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Abstract Quantitative finance has had a long tradition of a bottom-up ap-
proach to complex systems inference via multi-agent systems (MAS). These
statistical tools are based on modelling agents trading via a centralised order
book, in order to emulate complex and diverse market phenomena. These past
financial models have all relied on so-called zero-intelligence agents, so that
the crucial issues of agent information and learning, central to price formation
and hence to all market activity, could not be properly assessed. In order to
address this, we designed a next-generation MAS stock market simulator, in
which each agent learns to trade autonomously via reinforcement learning. We
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Département des Études Cognitives, École Normale Supérieure, 29 rue d’Ulm, 75005, Paris,
France.

Boris Gutkin
Group for Neural Theory, Laboratoire des Neurosciences Cognitives et Computationnelles,
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calibrate the model to real market data from the London Stock Exchange over
the years 2007 to 2018, and show that it can faithfully reproduce key mar-
ket microstructure metrics, such as various price autocorrelation scalars over
multiple time intervals. Agent learning thus enables accurate emulation of the
market microstructure as an emergent property of the MAS.

Keywords agent-based · reinforcement learning · multi-agent system · stock
markets
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1 Introduction

General problem : Due to the steadily increasing role played by financial stock
markets in global economics, and the rise of their societal impact at many
levels, a main topic of economic research has historically been that of stock
market stability. At the heart of such market stability studies lie the processes
pertaining to price formation [29,78]. However, research efforts in this direction
have historically been hindered by the structural difficulties inherent to the
bottom-up approach to system complexity inference. Yet bottom-up models
could open a window on the heart of the price formation, help quantify the
learning processes of financial market operators, and hence yield a wealth of
information on the underlying nature of stock markets.

Past research : From a broader perspective, economic research has explored
various types of quantitative models for its statistical inference of stock mar-
ket data, among which, two general classes of models stand out as particularly
prevalent. The first and most encountered ones are autoregressive time-series
models aimed at predicting future values from past history [45]. The second
class, MAS [109] (agent-based models and related methods such as order book
models [50,15,14,96], and dynamic stochastic general equilibrium models [90]),
rather address the causal sources of financial markets activity, and thus take a
bottom-up approach to market complexity. The MAS can be applied to both
high and low-frequency trading [108,5] as well as to the study of supply and de-
mand [11] in the form of game theory [37] and the so-called minority game [72].
From a regulatory point of view, the MAS approach has an ever-increasing role
to play [17], as it may be applied to model specific macroeconomics phenom-
ena [47].
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New trends : Recent technological advances have potentially given MAS ap-
proaches in finance a new level of realism, which to our knowledge has re-
ceived only a limited attention.These trends emerge from the association of two
present-day major scientific breakthroughs: the steady advances of cognitive
neuroscience and neuroeconomics [34,56], and the progress in reinforcement
learning theory due to a resurgence of machine learning methods and especially
multi-agent learning [93,95]. This has been accompanied on both ends with
the emergence of reinforcement learning algorithms incorporating decision-
theoretic features from neuroeconomics [57,82], and neuroscience models ap-
proached from the angle of reinforcement learning [33,75]. These developments
offer a way to go beyond the former generation of MAS with zero-intelligence
agents [42], and their potential financial applications [41,49,79,27] have started
to be extended to the class of order book models, coupled with reinforcement
learning [98].

Our contribution : In order to explore and exploit the technological impact of
these breakthroughs, we have developed a next generation stock market simu-
lator based on a MAS architecture, where each agent represents an economic
investor trading via a centralised order book. In such a model, the simulated
agents have three novel features: i- each agent learns to both forecast and
trade by independent reinforcement learning algorithms in a fully autonomous
way; ii- each agent learns a pricing strategy for this forecasting and trading
that is more or less chartist (i.e relying on market price) or fundamental (i.e
relying on intrinsic economical value); iii- each agent can be endowed with
certain traits of behaviour, cognition, and learning gleaned from behavioural
economics. The three key aspects can be readily implemented thanks to the
reinforcement learning framework and its direct correspondence with decision
theory. These features provide a whole new level of realism in simulated data
and its emulation of real stock markets data. A basic aspect of the validation
of such a model is to emulate market stylised facts.

Structure : In this Paper, we first make a brief literature review (Section 2),
where we define what are these stylised facts (Section 2.1), and recall some
basic concepts of reinforcement learning (Section 2.2), as the core method we
use to model financial stock markets. We proceed to describe in Section 3
the architecture of our MAS model in depth (Section 3.1) and its calibration
process to real stock market data (Section 3.2). Finally we display some of
its performance results in stock market emulation (Section 4), and end with a
sum up of its key aspects (Section 5).

2 Literature review

2.1 Stylised facts

Efficient-market hypothesis : Retrospectively, a major step stone that helped
economic research understand the processes pertaining to price formation and
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how these impact market stability, has been the efficient-market hypothesis
proposed by Fama [38] in 1970, which stated that in a market large enough
where information spreads instantaneously, the actors of that market react al-
most correctly and instantaneously to this incoming information. Under these
specific conditions, market prices thus reflect all the information available to
investors, and hence stock prices are always at their fair value, so that no
consistent profit can be earned over time by investors buying undervalued
stocks and selling overvalued ones. The hypothesis proposed by Fama details
three levels of tests to gauge such market efficiency and to ensure that stock
prices reflect all available information: i- weak (information derived from his-
torical stock prices), ii- semi-strong (information derived from public financial
reports beyond market prices), and iii- strong (private information). Hence,
a consequence of the efficient-market hypothesis has been that data patterns
are voided of any useful exploitation by market operators.

Stylised facts : Yet, beyond how realistic and applicable these tests can be
considered, quantitative finance has since then discovered a number of char-
acteristic patterns in financial data, which tend to constrain the domain of
the efficient market hypothesis, and indirectly posit the existence of mar-
ket memory. These were called stylised facts and gradually discovered over
the nineties: Kim-Markowitz [55], Levy-Levy-Solomon [64,58,59,63,62,60,61],
Cont-Bouchaud [24], Solomon-Weisbuch [97], Lux-Marchesi [68,69], Donangelo-
Sneppen [30,31,7,8], Solomon-Levy-Huang [51]. Their emulation in MAS fi-
nancial research has since then been an active topic of research [66,9,19].
What is remarkable is that these stylised facts can generalise to cross-asset
markets, and show remarkable time invariance. Understanding such univer-
sal market features also pertains to the exogenous or endogenous causes to
price formation [29,78]. Implicit consequences of these stylised facts have fed
numerous discussions pertaining to the validity of market memory [23,25] or
the extension of the efficient market hypothesis [12], and whether such empir-
ical statistical regularities can be exploited by investors to “beat the market.”
Their definite characteristics has varied ever so slightly over the years and
across literature, but the most widespread and unanimously accepted stylised
facts can in fact be grouped in three broad, mutually overlapping categories
that we here sum up:

i- Non-gaussian returns: the returns distribution is non-gaussian and hence
asset prices should not be modelled as brownian random walks [87,86], despite
what is taught in most text books, and often applied in sell-side finance. In par-
ticular the real distributions of returns are dissimilar to normal distributions
in that they are: i- having fatter tails and hence more extreme events, with
the tails of the cumulative distribution being well approximated [25,87] by a
power law of exponent belonging to the interval [2, 4] (albeit this is the sub-
ject of a discussion [110,35] famously started by Mandelbrot [70] and his Levy
stable model for financial returns), ii- negatively skewed and asymmetric in
many observed markets [22], with more large negative returns than large pos-
itive returns, iii- platykurtic and as a consequence having less mean-centered
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events [18], iv- with multifractal k-moments, so that their exponent is not
linear with k, as seen in [28,67,103,71].

ii- Clustered volatilities: market volatility tends to aggregate or form clus-
ters [36]. Therefore compared to average, the probability to have a large volatil-
ity in the near-future is greater if it was large also in the near-past [66,105,81].
Regardless of whether the next return is positive or negative, one can thus say
that large (resp. small) return jumps are likely followed by the same [70], and
thus display some sort of long memory behaviour [23]. Because volatilities and
trading volumes are often correlated, we also observe a related volume clus-
tering. Indirectly, this has long-range implications on the dynamics of meta-
orders, and comprises the square-root impact law [19] (growth in square-root
of orders impact with traded volumes).

iii- Decaying auto-correlations: the auto-correlation function of the price re-
turns of financial time series approach zero for any value of the auto-correlation
lag, except for shorter lags (e.g. half-hour lags for intraday data) because of a
mean-reverting microstructure mechanism for which there is a negative auto-
correlation [22,23]. This feeds the general argument of the well-known efficient
market hypothesis [38,12] stating that markets have no memory and hence
that one cannot predict future prices based on past prices or information [105,
81]. According to this view, there is hence no opportunity for arbitrage within
a financial market [25]. It has been observed however that certain non-linear
functions of returns such as squared returns or absolute returns display certain
steady auto-correlations over longer lags [23].

2.2 Reinforcement learning

2.2.1 Basic concepts

We here outline a brief overview of reinforcement learning theory. Unlike su-
pervised or unsupervised learning, reinforcement learning is another paradigm
of machine learning based on the definition of reward or reinforcement. For a
thorough study of the subject, we refer the reader to [99,111,101].

Three variables: Three main variables must first and foremost be speci-
fied for any reinforcement learning agent: the possible states s ∈ S of the
environment in which the agent evolves and over which it has no control, the
possible actions a ∈ A that the agent can effectively control and perform
in its environment, and the reward or reinforcement r ∈ R proper to that
agent, where R is the set of real numbers. Note that like most other machine
learning approaches, reinforcement learning assumes Markov state signals: a
state signal that succeeds in retaining all relevant information being said to
be Markov, or to have the Markov property if and only if ∀s′, r′ and histories
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st, at, rt, st−1, at−1, rt−1, · · · , s1, a1, r1, s0, a0, we have:

Pr{st+1 = s′, rt+1 = r′|st, at} = Pr{st+1 = s′, rt+1 = r′|st, at, rt, · · · , r1, s0, a0}
(1)

where following [99], we denote Pr{X = x} as the probability of a random
variable X to take on the value x.

Three functions: Maximising its total reward over time is the ultimate goal
of the agent. In order to do so, the agent needs to learn an optimal behaviour
in that environment, i.e. what are the best actions a to perform for each given
state s. For this, one uses a function called the policy, which records the agent’s
probabilities to select each action a when its environment is in state s:

π(s, a) = Pr(a|s). (2)

This policy is initialised with equiprobable actions in the beginning, but up-
dated via exploration by the agent to find an optimal policy, denoted π∗(s, a).
Hence at time t, the agent tries a new action at in a state st and then observes
its associated reward, so as to update the probabilities of π(s, a) accordingly.

However, sometimes the reward associated with the action selected by the
agent is delayed in time. In the reinforcement learning framework, one thus
often scales this reward received by the agent at each time step by a so-called
discount parameter, denoted γ, which is a real number in the ( 0, 1] interval
that allows one to introduce this concept of delayed reward: the agent then
updates its policy not from the realized rewards, but the realized returns,
denoted Rt, which are defined as the sum of time-discounted future rewards:
Rt =

∑∞
k=0 γ

krt+k+1. By setting γ < 1, one thus assigns less weight to the
longer-term rewards.

Apart from time discounting, another important issue pertaining to re-
wards is that they are statistical measures. In order to gauge and assess the
amplitude of this return, the agent hence works with expectations of such re-
turns. This concept, together with that of time discounting, is found in two
major functions through which the agent may assess how rewarding its action
selection has been. The first one is the so-called state-value function:

V (s) = E[Rt|st = s] (3)

which is linked with two functions called the transition probability Pass′ =
Pr{st+1 = s′|st = s, at = a} and the expected value Rass′ = E[rt+1|st =
s, at = a, st+1 = s′]. The second major function the agent may alternatively
work with is the so-called action-value function:

Q(s, a) = E[

∞∑
k=0

γkrt+k+1|st = s, at = a]. (4)

Because one has to first compute the transition probability Pass′ and the
expected value Rass′ , i. e. to build a model of the environment, in order to
derive the state-value function V (s), one may prefer instead to assess the
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returns of the action selections via updating the action-value function Q(s, a)
instead, as it conveniently allows the agent to explore state-action pairs only,
independently of a model.

Three families: The way to learn the optimal policy π∗(s, a) practically in
reinforcement learning is usually separated in several families of algorithms. In
the so-called model-based methods (such as Dynamic Programming) (or DP),
the agent may after each performed action a keep record of its associated
transition probability P and expected value R, then compute its state-value
function V , in order to update its policy π. In model-free methods (such as
Monte Carlo (or MC) and Temporal Difference (or TD), which can be both
united via eligibility traces in the form of TD(λ)), the agent may simply after
each performed action a keep record of its action-value function Q in order
to update its policy π. Thus model-based simply means that the agent keeps
a record of the rewards associated with a model it updates of its environ-
nement, while in model-free reinforcement learning, the agent doesn’t keep
such a model. Finally, direct policy search methods are sometimes used when
the agent bypasses the record of state or action-value functions, and updates
the probabilities of state-action pairs of the policy after receiving the associ-
ated reward directly. Searching the policy space can be done via gradient-based
and gradient-free methods.

Three dilemma: Like many other machine learning methods, reinforcement
learning draws its inspiration from biology: optimal behaviour is thus not
learned directly as such but rather a reward (or reinforcement) is predefined
and the behaviour is indirectly learned through trial and error, formally de-
fined as an exploration vs. exploitation process. This is because while it learns
its policy, the agent eventually faces a dilemma over time: should it keep se-
lecting the actions leading to the best rewards (and hence exploit its policy),
or should it select new actions in order to hopefully find better rewards (and
hence keep exploring)? Several methods have been proposed to answer this
exploration versus exploitation dilemma, among which the ε-greedy method
(where a chosen probability ε is chosen to explore a random action at each
time step while exploiting the best action otherwise; this algorithm becomes
greedier or bent on exploitation as ε is close to 0), the softmax method (where
the action to explore is not purely random but graded from known best to
worse according to a temperature parameter), or the pursuit method (where
continually pursuing the action that is greedy) are most often encountered.
The trade-off between exploration and exploitation is not always straightfor-
ward, as the agent can never truly know if it may not find a better policy by
engaging in more exploration, or conversely, if such new action selection may
not produce a large negative reward.

Furthermore a series of actions is sometimes necessary over prolonged pe-
riods of time before reaching the reward, and reinforcement learning thus
deals with the concept of delayed reward. In certain applications of reinforce-
ment learning one thus deals with the sum of discounted rewards over time∑∞
k=0 γ

krt+k+1, which we already saw in the previous state-value V (s) and
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action-value Q(s, a) functions. One thus deals with an issue of temporal credit
assignment of state-action pairs at each time step.

Finally, another aspect of reinforcement learning is related to the so-called
curse of dimensionality, namely that the number of state-action pairs that the
agent must explore becomes quickly computationally intractable in practical
applications. This brings an important dilemma to any reinforcement learning
problem, namely how to specify the states and actions in a tractable way. These
aspects of exploration versus exploitation, delayed reward, and dimensionality
are central features of reinforcement learning, and active domains of research.

2.2.2 Recent fields of research

Most reinforcement learning research has over the years clustered around the
three dilemma mentioned above, often with some overlap:

i- Exploration vs. exploitation: This dilemma has been addressed by differ-
ent policy learning methods, such as policy gradient methods [100,94] seeking
to optimize the control policy with respect to the return by gradient descent,
or actor-critic methods [46], where an actor controls the behavior of the agent
(policy-based reinforcement learning) and a critic evaluates the action taken
by the agent (value-based reinforcement learning). Another more recent ap-
proach is meta-reinforcement learning [106], which deals with “learning how to
learn” in order to improve a faster generalization, especially at different time-
scales [32] (see also zero-shot or few-shots reinforcement learning).Together
with this approach, we should mention transfer reinforcement learning [111],
which is to transfer the experience gathered on one task to another, and imi-
tation or apprenticeship reinforcement learning, which is to learn a task from
observation of another agent. We can also mention the increasing role played
by multi-agent learning and self-play reinforcement learning [48], which deals
with learning a policy by playing against another agent that also learns. Mul-
titask reinforcement learning seeks to learn many tasks and exploit their sim-
ilarities in order to improve single-task performance. It is related to the now
famous asynchronous reinforcement learning [74], which executes in parallel
many instances of an agent while using a shared model in order to obtain
data diversification, and modular reinforcement learning [6], which learns the
policy of a task by dividing it into smaller subtasks and reconstructing their
individual policies. Another well-known approach is Monte Carlo Tree Search
reinforcement learning [92], which determines the best action via a tree search
relying on random sampling of the search space. We can also mention the im-
portant fields of lifelong reinforcement learning [102], which deals with learning
a large amount of sequential tasks, and hierarchical reinforcement learning [13]
which regroups the agent actions in more general tasks. Finally, we can name
hybrid reinforcement learning [65] (or human-in-the-loop reinforcement learn-
ing), which deals with human interference in the algorithmic learning process
in order to improve it (c.f. intelligent driving).
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ii- Temporal credit assignment : This is an issue that deals with the gen-
eral specification and definition of the agent’s reward and return. Apart from
the aforementioned hierarchical reinforcement learning approach, ongoing re-
search to address this difficulty includes shaping rewards [80], which deals with
incorporating background knowledge on sub-rewards in order to improve con-
vergence rates, inverse reinforcement learning [4], which seeks to extract the
reward function out of the observation of the (optimal) behavior of another
agent. We can also mention homeostatic reinforcement learning [54,53], which
defines the reward via a manifold of many sub-rewards, and a state-dependent
approach to the definition of the agent’s reward [10].

iii- Curse of dimensionality : This issue arises when dealing with the issue
of large-scale MDPs, so that the exploration and hence convergence to an op-
timal policy π∗(s, a) becomes quickly intractable. In particular, the so-called
Q-learning algorithm [107], as part of the more general model-free temporal
difference or TD-learning was a breakthrough for reinforcement learning, be-
cause it reduced drastically the number of states to explore: only the pairs
(s, a) need be explored. This curse of dimensionality points to the more gen-
eral problem of function approximation, which recently led to the interface
of reinforcement learning with artificial neural networks in the form of the
now famous end-to-end or deep reinforcement learning [92]. Related to this
is the ongoing work on partially observable MDP models [89,52], and adver-
sarial reinforcement learning [85], which deals with modeling the noise and
uncertainties in state representation via an adversarial agent applying certain
specific perturbations to the system.

3 Methodology and data

3.1 Model

We now proceed to describe in details the architecture of our stock market
MAS simulator, and the design of its autonomous agents.

3.1.1 General architecture

The main simulation parameters are the number of agents I, the number of
traded stocks J , the number of simulation time steps T (we consider a time
step to correspond to a trading day, a year to correspond to Ty = 252 trading
days, a month to Tm = 21 trading days, and a week to Tw = 5 trading
days). Usually, we consider statistical features emerging from a number S of
simulations. We also model the friction costs of trade executions via broker fees
b applied to each transaction, an annual risk-free rate R applied to the risk-
free assets of the agents, and an annual stock dividend yield D applied to the
stock holdings of each agent. The real values of these financial parameters have
varied over the 2007 to 2018 time span used for model calibration, however for
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simplification purposes, we have taken them as constant averages: the broker
fees are set at b = 0.1% based on current industrial broker fees for the London
Stock Exchange [2], the annual risk-free rate is set as R = 1% based on an
approximation of the one-year gilt or UK bond yield average between January
2008 and January 2018 [3], and the annual stock dividend yield is set as D =
2% according to the current dividend impacts of FTSE 250 stocks [1]. The
simulation then follows at each time step t the four general steps described
below:

i- Initialisation of agents parameters: The simulation initialises I agents
and all their individual parameters at t = 0. Each agent represents an individ-
ual or corporate investor or trader managing its own portfolio over time t via
interaction with the market. This portfolio is made of specific stock holdings
(equity) and risk free assets (bonds). These agent parameters are described in
further detail in Section 3.1.2 below.

ii- Initialisation of fundamentals: As in other models [39,20], the simula-
tion initialises all market prices at P j(t = 0) = £100, and generates J time
series T j(t) as jump processes, which correspond to the prices associated with
the fundamental values of the stocks. We model the topology of these fun-
damental values out of a metric that is often seen in corporate finance and
company quarterly reports, called the enterprise value (which represents the
approximative value at which the company would be bought in mergers and
acquisitions for instance), and which we divide by the total number of stock
outstanding [104]. These are not fully known by the I agents. Instead, each
agent i approximates the values T j(t) of stock j according to a proprietary
rule [76] of cointegration κi,j [T j(t)] = Bi,j(t). The time series Bi,j(t) are hence
the fundamental values of stock j over time t according to agent i. Together
with such modelled fundamental values T j(t), we show on Fig. 1 examples of
such enterprise values divided by the number of stock outstanding, for various
companies traded on the London Stock Exchanges, over the years 2006−2016.
So as to visually explain the concept of cointegration, we also show on Fig.
2, a sample of such modelled fundamental values T j(t), together with their
approximation Bi,j(t) by some agents. For S = 20 simulations, we calculate
the average annual number of jumps of T j(t) as 12.70 ± 1.85, the average
amplitude (T j(t)− T j(t− 1))/T j(t) of these jumps as 5.90± 1.84%, and the
average difference between biased and true values (T j(t) − Bi,j(t))/T j(t) as
2.37 ± 1.36% (where ± terms refer to standard deviations). Each agent thus
relies on these two sources of information for its stock pricing strategy: one
that is chartist, and one that is fundamental.

iii- Agents forecasting and trading : Each agent autonomously uses two dis-
tinct reinforcement learning algorithms to interact with the market, each al-
gorithm being described in further detail in Section 3.1.3 below. A first algo-
rithm F i learns the optimal econometric prediction function for the agent’s
investment horizon, depending on specific local characteristics of the market
microstructure and the agent’s fundamental valuation Bi,j(t). It thus outputs
this price forecast, which will in turn enter as input the second reinforcement
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Fig. 1 Examples of fundamental values in the London Stock Exchange (cf. symbols as
legend: Bodycote plc as “body,” Vodafone Group plc as “vod,” Boeing co. as “ba.,” QinetiQ
Group plc as “qq.”) over the years 2006 to 2016 represented by enterprise value divided by
the number of stock outstanding (continuous curves), and those generated as J = 4 unscaled
time series T j(t) (dashed curves) by the simulator at time t = 0.

Fig. 2 Examples of fundamental values modelled by T j(t) (black dashed curve) and some
agent’s approximation thereof as Bi,j(t) (continuous blue, red, and green curves) over a
simulated time of one year.

learning algorithm T i. This second algorithm is in charge of sending an op-
timal limit trading order to a double auction order book [77] at this same
time step, based on this prediction and a few other market microstructure
and agent portfolio indicators. Notably, the transaction order output by T i
is filtered by a function Gi, which ensures that the agent waits and sends a
transaction order at the optimal time step.

iv- Order book is filled and cleared : A number J of order books are filled
with all the agents’ trading limit orders for stock j at time step t. All buy orders
are sorted by descending bid prices, all sell orders are sorted by ascending ask
prices, each with their own associated number of stocks to trade. Then the
order book is cleared at this same time step t by matching each order at mid-
price between buyers and sellers, starting from the top of the order book to
the lowest level where the bid price still exceeds the ask price. Importantly, we
then define the market price P j(t+1) of stock j at the next time step t as that
last and lowest level mid-price cleared by the order book. We also define the
trading volume V j(t + 1) as the number of stocks j traded during that same
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time t. Finally, we define the spread W j(t+ 1) of stock j at this time step t as
the absolute difference between the average of all bids and asks. Notice it is this
spread W j(t) that is used as input to each agent’s stock pricing process, and
not the traditional bid-ask spread, which is defined as the difference between
the highest bid and the lowest ask.

3.1.2 Agents parameters

The model comprises several parameters, both at the agent level and the gen-
eral architecture. Let U(),U{},N (),N{} respectively denote the continuous
and discrete uniform distributions, and the continuous and discrete normal
distributions. Each agent i is initialised at step 1 with the following parame-
ters:

– Risk-free assets of value Aibonds(t = 0) ∼ N (0, 104). This can be seen as
bonds or a bank account out of which the agent may long equity, and that
will increase when the agent shorts its stocks.

– A number of stocks Qi,j(t = 0), drawn from a discrete positive half-
normal distribution N+{0, 100}, amounting to a value of its stock holdings

Aiequity(t = 0) =
∑J
j=0Q

i,j(t = 0)P j(t = 0), which the agent may short on
the market.

– A drawdown limit li ∼ U(40%, 50%). If the year-to-date, peak-to-bottom,
absolute percentage decrease of the agent’s portfolio net asset value ex-
ceeds this drawdown limit li at any time step t, then the agent is listed
as bankrupt and unable to interact with the market anymore. These value
may seem unrealistic in the sense that the drawdowns commonly tolerated
in the asset management industry rarely exceed 30%. However, contrarily
to a real stock exchange, such a large value is a necessity due to the model
relying on a constant population of agents, which are not replaced if they
become bankrupt.

– A reflexivity amplitude parameter ρi ∼ U(0, 100%), which gauges how
fundamental or chartist the agent is in its price valuation, via a weighted
average of the agent’s technical forecast of the market price P̂ i,j(t) and its
fundamental pricing Bi,j(t). The value of ρi modulates the amplitude of
the action aF2 of the first reinforcement learning algorithm F (see below).

– An investment horizon τ i ∼ U{Tw, 6Tm}, corresponding to the number of
time steps after which the agent liquidates its position. Notice the bounds
of this interval correspond to one week and six months in trading days.

– A trading window wi ∼ U{Tw, τ i}, which will enter as parameter to the
function Gi computing the optimal trading time for longing a certain quan-
tity of stocks j.

– A memory interval hi ∼ U{Tw, T − τ i − 2Tw}, and corresponding to the
fixed size of the rolling interval memorised by the agent for its learning
process.

– A transaction gesture gi ∼ U(0.2, 0.8), and related to how far above or
below the value of its own stock pricing the agent is willing to trade and deal
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a transaction. The bounds of this uniform distribution interval are selected
according to one of the model’s hyperparameters, namely the gesture scalar
ζi, (cf. Tab. 1 of Section 3.2 on calibration).

– A reinforcement learning rate, which in our case is modelled by a param-
eter βi ∼ U(0.05, 0.20) for both reinforcement algorithms F i and T i. The
boundaries of this parameter are drawn from the rich literature in neuro-
science on the value of the learning rate [83,57,82].

As we will see in Section 3.2, several of these parameters are optimised as
model hyperparameters (like the drawdown limit li via L, or the transaction
gesture gi via ζi), while others are drawn from previous studies of literature
(like the reinforcement learning rate βi), or enter as learned parameters at the
agent reinforcement learning level (like the reflexivity amplitude parameter
ρi), or are arbitrarily set (like the values of the agents’ portfolios Aibonds and
Aiequity, and the agent investment horizon τ i and intervals wi, hi), and can
hence be understood as part of the structure of the model architecture.

3.1.3 Agent reinforcement learning: first algorithm F i

We now describe further step 3 and its two reinforcement learning algorithms
F i (which learns efficient price forecasting) and T i (which learns efficient trad-
ing based on this forecast). Each algorithm is individually ran by each agent i
following a direct policy search, for each stock j, and at each time step t. By
direct policy search, we mean each agent selects and updates the probability
associated with each action directly from the policy, and not via any action-
value function (cf. Generalized Policy Iteration theorem [99]). Each algorithm
has 729 and 972 potential action-state pairs, respectively. We define the sets
of states S, actions A, and returns R of these two algorithms according to the
following.

Via this first algorithm, the agent continuously monitors the longer-term
volatility of the stock prices (sF0 ), their shorter-term volatility (sF1 ), and the
gap between its own present fundamental valuation and the present market
price (sF2 ). Out of this state, it learns to optimize its price prediction at its
investment horizon τ i by exploring and exploiting three possible actions via a
direct policy search: choosing a simple forecasting econometric tool based on
mean-reverting, averaging, or trend-following market prices (aF0 ), choosing the
size of the past time interval for this forecast (aF1 ), and choosing the weight of
its own fundamental stock pricing in an overall future price estimation, that
is both fundamentalist and chartist (aF2 ).

States SF : The first reinforcement learning algorithm F i is defined with
a state sF in a state set SF = {sF0 , sF1 , sF2 }, of dimension 27, where each
sF0 , s

F
1 , s

F
2 individually may take the values 0, 1, or 2. First, each agent com-

putes the variances σ2
L and σ2

S of the prices P j(t), over the intervals [t−3τ i, t]
and [t− τ i, t], respectively. Then:

– The value σ2
L is computed and recorded at each time step in a time series

that is continually sorted in ascending order and truncated to keep a size
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corresponding to agent memory interval hi. The percentile of its present
value at time step t sets sF0 = 0 if it is below 25%, sF0 = 2 if it is above
75%, and sF0 = 1 otherwise. The state parameter sF0 thus gives the agent
an idea of the longer-term volatility of the prices P j(t) of stock j, not in
the sense of absolute static thresholds of this longer-term volatility, but of
dynamic values depending on the agent’s past history.

– The value σ2
S is computed and recorded at each time step in a time series

that is likewise continually sorted in ascending order and truncated to
keep a size corresponding to agent memory interval hi. The percentile of
its present value at time step t sets sF1 = 0 if it is below 25%, sF1 = 2
if it is above 75%, and sF1 = 1 otherwise. The state parameter sF1 thus
gives the agent an idea of the shorter-term volatility of the prices P j(t) of
stock j, not in the sense of absolute static thresholds of this shorter-term
volatility, but of dynamic values depending on the agent’s past history.
Together, with the longer-term volatility, this shorter-term gives the agent
a finer perception of the market price microstructure for its forecasting.
The state parameter sF2 thus gives the agent a sense of distance between
present market price and its own fundamental valuation.

– The average of |P j(t) − Bi,j(t)|/P j(t) is computed over the interval [t −
3τ i, t], and sets sF2 = 0 if it is below 10%, sF2 = 2 if it is above 30%, and
sF2 = 1 otherwise.

Actions AF : Then, the reinforcement learning algorithm F i is defined with
an action aF in an action set AF = {aF0 , aF1 , aF2 }, of dimension 27, where each
aF0 , a

F
1 , a

F
2 individually may take the values 0, 1, or 2. These actions are chosen

according to a direct policy search (see below), as the agent is in exploration
mode or exploitation mode. First, each agent computes two different averages
〈P j[t−2T,t−T ](t)〉 and 〈P j[t−T,t](t)〉 of past stock prices, with T = (1 + aF1 )τ i/2,

and then the econometric tool computes:

P̂ i,j(t) = P j(t) + 〈P j[t−2T,t−T ](t)〉 − 〈P
j
[t−T,t](t)〉 (5)

P̂ i,j(t) =
1

2
〈P j[t−2T,t−T ](t)〉+

1

2
〈P j[t−T,t](t)〉 (6)

P̂ i,j(t) = P j(t)− 〈P j[t−2T,t−T ](t)〉+ 〈P j[t−T,t](t)〉 (7)

if aF0 = 0, 1, 2, respectively, and hence corresponding to mean-reverting, moving-
average, and trend-following projections. Hence, both aF0 and aF1 pertain to
technical analysis: action aF0 determines the nature of the econometric fore-
casting tool that will be used (mean-reverting, moving-average, and trend-
following), and action aF1 determines the size of the past intervals over which
these forecasts are computed. Then, the third action aF2 enters as a parame-
ter of the weighted average of this latter chosen technical forecast P̂ i,j(t) and
the agent’s fundamental valuation of the stock Bi,j(t), to produce the agent’s
forecast:

Hi,j(t) = αP̂ i,j(t) + (1− α)Bi,j(t) (8)
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for α ∈ R, which is specified such that if the agent’s reflexivity ρi ≤ 50%, we
have α = 0, ρi, 2ρi for aF2 = 0, 1, 2, respectively, and if the agent’s reflexivity
ρi > 50%, we have α = 2ρi−1, ρi, 1 for aF2 = 0, 1, 2, respectively. Hence aF2 = 2
allows the agent to learn and gauge the weight it gives to its own chartist vs.
fundamentalist pricing.

Returns RF : Then, the reinforcement learning algorithm F i computes the
percentage difference between the agent’s former stock price predictionHi,j(t−
τ i) performed τ i time steps ago, and its present realization P j(t):

|Hi,j(t− τ i)− P j(t)|
P j(t)

(9)

recording it at each time step in a time series that is continually sorted in
ascending order and truncated to keep a size corresponding to agent memory
interval hi. The associated percentile corresponding to this value at time step
t sets a discrete value of returns rF in the set RF = {4, 2, 1,−1,−2,−4}
if it respectively belongs to the intervals [0%, 5%(, [5%, 25%(, [25%, 50%(,
[50%, 75%(, [75%, 95%(, [95%, 100%].

Policy πF : Finally, the reinforcement learning algorithm updates its policy
πFt (sFt−τ i , aFt−τ i), at each time step t. This is done according to the agent’s

own learning rate β, with the equations below being iterated a number |rF | of
times, in order to favour any action that is deemed optimal aF? in state sF ,
by increasing the policy probability associated with this action, compared to
the other actions, ∀aF 6= aF? :

πFt+1(sF , aF?) = πFt (sF , aF?) + β[1− πFt (sF , aF?)] (10)

πFt+1(sF , aF ) = πFt (sF , aF ) + β[0− πFt (sF , aF )] (11)

Added to this, the algorithm uses an off-policy method every τ i/Tm + 2
time steps, which computes the optimal action that F i should have performed
τ i time steps ago now that the price is realised and the forecast accuracy
known, and which accordingly updates the policy πF with the agent’s own
learning rate β, iterated |rF | = 4 times (for the associated action is deemed
optimal).

3.1.4 Agent reinforcement learning: second algorithm T i

Via this second algorithm, the agent continuously monitors whether the stock
prices are increasing or decreasing according to former algorithm (sT0 ), their
volatility (sT1 ), its risk-free assets (sT2 ), its quantity of stock holdings (sT3 ), and
the traded volumes (sT4 ). Out of this state, it learns to optimize its investments
by exploring and exploiting two possible actions via a direct policy search:
sending a transaction order to the order book as holding, buying, or selling a
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position in a given amount (aT0 ), and at what price wrt. the law of supply and
demand (aT1 ).

States ST : The second reinforcement learning algorithm T i is defined with
a state sT in a state set ST = {sT0 , sT1 , sT2 , sT3 , sT4 }, of dimension 108, with
sT0 = sT1 = sT4 = {0, 1, 2} and sT2 = sT3 = {0, 1}.
– Each agent computes the value µ = (Hi,j(t) − P j(t))/P j(t) and records

it at each time step in two distinct time series µ− and µ+, depending
on whether it is negative or positive, respectively. These two time series
are continually sorted in ascending order and truncated to keep a size
corresponding to agent memory interval hi. The percentile of its present
value µ− at time step t in µ− sets sT0 = 0 if it is below 95%, and sT0 = 1
otherwise. The percentile of its present value µ+ at time step t in µ+ sets
sT0 = 1 if it is below 5%, and sT0 = 2 otherwise. Therefore, sT0 = 0, 1, 2
if the econometric forecast µ derived from the previous algorithm F i is
respectively indicating a decrease, approximate stability, or increase in the
price of stock j in τ i future time steps.

– Each agent records the previously computed variance σ2
L of the prices P j(t)

over the interval [t−3τ i, t] at each time step, in a time series that is contin-
ually sorted in ascending order and truncated to keep a size corresponding
to agent memory interval hi. The percentile of its present value at time
step t sets sT1 = 0 if it is below 33%, sT1 = 2 if it is above 67%, and sT1 = 1
otherwise. sT1 thus gives a measure of the longer-term volatility in stock
prices to the agent.

– Each agent sets sT2 = 0 if the value of its risk-free assets Aibonds(t) at time
step t is below 60% of its start value Aibonds(t = 0), and sT2 = 1 otherwise.
Hence each agent likewise continually monitors the size of its risk-free assets
in order to adopt the appropriate long or short strategy.

– Each agent sets sT3 = 0 if the value of its stock holdings Aiequity(t) at time

step t is below 60% of its start value Aiequity(t = 0), and sT3 = 1 otherwise.
Hence each agent continually monitors the size of its stock holdings in order
to adopt the appropriate long or short strategy.

– Each agent records the trading volume V j(t) at each time step in a time
series that is continually sorted in ascending order and truncated to keep
a size corresponding to agent memory interval hi. The percentile of its
present value at time step t sets sT4 = 0 if V j(t) = 0, sT4 = 1 if it is below
33%, sT4 = 2 otherwise. This gives the agent a sense of market activity
that is useful for determining the appropriate bid or ask price to send to
the order book.

Actions AT : Then, the reinforcement learning algorithm T i is defined with
an action aT in an action set AT = {aT0 , aT1 }, of dimension 9. Here aT0 and aT1
both can take the discrete values {0, 1, 2}, chosen according to a direct policy
search (see below). The first action aT0 corresponds both to the quantity of
stocks and the nature of the transaction order (sell, hold, or buy) that the
agent chooses to send to the order book. Hence each agent has a long-only
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equity strategy: the agent buys at a given price a number of stocks, holds
them for a given time, and then sells them, hopefully at a higher price. The
second action aT1 corresponds to the flexibility of the agent with regards to
the price at which it is willing to trade. As said, these two actions depend on
the evaluation of the price of stock j that was performed by the agent through
the first algorithm F i. First, the agent bid price P i,jbid(t) is set at:

P i,jbid(t) = min[Hi,j(t), P j(t)] + giW j(t− 1) (12)

P i,jbid(t) = min[Hi,j(t), P j(t)] (13)

P i,jbid(t) = min[Hi,j(t), P j(t)]− giW j(t− 1) (14)

if aT1 = 0, 1, 2 respectively. Here we recall that gi is the agent’s transaction
gesture and W j(t − 1) our market spread of stock j at former time step.
The term ±giW j(t− 1) hence specifies the agent’s softer or harder stance on
the transaction deal, depending on general market conditions of supply and
demand, like W j(t − 1) and the traded volumes specified by sT4 . The agent
ask price P i,jask(t) is set at:

P i,jask(t) = max[Hi,j(t), P j(t)]− giW j(t− 1) (15)

P i,jask(t) = max[Hi,j(t), P j(t)] (16)

P i,jask(t) = max[Hi,j(t), P j(t)] + giW j(t− 1) (17)

if aT1 = 0, 1, 2 respectively. Then for Qi,j(t) the quantity of stocks j held by
agent i at time t, action aT0 = 0 corresponds to a sell order of a quantity
Qi,j(t) of stocks j for an ask price of P i,jask(t), action aT0 = 1 corresponds to no
order being sent to the order book (the agent simply holds its position), and
aT0 = 2 corresponds to a buy order of a floored quantity Aibonds(t)/[P

i,j
ask(t)J ]

of stocks j for a bid price of P i,jbid(t). Notice the parameter J is here part of the
denominator of this stock quantity to buy, so as to ensure a proper multivariate
portfolio management.

Filter Gi: As mentioned earlier, the quantity and price of stock j that agent
i sends to the order book at this time step t is conditional on the output of
function Gi, that ensures the agent waits and sends a transaction order at
the optimal time step and not before. In order to do this, Gi records in a time
series at each time step the value of the action-value function arg maxaQt(s, a)
maximized by action a. It then sorts this time series in ascending order, and
compares its associated percentile pQ(t) with the ratio of the elapsed time
since previous transaction ki,j(t) over the agent’s individual trading window
wi. The filter function Gi lets the trading order chosen by T i be sent to the
order book only if pQ(t) < ki,j(t)/wi. Notice this function Gi thus filters entry
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but not exit strategies: the latter are always enacted at the agent’s investment
horizon τ i.

Returns RT : Considering the present realization of stock price P j(t), the al-
gorithm T i then computes the cashflow difference between the present agent’s
portfolio net asset value, and its present value if the former actions taken τ i

time steps ago had not been taken:

Qi,jOB(t− τ i)[P j(t)− P i,jOB(t− τ i)] (18)

where Qi,jOB(t − τ i) and P i,jOB(t − τ i) are respectively the quantity and trans-
action price of stock j that was cleared by the order book process at time
t − τ i for agent i and its transaction partner. Notice these may not be those
actually sent by agent i at that time, because the quantity of stocks to long or
short may not have been entirely cleared at this time (recall the agents send
limit orders only), and because the transaction price is set by the order book
at mid-price with the transaction partner’s order price. These values are then
recorded at each time step in a time series that is continually sorted in ascend-
ing order and truncated to keep a size corresponding to agent memory interval
hi. The associated percentile corresponding to this value at time step t sets a
discrete value of returns rT in the set RT = {4, 2, 1,−1,−2,−4} if it respec-
tively belongs to the intervals [0%, 5%(, [5%, 25%(, [25%, 50%(, [50%, 75%(,
[75%, 95%(, [95%, 100%].

Policy πT : Finally, the reinforcement learning algorithm updates its policy
πTt (sTt−τ i , aTt−τ i), every τ i time steps following each transaction dealt by the
agent. This is done according to the agent’s own learning rate β, with the
equations below being iterated a number |rT | of times, in order to favour
any action that is deemed optimal aT ? in state sT , by increasing the policy
probability associated with this action, compared to the other actions, ∀aT 6=
aT ? :

πTt+1(sT , aT ?) = πTt (sT , aT ?) + β[1− πTt (sT , aT ?)] (19)

πTt+1(sT , aT ) = πTt (sT , aT ) + β[0− πTt (sT , aT )] (20)

Added to this, the algorithm uses an off-policy method every τ i/Tm + 2
time steps, which computes the optimal action that T i should have performed
τ i time steps ago now that the price is realised and the forecast accuracy
known, and which accordingly updates the policy πT with the agent’s own
learning rate β, iterated |rT | = 4 times (for the associated action is deemed
optimal).

As one can see, the action-state spaces of these two algorithms F and T are
highly discretised and handcrafted. The main reason is that such structured
state space limits the necessary computational ressources and mitigates one
of the central limitations for MAS applied to financial research, namely the
requirement for large computational power. Furthermore, the general intuition
behind our definition of such state and action spaces has been the Fundamental
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Theorem of Asset Pricing [26], where present asset prices are estimated from
time-discounted future prices expectations: likewise, our agent reinforcement
learning framework has been articulated around a forecasting part F i and a
trading part T i, in a way not that dissimilar from other recent models such
as [98] (cf. Section 3.1.3).

3.2 Calibration to real data

Model hypotheses : The main hypotheses for this model are that: i- the sim-
ulated agents faithfully emulate real-world investors, and ii- the simulated
transaction limit orders processed by the order book correspond to the dy-
namics and properties of real stock market orders. Concerning the former,
the strength of our approach is the simplification that any agent, regardless
of its behaviour and strategy, is structurally bound to interact with the mar-
ket in three possible ways only, namely by longing, shorting or holding stocks
(long-only strategy). Concerning the latter, we recall that the dynamics of or-
der books are extensively documented in literature [50], and hence that their
design can be rigorously conducted.

Model limitations : Along with these two major hypotheses, we shall also men-
tion the following model limitations and consistency issues, which are proper
to all financial MAS: i- reliance on virtual fundamental generation T j(t), ii-
absence of portfolio diversification (equity, cross-asset), iii- absence of vari-
ous trading strategies (e.g. short-selling, leveraging, derivatives, metaorders,
market orders, etc.), iv- absence of intraday and seasonal market effects, v-
absence of legal and regulatory constraints. Although some of these limita-
tions may seem challenging, their effects and importance impact virtually any
other econometric or modelling approach in quantitative finance. Added to
this, modelling market activity via a market microstructure emerging from a
centralised order book that processes transaction orders sent by many trading
agents, has a direct empirical correspondance with real stock markets, and is
thus fully epistemologically pertinent.

Training and testing sets : We calibrated the MAS stock market simulator to
real stock market data 1. In order to do so, we used high quality, industry-
grade, daily close prices and volumes of 4, 313 stocks from the London Stock
Exchange (LSE), between January 15th of 2007 and January 19th of 2018. In
order to work on the market microstructure, we have filtered the data as such:
i- stock-splits effects have been suppressed, ii- only stocks that have been con-
tinuously traded over this time period have been considered. As a consequence
of this data curation, our former stock universe has been lowered to 640 stocks.
The calibration of the MAS hyperparameters has been conducted on a random

1 Computations were performed on a Mac Pro with 3,5 GHz 6-Core Intel Xeon E5 pro-
cessor, and 16 GB 1866 MHz DDR memory
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sampling of half of these stocks as training set. We found a remarkable invari-
ance of its main statistical features, when compared to that of the other half.
We posit this statistical stability, proper to stock market data, arises from the
lack of market arbitrage and relates to the aforementioned stylised facts.

Hyperparameter optimisation : The calibrated hyperparameters are the num-
ber of agents I, the agent transaction gesture factor ζi ∈ N (which scales the
gesture parameter gi initialised for each agent at time t = 0), the fundamen-
tal values generation parameter ν (which is the amplitude of the fundamental
time series T j), and the drawdown threshold (which is the higher bound of the
drawdown limit initialised at time t = 0 for each agent). All hyperparameter
combinations were compared with the training set, and are listed on Tab. 1.
As one can see from the boundaries and iteration steps of the optimization
process, 6×5×8×5 = 1200 simulations were hence conducted, each simulation
consisting of S = 20 runs, for statistical consistency.

Table 1 Model hyperparameters, with their intervals for training : lower bound (Low),
higher bound (High), and step of incrementation (Step).

Hyperparameter Low High Step
Agent number I 500 5500 1000

Gesture scalar ζi 1.0 3.0 0.5
Fundamental amplitude ν 0.1 1.5 0.2
Drawdown treshold L 10 90 20

Sensitivity analysis : During optimisation, such a hyperparameter space has
been used to monitor the sensitivity of the model to certain hyperparameter
ranges, and especially to highlight areas of non-linearity wrt. calibration to
the real data. The sensitivity of the model to the number of agents I is rather
linear in the sense that larger values of I gradually diminish short-scale price
volatilities. Larger gesture scalar ζi and fundamental amplitude ν produce a
linear growth in absolute daily price returns. Finally, the model is relatively
unaffected by large drawdown thresholds L > 30%, as these values have a low
impact on agent survivability rates.

Model comparison : There is an extensive literature wrt. to [42] on the substi-
tution of markets to individual rationality, namely whether markets eliminate
irrational individuals, or whether individuals learn market rules. Fig. 3 shows
agent learning curves that can be used for model comparison, notably with
recent order book models coupled with reinforcement learning [98], and the
former generation of MAS with zero-intelligence agents [42] as baselines.
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Fig. 3 After 90% of total simulation time, we want to compare the best 10% agents of our
MAS stock market simulator (blue curves) with the best 10% agents of a market simulated
with noise agents trading randomly (red curves). For this, we check on their performance
over the remainder 10% of our total simulation, with averaged equity curves as their year-
to-date returns over S = 20 simulations (left), and averaged sorted annual returns of each
S simulations (right). These simulations are generated with parameters I = 500, J = 1,
T = 2875.

4 Results

4.1 Statistical features

We show on Fig. 4 to 15, different key market microstructure indicators per-
taining to the calibration of the MAS simulator. As one can see, the curves
show a qualitative agreement in shape with those from real stock market data,
and can be considered state-of-the-art wrt. to agent-based stock market emu-
lation [16,44,88]. This also shows the usefulness of reinforcement learning as
a framework for the description of agent learning and trading process in stock
markets. Unless otherwise stated, the results discussed below are ran for sim-
ulations generated with I = 500 agents, J = 1 stock being traded, T = 2875
time steps during each simulation (accounting for about 11 years of trading
days), and S = 20 simulation runs.

– Fig. 4 shows the distribution of logarithmic returns of prices log[P (t)/P (t−
1)], for real (dashed black curve) and simulated (continuous red curve)
data. One can see a close match between simulated and real logarithmic
price returns, but notice the small variability of extreme events found in
the distribution tails, revealed by the logarithmic y-axis.

– On Fig. 5, one can see the distributions of the price volatilities over sev-
eral intervals, namely over two weeks (black), three months (red), and
one year (blue), for both real (dashed curves) and simulated (continuous
curves) data. These volatilities are defined as standard deviations of prices
normalised to the price itself σ/P (t). We find that the real volatilities at
larger time scales are harder to emulate, and this is most probably because
our real data sample covers a rather unique and unusual market regime
over the years 2008− 2009, namely the financial crisis.

– On Fig. 6, we show the distributions of the correlations of the price loga-
rithmic returns between separated intervals [t−∆, t] and [t−2∆, t−∆] at
each time step t, over values ∆ of two weeks (black), three months (red),
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and one year (blue). This is for both real (dashed curves) and simulated
(continuous curves) data. Despite the great fits, in particular wrt. to the
general shape of the distributions, one could wonder as to why real data
displays that many zero-autocorrelations; we posit this could be due to
particular intraday market activity, or to the absence of trading volumes
over long periods of time for stocks of small capitalisation companies.

– In a similar way, we see the simulated data (continuous curves) emulating
the real data (dashed curves) in the asymmetric shape of the distribution
of the price volatility correlations between separated intervals [t−∆, t] and
[t− 2∆, t−∆] for ∆ = 2Tw at each time step t in Fig. 7, and likewise in
the shapes of the distributions of the trading volumes correlations between
these same separated intervals, for values ∆ of two weeks (black), three
months (red), and one year (blue) in Fig. 8, with a difference in zero values.

– On Fig. 9, we show the distributions of the correlations in price logarithmic
returns at each time step t for the simulated data (continuous curves) and
the real data (dashed curves), between the blended intervals [t−Tw, t] and
[t−Tw−δ, t−δ], for shifts δ of one day (black), two days (red), three days
(blue), four days (green), and five days (yellow), with a similar difference
in zero values.

– On Fig. 10, we see the real (blue) and simulated (red) means of blended
correlations of the logarithmic returns of prices at each time step t between
intervals [t−Tw, t] and [t−Tw−δ, t−δ], for shifts δ = 1, 2, 3, 4, 5. Similarly,
Fig. 11 shows close fits for larger intervals of 2Tw instead of Tw. This is
an important model statistic wrt. the fact that the MAS produces a price
microstructure showing cancellation of arbitrage opportunities and market
memory, through agent learning. In other words, the agents learn to exploit
short-term causality structures in the historical price.

– On Fig. 12, we show the distribution of the number of consecutive days of
increasing prices (positive values) and decreasing prices (negative values)
at each time step t, for both simulated (continuous curve) and real (dashed
curve) data. The number of consecutive days of increasing or decreasing
prices is a useful indicator of market regime, or whether the market is
“bearish” or “bullish.” We find that apart from a few extreme bullish
events, the MAS simulates general stock market price dynamics in a way
corresponding to real data.

In conclusion, our results show that the simulator is able to faithfully ac-
count for the distribution of logarithmic price returns in Fig. 4 and their
autocorrelations at different timescales in Fig. 6, 9, 10, 11. These latter au-
tocorrelation metrics are key in the calibration process, because they pertain
to the absence of arbitrage and market memory, which are central features of
financial markets. Or in other words, beyond the stylised facts, the simulated
data should not display price patterns that are more easily identifiable and
ready to be exploited by trading than those found in the real data, if any.
Finally, we can also underline how the MAS simulator faithfully emulates real
stock market regimes of recession and growth, as shown in Fig. 12. This said,

Boris
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we take note of several avenues for improvement that become apparent for the
simulator performance and properties:

– The extremity of the tail distribution of long-term price volatilities in Fig.
5: these are indeed the hardest microstructure effects to capture, as they
relate to jump diffusion processes proper to volatile events in the life of a
company, industry sector, or full market (here we should mention this LSE
data encompasses the financial crisis of 2008− 2009).

– The peak in zero autocorrelations for real price returns and volatility in
Fig. 6-7: we posit this to be due to the fact that unlike real data, the
simulator does not capture intraday market activity, or to the presence of
scarcely traded small cap companies.

– Fatter tails in distributions of autocorrelation of trading volumes in Fig.
8: we posit this to be due to seasonal and calendar effects proper to real
stock markets.

Fig. 4 Distribution of logarithmic returns of prices log[P (t)/P (t − 1)] of real (dashed
black curve) and simulated (continuous red curve) data. The simulations are generated with
parameters I = 500, J = 1, T = 2875, and S = 20.

4.2 Classification of main statistics

Random forest classification: In order to evaluate how well the model-generated
log-return signals match the real market stock dynamics, we aimed to build
a binary classification model which could take a fixed-size time series sample,
and predict whether the sample comes from simulated or real stock market
data. The whole dataset was split into non-overlapping training and validation
subsets. Then, the time series samples of fixed size (the number of timestamps
ranging from 5 to 50, but fixed for each experiment) were generated by apply-
ing a sliding window to the full price logarithmic-return time series from both
simulated and real data. Both training and validation subsets were constructed
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Fig. 5 Distribution of volatilities (defined as standard deviations of price normalised to
price itself σ/P (t)) computed over lags of two weeks (black), three months (red), and one
year (blue) intervals for both real (dashed curves) and simulated (continuous curves) data.
The simulations are generated with parameters I = 500, J = 1, T = 2875, and S = 20.

Fig. 6 Distribution of autocorrelations of the logarithmic returns of prices at each time
step t between intervals [t − ∆, t] and [t − 2∆, t − ∆], over lags ∆ of two weeks (black),
three months (red), and one year (blue) intervals for both real (dashed curves) and simulated
(continuous curves) data. The simulations are generated with parameters I = 500, J = 1,
T = 2875, and S = 20.

so that they were balanced in terms of class distribution. Before training a clas-
sifier on the collected data, a preprocessing step was taken to map the time
series samples to a vector feature space by computing a set of 787 predefined
signal properties for each sample 2. A standard scaling procedure was then
applied to the dataset with mean and variance statistics estimated from the
training subset. The low-variance features were discarded as an additional fil-
tering step. This normalised feature-vector representation of the dataset was
then used to train random forest classification models 3. Accuracy scores were

2 We used the time series feature extraction functions implemented in the tsfresh Python
package [21]

3 We used the implementation from the scikit-learn Python package [84], with 200 esti-
mators, maximal tree depth equal to 5 and default values for other hyperparameters.
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Fig. 7 Distribution of autocorrelations of two weeks-interval volatilities at each time step
t between intervals [t − ∆, t] and [t − 2∆, t − ∆] for ∆ = 2Tw, for both real (dashed
black curve) and simulated (continuous red curve) data. The simulations are generated with
parameters I = 500, J = 1, T = 2875, and S = 20.

Fig. 8 Distribution of autocorrelations of the trading volumes at each time step t between
intervals [t − ∆, t] and [t − 2∆, t − ∆], over lags ∆ of two weeks (black), three months
(red), and one year (blue) intervals for both real (dashed curves) and simulated (continuous
curves) data. The simulations are generated with parameters I = 500, J = 1, T = 2875,
and S = 20.

measured for multiple runs of model training (with different splits of the train-
ing/testing subsets, N = 50 runs total for each experiment) and for the dif-
ferent number of timestamps initially taken for each sample. The obtained
accuracy score value distributions are shown in Fig. 13 (see more details on
Fig. 16, in the Supplementary Material section 6). The accuracy reported for
the ”value distribution” feature set is the accuracy of classifiers trained on a
subset of all 787 features available in tsfresh only pertaining to the proper-
ties of the in-sample value distributions. These features include distribution
statistics which do not depend on the order of values in the time series like
mean, median, variance, kurtosis, quantile values and so on. The accuracy
for ”all time-series” feature set in Fig. 13 corresponds to the full set of fea-
tures of tsfresh being used to generate vector embeddings for the time series
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Fig. 9 Distribution of autocorrelations of the logarithmic returns of prices at each time
step t between intervals [t − Tw, t] and [t − Tw − δ, t − δ], for shifts δ of one day (black),
two days (red), three days (blue), four days (green), and five days (yellow). This is for both
real (dashed curves) and simulated (continuous curves) data. The simulations are generated
with parameters I = 500, J = 1, T = 2875, and S = 20.

Fig. 10 Means of autocorrelations of the logarithmic returns of prices at each time step t
between intervals [t− Tw, t] and [t− Tw − ∂, t− ∂], for shifts ∂ = [1, 2, 3, 4, 5]. This is for
both real (blue) and simulated (red) data. The simulations are generated with parameters
I = 500, J = 1, T = 2875, and S = 20.

samples. Low ”value distribution”-based classification accuracy achieved for
random forest models signifies that the value distibution of log-return series is
well simulated in our case. The temporal structure of the log-return series, as
encoded by the corresponding time series features, is also modelled fairly well
(see Fig. 13).

Dimensionality reduction: Another useful metric that was extracted from
the trained random forest classifiers is the measure of feature importance that
was averaged over multiple training runs (N = 20 total runs with differ-
ent training/testing subset splits). This procedure allowed us to determine a
subset of features which turn out as the most discriminative for the defined
binary classification task. The features which were found in the top-20 impor-
tance score list could be grouped into several categories: i- value distribution
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Fig. 11 Means of autocorrelations of the logarithmic returns of prices at each time step t
between intervals [t−2Tw, t] and [t−2Tw−∂, t−∂], for shifts ∂ = [2, 4, 6, 8, 10]. This is for
both real (blue) and simulated (red) data. The simulations are generated with parameters
I = 500, J = 1, T = 2875, and S = 20.

Fig. 12 Distribution of the number of consecutive days of increasing prices (positive values)
and decreasing prices (negative values). This is for both real (dashed black curve) and
simulated (continuous red curve) data. The simulations are generated with parameters I =
500, J = 1, T = 2875, and S = 20.

properties (e.g. kurtosis, skewness, 60th, 70th, 80th percentiles of the value
distribution within the sample), ii- fast Fourier transform (FFT) spectrum
statistics (centroid, skew and kurtosis of the fast Fourier transform coefficient
distributions; absolute values of the first two FFT coefficients), iii- features
related to the temporal structure of the series, e.g. autocorrelation and coef-
ficients of a fitted autoregressive AR(k) process. Such features are discussed
in more details in the Supplementary Material section 6. In order to visu-
alise the distribution of classes across time series samples in the feature-vector
space, we applied several dimensionality reduction algorithms to the dataset,
results of which are shown in Fig. 14 and 15. The first algorithm is generic
principal component analysis (PCA), which was applied to the reduced set
of the top-10 features, ranked by feature importance scores, as seen on Fig.
14. One can notice that the produced linear mapping to the 2-dimensional
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Fig. 13 Accuracy as a function of time-series sample size. The value distribution features
include only features that do not depend on the order of values in the time-series (e.g. mean,
median, variance, kurtosis, skewness of the value distribution, etc.), whereas all time-series
features correspond to the total set of time-series features including those that depend on the
temporal structure of the series (e.g. autocorrelation, entropy, FFT coefficients, etc.). The
testing subsets are balanced in terms of class distribution. The simulations are generated
with parameters I = 500, J = 1, T = 2875, and S = 20.

space does not guarantee high separability of point clouds corresponding to
different classes (simulated vs. real data). This means that a linear combi-
nation of basic time-series features is not sufficient to effectively discriminate
simulated data from the real signals. Once we applied a supervised nonlin-
ear mapping, namely Uniform Manifold APproximation (UMAP) [73], visual
class separability between point clouds increased. We then measured the point
cloud separability for both PCA and UMAP embeddings by training a logistic
regression classification model on the two dimensional representations of the
samples. We did not find a significant improvement in class separability for
UMAP vs. PCA (classification accuracy of 64% vs. 62%, respectively), with
classification accuracy being low for both embedding methods.

In principle, effective task-specific time series features could be learned if a
suitable deep neural network model for time series was used in the classifica-
tion task (e.g. a deep 1D convolutional neural network, 1D-CNN). These con-
siderations open further directions for model tuning/calibration, for instance
by imposing a penalty term which would depend on classification accuracy
achieved by a CNN classifier (akin to a generative adversarial model setup
[43]) in order to minimise it.
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Fig. 14 Principal component analysis scatter plot on top 10 statistical features of real
(red) and simulation (blue) data. PCA mapping was fitted on 6000 time-series samples each
containing 50 timestamps. The simulations are generated with parameters I = 500, J = 1,
T = 2875, and S = 20.
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Fig. 15 Supervised UMAP trained on 3000 samples for top 10 statistical features of real
(red) and simulation (blue) data, and applied to another 3000 samples (each sample con-
taining 50 timestamps). The simulations are generated with parameters I = 500, J = 1,
T = 2875, and S = 20.

5 Conclusion

We thus modelled a stock market via an intelligent MAS, where the agents
autonomously perform portfolio management via long-only equity strategies,
based on autonomous reinforcement learning algorithms performing price fore-
casting and stock trading. In such a model, each agent also learns to gauge how
fundamentalist or chartist it will be in its approach to price estimation. We
have calibrated this MAS simulator to real stock market data from the London
Stock Exchange between the years 2007 and 2018, and achieved state-of-the-
art performance in price microstructure emulation [16,44,88]. In particular,
it emulates key market statistics of real stock exchanges wrt. price returns,
volatilities at different time-scales, diverse auto-correlation metrics and mar-
ket regimes. We posit this model could be a powerful tool for both financial
industry and academic research, to further explore stock market microstruc-

Boris

Boris

Boris
this
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ture and price formation by a bottom-up approach. Also, we posit that the
reinforcement learning framework of the agents could be used to implement
psychological traits of decision theory and behavioural economics, and hence
to study the influence of agent learning and cognition on financial markets
at the macroscale. Finally, we also see the following immediate and natural
extensions of our model: i- using the multivariate feature of the agents trad-
ing coupled with portfolio risk management in order to study and simulate
covariance structure across several stocks, and ii- extension of the agent rein-
forcement learning framework to the continuous domain (cf. policy gradients,
deep Q-learning, etc.).
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6 Supplementary material

Classification accuracy. We show on Fig. 16 the accuracy of both the testing
(left) and training (right) sets, as functions of time-series sample size, for
samples containing larger numbers of timestamps than in the Fig. 13. The
saturating accuracy dynamics can be observed for both testing and training
sets: for the value distribution feature set, the former does not exceed 70% and
the latter 75%, while for the full time-series feature set, the former saturates
above 90% and the latter above 95%. One can notice that the accuracy values
on the training set are generally higher than for the testing set, and do not
show such a pronounced saturation dynamic. The accuracy on the training set
is not too large because the trees in the random forest have been regularized
(with maximal depth equal to 5), since we found it is necessary for a good
generalization on the testing set.

Top statistical features. We provide a general grouping and examples of the top
statistical features used in the dimensionality reduction performed in section
4.2. The exact ranking of particular features found in our experiments together
with their importance metric value Θ is as follows. The imporance metric Θ
is summed from 30 random forest models trained on different random splits
of the training/testing sets.
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Accuracy scores on the test (left) and train (right) set for the RF models trained on time-series features

Fig. 16 Accuracy of the testing set (left) and training set (right), as a function of time-
series sample size. The value distribution features include only features that do not depend
on the order of values in the time-series (e.g. mean, median, variance, kurtosis, skewness
of the value distribution, etc.), whereas all time-series features correspond to the total set
of time-series features including those that depend on the temporal structure of the series
(e.g. autocorrelation, entropy, FFT coefficients, etc.). Both testing and training subsets
are balanced in terms of class distribution, and their respective accuracy is achieved with
samples containing up to 200 timestamps. The simulations are generated with parameters
I = 500, J = 1, T = 2875, and S = 20.

1. Partial autocorrelation value of lag 1, Θ = 1.2240.
2. First coefficient of the fitted AR(10) process, Θ = 1.0777.
3. Kurtosis of the FFT coefficient distribution, Θ = 1.0214.
4. Skewness of the FFT coefficient distribution, Θ = 1.0001.
5. Autocorrelation value of lag 1, Θ = 0.9861.
6. 60th percentile of the value distribution, Θ = 0.9044.
7. Kurtosis of the FFT coefficient distribution, Θ = 0.7347.
8. Mean of consecutive changes in the series for values in between the 0th and

the 80th percentiles of the value distribution, Θ = 0.6349.
9. Variance of consecutive changes in the series for values in between the 0th

and the 20th percentiles of the value distribution, Θ = 0.5948.
10. Approximate entropy value (length of compared run of data is 2, filtering

level is 0.1), Θ = 0.5878.
11. 70th percentile of the value distribution, Θ = 0.5589.
12. Variance of absolute consecutive changes in the series for values in between

the 0th and the 20th percentiles of the value distribution, Θ = 0.5584.
13. Mean of consecutive changes in the series for values in between the 40th

and the 100th percentiles of the value distribution, Θ = 0.4755.
14. Ratio of values that are more than 1 standard deviation away from the

mean value, Θ = 0.3282.
15. Median of the value distribution, Θ = 0.2957.
16. Skewness of the value distribution, Θ = 0.2894.
17. Measure of time series nonlinearity from [91] of lag 1, Θ = 0.2867.
18. Second coefficient of the fitted AR(10) process, Θ = 0.2726.
19. Partial autocorrelation value of lag 1, Θ = 0.2575.
20. Time reversal symmetry statistic from [40] of lag 1, Θ = 0.2418.
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The top-10 features referenced in section 4.2 are the first 10 features taken
from the list above. The PCA and UMAP mappings of the top-10 features
onto a two-dimensional space demonstrated some separability between the two
classes (real vs. simulated data), as measured by training a linear classifier on
these two-dimensional data representations (see section 4.2 for details), as well
as by calculating the Kolmogorov-Smirnov (KS) statistic for each embedding
component. The KS statistic value between the two classes is 0.24 and 0.11
for PCA (for the first and second component, respectively) and 0.30 and 0.25
for UMAP.
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