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APPLICATION OF SEPARABILITY AND INDEPENDENCE NOTIONS FOR PROVING 

LOWER BOUNDS OF CIRCUIT COMPLEXITY 

D. Yu. Grigor'ev UDC 518.5:519.1 

This note consists of two independent parts. In the first part the concept of an 

( m,8 )-system for a set of linear forms is introduced, and a lower bound is ob- 

tained for the algebraic complexity of the computation of (m~l -systems on alge- 

braic circuits of a special form. In the second part, the notion of an [ -inde- 

pendent set of boolean functions is introduced and a lower bound is obtained for a 

certain complexity measure for circuits of boolean functions computing [ -inde- 

pendent sets. As a corollary it is shown that the standard algorithm for multi- 

plying ma ~ices or polynomials may be realized by a circuit of boolean functions 

in a way that is optimal with respect to a selected complexity measure. 

In our paper two lower bounds on the complexity of computation of algebraic circuits 

(defined in [i], [2]) are obtained. 

In Sec. 1 a lower bound is found for the computational complexity of a set of linear 

forms (Theorem i). The second bound is given in Theorem 2 in Sec. 2. It follows from this 

theorem that the standard procedures formultiplying multiple-digit numbers and multiplying 

matrices modulo 2 are optimal in a certain sense. 

i. Bounds for (~8~ -Systems of Linear Forms 

i. In thissection wewill consider thequestion of the complexity of algebraic circuits 

for the simultaneous computation of a set of linear forms with complex coefficients in the 

variables ~, ,~ . A set of linear forms may be represented by the matrix of their coef- 

ficients, denoted A below, and the problem reduces to the problem of constructing a circuit 

for the calculation of the product AX where X is the vector of variables ~. ~. 

Translated from Zapiski Nauchykh Seminarov Leningradskogo Otdeleniya Mathematicheskogo 
Instituta im. V. A. Steklova Akad. Nauk SSSR, Vol. 60, pp. 38-48, 1976. Main results presen- 
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Morgenstern (in [3]) considered this problem when the elements of the circuit had the 

form 

where ~ , ~ are complex coefficients satisfying the bounds 

and the variables ~ , ~K are either one of the variables ~,. ,~ or the left side of 

one of the equations whose index is less than L . In [3] it is proved that the complexity 

of the circuits computing linear forms with the matrix of coefficients A , which is as- 

sumed to be square, exceeds [~zId~A;] ([~] denotes the integer part of ~, [~]=-~]). 

The situation we consider is different from that in [3] in that below we consider a 

more restricted class of circuits and a narrower class of sets of linear forms to compute, 

but the lower bounds obtained are, generally speaking, stronger. 

We represent each circuit by a directed graph ~ o To each variable ~L (variable ~ ) 

corresponds avertex ~ (vertex ~L ) of thegraph O , i.eo, O has~+p verticeswhere p is the 

number oflines ofthe circuit. If ~L is representedin theform (1) then thereis an edge from 

each of the vertices ~ and Y~ to YL ; i.e., O has ~p edges. 

We assume that the calculation is carried out for ~ linear forms, which correspond to 

the vertices ~4~.. ,~ of @ . 

For each ~ ( ~& [&~) we let ~ denote the subgraph of ~ generated by the vertices 

from which there is a directed path to ~ in ~g. 

From now on we consider circuits for which the corresponding graph @ satisfies the 

following restriction: 

for each ~ (~ ~ ~4~) the graph ~ is a tree with ~ as its root. (**) 

In distinction to the lower bounds on the complexity of circuits obtained by Morgenstern, 

the lower bounds found in this paper are for forms satisfying the following condition (the 

(m~)-condition): for any subset ~ of {~...~} the distance (with respect to the norm gt ) 

between ~n~iA~}L~ ~ and C0fuy{~}~e~ exceeds O, where ~ ~ L~ ) is a vector whose compo- 

nents are the coefficients of the linear forms being calculated (the vectors belong to K - 

dimensional real linear space) and Conv denotes "convex hull." We will say that in this 

case A4,,A form an I~0~ -system. 

The main result, the theorem in Sec. 3, asserts that if the vectors, the rows of the 

matrix of coefficients, form an (m,G)-system, then the complexity of a circuit computing the 

linear forms with the given matrix of coefficient satisfying and restrictions (*) and (**), 

exceeds ~ , where ~ is the solution of the equation 

( ~ denotes logarithm to the base 2). This bound on M is interesting when ~>CZ> ~ . 

In this case, the size of M is greater than 
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the [~ -Euclidean norm, then we can deduce this If we use in placeof the norm ~ 

result using the method given in [3] (see also the remark following the statement of the 

theorem). 

Note that in the case of complex coefficients the number of elements in the circuit 

is not increased more than 6 times, if one calculates separately the real and imaginary parts 

of each intermediate linear form. 

2. We begin with two geometric lemmaso 

LEMMA i. Suppose that AI, A ~ are points in ~ -dimensional real linear space ~, 

with ~ ~ ~+~ Then these points may be divided into two disjoint sets such that the convex 

hulls of the two sets have a common point. 

This lemma follows from Radon's theorem (see, e.g~ [4], Proposition 3.10). 

Let ~ be the metric induced by the ~ norm. We say that the points ~ A ~  

form an (~c~ -system if 

LEMMA 2. For any (~,C~-system and any plane in ~ -dimensional real linear space with 

dimension at most [ ~/Z-~] , there are at least [~/2] points in the (~c l-system such that 

the distance from each of these points to the plane is at least G/g. 

Proof. Suppose that at least [~] points of the given system have distance less than 

C/g from the plane P. Denote these points by A4~ ~ A~ (~ ~ [~/2] Let the points on P 

closest to these points be B~ B~ . Apply Lemma 1 to the points BI~ ~B~ . Suppose 

that B is the point whose existence is guaranteed by Lemma 1 and let B = ~I~LBt=j~I#~. 

where ~L=~=~, ~0~ ~i ~0 (the index set I exists by Lemma i). Then 

p, (~z4,Bu ~z AL4u)4 ~ ~P~ (A~,BL) ~ = c  

From this it easily follows by the triangle inequality that the distance between the points 

~l~i A~ and j~l ~ #iAi is less than C , which contradicts the (~,Cl-condition. The lemma 

is proved. 

3. We turn to the statement and proof of the theorem. 

THEOREM i. If the vectors whose components are the coefficients of the linear forms 

being computed form an (~,C~ -system, then the number of elements of a circuit computing 

these forms satisfying the restrictions (*) and (**) is at least ~ , where ~ is the solu- 

tion of the equation 

c + ~M" = ~M. 

Remark. In place of the norm ~ one may use any norm such that the norm of the vector 

(0 ~_!~...0 ) for any C is at most i. 

Proof__~. Consider a circuit computing our set of linear forms. For each linear form 

let Q L(~ (~ ~ C~m) denote the subtree of the binary tree ~ (see Sec. i) which consists 

of those forms which are used in the computation of the form ~ in the tree ~t, if 

corresponds to one of the vertices of ~L , and which is the empty tree otherwise. 
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We denote the number of initial vertices (i.e., those vertices with no incoming edge) 

in a tree ~ by ~(01 Let C~ be the greates t value of the sums ~__~ V(~(&II for all 

forms o~. Let ~- be a form such that C~ :~:i V (~i(<i]). We define the new trees by: 

~(~: Oi\ i~j(~L4 ] (~i.~m]. If the trees ~d(~, are defined, we let C~+{ be the greatest value 

~ ~!~(~]I Let ~§ be a form such that G = ~ '~K~ ~ of the sums d=4V ( ~ K§ ~--Y (~i ( K§ �9 We 

now let ~!K+q= a~IK~.~,~, . 

It is easy to see that C~>~Cz~.. Consider ~ (~.~i.~m], where @ : [m/g]-s . We write 

each of the ~ forms A~ ~ ~A m being computed in the form A :(~: >~,~'~] +8 K where [~] 

is least, deleting from D K all vertices ~]({~-~-~O] and writing in the left sum=and of the 

right half of this equation all of these forms (~,i are certain complex numbers). 

We now apply Lemma 2, taking as the plane of dimension at most @ the plane spanned by 

oC ~ ~oc s and as the (ra, C )-system the forms A ~.. , A m being computed. Then by Lemma 2 

at least half of the vectors S~, ~ Bm will have norm at least C/g (suppose these are 

B .... ~E(~>/~)), and hence by (*) at least [m/~] of the sets OIO) ~(~ ) will contain 

at least r elements corresponding to the variables X ~ ,X,~ (the initial vertices). 

Let ~ + L+~- . Note that 

M ." V ('lO i , ,  

i~ C (since as proved above ~>/ ~ ) where p~...~p[~ are numbers such that V(~ ~)$~ 

Consider the following system of inequalities: 

M 

mC ~M/g (***) 
Suppose that for someKo=~.. ,@ we have 

C~o< gM (2) 

The following fact is well known from coding theory: 

(A) Suppose one associates with each vertex of a binary tree with & initial vertices, 

directed from the initial vertices to the root, the number of initial vertices above it. 

Then the sum of all these values is at least ~ ~g 

Remark. The statement (A) remains true if one assumes that one edge may enter a vertex 

of the tree. 

We summarize now the inequalities obtained by applying the statement (A) (with the 

accompanying remark) to all of the trees (D r /~~ ~ ' '  �9 ~ - - m  " We obtain 

' , '  
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Obviously 

~ K a  . = 

f o r  any  ~ .  We o b t a i n  t h e  f i n a l  c h a i n  of  i n e q u a l i t i e s  

�9 10 l 9 c/g v ( e  

where ~ is the number of elements of the circuit being evaluated. 

ity (2), we have shown finally that ~ >/ ~J . 

The same result holds if we add the assumption C e < --~--' 

ly unchanged). 

It remains to consider the case when the inequalities (***) hold. 

In order to do this, we need statement (B), which is easily proved by induction on ~ . 

(B) Suppose ~>~0 and 0<~o,<CL~.(.. are such that for any [ ~[+~ >~ ~ ~0 ~L. Then 

~ . ,  ~. o.,/~ +f~f I~ >- 01. 

r ~ The hypothesis of (B) holds ac- We apply (B) when ~o= r~c~ , CL=Co, .~CL =Co~ = ~M 

cording to (***). We have the following chain of inequalities: 

m. 8 

Note also that ~: V(~dl is greater than t=,~ C~ and on the other hand it is bounded above 

by e.nl . Thus, 

t~ 

~ ~  ~,~, V(~Oi/~, M~ 

and finally ~ ~/~4 . The theorem is proved. 

4. We make several concluding remarks. In the special case rrL =C, the order of meg- 

nitude of M is 

~ �9 M.o/  , 

Using the last inequal- 

(the proof is practical- 

which represents a nontrivial bound. 

One may reduce the construction of a circuit for the calculation of the values of 

polynomials at a fixed set of points to the calculation of a set of linear forms. One may 

also reduce to this problem the problem of calculating the product of arbitrary matrices 

over some constants. 

It is easy to see from the proof of the theorem that the form of the functions being 

computed (in our case, the linear forms) was used only in section 2 in the proof of Lemma 2. 

If one introduces in an appropriate way some functional (similar to our norm 64 ) and proves 

for the set of functions being computed (for example, bilinear forms) an analogue of Lemma 

2, thenone may obtain a lower bound for the number of elements in a circuit computing these 
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functions by using the method described in the proof of the theorem in section 3. 

By means of a strengthening of statement (A) above, one may eliminate the restriction 

(**) in the statement of Theorem i. 

2. Bounds for Sets of Independent Boolean Functions 

In this section the problem of calculating a set of boolean functions is considered, 

actually with the aid of a circuit of functional elements. But since certain special cha- 

racteristics of the complexity of circuits are ofinterest to us, another concept will be 

described: circuits with registers. 

We fix a finite set of boolean functions {~} ; we let K i denote the arity (the number 

of arguments) of the function ~] . 

A circuit with registers {~L} L_ L=~ ' where each of ~...)~Lis a variable, on the basis {~} 

with variables <i~...)~ is a sequence of T lines of the form 

UP--- ), (1) 
where &~ is a function in the basis, ~ is either one of the variables %~,...,~ or one 

of the registers ~t , where L is less than ~. (The number L is the register size of the 

circuit.) 

We now define the value of the register ~L at line ~ by induction on ~ �9 The values is 

a boolean function of the variables ~4)...~, which is denoted val[ ~L,~]. 

Suppose the line with number [ has the form (i). Then a) if ~ $ ~, val [~9~= val ~,~{] 

(gjp] and valE~p,[]=~o (val [~ jl, [-~] r..,val; E~K,~-~) ; b) if ~=~ , we set val [~i]=O 

{L>4), val [~,I] = ~(~i)"'~%) ; and also val [<L,K]=~L for all L,K. 

A set of boolean functions YI~..,Y~ is computable by the given circuit if for all 

( { ~ t$m) there are ~, [ such that (val [~,[]=Y~ 

From a circuit with T lines, one may construct a circuit with functional elements on 

the basis {~ , having T elements. 

We note moreover that the circuits described above are in fact RAM (random access 

machines) with commands of the form 

Rp-- h ,] 
with register size ~ , the number of registers used; T is the number of lines of the program 

and clearly also the time of computation of the RAM. 

Suppose the circuit computes the boolean functions ~...,Y~ of the variables ~4,...,z~ 

Below we will consider the finite set of all boolean vectors of length ~ (denoted 8~ ), 

We introduce the following notation: If A,,A~ are subsets of B & , then �9 (A~,. ,A~ 
denotes the ~ ~ subsets of B ~ (forming a partition) of the form e~A~n..n~A~ where 6 L is 

either C or the empty word, and ~A denotes the complement of A. 

The restriction of a partition A to the set ~ , denoted A/X , is the collection of 

sets of the form ALM X where A t are the elements of the partition A. 

We associate with each boolean function ~ the set of boolean vectors on which it has 

the value O. We denote this set 
J 
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We will say that a set of boolean functions Y ~ , " , Y m  is [ -independent with respect 

to the set of variables z~...,z if for all K not exceeding ~ and for all subsets 

XL~,...~XL K and ~: . ~f .  K there is an ~ in ~(X~ XLK] such that ~ IYj~ " ' ,  - i ' " ~  . . . .  ~.K)/X contains 

at least ~[~-~#~' nonempty distinct subsets. Further, we will write A,~B if each set of 

the partition A is the union of some sets of the partition ~ �9 

We note that if the set Y~" ~Ym is ~ -independent with respect to X~,..,X~, then it is 

also p-independent, where p ,~ ~. Thus Y~.. ~m are pairwise distinct. 

We now state and prove the main theorem of this section. 

THEOREM 2. If a circuit with ~, registers and T lines computes a set Y~',Ym, which 

is g -independent with respect to the input circuits X ~...~, then ~[, >~ n~[/@Ko , where mo 

is the greatest arity of the basis functions. 

Proof. Let ~(~l~...~&(m) be the numbers of the lines, in increasing order, in which the 

inputs of the circuits ~.~-..,Ym are computed. Consider the lines from ~L(g I to 0~(~+['~ 

Suppose Xi~...,X~p are the inputs which the circuit operates on in this interval. We will 

prove that p>~[-~... Suppose that p < [-h. 

According to the definition of ~ -independence, for the given sets ~...,~e and 

YL~,..,Y~+u there is an X in ~(X~...,X~pl which divides the sets Y t~...~fL+b into more than 

g~ nonempty sets. 

Let A~...~A~. denote the boolean functions val [~,0~(~)], .... val [~,.,0~[L)] . Since the set 

Yk, ,~+, is defined by the sets ~ ~iP and A ,A, then O('yL,... YL+bl ~(X~ Xi 

A~ ~... ,Ai.).  I>~ 
From this fact it follows that 

" . , i + , . ) / x  � 9  , . .  .< 

x A , ,  A , . ) / :  , . . .  , O(x<i ̀ , . . . ,< i , ,  " ,  x , , ~ X 

but this last partition consists of at most ~L sets, which contradicts ~-independence. 

Thus p>~ ~-L. If [, $~/~, then since ~>~ , we have TJ, >~ ~[/g and everything is proved. 

is proved. If however m .~ g/~, then g-i, ~gA" From the above argument it follows that O~(L+I ] 

-~(L~>~g~K ~ , since between the lines numbered &(b) and ~(~+L~ the inputs are transformed 

at least [/g times and the greatest arity of the basis functions is ~o. Thus, 

m >i (o. tl, , q -o .  (~1/+ (o.(Zi, + Q-~(L+Q) +... 

m f. 

(supposing I, .~ ; if [, >~ ~, we have the bound ]~L ~, since ~ is not less than ~ , as 

is easily seen, and T~m). The theorem is proved. 

As corollaries we obtain, for example: the fact that in a circuit for multiplying mod 

2 two ~x m matrices (i.e., in thecircuit whichcomputes, giventhe elements of the factor 

matrices, the elements of their product) the product ~, exceeds R31@Ko ; the fact that in 

a circuit for multiplying mod 2 two polynomials of degree &, or naturalnumbers whosebinary 
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representation has length ~ TL ~ ~2/qKo. We note that these bounds are exact. In order 

to prove this, it is sufficient to apply the standard procedures (for matrices this may be 

done with a circuit with the parameters ~ =~ , T=s Ko=g). 

We observe that a condition sufficient for the [ -independence of a set of boolean 

functions ~, ,Y~ with respect to a set of variables ~ ~ may be stated using the lan- 

guage of entropy (see [5]): 

for any K(~K$~) and for any sets t~ ~ t K and i~ ,i[_ ~ the inequality 

H (ii )), 
holds, where H is the conditional entropy. 

The author would like to express his deep appreciation to A. O. Slisenko for his help. 
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ON AN APPROXIMATIVE VERSION OF TIIE NOTION OF CONSTRUCTIVE 

ANALYTIC FUNCTION 

E. Ya. Dantsin UDC 51.01 

A constructive analytic function ~ is defined as a pair of form (A,~, where 

A is a fundamental sequence in some constructive metric space and ~ is a 

regulator of its convergence into itself. The pointwise-defined function 

corresponding to function ~ turns out to be Bishop-differentiable [2], while 

the domain of ~ is the limit of a growing sequence of compacta. The derivative 

of a constructive analytic function and the integral along a curve are defined 

approximatively. It is proved that the fundamental theorems of constructive 

complex analysis are valid for such functions. Eight items of literature are 

cited. 

INTRODUCTION 

In the literature on constructive mathematics there are a number of papers in which 

various constructive analogs of an analytic function of a complex variable are investigated 

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo 
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