing models (see above).  428 

In addition, as we computed the individual pairwise ASD matrix for calculating the distribution 429 

of admixture fraction (see above), we also considered the mean and variance of ASD values 430 

across pairs of individuals within the admixed population H, as two within-population summary 431 

statistics. 432 

Between populations summary statistics 433 

In addition to previous summary statistics, we considered multilocus pairwise FST (WEIR and 434 

COCKERHAM 1984) between population H and each source population respectively, calculated 435 

using vcftools (DANECEK et al. 2011). Note that the FST between the source populations is fixed, 436 

since simulated source populations are themselves fixed (see above), and thus uninformative in 437 
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our case study. Furthermore, we calculated the mean ASD between individuals in population H 438 

and, separately, individuals in either source population. Finally, we computed anew from 439 

Patterson (PATTERSON et al. 2012) the f3 statistics based on allelic frequencies obtained with 440 

vcftools (DANECEK et al. 2011). In the two-source population case, this statistic is extensively 441 

employed to test the original source of the admixture of a target admixed population, infer the 442 

time since admixture, and estimate admixture intensities using maximum-likelihood 443 

approaches.  444 

Approximate Bayesian Computations 445 

MetHis has been designed to operate under an ABC framework for model choice and parameter 446 

inference. Thus, it allows simulating genetic data under numerous possible models by drawing 447 

parameter values in a priori distributions set by the user in a flexible way. In addition, MetHis 448 

allows for calculating numerous summary statistics a priori of interest to admixture processes, 449 

and provides, as outputs, scenarios-parameter vectors and corresponding summary-statistics 450 

vectors in reference tables ready to be used with the machine-learning ABC abc (CSILLÉRY et 451 

al. 2012), and abcrf (PUDLO et al. 2016; RAYNAL et al. 2019) R packages (R DEVELOPMENT 452 

CORE TEAM 2017). 453 

Prior- checking 454 

We evaluated, a priori, if the above simulation design and novel tools can simulate genetic data 455 

for which summary statistics are coherent with those observed for the ACB and ASW as the 456 

targeted admixed population. To do so, we first plotted each prior summary statistics 457 

distributions and visually verified that the observed summary statistics for the ACB and ASW 458 

respectively fell within the simulated distributions (Supplementary Figure S3). Second, we 459 

explored the first four PCA axes computed with the princomp function in R, based on the 24 460 

summary statistics and all 90,000 total simulations preformed for the nine competing scenarios, 461 

and visually checked that observed summary statistics were within the cloud of simulated 462 

statistics (Supplementary Figure S4). Finally, we performed a goodness-of-fit approach using 463 

the gfit function from the abc package in R, with 1,000 replicates and tolerance level set to 0.01 464 

(Supplementary Figure S5). 465 

Model-choice with Random-Forest Approximate Bayesian Computation  466 

We used Random-Forest ABC (RF-ABC) for model-choice implemented in the abcrf function 467 

of the abcrf R package to obtain the cross-validation table and associated prior error rate using 468 
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an out-of-bag approach (Figure 2). We considered the same prior probability for the nine 469 

competing models each represented by 10,000 simulations in the reference table. For the ACB 470 

and ASW observed data separately, we performed model-choice prediction and estimation of 471 

posterior probabilities of the winning model using the predict.abcrf function in the same R 472 

package, using the complete simulated reference table for training the Random-Forest 473 

algorithm (Figure 3, Supplementary Table S1). Both sets of analyses were performed 474 

considering 1,000 decision trees in the forest after visually checking that error-rates converged 475 

appropriately (Supplementary Figure S6), using the err.abcrf function in the R package abcrf. 476 

Each summary statistics relative importance to the model-choice cross-validation was 477 

computed using the abcrf function (Figure 2). RF-ABC cross-validation procedures using 478 

groups of scenarios were conducted using the group definition option in the abcrf function 479 

(ESTOUP et al. 2018). 480 

Posterior parameter estimation with Neural-Network Approximate Bayesian Computation 481 

It is difficult to estimate jointly the posterior distribution of all model parameters with RF-ABC 482 

(RAYNAL et al. 2019). Furthermore, although RF-ABC performs satisfactorily well with an 483 

overall limited number of simulations under each model (PUDLO et al. 2016), posterior 484 

parameter estimation with other ABC approaches, such as simple rejection (PRITCHARD et al. 485 

1999), regression (BEAUMONT et al. 2002; BLUM and FRANÇOIS 2010) or Neural-Network (NN) 486 

(CSILLÉRY et al. 2012), require substantially more simulations a priori. Therefore, we 487 

performed 90,000 additional simulations, for a total of 100,000 simulations for the best 488 

scenarios identified with RF-ABC among the nine competing models for the ACB and ASW 489 

separately. 490 

Neural-Network tolerance level and number of neurons in the hidden layer 491 

For each parameter estimation analysis, we determined empirically the NN tolerance level (i.e. 492 

the number of simulations to be included in the NN training), and number of neurons in the 493 

hidden layer. Indeed, while the NN needs a substantial amount of simulations for training, there 494 

is also a risk of overfitting posterior parameter estimations when considering too large a number 495 

of neurons in the hidden layer. However, there are no absolute rules for choosing both numbers 496 

(CSILLÉRY et al. 2012; JAY et al. 2019).  497 

Therefore, using the 100,000 simulations for the winning scenarios identified with RF-ABC 498 

(see above), we tested four different tolerance levels to train the NN (0.01, 0.05, 0.1, and 0.2), 499 
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and a number of neurons ranging between four and seven (the number of free parameters in the 500 

winning scenarios, see Results). For each pair of tolerance level and number of neurons values, 501 

we conducted cross-validation checking of posterior parameter estimations with 1,000 502 

randomly chosen simulated datasets in turn used as pseudo-observed data with the “cv4abc” 503 

function of the R package abc. We considered the median point-estimate of each posterior 504 

parameter (𝜃𝑖) to be compared with the true parameter value used for simulation (𝜃𝑖). The 505 

cross-validation parameter prediction error was then calculated across the 1,000 separate 506 

posterior estimations for pseudo-observed datasets for each pair of tolerance level and number 507 

of neurons, and for each parameter 𝜃𝑖, as ∑ (𝜃𝑖 − 𝜃𝑖)
21000

1 (1000 × 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜃𝑖))⁄ , allowing 508 

to compare errors for scenarios-parameters across NN tolerance-levels and numbers of hidden 509 

neurons, using the summary.cv4abc function in the R package abc (CSILLÉRY et al. 2012). 510 

Results showed that, a priori, all numbers of neurons considered performed very similarly for 511 

a given tolerance level (Supplementary Table S2). Furthermore, results showed that 512 

considering 1% closest simulations to the pseudo-observed ones, to train the NN for parameter 513 

estimation, reduces the average error for each tested number of neurons. Thus, we decided to 514 

opt for four neurons in the hidden layer and a 1% tolerance level for training the NN in all 515 

subsequent NN-ABC analyses, in order to avoid overfitting in parameter posterior estimations.  516 

Estimation of model-parameters posterior distributions for ACB and ASW 517 

We jointly estimated model-parameters posterior distributions for the ACB and ASW admixed 518 

population separately, using 100,000 simulations for the best scenarios identified for each 519 

admixed population separately, using NN-ABC (“neuralnet” methods’ option in the R package 520 

abc) based on the logit-transformed (“logit” transformation option in the R package abc) 521 

summary statistics using a 1% tolerance level to train the NN (i.e. considering only the 1,000 522 

closest simulations to the observed data), fitted using a single-hidden-layer neural network with 523 

four hidden neurons (Figure 4, Table 2).  524 

Posterior parameter estimation error and credibility interval accuracy 525 

For the ACB and ASW admixed populations separately, we wanted to evaluate the posterior 526 

error performed by our NN-ABC approach on the median point estimate of each parameter, in 527 

the vicinity of our observed data rather than randomly on the entire parameter space. To do so, 528 

we first identified the 1,000 simulations closest to the real data with a tolerance level of 1%, for 529 

the ACB and ASW respectively. Then, separately for the ACB and ASW set of closest 530 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/761452doi: bioRxiv preprint 

https://doi.org/10.1101/761452
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

simulations, we performed, similarly as above for the real data parameter estimation procedure, 531 

1,000 separate NN-ABC parameter estimations using the “neural” method in the abc function 532 

with a NN trained with 1% tolerance level and four neurons in the hidden layer, using in turn 533 

the other 99,999 simulations as reference table, and recorded the median point estimate for each 534 

parameter. We then compared these estimates with the true parameter used for each 1,000 535 

pseudo-observed target in the vicinity of our observed data and provide three types of error 536 

measurements in Table 3. The mean-squared error scaled by the variance of the true parameter 537 

∑ (𝜃𝑖 − 𝜃𝑖)
21000

1 (1000 × 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜃𝑖))⁄  as previously (Csilléry et al. 2012); the mean-538 

squared error ∑ (𝜃𝑖 − 𝜃𝑖)
21000

1 1000⁄ , allowing to compare estimation errors for a given 539 

scenario-parameter between the ACB and ASW analyses; and the mean absolute error 540 

∑ |𝜃𝑖 − 𝜃𝑖|
1000
1 1000⁄ , which provides a more intuitive parameter estimation error. 541 

Finally, based on these cross-validation procedures, we evaluated a posteriori if, in the vicinity 542 

of the ACB and ASW observed datasets respectively, the lengths of the estimated 95% 543 

credibility intervals for each parameter was accurately estimated or not (JAY et al. 2019). To do 544 

so, we calculated how many times the true parameter (𝜃𝑖) was found inside the estimated 95% 545 

credibility interval [2.5%quantile(𝜃𝑖̂) ; 97.5%quantile(𝜃𝑖̂)], among the 1,000 out-of-bag NN-546 

ABC posterior parameter estimation, separately for the ACB and ASW (Supplementary Table 547 

S3). For each parameter, if less than 95% of the true parameter values are found inside the 95% 548 

credibility interval estimated for the observed data, we consider the length of this credibility 549 

interval as underestimated indicative of a non-conservative behavior of the parameter 550 

estimation. Alternatively, if more than 95% of the true parameter-values are found inside the 551 

estimated 95% credibility interval, we consider its length as overestimated, indicative of an 552 

excessively conservative behavior of this parameter estimation. 553 

Comparing the accuracy of posterior parameters estimations using NN, RF, or Rejection ABC 554 

With the above procedure, we aimed at estimating the posterior parameter distributions jointly 555 

for all parameters, and their errors for the scenario most likely explaining observed genetic data 556 

for the ACB and ASW respectively. Nevertheless, NN-ABC and RF-ABC parameter inference 557 

procedures also allow estimating each parameter posterior distribution in turn and separately 558 

rather than jointly. This can further provide insights into how both ABC parameter inference 559 

approaches perform in the parameter space of the winning scenarios. To do so, we performed 560 
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several out-of-bag cross-validation parameter estimation analyses for the ACB and ASW 561 

separately.  562 

We compared four methods: NN estimation of the parameters taken jointly as a vector (similarly 563 

as in the above procedure), NN estimation of the parameters taken in turn separately, RF 564 

estimation of the parameters which also considers parameters in turn and separately (RAYNAL 565 

et al. 2019), and simple Rejection estimation for each parameter separately (PRITCHARD et al. 566 

1999). For each method, we used in turn the 1,000 simulations closest to the real data as pseudo-567 

observed data, and set a tolerance level of 1% of the 99,999 remaining simulations. We consider 568 

four neurons in the hidden-layer per neural network, and we considered 500 decision trees per 569 

random forest to limit the computational cost of these analyses at little accuracy cost a priori 570 

(Supplementary Figure S6). We then computed the mean-squared errors scaled by the 571 

variance of the true parameters, the mean-squared errors, and the mean absolute errors similarly 572 

as previously. Finally, we estimated the accuracy of the 95% credibility intervals for each 573 

method and for each parameter similarly as previously. 574 

 575 

  576 
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RESULTS 577 

First, we present results about the ability of MetHis to simulate data close to the observed ones. 578 

Second, we evaluate the ability of RF-ABC to distinguish, in the entire parameter space, the 579 

nine complex admixture scenarios in competition, and evaluate how each one of the 24 580 

summary statistics contribute to distinguish among scenarios. Third, we use Random-Forest 581 

ABC to specifically predict the best fitting scenario for the history of admixture of two recently 582 

admixed populations descending from the Transatlantic Slave Trade in the Americas (African 583 

American ASW and Barbadian ACB). Fourth, we use Neural-Network ABC to estimate 584 

posterior parameter distributions under the winning scenario for the ACB and the ASW 585 

separately. Fifth, we evaluate in detail the accuracy of our posterior parameter estimation, and 586 

compare with other ABC posterior parameter inference approaches. Finally, we synthesize the 587 

complex admixture history thus reconstructed for the ASW and ACB populations. 588 

Simulating the observed data with MetHis 589 

With MetHis, we conducted 10,000 simulations for each one of the nine competing scenarios 590 

for the admixture history of the ASW or the ACB populations, described in detail in Figure 1 591 

and Material and Methods, with corresponding model parameters drawn in a priori 592 

distributions described in Table 1.  593 

We produced 90,000 vectors of 24 summary statistics each, overall highly consistent with the 594 

observed ones for the ACB and the ASW populations respectively. First, we found that each 595 

observed statistic is visually reasonably well simulated under the nine competing scenarios here 596 

considered (Supplementary Figure S3). Second, the observed data each fell into the simulated 597 

sets of summary statistics projected in the first four PCA dimensions (Supplementary Figure 598 

S4) considering all 24 summary statistics in the analysis. Finally, the observed vectors of 24 599 

summary statistics computed for the ACB and ASW, respectively, were not significantly 600 

different (p-value = 0.468 and 0.710 respectively) from the 90,000 simulated sets of statistics 601 

using a goodness-of-fit approach (Supplementary Figure S5). Therefore, we successfully 602 

simulated datasets producing sets of summary statistics reasonably close to the observed ones, 603 

despite considering constant effective population sizes, fixed virtual source population genetic 604 

pool-sets, and neglecting mutation during the 21 generations of forward-in-time simulations 605 

performed using MetHis. 606 

Complex admixture scenarios cross-validation with RF-ABC 607 
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We trained the RF-ABC model-choice algorithm using 1,000 trees, which guaranteed the 608 

convergence of the model-choice prior error rates (Supplementary Figure S6). Based on this 609 

training, the complete out-of-bag cross-validation matrix showed that the nine competing 610 

scenarios of complex historical admixture could be relatively reasonably distinguished using 611 

our set of 24 summary statistics and 10,000 simulations under each competing scenario, despite 612 

the high level of nestedness of the scenarios here considered (see Material and Methods). 613 

Indeed, we calculated an out-of-bag prior error rate of 32.41%, considering each 90,000 614 

simulation, in turn, as out-of-bag pseudo-observed target dataset and the rest of simulations 615 

(89,999) as the training dataset for RF-ABC scenario-choice. Furthermore, we found the 616 

posterior probabilities of identifying the correct scenario ranging from 55.17% (prior 617 

probability = 11.11% for each competing scenario), for the two-pulses scenarios from both the 618 

African and European sources (Afr2P-Eur2P), to 77.71% for the scenarios considering 619 

monotonically decreasing recurring admixture from both sources (AfrDE-EurDE) (Figure 2A).  620 

Importantly, the average probability, for a given admixture scenario, of choosing any one 621 

alternative (wrong) scenario were on average 4.05% across the eight alternative scenarios, 622 

ranging from 2.79% for the AfrDE-EurDE scenario, to 5.60% for the Afr2P-Eur2P scenario 623 

(Figure 2A). This shows that our approach did not systematically favor one or the other 624 

competing scenario when wrongly choosing a scenario instead of the true one, despite high 625 

levels of nestedness among scenarios.  626 

We find that the six summary statistics most contributing to the observed cross validation results 627 

for RF-ABC model-choice among the 24 statistics here tested were statistics describing 628 

specifically the admixture-fraction distribution: minimum and maximum admixture fraction 629 

values, variance, skewness, as well as the 10% and 90% quantiles of the distribution (Figure 630 

2B). Interestingly, within and between populations summary-statistics often used in population 631 

genetics (including FST, mean heterozygosity, and f3 statistics), contributed to distinguishing 632 

the competing complex admixture scenarios to a lesser extent. 633 

Finally, note that scenarios considering monotonically recurring admixture from each source 634 

populations (AfrDE-EurDE, AfrDE-EurIN, AfrIN-EurDE, AfrIN-EurIN) can be relatively well 635 

distinguished, using our RF-ABC framework, from scenarios with at least one source 636 

population contributing to the admixed population with two possible pulses after the foundation 637 

event (Afr2P-Eur2P, Afr2P-EurDE, Afr2P-EurIN, AfrDE-Eur2P, AfrIN-Eur2P). Indeed, we 638 

found an out-of-bag prior error rate of 13.85%, and posterior cross-validation probabilities of 639 
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identifying the correct group of scenarios of 86.08% and 86.23% respectively for the two groups 640 

(ESTOUP et al. 2018). 641 

Complex admixture histories for the Barbadian and African American populations 642 

Random-Forest ABC scenario-choice 643 

We performed RF-ABC model-choice with 1,000 decision trees and 10,000 simulations per 644 

each nine competing scenarios (Figure 1 and Table 1, Material and Methods), separately for 645 

the admixture history of the Barbadian (ACB) and the African American (ASW) populations. 646 

For the ACB, Figure 3 shows that the majority of votes (53.1%) went to an admixture scenario 647 

AfrDE-EurDE with a posterior probability of the winning scenario of 60.28%. This scenario 648 

encompassed monotonically decreasing recurring contributions from both the African and 649 

European source populations over the last 20 generations before present. The second most 650 

chosen scenario considered a monotonically decreasing recurring contribution from the African 651 

source population over the last 20 generations, while the European source population 652 

contributed two admixture pulses to this admixed population after the founding pulse (scenario 653 

AfrDE-Eur2P). However, this scenario is voted for 3.5 times less often than the winning 654 

scenario AfrDE-EurDE, gathering 15.1% of the 1,000 votes, only slightly above the 11.11% 655 

prior probability for each nine-competing scenario (Figure 3; Supplementary Table S1).  656 

Concerning the admixture history of the ASW, RF-ABC scenario-choice results were less 657 

segregating. Figure 3 shows that the AfrDE-EurDE scenario also gathered the majority of votes 658 

for the admixture history of the ASW, albeit with lower posterior probability than for the ACB 659 

(33.5% of 1,000 votes, with posterior probability = 48.0% for the ASW). The second most 660 

chosen scenario, AfrDE-Eur2P, was only slightly less chosen with 31.7% of the votes (Figure 661 

3, Supplementary Table S1). For the ASW, considering only the two best scenarios (AfrDE-662 

EurDE and AfrDE-Eur2P) to train the Random Forest, and re-conducting the RF-ABC 663 

scenario-choice, improved the scenario discrimination in favor of the AfrDE-EurDE scenario. 664 

While we found only a slight majority of votes (51.8%) also in favor of the AfrDE-EurDE 665 

scenario, we found a substantially increased posterior probability for this model equal to 57.9%. 666 

This increased posterior probability of the AfrDE-EurDE scenario compared to the previous 667 

RF-ABC scenario-choice considering the nine competing scenarios (48.0%), indicated that this 668 

scenario best explains the ASW observed genetic patterns, despite overall limited 669 

discriminatory power of our approach in the part of the summary-statistics space occupied by 670 

the ASW. 671 
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Neural-Network ABC parameter inference accuracy for the ACB and ASW populations 672 

We performed 100,000 simulations using MetHis for the AfrDE-EurDE scenarios, in order to 673 

estimate, using Neural-Network ABC, posterior parameter distributions and the corresponding 674 

parameter prediction cross-validation errors, considering in turn the ACB and the ASW 675 

populations (Figure 4 and 5, Table 2, Table 3, and Supplementary Table S3).  676 

For the ACB under the AfrDE-EurDE scenario (Figure 4A, Table 2), we found that the two 677 

recent admixture intensities from Africa and Europe (sAfr,20 and sEur,20, respectively) and the 678 

steepness of the European decrease in contribution over time (uEur) had sharp posterior densities 679 

clearly distinct from their respective priors. Note that the cross-validation error on these 680 

parameters in the vicinity of our real data were low (average absolute error 0.02744, 0.0044, 681 

and 0.1084, respectively for sAfr,20, sEur,20, and uEur) (Table 3), and lengths of 95% credibility 682 

intervals reasonably accurate (96.4%, 94.4%, 94.1% of 1,000 cross-validation true parameter 683 

values fell into estimated 95% credibility intervals, Supplementary Table S3). This shows the 684 

reliability of our method to accurately infer the three parameters in the part of the space of 685 

summary statistics occupied by the ACB observed data.  686 

Furthermore, the two ancient admixture intensities from Africa and Europe at generation 1 687 

immediately following the initial foundation of the admixed population H (sAfr,1 and sEur,1, 688 

respectively), also had posterior densities apparently distinguished from their prior 689 

distributions, but both had much wider 95% credibility intervals (Figure 4A, Table 2). 690 

Consistently, we found a slightly increased posterior parameter error in this part of the 691 

parameter space for both these parameters, with average absolute error 0.121 and 0.095 692 

respectively for sAfr,1 and sEur,1 (Table 3). Nevertheless, note that 95.8% and 94.7% of 1,000 693 

cross-validation true values for those two parameters fell into the estimated 95% credibility 694 

intervals (Supplementary Table S3). This shows a reasonably conservative behavior of our 695 

method for these estimations, further indicating that information is lacking in our data or set of 696 

summary statistics for a more accurate estimation of these parameters, rather than an inaccuracy 697 

of our approach. 698 

Interestingly (Figure 4A, Table 2), we found that accurate posterior estimation of the steepness 699 

of the African decrease in admixture over time (uAfr) is difficult. Indeed, the posterior density 700 

of this parameter only showed a tendency towards small values slightly departing from the 701 

prior, indicative of a limit of our method to estimate this parameter (Figure 4A, Table 2). 702 

Finally (Figure 4A, Table 2), we found that we had virtually no information to estimate the 703 
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founding admixture proportions from Africa and Europe at generation 0, as our posterior 704 

estimates barely departed from the prior and associated mean absolute error was high (0.2530, 705 

Table 3). Nevertheless, our method seemed to be performing reasonably conservatively for 706 

these two latter parameters (95.6% and 95.3% of 1,000 cross-validation true parameter values 707 

fell into estimated 95% credibility intervals, Supplementary Table S3). This indicates that 708 

information is strongly lacking in our data or summary statistics for successfully capturing these 709 

parameters, rather than inherent inaccuracy of our ABC method. 710 

For the African American ASW under the AfrDE-EurDE model, our posterior parameter 711 

estimation accuracy results were overall quantitatively slightly less accurately estimated 712 

compared to those obtained for the ACB population, as indicated by overall larger credibility 713 

intervals and cross-validation errors (Figure 4B, Table 2, Table 3, Supplementary Table S3). 714 

This was consistent with the more ambiguous RF-ABC model-choice results obtained for this 715 

population (Figure 3).  716 

Comparing NN, RF, and Rejection ABC posterior parameter estimation accuracy 717 

For posterior parameter estimations considering the ACB or the ASW population, the means of 718 

the three types of errors (scaled mean-square error, mean-square error, absolute error, see 719 

Material and Methods) were systematically lower for the two NN methods (joint or 720 

independent posterior parameter estimation) than for the RF and Rejection independent 721 

posterior parameter estimation methods (Table 4). Furthermore, we found that the means of the 722 

three types of errors were qualitatively comparable between the NN estimation of the 723 

parameters taken as a joint vector and the NN estimation of the parameters taken separately. 724 

Altogether, these results showed that considering the NN estimation for parameters taken 725 

jointly as a vector is overall preferable for the ACB and ASW populations, since it further 726 

allowed the joint interpretation of parameter values estimated a posteriori, with little difference 727 

in accuracy between the two methods.  728 

Finally, results showed that the lengths of 95% credibility intervals estimated with NN joint 729 

parameter estimation was, across all parameters, more accurate than all other methods with, on 730 

average, 95.1% and 95.2% of true parameter values falling within the estimated 95% credibility 731 

intervals, for the ACB and ASW respectively (Supplementary Table S3). Furthermore, we 732 

found that lengths of 95% credibility intervals estimated with NN and RF independent posterior 733 

parameter estimations were systematically under-estimated, with less than 94% of the true 734 

parameter values falling into the 95% credibility intervals estimated. Finally, we found that 735 
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lengths of 95% credibility intervals estimated with the Rejection method were also rather 736 

accurately estimated although on average slightly over-estimated compared to the NN joint 737 

parameter estimation with, on average, 95.5% of the 1,000 cross-validation true parameter 738 

values within the estimated 95% credibility intervals for the ACB, and 95.8% for the ASW.  739 

Admixture histories of the African American ASW and Barbadian ACB 740 

Figure 5 visually synthesized the estimated posterior parameters of the complex admixture 741 

scenarios reconstructed with our novel MetHis – machine-learning ABC framework, and 742 

associated 95% credibility intervals (Table 2). 743 

We found a virtual complete replacement of the ACB and ASW populations at generation 1 744 

after foundation, thus consistent with our inability to accurately estimate the founding 745 

proportions from the African and European sources at generation 0. Furthermore, we found an 746 

increasingly precise posterior estimation of African and European contributions to the gene-747 

pool of the ACB and ASW populations forward in time, with most recent estimations exhibiting 748 

narrow credibility intervals. This is also consistent with the nature of recurrent admixture 749 

processes, where older information is often lost or replaced when more recent admixture events 750 

occur. 751 

Most interestingly, we found that the recurring contribution of the European gene pool to the 752 

admixed populations rapidly decreases after generation 1 for both the ACB and ASW albeit 753 

with substantial differences (Figure 5). Indeed, we found that the recurring contribution from 754 

the European source to the ACB gene pool falls below 10% at generation 9 until no more than 755 

1% in the present (generation 20). Comparatively, we found that the European contribution 756 

diminished substantially less rapidly for the ASW, going below 10% only after generation 12 757 

until roughly 2% in the present. This indicates that the European contribution to the African 758 

American gene pool was more sustained over time than for the Barbadian. 759 

Finally, we found substantial recurring contributions from the African source population to the 760 

gene pool of both admixed populations (Figure 5). For the ACB population, we found a 761 

progressive decrease of the African recurring introgression until a virtually constant recurring 762 

admixture close to 28% from generation 10 and onward. For the ASW, our results showed a 763 

sharper decrease of the African contribution after foundation until a virtually constant recurring 764 

admixture process close to 24% from generation 5 until present (generation 20). The high 765 

overall African recurring introgression into the admixed-populations gene pools captures the 766 
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importance of recurring admixture in explaining the observed patterns for both populations 767 

descending from the TAST.   768 
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DISCUSSION 769 

We evaluated how machine-learning Approximate Bayesian Computation methods can bring 770 

new insights to the reconstruction of highly complex admixture histories using genetic data. To 771 

illustrate our proof of concept and thoroughly investigate the power and accuracy of our 772 

approach using real data, we aimed at reconstructing the recent complex admixture history for 773 

the African American (ASW) and Barbadian (ACB) population samples from the 1000 774 

Genomes project (Phase 3).  775 

Our results demonstrated that our novel MetHis forward-in-time simulator and summary 776 

statistics calculator coupled with RF-ABC scenario-choice can often clearly infer the best class 777 

of highly complex admixture histories underlying independent SNP data diversity, in a 778 

reasonable-size sample and genetic dataset. In the two source-populations admixture models 779 

here investigated, we distinguished scenarios encompassing two pulses of admixture from each 780 

source, after the founding admixture event, monotonically increasing or decreasing admixture 781 

intensities over time, or a combination of these three scenarios. Furthermore, we found that 782 

NN-ABC provide accurate posterior parameter inference of most demographic parameters of 783 

recurring monotonically decreasing admixture processes, compared to other classes of ABC 784 

posterior parameter inference methods. Finally, we empirically demonstrated that the moments 785 

of the distribution of admixture fractions within the admixed population estimated using 786 

independent SNPs were highly informative for reconstructing the admixture history using an 787 

ABC approach, as expected theoretically (VERDU and ROSENBERG 2011; GRAVEL 2012).  788 

While we found that distinguishing among competing models is more difficult in certain parts 789 

of the parameter space due to scenario-nestedness (ROBERT et al. 2010), our MetHis – ABC 790 

method already vastly extends the array of complex admixture models explored with most, 791 

classically used, maximum-likelihood inference approaches (ROBERT et al. 2010; GRAVEL 792 

2012; LOH et al. 2013; HELLENTHAL et al. 2014). It is challenging to analytically predict 793 

genomic diversity patterns expected under realistic complex admixture histories, as likelihood 794 

calculations under such models are very often intractable (VERDU and ROSENBERG 2011; 795 

GRAVEL 2012; MEDINA et al. 2018; NI et al. 2019). In turn, this makes it difficult to understand 796 

how most existing efficient maximum-likelihood admixture inference methods, which often 797 

only consider one or two pulses of admixture, behave when the observed genetic data in fact 798 

results from much more complex admixture processes (GRAVEL 2012; HELLENTHAL et al. 799 

2014).  800 
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In this context, the proof of concept here presented more generally shows that ABC can be 801 

fruitfully attempted to explore, virtually, any other admixture model beyond the case studies 802 

here-conducted, provided that, a priori, simulation and summary statistics calculation are 803 

feasible. To these ends, other recent efficient forward-in-time genetic data simulators can also 804 

be successfully used in an ABC framework instead of MetHis (HALLER and MESSER 2019; NI 805 

et al. 2019). In reality, studies investigating ABC approaches for admixture reconstruction, 806 

while allowing for exploring scenarios out of reach of other methods, will inevitably face the 807 

same difficulties as any ABC inference; such as high dimensional parameter and summary-808 

statistics spaces, lack of information from summary statistics, and scenario nestedness 809 

(CSILLÉRY et al. 2010; ROBERT et al. 2010; SISSON et al. 2018).  810 

Importantly, the current MetHis – ABC approach does not make use of admixture linkage-811 

disequilibrium patterns in the admixed population, and only relies on independent genetic 812 

markers. Nevertheless, admixture LD has consistently proved to bring massive information 813 

about the complex admixture history of numerous populations worldwide (GRAVEL 2012; 814 

HELLENTHAL et al. 2014; MEDINA et al. 2018; NI et al. 2019). However, existing methods to 815 

calculate admixture LD patterns remain computationally intensive and require numerous 816 

markers and accurate phasing, which is difficult under ABC where such statistics have to be 817 

calculated for each one of the numerous simulated datasets. In this context, RF-ABC (PUDLO 818 

et al. 2016; RAYNAL et al. 2019) or AABC (BUZBAS and ROSENBERG 2015) methods allow 819 

substantially diminishing the number of simulations required for satisfactory scenario-choice 820 

and posterior parameter inference, which makes both approaches promising tools for using, in 821 

the future, admixture LD patterns to reconstruct complex admixture processes from genomic 822 

data.  823 

Sex-biased admixture processes are known to have influenced admixed populations, and in 824 

particular populations descending from the TAST (MORENO-ESTRADA et al. 2013; FORTES-825 

LIMA et al. 2018). Future version of our MetHis – ABC framework will explicitly implement 826 

sex-specific admixture processes with, in addition to autosomal data, the possibility to 827 

investigate sex-related genetic data (X-chromosome, Y-chromosome, and mitochondrial DNA) 828 

(GOLDBERG et al. 2014; GOLDBERG and ROSENBERG 2015). 829 

Finally, although MetHis readily allows considering changes of effective population size in the 830 

admixed population at each generation as a parameter of interest to ABC inference, we did not, 831 

for simplicity, investigate here how such changes affected our results for the African American 832 
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and Barbadian admixed population. Future work using MetHis will allow specifically 833 

investigating how effective size changes may influence genetic patterns in the admixed 834 

population, a question of major interest as numerous admixed populations are expected to have 835 

experienced founding events and/or bottlenecks during their history (e.g. BROWNING et al. 836 

2018). 837 

For all these reasons, it is crucial, in general and in the future, to further develop novel 838 

methodological tools and evaluate how genetic patterns evolve over time as a function of each 839 

parameter of complex historical admixture models separately (BUZBAS and VERDU 2018; 840 

MEDINA et al. 2018; NI et al. 2019). MetHis can help to this task since it allows the users to 841 

investigate how parameters of the complex admixture process can influence, over time, a large 842 

number of population genetics summary-statistics calculated in the simulated admixed 843 

population at each generation.  844 

Concerning the specific admixture history of the two admixed populations descending from the 845 

TAST here reconstructed, note that several competing scenarios can clearly be discarded for 846 

explaining the observed genetic patterns. In particular, the Afr2P – Eur2P scenario considering 847 

two possible pulses of introgression after the founding event, separately from the African and 848 

European source, does not significantly exceeds the prior probability of choosing any nine-849 

competing scenario (4.6% and 11.2% of the 1,000 votes for the Afr2P – Eur2P, respectively for 850 

the ACB and the ASW, Figure 3). Note that this scenario embeds models analogous to the most 851 

complex admixture scenarios that have been previously tested for these populations with 852 

maximum-likelihood approaches based on extensive genome-wide data and admixture-LD 853 

based statistics (GRAVEL 2012; BAHARIAN et al. 2016). Interestingly, very recent migrations 854 

from either Africa or Europe to the Americas are known to have been intense demographically 855 

in the 19th and 20th century (BERLIN 2010). However, the recent increased demographic 856 

migrations do not seem to have left the equivalent signature in the genetic admixture process 857 

of both the ACB and ASW populations, as monotonically recurring increasing admixture 858 

scenarios can here be rejected confidently.  859 

Nevertheless, we found that genetic admixture of African origin in both admixed populations, 860 

although decreasing since foundation, retained high levels in the present day (between 20% and 861 

30%). These results could stem from the known importance of African recurring forced 862 

migrations during the TAST into the Americas; further prompts the influence of African slave 863 

descendants forced migrations within the Americas after the initial crossing of the ocean (often 864 
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called the Middle Passage); and highlights the major importance of post-slavery migrations of 865 

TAST descendant populations within the Americas (BERLIN 2010; ELTIS and RICHARDSON 866 

2010; BAHARIAN et al. 2016). For instance, intense migrations from Haitian slave-descendants 867 

in the 19th century have already been shown to possibly have contributed to the admixture 868 

patterns of other populations in the Caribbean and continental America (MORENO-ESTRADA et 869 

al. 2013; FORTES-LIMA et al. 2018).  870 

Finally, we found that the genetic contribution from Europe rapidly decreases, after the 871 

foundation of both admixed populations, to marginal amounts during the 20th century. 872 

Therefore, it seems that neither sustained European migrations, nor the relaxation of social and 873 

legal constraints on admixture between descendant communities subsequent to the abolition of 874 

slavery and the end of segregation, have translated into increased European genetic contribution 875 

to the gene-pool of admixed populations descending from European and African forced or 876 

voluntary migrations into the Americas after the TAST.  877 

Altogether, our results for the two recently-admixed human populations illustrated how our 878 

MetHis – ABC framework can bring fundamental new insights into the complex demographic 879 

history of admixed populations; a framework that can easily be adapted for investigating 880 

admixture history in numerous populations and species, particularly when maximum-likelihood 881 

methods are intractable. 882 

  883 
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Figures Legends 884 

 885 

Figure 1. Nine competing scenarios for reconstructing the admixture history of African 886 

American ASW or Barbadian ACB populations descending from West European and West sub-887 

Saharan African source populations during the Transatlantic Slave Trade. “EUR” represents 888 

the Western European and “AFR” represents the West Sub-Saharan African source populations 889 

for the admixed population H. See Table 1 and Material and Methods for model parameter 890 

descriptions. 891 

 892 

Figure 2: Random-Forest Approximate Bayesian Computation model-choice cross-validation. 893 

(A) Heat map of the out-of-bag cross-validation results considering each 10,000 simulations 894 

per each nine competing models (Figure 1, Table 1) in turn as pseudo-observed target for RF-895 

ABC model-choice. Out-of-bag prior error rate is 32.41%. RF-ABC model-choice performed 896 

using 1,000 decision trees and 24 summary-statistics (see Material and Methods). (B) 897 

Summary statistics’ respective importance in the RF-ABC model-choice out-of-bag cross-898 

validation (Pudlo et al. 2016). 899 

 900 

Figure 3: Random-Forest Approximate Bayesian Computation model-choice predictions for 901 

the ACB (left panel) and ASW (right panel) populations. Nine competing models were 902 

compared, each with 10,000 simulations (Figure 1, Table 1). 1,000 decision trees were 903 

considered in the model-choice prediction, respectively for each population. 904 

 905 

Figure 4: Neural-Network Approximate Bayesian Computation posterior parameters estimated 906 

densities under the winning scenario AfrDE-EurDE, for (A) the ACB and (B) the ASW 907 

populations. Median posterior point estimates are indicated by the red vertical line, 95% 908 

credibility intervals are indicated by the colored area under the posterior curve (Table 2). All 909 

posterior parameter estimations were conducted using 100,000 simulations under scenario 910 

AfrDE-EurDE, a 1% tolerance rate (1,000 simulations), 24 summary statistics, logit 911 

transformation of all parameters, and four neurons in the hidden layer (see Material and 912 

Methods). For all parameters separately, densities are plotted with 1,000 points, a Gaussian 913 
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kernel, and are constrained to the prior limits. Posterior parameter densities are indicated by a 914 

solid line; prior parameter densities are indicated by black dotted lines. 915 

 916 

Figure 5: Approximate Bayesian Computation inference of the admixture history of the ACB 917 

and ASW populations respectively. Top panels are based on median point-estimates of intensity 918 

parameters at each generation. Bottom panels show 95% credibility intervals for each inferred 919 

parameter around the median point-estimates. The African introgression is plotted in orange, 920 

the European introgression in blue, and in green the remaining contribution of the admixed 921 

population to itself at the following generation. (A) Results for the ACB under the AfrDE-922 

EurDE winning scenario; (B) Results for the ASW under the AfrDE-EurDE winning scenario. 923 

 924 

 925 

Supplementary Figure S1. General mechanistic model of historical admixture from Verdu and 926 

Rosenberg (2011). 927 

 928 

Supplementary Figure S2: Comparison of individual admixture estimates using ASD-MDS 929 

and ADMIXTURE for the Barbadian (ACB) and the African American (ASW). 100,000 930 

independent SNPs were considered from the 1000 Genome Project Phase 3 for 279 unrelated 931 

individuals (90 Yoruba (YRI), 89 British (GBR), 50 Barbadian (ACB), 50 African American 932 

(ASW)). (A) Allele Sharing Dissimilarity was computed between all pairs of individuals and 933 

the resulting matrix projected on the first two dimensions of a metric MDS. The two-934 

dimensional centroid of the Yoruba (YRI) and, respectively, the British (GBR) are indicated in 935 

red and connected by a black dotted line. ACB and ASW individuals are projected orthogonally 936 

onto this line and their relative distance to the Yoruba centroid is calculated to obtain ASD-937 

MDS based individual admixture estimates. (B) A single run of unsupervised ADMIXTURE 938 

(Alexander et al. 2009) has been computed using the 279 individuals and 100,000 SNPs and 939 

results were plotted using DISTRUCT (Rosenberg 2004). Individual membership proportions 940 

to the “orange” cluster mostly represented by Yoruba (YRI) genotypes was considered as an 941 

estimate of African admixture for the ACB and ASW respectively. (C) Spearman correlation 942 
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between ASD-MDS and ADMIXTURE-based estimates of African admixture for the ACB and 943 

ASW individuals separately. 944 

 945 

Supplementary Figure S3: Summary statistics prior-distribution densities for each nine 946 

competing models considered (Figure 1). 10,000 simulations were performed for each nine-947 

competing scenario and prior densities plotted with a different color indicated for each scenario. 948 

Corresponding statistics observed from the ACB and ASW population separately are 949 

represented, on each plot, by vertical doted-lines (red and blue respectively for ACB and ASW). 950 

The 24 separate summary statistics considered are described in Material and Methods. 951 

 952 

Supplementary Figure S4: Four first axes of the principal component analysis for the 90,000 953 

sets of 24 summary statistics computed on simulated data under each nine-competing scenario 954 

(Figure 1). The 24 same statistics calculated for the observed ACB and ASW population 955 

samples, respectively, are then projected on the PCA and represented by, respectively, a red 956 

and blue star. All two-dimensional projections are orthonormal. 957 

 958 

Supplementary Figure S5: Histogram of the goodness-of-fit for the observed set of 24 959 

summary statistics computed for (A) the ACB population, and (B) the ASW population, in turn 960 

serving as the observed admixed population H considering the YRI population sample as the 961 

African source and the GBR population sample as the European source (see Material and 962 

Methods). Goodness-of-fit statistics were calculated as the mean distance between observed 963 

and accepted summary statistics. Observed statistics are fitted to the full 90,000 sets of the same 964 

statistics calculated from 10,000 simulations performed under each nine-competing models 965 

(Figure 1). Goodness-of-fit was obtained considering 1,000 repetitions and a tolerance value 966 

of 0.01.  967 

 968 

Supplementary Figure S6: RF-ABC out-of-bag prior error rate as a function of the number of 969 

trees considered to build the forest for the model-choice procedure considering nine-competing 970 

scenarios (Figure 1).   971 
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Tables Legends 972 

 973 

Table 1. Parameter prior distributions for simulation with MetHis and Approximate Bayesian 974 

Computations historical inference. Parameter list correspond to the nine competing historical 975 

admixture models described in Figure 1 and Material and Methods.  976 

 977 

Table 2. Neural-Network Approximate Bayesian Computation posterior parameter weighted 978 

distributions under the winning scenario AfrDE-EurDE, for the ACB and ASW populations. 979 

All posterior parameter estimations were conducted using 100,000 simulations under scenario 980 

AfrDE-EurDE (Figure 1, Table 1), a 1% tolerance rate (1,000 simulations), 24 summary 981 

statistics, logit transformation of all parameters, and 4 neurons in the hidden layer (see Material 982 

and Methods). 983 

 984 

Table 3. Neural-Network Approximate Bayesian Computation posterior parameter errors under 985 

the winning scenario AfrDE-EurDE, for the ACB and ASW populations. For each target 986 

population separately, we conducted cross-validation by considering in turn 1,000 separate NN-987 

ABC parameter inferences each using in turn one of the 1,000 closest simulations to the 988 

observed ACB (or ASW) data as the target pseudo-observed simulation. All posterior parameter 989 

estimations were conducted using 100,000 simulations under scenario AfrDE-EurDE (Figure 990 

1, Table 1), a 1% tolerance rate (1,000 simulations), 24 summary statistics, logit transformation 991 

of all parameters, and four neurons in the hidden layer (see Material and Methods). Median 992 

was considered as the point posterior parameter estimation for all parameters. First column 993 

provides the average absolute error; second column shows the mean-squared error; third 994 

column shows the mean-squared error scaled by the parameter’s observed variance (see 995 

Material and Methods for error formulas). 996 

 997 

Table 4. Approximate Bayesian Computation mean posterior parameter errors under the 998 

winning Scenario AfrDE-EurDE, for the ACB and ASW populations separately, using four 999 

different methods: NN estimation of the parameters taken jointly as a vector, NN estimation of 1000 

the parameters taken separately, Random Forest (parameters taken separately), and Rejection 1001 
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(parameters taken separately). For each target population separately and for each method, we 1002 

conducted an out-of-bag cross validation by considering in turn 1,000 separate parameter 1003 

inferences each using one of the 1,000 closest simulation to the observed ACB (or ASW) data 1004 

as the target pseudo-observed dataset. All posterior parameter estimations were conducted 1005 

using the other 99,999 simulations under the AfrDE-EurDE scenario (Figure 1, Table 1), a 1% 1006 

tolerance rate (i.e. 1,000 simulations), 24 summary statistics, logit transformation of all 1007 

parameters, four neurons in the hidden layer per neural network and 500 trees per random forest. 1008 

Median was considered as the point posterior parameter estimation for all parameters. First 1009 

column provides the average absolute error; second column shows the mean-squared error; 1010 

third column shows the mean-squared error scaled by the parameter’s observed variance (see 1011 

Material and Methods for error formulas). 1012 

 1013 

 1014 

Supplementary Table S1. Random-Forest Approximate Bayesian Computation model-choice 1015 

predictions for the ACB and ASW populations. 1,000 decision trees were considered for RF 1016 

prediction for the ACB and ASW respectively. Corresponding results are plotted in Figure 3. 1017 

 1018 

Supplementary Table S2. Parameter prediction cross-validation error as a function of the 1019 

number of neurons in the hidden layer and the rejection tolerance rate under the AfrDE-EurDE 1020 

scenario. We considered, 1,000 random simulations in turn as pseudo-observed data to estimate 1021 

posterior parameter distributions, considering 4, 5, 6, or 7 neurons in the hidden layer (“NN-1022 

HL” row), and 100,000 total simulations. Tolerance levels of 0.01, 0.05, 0.1 and 0.2 were 1023 

considered (“Tolerance” row). The median values of posterior parameter distributions were 1024 

used as point estimates for the error calculation. 1025 

 1026 

Supplementary Table S3. Accuracy of the 95% credibility interval estimated for posterior 1027 

parameters in the vicinity of the observed ACB and ASW datasets. We provide the empirical 1028 

coverage of the estimated 95% credibility interval, i.e. how many times (in percentage) the true 1029 

parameter (𝜃𝑖) is found inside the estimated 95% credibility interval [2.5%quantile(𝜃𝑖̂) ; 1030 

97.5%quantile(𝜃𝑖̂)], among the 1,000 posterior parameter estimations conducted using in turn 1031 
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the 1,000 simulations closest to our real data, separately for the ACB and ASW, as pseudo-1032 

observed datasets for four separate methods : NN estimation of the parameters taken jointly as 1033 

a vector, NN estimation of the parameters taken independently, Random Forest (parameters are 1034 

taken independently), and Rejection (parameters are taken independently). 1035 

  1036 
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Table 1. 1037 

Parameter Names Prior distribution Condition Models 

sAfr,0 Uniform [0,1] - all models 

tAfr,p1 

tAfr,p2 
Uniform [0,20] tAfr,p1 ≠ tAfr,p2 Afr2P models 

sAfr , tAfr,p1 

sAfr , tAfr,p2 
Uniform [0,1] For all g, hg = 1 - sAfr,g - sEur,g in [0,1] Afr2P models 

tEur,p1 

tEur,p2 
Uniform [0,20] tEur,p1 ≠ tEur,p2 Eur2P models 

sEur , tEur,p1 

sEur , tEur,p2 
Uniform [0,1] For all g, hg = 1 - sAfr,g - sEur,g in [0,1] Eur2P models 

sAfr,1 Uniform [0,1] For all g, hg = 1 - sAfr,g - sEur,g in [0,1] AfrDE models 

sAfr,20 Uniform [0, sAfr,1 / 3] For all g, hg = 1 - sAfr,g - sEur,g in [0,1] AfrDE models 

uAfr Uniform [0,0.5] - AfrDE models 

sEur,1 Uniform [0,1] For all g, hg = 1 - sAfr,g - sEur,g in [0,1] EurDE models 

sEur,20 Uniform [0, sEur,1 / 3] For all g, hg = 1 - sAfr,g - sEur,g in [0,1] EurDE models 

uEur Uniform [0,0.5] - EurDE models 

sAfr,1 Uniform [0, sAfr,20 / 3] For all g, hg = 1 - sAfr,g - sEur,g in [0,1] AfrIN models 

sAfr,20 Uniform [0,1] For all g, hg = 1 - sAfr,g - sEur,g in [0,1] AfrIN models 

uAfr Uniform [0,0.5] - AfrIN models 

sEur,1 Uniform [0, sEur,20 / 3] For all g, hg = 1 - sAfr,g - sEur,g in [0,1] EurIN models 

sEur,20 Uniform [0,1] For all g, hg = 1 - sAfr,g - sEur,g in [0,1] EurIN models 

uEur Uniform [0,0.5] - EurIN models 

  1038 
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Table 2. 1039 

 1040 

 

AfrDE-EurDE 

parameters Median Mean Mode 95% Credibility Interval 

ACB sAfr,0 0.3097 0.3747 0.1121 [0.0116 ; 0.9347] 

 sAfr,1 0.6797 0.6769 0.6813 [0.4577 ; 0.8880] 

 sAfr,20 0.2707 0.2655 0.2788 [0.1985 ; 0.2967] 

 uAfr 0.1409 0.1684 0.0508 [0.0041 ; 0.4507] 

 sEur,1 0.1807 0.2160 0.1158 [0.0542 ; 0.5525] 

 sEur,20 0.0100 0.0102 0.0093 [0.0018 ; 0.0200] 

 uEur 0.4858 0.4627 0.4929 [0.1886 ; 0.4992] 

ASW sAfr,0 0.5258 0.5124 0.7015 [0.0262 ; 0.9758] 

 sAfr,1 0.6006 0.6026 0.6081 [0.3506 ; 0.8581] 

 sAfr,20 0.2352 0.2286 0.2385 [0.1222 ; 0.2714] 

 uAfr 0.0662 0.1105 0.0253 [0.0025 ; 0.4393] 

 sEur,1 0.2917 0.3080 0.2203 [0.1048 ; 0.5951] 

 sEur,20 0.0180 0.0189 0.0157 [0.0022 ; 0.0389] 

 uEur 0.4250 0.3966 0.4567 [0.1077 ; 0.4950] 

 1041 

  1042 
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Table 3. 1043 

 1044 

AfrDE-EurDE 

parameters 

ACB ASW 

Av. absolute 

Error 

Mean-square 

Error 

Mean-square Error / 

Var. 

Av. absolute 

Error 

Mean-square 

Error 

Mean-square Error / 

Var. 

sAfr,0 0.2530 0.0857 1.0070 0.2444 0.0805 1.0081 

sAfr,1 0.1206 0.0216 0.8533 0.1158 0.0197 0.9259 

sAfr,20 0.02744 0.0012 0.4162 0.0219 0.0007 0.4773 

uAfr 0.1166 0.0198 0.9974 0.1254 0.0216 0.9757 

sEur,1 0.0952 0.0164 1.0526 0.1001 0.0157 1.0152 

sEur,20 0.0044 0.0001 0.6452 0.0069 0.0001 0.6623 

uEur 0.1084 0.0174 0.9431 0.1021 0.0153 0.8036 

 1045 
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Table 4. 1047 

 1048 

Posterior parameter 

estimation ABC 

method 

ACB ASW 

Av. absolute 

Error 

Mean-squared 

Error 

Mean-squared Error 

/ Var. 

Av. absolute 

Error 

Mean-squared 

Error 

Mean-squared Error 

/ Var. 

NN joint 0.1037 0.0232 0.8450 0.1024 0.0219 0.8383 

NN independent 0.1032 0.0236 0.8294 0.1025 0.0225 0.8344 

RF independent 0.1042 0.0246 0.8534 0.1036 0.0233 0.8697 

Rejection 

independent 
0.1071 0.0238 0.9299 0.1050 0.0223 0.8951 

 1049 

 1050 
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Supplementary Table S1. 1052 

 1053 

Competing 

Model 

Target 

population 

Afr2P-

Eur2P 

Afr2P-

EurDE 

Afr2P-

EurIN 

AfrDE-

Eur2P 

AfrDE-

EurDE 

AfrDE-

EurIN 

AfrIN-

Eur2P 

AfrIN-

EurDE 

AfrIN-

EurIN 

ACB 46 144 3 151 531 12 74 34 5 

ASW 112 106 9 317 335 3 73 43 2 

 1054 

 1055 
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Supplementary Table S2. 1057 

 1058 

AfrDE-EurDE 

NN- HL  
4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 

Tolerance 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20% 

sAfr,0 1.0161 0.9980 1.0003 1.0014 1.0037 1.0017 0.9987 0.9980 1.0018 0.9957 1.0015 0.9987 1.0063 0.9957 0.9981 0.9985 

sAfr,1 0.4588 0.4968 0.4924 0.4972 0.4877 0.4674 0.4841 0.4929 0.4763 0.4330 0.4702 0.5025 0.4837 0.4965 0.4613 0.4812 

sAfr,20 0.1420 0.2160 0.2976 0.3018 0.1468 0.2178 0.2678 0.3264 0.1455 0.2071 0.2738 0.3090 0.1312 0.2209 0.2765 0.3279 

uAfr 0.8800 0.8844 0.9355 0.9482 0.8759 0.8969 0.9040 0.9080 0.8309 0.8752 0.9017 0.9347 0.8621 0.9029 0.9344 0.9130 

sEur,1 0.4445 0.4955 0.4822 0.5057 0.4804 0.4444 0.5097 0.4962 0.4596 0.4827 0.4693 0.4819 0.4836 0.4938 0.4673 0.5363 

sEur,20 0.1589 0.2346 0.3071 0.3127 0.1272 0.2117 0.2522 0.3239 0.1173 0.2167 0.2923 0.2923 0.1552 0.2186 0.3164 0.3012 

uEur 0.8574 0.8304 0.9038 0.9078 0.8340 0.8658 0.9161 0.9056 0.8305 0.8907 0.9069 0.9085 0.8403 0.8594 0.9159 0.9312 

Average error 0.5654 0.5937 0.6313 0.6393 0.5651 0.5865 0.6189 0.6359 0.5517 0.5859 0.6165 0.6325 0.5661 0.5983 0.6243 0.6413 

 1059 
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 1061 

Supplementary Table S3. 1062 

 1063 

 1064 
 

ACB ASW 

AfrDE-EurDE 

parameters 
NN joint NN indep. RF indep. 

Rejection 

indep. 
NN joint NN indep. RF indep. 

Rejection 

indep. 

sAfr,0 0.956 0.934 0.929 0.952 0.952 0.931 0.937 0.950 

sAfr,1 0.958 0.929 0.942 0.968 0.958 0.914 0.942 0.963 

sAfr,20 0.964 0.926 0.956 0.971 0.963 0.928 0.960 0.978 

uAfr 0.953 0.932 0.930 0.950 0.944 0.914 0.925 0.945 

sEur,1 0.947 0.909 0.939 0.949 0.950 0.912 0.930 0.955 

sEur,20 0.944 0.908 0.930 0.957 0.952 0.919 0.929 0.968 

uEur 0.941 0.919 0.927 0.943 0.947 0.928 0.936 0.952 

Average 

credibility 

interval 

accuracy 

0.951 0.922 0.936 0.955 0.952 0.920 0.937 0.958 

 1065 

 1066 

  1067 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/761452doi: bioRxiv preprint 

https://doi.org/10.1101/761452
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 

REFERENCES 1068 

1000 GENOMES PROJECT CONSORTIUM, 2015 A global reference for human genetic variation. Nature 526: 1069 
68-74. 1070 

ALEXANDER, D. H., J. NOVEMBRE and K. LANGE, 2009 Fast model-based estimation of ancestry in 1071 
unrelated individuals. Genome Res 19: 1655-1664. 1072 

BAHARIAN, S., M. BARAKATT, C. R. GIGNOUX, S. SHRINGARPURE, J. ERRINGTON et al., 2016 The Great 1073 
Migration and African-American Genomic Diversity. PLoS Genet 12: e1006059. 1074 

BEAUMONT, M. A., W. ZHANG and D. J. BALDING, 2002 Approximate Bayesian computation in population 1075 
genetics. Genetics. 162: 2025-2035. 1076 

BERLIN, I., 2010 The making of African America : the four great migrations. Viking, New York. 1077 
BERNSTEIN, F., 1931 Die geographische Verteilung der Bludgruppen und ihre anthropologische 1078 

Bedeutung, pp. 227-243 in Comitato Italiano per o studio dei problemi della populazione. 1079 
Instituto Poligraphico dello Stato, Roma. 1080 

BLUM, M. G. B., and O. FRANÇOIS, 2010 Non-linear regression models for Approximate Bayesian 1081 
Computation. Statistics and Computing 20: 63-67. 1082 

BOITARD, S., W. RODRIGUEZ, F. JAY, S. MONA and F. AUSTERLITZ, 2016 Inferring Population Size History 1083 
from Large Samples of Genome-Wide Molecular Data - An Approximate Bayesian 1084 
Computation Approach. PLoS Genet 12: e1005877. 1085 

BOWCOCK, A. M., A. RUIZ-LINARES, J. TOMFOHRDE, E. MINCH, J. R. KIDD et al., 1994 High resolution of 1086 
human evolutionary trees with polymorphic microsatellites. Nature 368: 455-457. 1087 

BRANDENBURG, J. T., T. MARY-HUARD, G. RIGAILL, S. J. HEARNE, H. CORTI et al., 2017 Independent 1088 
introductions and admixtures have contributed to adaptation of European maize and its 1089 
American counterparts. PLoS Genet 13: e1006666. 1090 

BROWNING, S. R., B. L. BROWNING, M. L. DAVIGLUS, R. A. DURAZO-ARVIZU, N. SCHNEIDERMAN et al., 2018 1091 
Ancestry-specific recent effective population size in the Americas. PLoS Genet 14: e1007385. 1092 

BUZBAS, E. O., and N. A. ROSENBERG, 2015 AABC: approximate approximate Bayesian computation for 1093 
inference in population-genetic models. Theor Popul Biol 99: 31-42. 1094 

BUZBAS, E. O., and P. VERDU, 2018 Inference on admixture fractions in a mechanistic model of 1095 
recurrent admixture. Theor Popul Biol 122: 149-157. 1096 

CAVALLI-SFORZA, L. L., and W. F. BODMER, 1971 The genetics of human populations. W. H. Freeman, San 1097 
Francisco,. 1098 

CHAKRABORTY, R., and K. M. WEISS, 1988 Admixture as a tool for finding linked genes and detecting that 1099 
difference from allelic association between loci. Proc Natl Acad Sci U S A 85: 9119-9123. 1100 

CHIMUSA, E. R., J. DEFO, P. K. THAMI, D. AWANY, D. D. MULISA et al., 2018 Dating admixture events is 1101 
unsolved problem in multi-way admixed populations. Brief Bioinform. 1102 

CORNUET, J. M., P. PUDLO, J. VEYSSIER, A. DEHNE-GARCIA, M. GAUTIER et al., 2014 DIYABC v2.0: a software 1103 
to make approximate Bayesian computation inferences about population history using single 1104 
nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30: 1187-1105 
1189. 1106 

CSILLÉRY, K., M. G. BLUM, O. E. GAGGIOTTI and O. FRANCOIS, 2010 Approximate Bayesian Computation 1107 
(ABC) in practice. Trends Ecol Evol 25: 410-418. 1108 

CSILLÉRY, K., O. FRANÇOIS and M. G. B. BLUM, 2012 abc: an R package for approximate Bayesian 1109 
computation (ABC). Methods in Ecology and Evolution 3: 475-479. 1110 

DANECEK, P., A. AUTON, G. ABECASIS, C. A. ALBERS, E. BANKS et al., 2011 The variant call format and 1111 
VCFtools. Bioinformatics 27: 2156-2158. 1112 

ELTIS, D., and D. RICHARDSON, 2010 Atlas of the transatlantic slave trade, pp.  in The Lewis Walpole 1113 
series in eighteenth-century culture and history. Yale University Press,, New Haven. 1114 

ESTOUP, A., L. RAYNAL, P. VERDU and J. M. MARIN, 2018 Model choice using Approximate Bayesian 1115 
Computation and Random Forests: analyses based on model grouping to make inferences 1116 
about the genetic history of Pygmy human populations. Journal of the Sfds 159: 167-190. 1117 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/761452doi: bioRxiv preprint 

https://doi.org/10.1101/761452
http://creativecommons.org/licenses/by-nc-nd/4.0/


46 

EWENS, W. J., and R. S. SPIELMAN, 1995 The transmission/disequilibrium test: history, subdivision, and 1118 
admixture. Am J Hum Genet 57: 455-464. 1119 

EXCOFFIER, L., I. DUPANLOUP, E. HUERTA-SANCHEZ, V. C. SOUSA and M. FOLL, 2013 Robust demographic 1120 
inference from genomic and SNP data. PLoS Genet 9: e1003905. 1121 

EXCOFFIER, L., and M. FOLL, 2011 fastsimcoal: a continuous-time coalescent simulator of genomic 1122 
diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27: 1332-1334. 1123 

FALUSH, D., M. STEPHENS and J. K. PRITCHARD, 2003 Inference of population structure using multilocus 1124 
genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567-1587. 1125 

FISHER, R. A., 1922 Darwinian evolution of mutations. Eugen Rev 14: 31-34. 1126 
FOLL, M., H. SHIM and J. D. JENSEN, 2015 WFABC: a Wright-Fisher ABC-based approach for inferring 1127 

effective population sizes and selection coefficients from time-sampled data. Mol Ecol 1128 
Resour 15: 87-98. 1129 

FORTES-LIMA, C., J. BYBJERG-GRAUHOLM, L. C. MARIN-PADRON, E. J. GOMEZ-CABEZAS, M. BAEKVAD-HANSEN et 1130 
al., 2018 Exploring Cuba's population structure and demographic history using genome-wide 1131 
data. Sci Rep 8: 11422. 1132 

FORTES-LIMA, C., A. GESSAIN, A. RUIZ-LINARES, M. C. BORTOLINI, F. MIGOT-NABIAS et al., 2017 Genome-wide 1133 
Ancestry and Demographic History of African-Descendant Maroon Communities from French 1134 
Guiana and Suriname. Am J Hum Genet 101: 725-736. 1135 

FRAIMOUT, A., V. DEBAT, S. FELLOUS, R. A. HUFBAUER, J. FOUCAUD et al., 2017 Deciphering the Routes of 1136 
invasion of Drosophila suzukii by Means of ABC Random Forest. Mol Biol Evol 34: 980-996. 1137 

GOLDBERG, A., and N. A. ROSENBERG, 2015 Beyond 2/3 and 1/3: The Complex Signatures of Sex-Biased 1138 
Admixture on the X Chromosome. Genetics 201: 263-279. 1139 

GOLDBERG, A., P. VERDU and N. A. ROSENBERG, 2014 Autosomal admixture levels are informative about 1140 
sex bias in admixed populations. Genetics 198: 1209-1229. 1141 

GRAVEL, S., 2012 Population genetics models of local ancestry. Genetics 191: 607-619. 1142 
GUAN, Y., 2014 Detecting structure of haplotypes and local ancestry. Genetics 196: 625-642. 1143 
HALLER, B. C., and P. W. MESSER, 2019 SLiM 3: Forward Genetic Simulations Beyond the Wright-Fisher 1144 

Model. Mol Biol Evol 36: 632-637. 1145 
HELICONIUS GENOME CONSORTIUM, 2012 Butterfly genome reveals promiscuous exchange of mimicry 1146 

adaptations among species. Nature 487: 94-98. 1147 
HELLENTHAL, G., G. B. J. BUSBY, G. BAND, J. F. WILSON, C. CAPELLI et al., 2014 A genetic atlas of human 1148 

admixture history. Science 343: 747-751. 1149 
JAY, F., S. BOITARD and F. AUSTERLITZ, 2019 An ABC Method for Whole-Genome Sequence Data: 1150 

Inferring Paleolithic and Neolithic Human Expansions. Mol Biol Evol 36: 1565-1579. 1151 
JEONG, C., G. ALKORTA-ARANBURU, B. BASNYAT, M. NEUPANE, D. B. WITONSKY et al., 2014 Admixture 1152 

facilitates genetic adaptations to high altitude in Tibet. Nat Commun 5: 3281. 1153 
LAWSON, D. J., G. HELLENTHAL, S. MYERS and D. FALUSH, 2012 Inference of population structure using 1154 

dense haplotype data. PLoS Genet 8: e1002453. 1155 
LIPSON, M., P. R. LOH, A. LEVIN, D. REICH, N. PATTERSON et al., 2013 Efficient moment-based inference of 1156 

admixture parameters and sources of gene flow. Mol Biol Evol 30: 1788-1802. 1157 
LOH, P. R., M. LIPSON, N. PATTERSON, P. MOORJANI, J. K. PICKRELL et al., 2013 Inferring admixture histories 1158 

of human populations using linkage disequilibrium. Genetics 193: 1233-1254. 1159 
LONG, J. C., 1991 The genetic structure of admixed populations. Genetics 127: 417-428. 1160 
MAPLES, B. K., S. GRAVEL, E. E. KENNY and C. D. BUSTAMANTE, 2013 RFMix: a discriminative modeling 1161 

approach for rapid and robust local-ancestry inference. Am J Hum Genet 93: 278-288. 1162 
MARTIN, A. R., C. R. GIGNOUX, R. K. WALTERS, G. L. WOJCIK, B. M. NEALE et al., 2017 Human Demographic 1163 

History Impacts Genetic Risk Prediction across Diverse Populations. Am J Hum Genet 100: 1164 
635-649. 1165 

MEDINA, P., B. THORNLOW, R. NIELSEN and R. CORBETT-DETIG, 2018 Estimating the Timing of Multiple 1166 
Admixture Pulses During Local Ancestry Inference. Genetics 210: 1089-1107. 1167 

MOORJANI, P., N. PATTERSON, J. N. HIRSCHHORN, A. KEINAN, L. HAO et al., 2011 The history of African gene 1168 
flow into Southern Europeans, Levantines, and Jews. PLoS Genet 7: e1001373. 1169 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/761452doi: bioRxiv preprint 

https://doi.org/10.1101/761452
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 

MORENO-ESTRADA, A., S. GRAVEL, F. ZAKHARIA, J. L. MCCAULEY, J. K. BYRNES et al., 2013 Reconstructing the 1170 
population genetic history of the Caribbean. PLoS Genet 9: e1003925. 1171 

NEI, M., 1978 Estimation of average heterozygosity and genetic distance from a small number of 1172 
individuals. Genetics 89: 583-590. 1173 

NI, X., K. YUAN, C. LIU, Q. FENG, L. TIAN et al., 2019 MultiWaver 2.0: modeling discrete and continuous 1174 
gene flow to reconstruct complex population admixtures. Eur J Hum Genet 27: 133-139. 1175 

PASCHOU, P., E. ZIV, E. G. BURCHARD, S. CHOUDHRY, W. RODRIGUEZ-CINTRON et al., 2007 PCA-correlated 1176 
SNPs for structure identification in worldwide human populations. PLoS Genet 3: 1672-1686. 1177 

PATIN, E., M. LOPEZ, R. GROLLEMUND, P. VERDU, C. HARMANT et al., 2017 Dispersals and genetic 1178 
adaptation of Bantu-speaking populations in Africa and North America. Science 356: 543-1179 
546. 1180 

PATTERSON, N., P. MOORJANI, Y. LUO, S. MALLICK, N. ROHLAND et al., 2012 Ancient admixture in human 1181 
history. Genetics 192: 1065-1093. 1182 

PICKRELL, J. K., and J. K. PRITCHARD, 2012 Inference of population splits and mixtures from genome-wide 1183 
allele frequency data. PLoS Genet 8: e1002967. 1184 

POOL, J. E., and R. NIELSEN, 2009 Inference of historical changes in migration rate from the lengths of 1185 
migrant tracts. Genetics 181: 711-719. 1186 

PRICE, A. L., A. TANDON, N. PATTERSON, K. C. BARNES, N. RAFAELS et al., 2009 Sensitive detection of 1187 
chromosomal segments of distinct ancestry in admixed populations. PLoS Genet 5: 1188 
e1000519. 1189 

PRITCHARD, J. K., M. T. SEIELSTAD, A. PEREZ-LEZAUN and M. W. FELDMAN, 1999 Population growth of 1190 
human Y chromosomes: a study of Y chromosome microsatellites. Mol Biol Evol 16: 1791-1191 
1798. 1192 

PUDLO, P., J. M. MARIN, A. ESTOUP, J. M. CORNUET, M. GAUTIER et al., 2016 Reliable ABC model choice via 1193 
random forests. Bioinformatics 32: 859-866. 1194 

PURCELL, S., B. NEALE, K. TODD-BROWN, L. THOMAS, M. A. FERREIRA et al., 2007 PLINK: a tool set for whole-1195 
genome association and population-based linkage analyses. Am J Hum Genet 81: 559-575. 1196 

R DEVELOPMENT CORE TEAM, 2017 R: A language and environment for statistical computing, pp. R 1197 
Foundation for Statistical Computing, Vienna, Austria. 1198 

RACIMO, F., S. SANKARARAMAN, R. NIELSEN and E. HUERTA-SANCHEZ, 2015 Evidence for archaic adaptive 1199 
introgression in humans. Nat Rev Genet 16: 359-371. 1200 

RAYNAL, L., J. M. MARIN, P. PUDLO, M. RIBATET, C. P. ROBERT et al., 2019 ABC random forests for Bayesian 1201 
parameter inference. Bioinformatics 35: 1720-1728. 1202 

REICH, D., K. THANGARAJ, N. PATTERSON, A. L. PRICE and L. SINGH, 2009 Reconstructing Indian population 1203 
history. Nature 461: 489-494. 1204 

ROBERT, C. P., K. MENGERSEN and C. CHEN, 2010 Model choice versus model criticism. Proc Natl Acad Sci 1205 
U S A 107: E5; author reply E6-7. 1206 

SALTER-TOWNSHEND, M., and S. MYERS, 2019 Fine-Scale Inference of Ancestry Segments Without Prior 1207 
Knowledge of Admixing Groups. Genetics 212: 869-889. 1208 

SANKARARAMAN, S., S. SRIDHAR, G. KIMMEL and E. HALPERIN, 2008 Estimating local ancestry in admixed 1209 
populations. Am J Hum Genet 82: 290-303. 1210 

SHRINER, D., A. ADEYEMO, E. RAMOS, G. CHEN and C. N. ROTIMI, 2011 Mapping of disease-associated 1211 
variants in admixed populations. Genome Biol 12: 223. 1212 

SISSON, S. A., Y. FAN and M. A. BEAUMONT, 2018 Handbook of Approximate Bayesian Computation. . 1213 
Chapman and Hall/CRC, New York, USA. 1214 

SKOGLUND, P., E. ERSMARK, E. PALKOPOULOU and L. DALEN, 2015 Ancient wolf genome reveals an early 1215 
divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr Biol 25: 1216 
1515-1519. 1217 

TAVARÉ, S., D. J. BALDING, R. C. GRIFFITHS and P. DONNELLY, 1997 Inferring coalescence times from DNA 1218 
sequence data. Genetics 145: 505-518. 1219 

VERDU, P., F. AUSTERLITZ, A. ESTOUP, R. VITALIS, M. GEORGES et al., 2009 Origins and genetic diversity of 1220 
pygmy hunter-gatherers from Western Central Africa. Curr Biol 19: 312-318. 1221 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/761452doi: bioRxiv preprint 

https://doi.org/10.1101/761452
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 

VERDU, P., E. M. JEWETT, T. J. PEMBERTON, N. A. ROSENBERG and M. BAPTISTA, 2017 Parallel Trajectories of 1222 
Genetic and Linguistic Admixture in a Genetically Admixed Creole Population. Curr Biol 27: 1223 
2529-2535 e2523. 1224 

VERDU, P., and N. A. ROSENBERG, 2011 A general mechanistic model for admixture histories of hybrid 1225 
populations. Genetics 189: 1413-1426. 1226 

WAKELEY, J., L. KING, B. S. LOW and S. RAMACHANDRAN, 2012 Gene genealogies within a fixed pedigree, 1227 
and the robustness of Kingman's coalescent. Genetics 190: 1433-1445. 1228 

WEGMANN, D., C. LEUENBERGER and L. EXCOFFIER, 2009 Efficient approximate Bayesian computation 1229 
coupled with Markov chain Monte Carlo without likelihood. Genetics 182: 1207-1218. 1230 

WEIR, B. S., and C. C. COCKERHAM, 1984 Estimating F-Statistics for the Analysis of Population-Structure. 1231 
Evolution 38: 1358-1370. 1232 

WRIGHT, S., 1931 Evolution in Mendelian Populations. Genetics 16: 97-159. 1233 

 1234 

 1235 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/761452doi: bioRxiv preprint 

https://doi.org/10.1101/761452
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary note S1

We used the rectangular hyperbola class of functions to obtain increasing/decreasing patterns
using only one shape parameter. We give here the derivation of the equations used, giving the
example of a decreasing pattern.

A decreasing hyperbola is given by the function:

f(x) =
a(1− x)

a+ x
(S1.1)

with x ∈ [0; 1], f(x) ∈ [0; 1] and a ∈ [0; +∞[. Parameter a controls the shape (“steepness”) of
the curve obtained (figure S1.1).
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Figure S1.1: Influence of a on equation S1.1

The intersection between the hyperbola and y = x is given by

x = y = −a+
√
a+ a2

thus, we can sample an uniform deviate u ∈ [0; 12 ] and set parameter a:

a =
u2

1− 2u

to obtain all hyperbola shapes.
We then transformed equation S1.1 to rescale the ranges of x and f(x):

f(x) =
a(ymax − ymin)(1−

x− xmin

xmax − xmin
)

a+
x− xmin

xmax − xmin

+ ymin (S1.2)

1
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with x ∈ [xmin;xmax] and f(x) ∈ [ymin; ymax] (figure S1.2).
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Figure S1.2: Influence of a on equation S1.2 with xmin = 1, xmax = 20, ymin = 0.1 and
ymax = 0.9

With the notation used in the main text for contributions, and considering 20 generations
of admixture, we obtain:

sS,g =
a(sS,1 − sS,20)(1−

g − 1

20− 1
)

a+
g − 1

20− 1

+ sS,20 (S1.3)

and an example of the patterns obtained for different u values is given in figure S1.3.
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