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LOWER BOUNDS IN ALGEBRAIC COMPUTATIONAL COMPLEXITY 

D. Yu. Grigor'ev UDC 519.5 

The present article is a survey of selected methods for obtaining lower bounds in 

algebraic complexity. We present the contents. 

Introduction. i. Basic concepts. Chapter I. Algebraic-geometric approach to 

obtaining lower bounds of computational complexity of polynomials. 2. Evaluating 

a polynomial with "general" coefficients. 3. Computational complexity of indi- 

vidual polynomials. 4. The degree method and its generalizations (the case of 

an infinite ground field). 5. The degree method (the case of a finite ground 

field). 6. Additive complexity and real roots. Chapter II. Lower bounds on 

multiplicative complexity for problems of linear algebra. 7. Multiplicative com- 

plexity and rank. 8. Rank of a pair of bilinear forms. 9. Multiplicative com- 

plexity of a bilinear form over a commutative ring. i0. Bounds on the rank of 

algebras, ii. Linearized multiplicative complexity. Chapter III. Complexity 

for straight-line programs of nonstandard types. 12. Irrational computational 

complexity of algebraic functions. 13. Monotone programs. 14. Time-space 

tradeoffs. 15. Graph-theoretic methods in algebraic complexity. 16. Additive 

complexity in triangular and directed computations and Bruhat decomposition. 

INTRODUCTION 

The problem of lower bounds is one of the most difficult ones in computational complexity 

theory, and it can be said without exaggeration that their obtaining constitutes the naturally 

fundamental topic of complexity theory, since the establishment of lower bounds, i.e., the 

construction of sufficiently fast algorithms, is, rather, the prerogative of the other mathe- 

matical sciences from which the concrete computational problems originate. In spite of the 

fact that the problem of obtaining nontrivial lower bounds (i.e., of proving the impossibility 

of sufficiently fast algorithms for given computational problems, and, by the same token, the 

penetration of the secrets of fast algorithms) is far from completely solved, in it there are 

certain interesting advances, particularly in that part of complexity theory which relates to 

the problems traceable to algebra, called algebraic complexity (see Bel'tyukov's survey in 

the present issue on lower bounds in some other sections of complexity theory). 

Algebraic complexity is one of the oldest branches of complexity theory (but it is one 

that is being most intensively worked on at the present time); it has been around for nearly 

25 years, but a sufficiently complete survey devoted to it has not yet appeared in Russian. 

Among the foreign publications we should note, in the first place, the book [27], as well as 

[I, 13], but lower bounds are in fact absent in the latter, while [27] does not go into the 

achievements of recent years. 
Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo 

Instituta im. V. A. Steklova AN SSSR, Vol. 118, pp. 25-82, 1982. 
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To no extent does the author pretend at completeness of the exposition of all the re- 

suits in the area of obtaining lower bounds in algebraic computational complexity; rather, 

the present text is a survey of selected methods and achievements, whose aim is to fill in 

the gaps existing in the Russian literature. The methods that have already been widely 

propagated, as well as those that do not as yet have sufficiently strong applications, are 

presented in lesser detail. The number of proofs given in the present survey is compara- 

tively small; a sufficiently complete list of references permits us to refer to appropriate 

literature when necessary. 

The author tried to pay most attention to those methods of establishing lower bounds 

which are connected with nontrivial algebraic methods. The profound connections with clas- 

sical algebra, as also the problem statements, being atypical of traditional algebra, are, 

in general, a characteristic feature of algebraic complexity, which can make it attractive 

for algebraists. 

A survey of methods in algebraic complexity leaves a somewhat mosaiclike impression. 

This is due, it seems, to the fact this branch of mathematics is still quite young and as yet 

no unified ideas have been formulated in it, the problems are difficult and have to be ap- 

proached individually. Therefore, the different chapters are formally little connected with 

each other (except Sec. I which gives the definitions needed for understanding what follows). 

Essentially, each section contains a description of an individual method; at the same time, 

the ordering of the material is not random and has definite historical and methodical 

reasons (if the ontogeny and phylogeny of algebraic complexity is desired). We note that 

the contents of Secs. 6, ii, 16, and a part of Sec. 15 are being published for the first time. 

The numbering of the sections and of the formulas is consecutive; the theorems, lemmas, 

and corollaries are two-numbered, the first of which is the number of the corresponding sec- 

tion. 

i. Basic Concepts 

The basic computing model used in algebraic complexity is the straight-line program 

(see [i, 27], for example) which we now describe. Let there be given: 

i) a collection of input variables ~4,...,~ 

2) a ring K (usually this is a field which will be denoted by P ) which is subse- 

quently called the ground ring; 

3) a set ~ of base operations (usually ~- [+,X,/} U ~X~e K , where +,X,/ 

are binary arithmetic operations, x~ is a unary operation, viz., multiplication by ~ ). 

The variables ~...~ can be assumed or not to be pairwise commuting; often this is 

clear from the substance of the problem being analyzed. 

4) a straight-line program (SLP) proper is a sequence of rows (instructions) the ~ -th 

of which has the following form: 

�9 ~= ~{7.~,...,Z~,~I,,...,~), 

where ~<~,..., $~ < ~ and ~ e ~ .  

By induc t ion  on ~ the re  is  n a t u r a l l y  determined the  term in the v a r i a b l e s  ~ , . . . , ~  

corresponding to the working variable ~ and called the value of ~ . We say that a 
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certain family of terms (or of functions) of ~,...~ WW is computed by a given SLP if the 

terms of the family being examined are encountered among the values of the working variables 

~ of this SLP. 

We fix as well the integer-valued function ~=~| : ~ �9 N U {0} , and the number 

~(~ for ~ is called the complexity of operation S �9 The complexity of a SLP 

(we denote it C~)-----6@(~) ) is the sum of all ~(~) over the instruction of this SLP. 

Finally, the complexity of a collection of terms (or functions) ~,"" ~K is the smallest 

of the SLP's computing this family (we denote it ~(~,...~K)=CG(@4,..., ~K) )" complexity 

Sometimes instead of the word "complexity" we shall use the terminology complexity measure. 

We cite one example of complexity. Let ~(~)= { for every ~E~ �9 Then the corresponding 

complexity % "counts" the number of all operations of the SLP and is called the total 

complexity. 

Below we shall refer to the notation adopted in the present section, each time making 

concrete the ~ (or ~ ), ~A-=~O. 

CHAPTER I. ALGEBRAIC-GEOMETRIC APPROACH TO OBTAINING LOWER BOUNDS OF COMPUTATIONAL 

COMPLEXITY OF POLYNOMIALS 

2. Evaluating a Polynomial with "General" Coefficients 

One of the first problems examined in algebraic complexity was the evaluation of a poly- 

nomial with "general" coefficients at one point (see [18] and the'references given there to 

the earlier literature). In other words: ~ is an algebraically closed field, P=~+,X,/}U 

{X~}~G T �9 We denote ~(§ ~+(x~)=0 (the corresponding complexity C+ 

is sometimes called additive); ~x/~)=0, ~xl{X)=~Xl(~-----AXl(X~)=~. It is required to estimate 

~Q(~§ ~ )  where O=+ or | ; in the given case {~,%, .... ~} 

is a collection of pairwise-commuting input variables, where ~,O~,...,~ are algebraically 

independent over ~ ; therefore, the coefficients are called "general" (in this case the SLP 

being examined were called, in [18], schemes without preliminary processing of the coeffi- 

cients). 

THEOREM 2.1 [18]. ~+(a0+...+~)=~/(~o+...+~5=~ It is easy to see that in both 

cases the upper bounds are achieved with the aid of Horner's scheme. 

Informally speaking, the idea for obtaining the lower bound is the following. The value 

of every working variable of the SLP, viz., a scheme without preliminary coefficient proces- 

sing, is some rational function ~(~,~,...,G~) which can in some way be written as a func- 

tion 9=(~o+...+~p~/(~-+~4), where 6~,G~(a0,...,~) . Then by induction on K it 

can be shown that if ~(~)~ K , then the degree of transcendence of field ~(~0,...~p, 
Go,..., ~) over ~ does not exceed K+~ for a suitable choice of writing ~ as a frac- 

tion; whence the theorem now follows ( G can stand for either + or X/ ). 

We note that from what has been proved there immediately follows the validity of Theorem 

2.1 for the case of an arbitrary infinite field. 

Another class of SLP that can be considered, called schemes with preliminary coefficient 

processing in [18], is defined, in the terminology of Sec. i, thus: ~=~(ao,... , ~W') is the 

field of algebraic functions of variables algebraically independent over ~ ; ~ and ~O 
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are the same as above. It is required to estimate CO(~o§ +~m) ; moreover, here the 

set of input variables is {~} . The interpretation is the following: if it is necessary 

to evaluate one and the same polynomial many times at different points, then it makes sense to 

compute certain auxiliary functions of the coefficients beforehand, i.e., a multiple evalua- 

tion of the values of the polynomial at different points compensates for the outlay on 

evaluating these algebraic functions. We denote 9=~~ +~W~" 

THEOREM 2.2 [18, 41]. i) C+(9)= ~ 

2) CXl(~)= ~§ for even ~; 

3) ~x/(~).=(W~l)/~ for odd I~} 

4) ~x/(~)-----(I~.3)/~ for odd ~. 

The proofs of the lower bounds are similar to those of the lower bounds in Theorem 2.1. 

The upper bounds in cases 2), 3), 4) (which have been proved only for algebraically closed 

fields ~ of characteristic zero and for real-closed fields) call for nontrivial construc- 

tions. Estimates of the joint behavior of Ca()) and CXI(~) for an SLP ~ computing 

have been presented as well in [41]. 

Theorem 2.2 can be generalized to the case of several polynomials of one variable common 

to them all. To be precise, let ~-~- ~)e ~)~+...+~.~ ~ (~K) and let {aI~3 } be alge- 

braically independent over ~ . We set ~ %~-" N ; then we have 

THEOREM 2.3 [18]. I) C+(~I,"., #~} = N ; 

2) ~x/(~,...,~.K) : N/~ + 4 for even N ; 

3) (N-I)I~+I~Cx/(@~,...,~)~(N-I)I~+ ~ for odd N. 

In [18] SLP have been constructed for which ~+ and Cxl are simultaneously close to 

the lower bounds from Theorems 2.2 and 2.3. 

The last type of SLP we shall consider in this section is defined as follows: ~--- 

~(Go,..,,~) ; ~: {+,X,/}U{x~}~s~; ~(*)=~,~(x~):0, ~m(X):~(/)----~; ~} is the set of input vari- 

ables. The complexity ~11~ thereby definable will be called multiplicative complexity (i.e., 

O,~ "counts" the number of nonlinear operations). Below, X and ~ denote, respectively, 

equality and inequality to within a multiplicative constant. 

THEOREM 2.4 [42]. C~(~) x~-~ . 

The upper bound can be obtained on the basis of the following equality (without loss of 

generality we take it that ~ ~-K ~ ): ~=(6~o+~+..,+~ k +(6~K+4~+ ...+ ~+,.+ 

~K_k~0~+-..~) ~'" The proof of the lower bound is analogous to that of the lower bounds in 

the preceding theorems. 

3. Computational Complexity of Individual Polynomials 

In the preceding section we examined SLP for the evaluation of the polynomial ~----(~e+ 

~ + . . . ~  whose coefficients ~'o~"" (1'~ are algebraically independent over ~ �9 Of 

considerable interest is the case when the coefficients ~,..., ~ "have been constructed 

simply," for instance, they are integers or algebraic numbers. In other words, let ~ ;  

~- {+,X,l}~{x~}~,;~,~x/,~ ~ have the same sense as above; {~} is the set of input vari- 

ables. The problem is to estimate C,(~) for various 9,~[~]. 
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The proofs of Theorems 2.2 and 2.4 enable us to prove at the same time the following 

statement: the dimension of the variety (lying in ~+I ) of the coefficient vectors 

(a0,..., ~) of polynomials ~ for which either 

or or 

does not exceed K+~ In particular, almost all (in the sense of algebraic geometry, i.e., 

those whose coefficient vectors belong to an everywhere-dense set in the Zariski topology) 

polynomials ~ satisfy the inequalities 

In spite of this circumstance we have not succeeded in solving satisfactorily even the 

following weakened variant of the above-stated problem on estimating C~(~) (although in 

recent years there has been significant progress in it, with which we deal below in the 

present section): "indicate explicitly" a polynomial ~ with "good" coefficients, satisfying 

inequalities (i) or at least one of them. This would shed light on the secrets of complexity. 

The words within the quotation marks require a more precise definition, but a reasonable prob- 

lem statement (for example, the words "good" coefficients can signify coefficients from the 

set {0~ ) will be clear from the subsequent context. 

Deviating somewhat, we remark that a similar situation, somewhat unusual for classical 

mathematics, when it is difficult to "indicate explicitly" even one simply constructed con- 

crete element from a sufficiently natural everywhere-dense set (in the case at hand, the set 

of polynomials difficult to evaluate, i.e., polynomials satisfying inequalities (i) or even 

weaker inequalities), is very prevalent in algebraic complexity and is of great interest (see 

the next section as well). This not very precisely posed problem of the "explicit indication" 

of difficultly computable functions (polynomials or polynomial families in Chapter I) will be 

somewhat imprecisely called the problem of obtaining lower bounds. 

We now go on to present certain advances in this problem, made recently. A number of 

papers (for example, [55, 50, 51]), the first ones on this topic, explicitly constructed poly- 

nomials which satisfy somewhat weakened inequalities (I) or some portion of them or their 

disjunction. The methods in these papers are very similar in their ideas, differing in a 

number of technical details, and they are weaker than the one elegant method of Heintz and 

Sieveking [36], which we present somewhat later in this section. Therefore, for completeness 

of the picture we briefly sketch the idea of these methods, following the first paper [55] in 

this cycle of papers. Thus, let the polynomial ~=~0+.-.+~&~ be evaluated with the aid 

of a SLP ~ for which the inequalities C§ Cx(~)~,~)~ ~ have been fulfilled (here, 

naturally, ~x~)=~x(/)-----0, ~x(X~=~s ~l(/)--~ ). We set ~%~- 

m%~1&,~(~+~)} . The maximum of the moduli of the polynomial's coefficients is called its 

weight. (~.~+%)s 

THEOREM 3.1 [55]. Given a positive integer ~>~--~ . Then there exists a non- 

trivial form ~[~o,""~], ~ ~  , with weight no greater than three, having the 

property that ~(~,...,~)= 0. 
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Sketch of the Proof. The coefficients of a rational function, being the value of the 

working variable Z~ of the SLP ~ (see the notation in Sec. i), can be represented as 

rational functions of the parameters which are introduced in ~ as constants from ~ (i.e., 

each constant from ~ , newly introduced into ~ , is reckoned a parameter). Although it is 

not possible to "explicitly write out" these rational functions, by induction on ~ it is 

not difficult to estimate explicitly in terms of ~ (or in the final analysis, in terms of 

U, ~,~ ) the degree and the weight of these rational functions. Hence it follows (here 

we make implicit use of the theorem on the avoidance of division in SLP evaluating polynomials 

[54]; in a weakened form we shall be dealing with it in Sec. 7) that the coefficient vector 

of polynomial ~ is the value of some vector of polynomials (~o,--',~$) with integer coef- 

ficients and with degrees and weights a priori bounded from above (in terms of ~ ; ~  ). 

Then the Dirichlet--Siegel lemma (see [55], for example) yields an upper bound on the degree 

of the nontrivial form ~ of weight three with integer coefficients, such that ~(~ ..., 

~)gm 0 (direct computation yields the bound for ~ indicated in the theorem). 

As a corollary of Theorem 3.1 we get that if the coefficients of a polynomial ~ of 

degree ~ do not satisfy the equating to zero of any form of degree ~ with integer coef- 

ficients and weight no greater than three, then the polynomial ~ cannot be evaluated by a 

SLP with parameters ~,9~,9r . We present some applications of the indicated arguments and 

of arguments close to them: 

Cx1( 

I 

(compare with Theorems 2.2 and 2.4). 

As already mentioned, the most powerful method for establishing lower complexity bounds 

on polynomial evaluation was proposed in [36], and we pass on to its exposition right away. 

As a preliminary we present a certain digest of facts from algebraic geometry (all of which 

can be found, say, in [15]) needed for this section and the text. 

If X is an irreducible algebraic variety (over some algebraically closed field ~ ), 

Xc]D -~ , where ~K is a K -dimensional projective space, then almost all (in the Zariski 

topology sense) linear spaces Irc~ ~ of dimension ~4~=K-- ~ X  have in the intersec- 

tion ~n W one and the same finite number of points, called the degree ~X of variety 

X �9 We remark in passing that if XN~ consists of a finite number ~ of points, then 

6 ~ X  �9 Every variety Y can be decomposed into irreducible components: ~ 

�9 ..UX~ ; then: ~Y-~-~X~ �9 The concept of the degree ~X is invariant, i.e., 

is independent of the imbedding of X into the projective space. We note the subsequently 

useful Bezout inequality 

y n Z. (2) 
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Following [36], we introduce one more complexity (in the notation of Sec. i), where 

H=~ is some infinite subfield of field ~ . We set AH~§ for ~H and 

A.~-A.(x,-A.(O-I for ~ %  ~ . In other words, free of charge we admit multiplica- 

tions by elements of field H (see below for a typical example of application, when VmJ, 

) 

Let ~,...,~f be positive integers. Further, let ~f be one of the complexity 

measures ~, CM, ~t~ (see Sec. 2 for the notation). We set W$" ~ when considering 

C§ or O H and ~ = ~ §  when considering 

THEOREM 3.2 [50, 51]. For every 

~ �9 Then we have 

~,...,~ there exist polynomials ~e~,..., ~], 

, such that if ~1,...,~[~], ~ ~K (4(K~6) , 

~I~ , except for a finite number, we can find 

where t ,  6, �9 8j , 

and . then for all 

~,...,~4~6 ~ such that 

J (3) 

The idea of the proof is similar to that of the proof of Theorem 3.1. 

Following [36], we consider a morphism ~ of affine spaces ~-~-~X...x~'=~ ~ 

(~#~...+~), defined by the vector of polynomials {~4A,...,~...:~I,...,~6,~6).. from 

Theorem 3.2. We denote W Z ~ to be the closure of the image of ~ (in the Zarlskl 

topology). The variety I~ , and by the same token also ~ , are defined over field 

([15]). Below ~ denotes the binary logarithm, ~M~ is the carminality of set M. 

LEMMA 3.3 [36]. ~~-~,W~. 

Proof. Let ~1,"., ~ W  be hyperplanes such that JI~n~1~...~W~--~ (from 

the definition of degree). Then ~'I(~)--4 and ~#~-I(~.~)~'I'~ (the latter 

from Theorem 3.2). Let ~ be the number of components in the variety ~.,~-1(~)fl... 

~'I{~W): Then by the B~zout inequality (2) we obtain ~ ~ ~ { ~ ) ~  

(~d4rl .~,) I(~t~W . Since ~r(~-Wl]~L.f l~d~sW , we have ~ and~ finally, ~ 

4~ (3~+~)~.W This completes the lemma's proof since ~fl~ , and we can take it that 

We denote the combined complexity ~w~,CH,C~ } . Let ~----~ ~K~ ~ ~ . ~ .  

We consider the point ~:----(~41,...,~i,~,...,~,~)~ P~ and we let ~ be the closure of this 

point over field ~ in ~ (i.e., B is the smallest closed variety, defined over ~ , 

containing ~ : if ~ is algebraic over ~ , then ~ consists of a finite number of 

points). Let ~ be a variety defined as the set of general coefficients of certain poly- 

nomials p~,...,~ , where ~ (@~&~) for some { , and let ] ~  ~ (the latter 

relation signifies that all components of variety ~ are as well components of variety ~ ). 

THEOREM 3.4 [36]. ~(~i,...,~)~ ~ ~(~) 

Proof. We use Theorem 3.2 and the notation adopted in it. We assume that in equalities 

(3) we can set ~-----0 (if we cannot, then we take an arbitrary admissible value ~----~o and 

we reduce everything to the case being examined by making the change of variable ~----~-~0 ). 

Then ~I,r = W , and since W is closed and bounded over H , we have ~= ~ , 

hence ~0~. 
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We can find a nontrivial linear combination ~(1)~D.(~e~) such that the variety r ~ . ~  r~ 

of its zeros (we denote it [pm--0} ) does not contain (and by the same token, properly 

intersects (see [15]) any component of variety W which is not contained in ~ . Ana- 

logously taking ~ W steps, we find the linear combinations p~)~,4~ p~r 

such that ~NWr .... Hence, by the B~zout inequality (2) w e  

_ . . i t  

have 

w. w.  ' '  �9 

Using the last inequality and Lemma 3.3, we obtain t lt,(4/e)'~O~i~,B/'~.(l~) , whence fo l -  
lows the theorem. 

Let us mention some applications of the theorem which cannot be obtained on the basis 

of Theorem 3.1 and of the method of [50, 51]; in the corollary below ~=~, H---'~. 

COROLLARY 3.5 [36].  "]"(q,~'~&f'~(~/~J)~J)@~06LCI'V~'""K~)/'~#'(~" tltO~ {~,... ,g~}) , 

where K~' are positive integers ( ~ ( ~ )  , LCM is the least common multiple. 

In the hypotheses of Theorem 3.4 we assume ~ to be the variety of common zeros of the 

polynomials {~2-~=0,...,~.4---0J , by the same token ~=~4~ZlK~,...,~} �9 For 

example ~(4~~/~)~0~/~-- [36] and ~4~&~00p(~,~t/~)~)~ [36], where p~ is the 

-th prime. 

Using their own method, Heintz and Sieveking [36] proposed a method of estimating from 

below the complexity OH(L~4~..~. ----~J~4~) for a ~x~ -family of linear forms. Analogously 

to the above, let ~ be the closure over field H of the point ~=(~, and 

let ~ be as above. Then we have 

Statement 3.6 [36]. P f%-~ ) WH(14~ ~)~_.,+ 

Sketch of the Proof. Using [54, 64] we can take it (by increasing the complexity OH 

by no more than twice) that the values of all the working variables of the SLY evaluating the 

family of linear forms are linear functions. Hence we conclude (arguing as in the proof of 

Theorem 3.i) that we can find polynomials ~fzf,... , ~4~H[~I,...,~]; ~ ~ 9  (~, j ~ )  , 

such that ~,$~, where ~={~i,i;...;~): Pr ~ ~ d'l'" �9 Let W-Im~ then, arguing 

analogously to the proof of Lemma 3.3, we obtain ~W~(~)%~ From then on we follow 

the proof of Theorem 3.4. 

Thus, we have constructed polynomials with coefficients from ~ , relatively "simple" 

in structure, whose combined complexity ~ is close to the maximum possible (0(~)) 

This partially answers the question posed at the beginning of this section. 

We recall as well that we have proved (ineffectively) the existence of difficultly com- 

putable polynomials with coefficients from set {~} (see [50], for example). More pre- 

cisely, we have proved the existence of ~ -degree polynomials with coefficients from set 

{~ with a) a total complexity (see Sec. i) of the order of ~/~ (this estimate is 

exact, as follows from the method in [46]); b) a multiplicative complexity not less than 

~/~' with respect to order (this estimate is close to exact, as 
- -  

follows from Theorem 

additive complexity not less than ~ / ~  with respect to order. The problem 2.4); C) an 
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of obtaining more exact bounds for the additive complexity of ~ -degree polynomials with 

rational coefficients remains unsolved. For it we know only a lower bound (i.e., examples 

with the lower bound indicated have been constructed) and an upper bound, respectively ~ 

and ~ with respect to order. 

4. Degree Method and Its Generalization (Case of an Infinite Ground Field) 

On the basis of the methods set forth in the preceding section, it has not been success- 

ful to prove lower bounds for the complexity of natural polynomials or of families of poly- 

nomials, since the basic instrument in the arguments is the establishment of some upper bound 

on the degree of extension (over a primitive field) of the field generated by the coefficients 

of the polynomial being evaluated, in terms of its complexity. In explicit form this exists 

in Strassen's method (Theorem 3.1) and, in a more veiled form (estimate of the degree of set 

), in the Heintz--Sieveking method (Lemma 3.3 and Theorem 3.4). 

In the present section we shall expound on methods based on the use of the concept and 

properties of the degree of a variety (see Sec. 3 above or [15]), yielding nonlinear (rela- 

tive to the number of variables) lower bounds on the multiplicative complexity for certain 

natural families of polynomials of several variables (see the already-classic old paper [23]) 

and for individual polynomials (see [25, 50]). 

Thus, in the terminology of Sec. i, ~ is an algebraically closed field; ~={~,X~/} 

U{~}~I~; A= ~ �9 It is required to estimate the multiplicative complexity C~(~,.--,~K) 

of a family of rational functions of pairwise-commuting input variables ~,...,~. The func- 

tions ~,"',~K prescribe a rational mapping ~&'(g"""~)= ~ . We consider its graph 
- - ~ H §  

& ~ ~ K  and by W=~(~)CZ we denote its projective closure. We note that 

~(&) is an open subset in the irreducible closed variety W ; therefore, ~W-- 

THEOREM 4.1 [23]. ~(~,...,~K)~~. 

This theorem is rather widely known and, therefore, with regard to its proof we merely 

remark that it is carried out by induction on 0,~(~...,~) and uses the B~zout inequality 

(2). 

We mention certain applications of Strassen's theorem 

for every ~ -degree polynomial (i.e., ~ =  0 ) over ~ (the evaluation of a concrete 

polynomial of precisely degree ~ at ~ points, i.e., here the set of input variables (see 

Sec. I) is {~,...,~}) . Let ~=~ ~$i...~6 be an elementary ~ -degree symmetric 

function; then C~(~,...,e~)M ~ . Further, the interplation problem for a ~ - 

degree polynomial, i.e., the recovery of its coefficients from the values at (~*~) distinct 

points, also has a multiplicative complexity ~ with respect to order. We remark that 

all bounds from the applications mentioned are true as well for an arbitrary infinite ground 

field ~ , since the SLP evaluating a family of polynomials over an infinite field evalu- 

ates this family over any extension of it. 

1396 



Unfortunately, Theorem 4.1 does not yield a nontrivial estimate for the multiplicative 

complexity of an individual polynomial, since ~ W ~ K ~  ~& , where ~(~/~-~ 

{ ~ ~ I }  �9 This deficiency was first removed by Schnorr [50]; we proceed to present 

his method (as before we take field ~ to be algebraically closed). 

Let p=~(~4,...,~)+~(~,...,~)~+...+~(~,...,~)~dG ~[~,..., ~] and ~(p)-~ �9 We 

consider a SLP "~ evaluating ~ , such that C~(~)==~ - Informally speaking, we would 

want to transform the aLP ~ into some SLP ~ evaluating the coefficients of polynomial 

, i.e., the polynomials ~0,...,&~-- ~[~,,...,~]. But if there is division in ~ , then 

this would make it difficult since the natural path to such a transformation is to evaluate 

all coefficients of powers (not exceeding ~ ) of the variable ~ for all values (which can 

be treated as power series in ~ ) of the working variables Z 6 of the SLP ~ (see Sac. i), 

which is impossible if it is required, for example, to decompose into series in ~ with a 

zero free term. In principle this defect can be eliminated by examining power series in the 

new variable (~-~) (instead of ~ ) for some ~eP (even for almost all ~,~ ). There- 

fore, we can introduce ~ into the SLP as a new input variable; i.e., the rational function 

~@e~(~2~,...,~) , being the value of some working variable Z~6 of the SLP ~ (by ~ we 

have denoted the number of the instruction in ~ at which the ~ -binary multiplication or 

division is implemented; see item 4 of the definition in Sac. i), is written as ~ 

~0%~(~,%...~)(~-~)~, where ~,~ are rational functions. 

Using no more than ~ operations X and / . we compute all ~},,~,v by induc- 

tion on ~ , i.e., the free terms in the power series in the variable (~-~) , correspond - ~ 

ing to the functions ~. Next, by induction on ~" we can show that every coefficient 

~&,~ can be represented as some polynomial ~ of degree no higher than ~ (cf. 

Theorem 3.2) of the parameters ~,~,...~ ~ and {~0,~}I~ . We point out that 

actually we do not evaluate the coefficients ~ (to counterbalance the informal exposition 

of the idea of Schnorr's method; see above), since this is rather labor-consuming, but we 

construct a certain representation suitable for them. 

Let ~-~o(~,~4,:..,~)+~(~,~,...,X~)(~-~)+...+ ~(~,~,...,~)(~-~)~ . we consider the 

rational mapping ~"§ A-~-(~o,...,~)~__ ~4 which can be decomposed into two ~ational mappings. 

According to Theorem 4.1 and what we have proved above, ~~(~)~V. Further, since 

~=-~,{%},[~0,,}) ' where ~A~r is some linear (~e~) combination of the 

above-mentioned polynomials, we have ~ ~ 9 ~  . whence ~~(~)~(~)~ It is easy 

to verify that ~ ~ . ~ ~ ( ~ . ~ ( ~ ] ,  consequently, ~~(~)~v(~)~ 

On the other hand, ~{%,...,~$)-~-~s W+~+~ , where ~ is the hyper- 

plane with equation ~=0 ; therefore, according to the B~zout inequality (2), ~ ~  

(~...,~)~~~,...,$~)~(~)~ . Thus, we have 

THEOREM 4.2 [50]. Let ~=~0(~...,~)+~(~,...,~M)~+ ...+~i(~,,..,~w)~ ~ �9 Then ~(~)~9 

for ~ such that ~l)~(~,...,ll~)~g~(~I~) ~. 
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Some applications of the theorem [50]: 

We remark t h a t  i n  the  a p p l i c a t i o n s  ment ioned ,  as above i n  an ana logous s i t u a t i o n ,  when 

we discuss corollaries of Theorem 4.1 we can take it that ~ is an arbitrary infinite field. 

A more elegant method, permitting in addition the obtaining of nonlinear lower bounds 

for the complexity of individual polynomials, was suggested by Baur and Strassen [25] and was 

based on the following estimate for the complexity of evaluation of the rational function 

~E~(~..., ~) and all its first partial derivatives (here ~ is any field). 

~, ,~ THEO~E~ 4 . 3  ~25~ ~) c~(~,~7 ' .-- ~ - ~ ; )  ~(~; 
2) ~ , ~ ' , ~ , ' " ~ - , ( ~ v ~ ( . ~ - ) .  (See Sec. i . )  

We prove only the item I). We consider a SLP ~ evaluating ~ with complexity 

r %. Let ~,...,~ be the values of the working variables in the SLP ~ , 

in the instructions containing binary multiplications or divisions (see item 4 of the defin- 

ition in Sec. i). Then for every ~ ~-~-~&~ ~;~ ((~ ~ or (~/) and 

where e&@,~@),~,~.~ ~{~p~ ,4~ ,~ }  <i 
LEMMA 4.4 [25]. Let 0=/=~@~(~(~); ~&~ ( ~ { ~ ) ;  Wr are variables. We 

define the ~ { (~ ( ;~ , , )  by induction on $:  ~ , = V , W , , . . . , ~ { = ~  ( ~ . @ ~ +  W~), . . . .  We denote 

~ (~W~,' ~ ~ Then 

Proof of the Lemma, We denote 

matrices 

~=~ d,~r w~ We consider the lower-triangular 

. , t , , I  v ' , . .  . , , , , - ,  o . 

Then the lemma's hypothesis is equiva le . t  to the equal i ty  ~ = Y ( A ~ + E )  , .here  E is 

the unit matrix. Having multiplied this equality from the left by the matrix ~-~ , and 

from the right by ~-~y, we obtain ~=(~A+E~Y , whence the lemma follows. 

We return to the theorem's proof. We set ~=~%+~ ; 

. F J ' ~ .  ~ ". ,--s,f  r ~ , . . t , - - s , t  f 
~ ' ~  ~. O, o ~ h ~  ; ~-4,~-----~, O, o,h~,w~-~ ; 
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1for r  

~ = O, otherwise 

~%~"= 09 otherwise 

Further, if @~.~$~.9~ , then we set ~|=~,~--%,~--{. 

then ~--~,~_,---%/~,~-=~/~. Finally, we set 

~-I,~ = ~ ' 

However, if ~ = ~ / ~  

�9 

Then by induction on $ it is easily verified that if ~f~..~ 

4.4 for the indicated parameters ~,~, then ~=~{~%~,...,%9). Lemma 

k e  " ' . .  

for all ~,~ . By Lemma 4.4 the family [ ~ . , ~  is evaluated (if ~,..., ~ 

been evaluated) with the use of (~-I) binary multiplications by 

Since among the {~,..,~-a} 

ficient to use no more than 

have been defined as in 

Hence we obtain 

since ~ p 

have already 

$~,...~ in succession. 

at least ~ equal unity, to evaluate J#-,...~ ~ ~ ~ it is suf- 

(5-~)-~= ~ binary multiplications and divisions, which proves 

the theorem. 

We mention some applications of Theorem 4.3. 

COROLLARY 4.4 [25]. i) "~-~PI~ |~(  '1~ ~ ~ 1 ~ t ~ ;  

where ~,...~ are elementary symmetric functions of ~ variables (cf. the applications of 

Theorem 4.1); 

The proof of the lower bounds in items 1)-4) is carried out by applying Theorem 4.1 to 

the collection of partial derivatives of the functions being computed. The proof of item 5) 

relies on the representation ~K--AK,0/~(&~ ) , where AM. is the C~) -minor. 

On the other hand, by Cramer's rule, ~ , ~ A K  ~ �9 Thus from item 5) and previously 

known results we obtain the coincidence (to within a multiplicative constant) of the com- 

plexities of matrix multiplication, matrix inversion, and determinant evaluation (also see 

Solodovnikov's survey in this issue). 

We heed the fact that Theorem 4.3 cannot be generalized directly to the computation of 

the second partial derivatives (and by the same token, to families of several variables -- 

{~...,~} -- in contrast to one function {~} ). As a counterexample we consider the 

polynomials , = =1 ' ' "  " ,  �9 Then ~ ' ~  # for ~m&~ and C,( {~.}))~ 
z 
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In concluding the present section we cite one application, due to Strassen, of the de- 

gree method for computing the Euclidean representation (or the continuous fraction) of a 

rational function by a computing model somwhat different from a SLP [57]. If A4,A~e~[~], 

~, A ~ = ~ A ~ = ~  O, then we apply the Euclid algorithm to ~/A~ and obtain here 

the sequence of equalities 

A,= As, O=A,, O .fA, �9 
The vector of polynomials (~,0~,...,~f,A~) is called a Euclidean representation of the 

fraction ~4/A~. The vector of degrees (~,...,~)=(~,..,,~f,~j) is called the 

format of the fraction ~/A~ (or of the pair (~I,~)). Obviously, t~_ ~ K~, ~ ~. 

By ~(~,...,~#) we denote the set of pairs (~4, A~) having the format (~,...,~}. 

It is clear that a SLP is an unsuitable model for computing a Euclidean representation 

since different fractions can have different formats even for one and the same values of 

and ~ , i.e., a different form of response. Therefore, the following computing model 

was introduced in [57], adequate for the given problem and called the branched tree program 

(BTP).* The BTP contains a tree T directed from the root to the leaves. Any vertex of 

tree T has one or two sons. At every vertex having two sons (it is called a branching 

vertex) there stands an arbitrary polynomial; at every vertex having one son (it is called an 

evaluating vertex) there stands some base operation (from ~ ; see Sec. i). The arguments 

of both the polynomial mentioned and the base operation are the results of some evaluating 

vertices located on a single branch from the root to the vertex being examined. A response 

consisting of the results of the evaluating vertices located above a leaf is delivered at 

the leaf. 

The functioning of a BTP is unique. An input is fed in at the root of tree T and 

the computation takes place along some uniquely determined branch: an appropriate base opera- 

tion is computed at every evaluating vertex; after the branching vertex at which a polynomial 

e stands, the evaluation proceeds along one of the branches depending on whether or not 

the value of polynomial ~ equals zero. 

If a BTP with tree r computes a Euclidean representation, then every two inputs on 

which the computation takes place along one and the same branch of tree T have a like for- 

mat, and by the same token, every branch (or an appropriate leaf) can have a format ascribed 

to it. If some weight ~O has been specified on the base operations (see Sec. i), then the 

weight of a branch is the sum of the weights of the base operations at the vertices along this 

branch. We define the complexity of the BTP as a function of the format: C~(~,...,H~) is 

set equal to the largest of the weights of thebracheswith format (~,...,~#) The normalized 

entropy [3] is defined as -~~-~)=~(~i,...,~). 

THEOREM 4.6 [57]. i) (Knuth and SchUnhage) A BTP can be constructed to compute the 

Euclidean representation with the bound 

*Translator's Note: The literal phase used in Russian for a straight-line program is "un- 
branched program." At the time of writing I did not have access to Strassen's paper [57] and 
therefore I do not know what name he has given to this new program. I have made here a literal 
translation of the Russian phase. I would appreciate it greatly if someone who knows what 
Strassen used lets me know. 
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2) Every BTP, computing a Euclidean representation over an algebraically closed ground 

field ~ , has the multiplicative complexity C~(~,...~)~(H(~I,...,w~)-~) , i.e., 

for every (~, .... ~) there exists a set '~ , open in ~(~,...,W~) , on each element of 

which the BTP has a multiplicative complexity of not less than the magnitude indicated. 

We note (see [57]) that the multiplicative complexity of the evaluation of the product 

of ~ polynomials in one variable (the same one for all) of degrees %,...,W~ , respectively, 

over an infinite ground field ~ is of the order of W~(~,...,~) �9 The proof of item 2) 

of Theorem 4.6 and of the lower bound in the last remark relies on Theorem 4.1. 

5. Degree Method (Case of a Finite Ground Field) 

The methods presented in the preceding section work only in the case of an infinite 

ground field, since essentially we use the fact that if some SLP ~ evaluates a polynomial 

(or a family of polynomials) over an infinite field, then ~ evaluates this same polynomial 

(or family) also over any extension of it, in particular, over its algebraic closure, for 

which we now apply an algebraic-geometric technique connected with the polynomial's degree. 

For the case of a finite ground field ~ , Strassen [56] suggested another method which 

nevertheless also uses Theorem 4.1 (see Sec. 4). The present section is devoted to its pre- 

sentation. 

Thus, let ~ be a finite field, ~={+,x,/}U[X~}~P; ~-~ . The problem consists in 

estimating ~=~(~,...,~K) for ~,...,~E~[~,...,~], where [~,...,~,} are pairwise-commuting 

input variables (see Sec. i). Suppose that a SLP ~ evaluates ~91,.'.,~K} and that 

~(~) =~- We denote ~ = ~ ( ~ ~ ~ 9 c ~  ~'+K We shall treat the SLP ~ as a 

SLP ~ over the algebraic closure ~ The SLP ~ then evaluates certain polynomials 

~j...,~K~ ~[~,...,,~] , such that the restriction ~l~n=~ (~k) . and ~ possibly 

does not coincide with ~ on the whole ~w (this feature distinguishes the case of a 

finite ground field from that of an infinite one). Obviously, 0~(~I~...,~K)(V. We now consider 

the irreducible mapping W ~s ~ ~=(~,...~K)~ ~) c ~W~K. The inclusion ~ W is ful- 

filled (we take it that ~§ ~"§ is a natural embedding). The idea of Strassen's 

method consists in finding effective sufficient conditions on a finite set ~ of points, 

under whose fulfillment every irreducible mapping W~ ~ would have a sufficiently large 

degree (for a fixed dimension ~W4 ), and then applying Theorem 4.1. 

We say (see [56]) that a finite subset ~i~ N is a ~ -set (~ is some positive 

integer) if for all 0~ N and for every irreducible closed subset WIC~N there is ful- 

filled ~ Wf ~I~oWfl/~ ~W~. The next lemma is of independent interest, it seems, also 

for specialists in algebraic geometry. 

LEMMA 5.1 [56]. Let ~C~ N , ~ be a positive integer, ~...,% be linear forms on 

~N such that: 

a) for every ~ and any ~'",~4~4"~ the linear form ~ takes no more than 

values on set 
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b) if ~s for some ~,we~1 and for all I ~  , then 
i 

Then ~I is a ~ -set. 

The lemma can be proved by induction on ~ . 

THEOREM 5.2 [56]. Let ~ 4~ -- - --~""~6~[~'""~ and let the set ~I--~=~{~I,...,~K)=~ ~K 
~ E 

C~'~ satisfy the hypotheses of Lemma 5.i. Then ~,T(~,...,~K)~(I~I/~) . 

To prove the theorem it is enough to note that an irreducible closed W -dimensional 

mapping W~-~-~) contains a ~-set ~ ; therefore, ~I~/~ M , and applying 

Theorem 4.1, we obtain 

As an application of Theorem 5.2 (see [56]) we get that 

(~=~0). For the problem of interpolating an ~ -th degree polynomial from values at (~§ 

points (the problem makes sense if ~J>~ ), its multiplicative complexity also equals 

~ in order (we recall that we would have the same bound for these two problems in 

the case of an infinite field -- see the applications of Theorem 4.1). The matter is different 

for elementary symmetric functions: in [17] it is shown that even the total complexity 

%(~,...,~) is linear in ~ over a finite field ~ (cf. Sec. 4). 

It is interesting to note that the reverse situation occurs in certain natural cases, 

i.e., the complexity of evaluation of a family of polynomials over a finite field can be 

greater than the complexity of evaluation of this family over an infinite field. For example, 

the multiplicative complexity of the multiplication of two ~ -th degree polynomials over an 

infinite field ~ equals ~I (see [31], for instance); in the case of a field ~ of 

two elements a lower bound of 8,~W was proved in [28] for the multiplicative complexity in 

this problem (the best known upper bound for it to-date is W.~(W), where ~ is some function 

growing more slowly than any fixed iteration of the logarithm; see [8, 9, 32, 33]). 

6. Additive Complexity and Real Roots 

In the preceding two sections we established lower bounds for the multiplicative com- 

plexity C~(~1,:..,~ of a family of polynomials in terms of a power of the graph W = ~  

(~_~,...%~x)= ~). Since ~ ~ is not less than the number ~ of discrete roots of 

the system ~ .... =~K=0 over field ~ , we have Cm(~,..,,~)~N~ (cf. Theorem 4.1). 

In the present section, on the basis of Khovanskii's work in [21], we shall find a lower 

bound for the additive complexity ~§ in terms of the number of roots of the system 

.... J~'= 0 �9 In this section, in the notation of Sec. i, ~=~; ~+,X,/}U{X~}~m ~ ; 

A~-A+ (see the beginning of Sec. 2); ~)..., ~W~[~,...,~] . Below, unless otherwise stip- 

ulated, all the polynomials are assumed real. The existence of the bound mentioned was 

assumed a long time ago and this assumption was based on the Descartes principle: the number 

of nonnegative roots of a polynomial in one variable does not exceed the number of its mono- 

mials. For one polynomial ~ in one variable a bound weaker than the one established below 

was obtained in [26] (it appears that the method of proof of the main theorem in this paper 

is of independent interest). By ~ we denote the set of nonzero real roots. 
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THEOREM 6.1 [21]. The system of equations ~1--...--~--0{~r.,~e~[~...,~) has no more 

than ~(t4,+~,)K~ K(K+'I)/~' discrete roots in ('~)Hi, , where K is the total number of mono- 

mials in all the polynomials ~,;..,g~ . 

COROLLARY 6.2�9 If the system 9' ..... ~- 0 has N simple (i.e., of multiplicity 

one) discrete roots in IZ*)", then C~(~, ,~)~- ~[-~" 
Proof of the Corollary. Let ~I,..�9 be the simple roots mentioned of the system 

~ .... =~*----- 0 (the roots from (~)~ will be called nontrivlal). To derive the corol- 

lary from the theoremwe make use of the well-known canonic form for the SLP (see [26], for 

example) containing no more than Ir----~,(~l,...p~) multiplications: 
e 

: :.(r~t) _;.~,o c~,~) c~.o :($+4) ;(c~o ~ w ( p )  
'T' r o T "  '1"~ ~ ,r.t~ . 'p~4 ... 

~----- 'I .... ~ " "''~ (4) 

-(~) -t~) -(~) 4~ ~) 
~ ' - -  '1  . . . .  ~" ~1 " ' '  

where the ~,} ,~,W,p,~ with subscripts are integers; T~ is the SLP's working variabZe (see 

Sec. i) in the instruction in which the ~ -th multiplication operation, by count, takes 

place; the value of the working variable ~; equals ~(~<~; ~;1~). 

Let us show that we can so modify system (4) by replacing ~o"', ~ by nonzero real 

numbers ~,..., ~ sufficiently small is modulus, respectively, that the modified system of 

(~r, 1~) equations in (If+1~) unknowns ~I,...,~,TI,...,T~ would have no fewer than N non- 

trivial roots�9 Since ~I,"',~N are simple roots, by the implicit function theorem the map- 

ping ~ ;'~ ..... ~)>~ is bijective for each ~ H  in some neighborhood Y~--~ , 

namely, having narrowed down the neighborhood Y~ . we can take it that the neighborhoods 

of zero &(~)=O coincide and yA=(~) ~ for all ~-<N . We consider the mapping 

~ ~  ~" (here we identify the working variable ~+~ with its value). It is not 

identically zero (otherwise, the (~+~)- st instruction of the SLP is superfluous and can be 

~"~ ) M deleted) ; therefore, the preimage of zero (T~) (0-- ~,~ic~ is a real algebraic variety 

of dimension less than l& . We consider M~z~(M{,~,I) , viz., a subvariety of dimension 

less than ~ (since &/~ is a bijective morphism) of a neighborhood ~ of zero in ~ . 

Now as (~,..., ~) we take an arbitrary point in ~ outside M and the coordinate hyper- 

planes�9 By virtue of the choice of (~,...,Z~) the modified system has not less than :~ non- 

trivial roots (in neighborhoods {~N of the points [ ~ ,  ) .  

The modified system contains K=(~K+~) monomials. Having substituted this value of 

K into Theorem 6.1 and noted that ~W+~ <~K(K,I)/$ in our case, we complete the corol- 

lary's proof�9 

As an application we consider the polynomial ~'~4~..~) and the family of polynomi- 

als {~(~),...;~(~)} in the variables ~, .... ~ for ~ )- ~ ; then ~(~(~i),..., 

~(~m))~- ~t$~ " (under the restrictions mentioned this bound is nonlinear in �9 ). 
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Kushnirenko has conjectured (see [21]) that under the hypotheses of Theorem 6.1 a stronger 

upper bound is true for the number of nontrivial roots: to be precise, ~-{)...CK~-~) . 

where K~ is the number of monomials in ~ . The conjecture remains unproved as yet for 

~ . The validity of the conjecture would yield the bound ~(~,...,~)~, which would 

be an elegant analog of Strassen's Theorem 4.1. 

By modifying the proof of Theorem 4.2 we can obtain a lower bound for the additive com- 

plexity for individual polynomials. Let ~ ~  ,where ~...~[~4,..',~] . 

THEOREM 6.3. Let N be the number of simple nontrivial roots of the system of equa- 

tions ~ ..... ~=0. Then ~§ �9 

Let a SLP ~ be such that 9"=--~(~)=~+(~) and ~ evaluates ~ . We assume that the 

values of all working variables ~ of the SLP ~ , which are rational functions from 

~(~, ..., ~,, ~) , have been determined at a point ~f=~'~ . Then we make the 

change of variable ~=~-~ �9 Each value of a working variable Z~r , where ~ is 

the number of an instruction in the SLP ~ (see Sec. i and the proof of Corollary 3.2), con- 

taining the ~ -th by count addition operation, will be treated as a power series in ~i , 
~_~ ~(~.~ 

i.e., i~----~O~ ~ ~4 (see (4)); in addition, we set T0=~=~,+~ �9 

We restructure the SLP ~ into a SLP ~ , computing by recursion on ~ the collection 

{s (in this the present proof differs from that of Theorem 4.2 wherein the collec- 

tion of coefficients of the powers of ~ were not actually computed). At first, as in the 

proof of Theorem 4.2, we construct a SLP containing ~ additions and evaluating {~)}~ 

Let (see (4) T~§ , where T~ef,~.~J~.. ' l~f~;~,.. .~,~ , and . ~ , ,  

~;~ ( , , ~ )  are nonnegative integers. We denote ~,,,#----+~0 ~ ' ) ~  " Then 

, 

where is some positive integer. The number of summands in the last sum does not 

exceed ~[{§247 ]",~ Ir J " The evaluation of ~r in terms of v~,~(~+O and {(~r (~$~ 

requires no more than ~L additions in succession. At the end of the SLP ~ we return to 

the evaluation of ~,...,~r , having the computed ~0,'",~ such that .~ ~(~-~ 

~a~ .~ ~, which requires no more than z additions in succession. 

result, ~+(~)~+~(F§162 ~r) . Hence by Corollary 6.2 we As a o b t a i n  

|)(,~<(~+(~,...,~,)>.. ~2~, whence the theorem follows. 

We mention here that the analog of Strassen's Theorem 4.3 is not true for ~+ . For example, 

let ~-~54."00m+~405~.--05 ~ ~ ~,• C#(~).=~. It can be proved that C+~-~i ~ .... ~ ~)=~, 

since if ~J, then GCD (~)=(~..'-~)/(~5~), and to continue the proof we should 

make use of representation (4). 

To complete the picture we remark that the analog of Corollary 6.2 for the evaluations 

over the complex ground field ~-~-~ is not true. In [63], for every 14, there was con- 

structed an example of a polynomial ~[~] having 14, distinct real zeros, for which 

C~r . In this same paper [63] it was noted that the additive (over ~ ) complexity 
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of the Chebyshev polynomial of degree ~K with ~K distinct real zeros does not exceed K 

By the same token, the bound in Corollary 6.2 is exact to within the extraction of a square 

root, while from the validity of the above-mentioned Kushnirenko conjecture there would en- 

sue an exact bound in order. 

In concluding this section the author would like to point out that many results of 

Arnol'd and his pupils (see [2, 21], for instance), touching on estimates of certain other 

topological characteristics of real algebraic varieties (besides the bounds we have used 

for the number of zero-dimensional components), for example, Betti numbers, the Euler char- 

acteristic, etc., in terms of the number K of monomials occurring in the polynomials de- 

fining a given variety, can it seems yield other interesting applications to the estimates 

of additive complexity, which is closely related to K , as was seen in the proof of Corol- 

lary 6.2. More profound estimates of additive complexity apparently exist in terms of the 

Newton polyhedron of the (real) polynomials being evaluated. Arnol'd hypothecated that all 

"reasonable" invariants of polynomials are expressed in terms of their Newton polyhedra; see 

[2], for example, where it has been proved that the number of roots of the general system 

coincides with Minkowski's mixed volume of the Newton polyhedra of the polynomials of this 

system. It remains to ascertain whether complexity (say, additive) is a "reasonable" in- 

variant. 

In concluding Chap. I we remark that in it we have presented methods for obtaining non- 

linear lower complexity bounds for polynomials (and families of polynomials) of relatively 

high degree (in comparison with the number of variables). One of the unsolved and most inte- 

resting problems in this area is the obtaining of nonlinear lower bounds for polynomials of 

small (for example, constant, i.e., independent of the number of variables) degrees. Ap- 

parently, the solution of this problem calls for the development of a principally new 

technique. 

CHAPTER II. LOWER BOUNDS ON MULTIPLICATIVE COMPLEXITY FOR PROBLEMS OF LINEAR ALGEBRA 

7 Multiplicative Complexity and Rank 

Throughout the whole chapter (excepting Sec. ii) we shall be dealing with th~ following 

situation (in the notation of Sec. i): ~-~t,X~U~X~}~ or ~-----{+,X,/~U~X~}~e ~ , if 

K= P is a field (in Sets. 8 and i0, K~-P ); ~ = ~  is the multiplicative complexity; 

the input variables ~4,...,~m}U{~,...,~} are not assumed commuting. 

The problem to be examined in this chapter is the estimation of ~(~,.,.,~p) ' where 

~----~~ (4~) are bilinear forms (~{~c~) . The same letter ~ will denote 
L #  

the ~x~1~ -matrix of coefficients (a4#~)i~,4~ ~ �9 The following concept of the rank of 

a family of bilinear forms (matrices) proved to be fruitful (one of the first papers in which 

it appeared explicitly was [64]): 

K, wh= = 

~ R )  for certain ~x~ -columns 1&f~..~ N and ~x~ -rows 

~ , . . . , ' l f  N over K~ �9 
�9 Translator's Note: The Russian word for rank is "rang" and hence the abbreviation "Rg" used 
here. Since this appears quite often in what follows, I have chosen to retain it rather than 

to change it everywhere to "Rk." 
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Let the tensor ~K~I'@~'~O~P , we define its rank: 

= N: w , } .  

For matrices AI,...,A P we set up the ~x~xp -tensor ,1~=(~,@) , then it is not difficult 

to verify that ~K(Z)=~K(AI,...,Ap). Analogously we can determine ~K(~) for any ~,| 

M~OI-..~K~ ~ . where M~ is a ~ -module (~6) , but we do not here need so general 

a definition. The role of the concept introduced of the rank becomes apparent in the following 

theorem which algebrizes the multiplicative complexity in the situation being examined. 

tHEOREM 7 . l  [ 54 ] .  

Proof. At first let K~ be a field. We eliminate division with the aid of the 

method in [54] (it is described briefly in [9] as well). A similar method was already applied 

in the proofs of Theorems 4.2 and 6.3. Suppose that a SLP ~ evaluates AI~...,Ap By 

means of a change of variables of the type ~-~X{-~% = ~% we can achieve that the free terms 

in the values of all working variables Z~ in the SLP ~ are nonzero. The value of every 

variable ~ can be represented as a series ~>,0~,~ , where ~,6 is a form of degree 

(in the noncommuting variables %,...,X~,~,...,T,r ) We restructure ~ into the SLP ~ eval- 

uating by recursion on ~ the forms ~0,~,~,~, ~,r (in the general case when ~ evaluates a 

family of polynomials ~l,"',~PI of arbitrary degrees, the SLP ~ must evaluate ~i,~ for 

all ~ W~{~@~7..., ~ }  ). It is not difficult to see that the restructuring men- 

tioned does not increase the multiplicative complexity in the case being examined, i.e., 

Let us now consider (see [64], for instance) a division-free SLP ~ (the case of an arbi- 

trary ring ~ is covered by the same token) evaluating A4,... , Ap . The value of each work- 

ing variable %~ of the SLP ~ can be represented as ~o ~v}-u~--~-~ +-~ -~ 

where, f o r  example, -x~. .  i s  a sum of monomials (w i th  c o e f f i c i e n t s  from [ ) of  the form 

~ etc. ~(~) is a sum of monomials of degrees no less than three. We restructure the 

SLP ~ into a SLP ~I evaluating .~&(()~((), ~,~)~ ~(~)~x~ by recursion on ~ for all ~ If, for 

example, the ~ -th instruction (see Sec. i) of the SLP ~ had the form ~$'=~Z$ (where 

This shows that C,~(~(~), moreover, ~ contains only the nonlinear multiplication opera- 

tions x of the form (~&~&)x(~) , namely, one such multiplication corresponds to 

the product of a column by a row in matrix terminology. Hence follows the inequality C,~(A(~ 

...,Ap)~K(A~,...,Ap) . This completes the theorem's proof since the reverse inequality is 

obvious. 

Thus, the study of the multiplicative complexity of a family of bilinear forms is reduced 

to the estimation of the rank of a family of matrices. If K= ~ is a field, 

then ~(A) is the usual rank of matrix A, and it is independent of the choice of ~ , 

which is false for p~ (i.e., ~(A,,...,Ap)~(A~,...,A~) under the extension of field 

~ H , and the inequality can be strict; see [9], for instance). The investigation of 

rank when p>~ proved to be a very difficult problem (the results of studying it when 

p=~ ,ohtained by the author, are stated in Sec. 8). In the present chapter we present 
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equal ~4,"" ~ 

~ ~ "kernel" ~A~+~B, of sheaf ~A§ ~B have, for each ~ ~  , 

divisors of the form (~ + ~)~ , where ~/~= ~ We set ~ = W ~  

certain bounds in this direction which have been obtained. The paper [30] (in Dutch) contains 

a more complete survey on rank. 

In ending this introductory section we limit ourselves to some general remarks and to the 

of rank. Obviously, In contrast to the of 

I 

properties one 

matrix, %(A~,...,Ap) is not an upper-semicontinuous function of A4,-..,Ap when p'1 (see 

[9], for example). If ~ is algebraically closed, then it is easy to see that R~(AI,..., Ap) 

equals "almost everywhere" (in the sense of the Zariski topology) a certain number $~(~) 

depending only on ~,~,~ (and is not changed under any permutation of them) and on the char- 

acteristic ~ of field ~ Certain estimates on ~(W%~) have been presented in [9], viz., 

~/(W~+~-~)~ ~{w%~jp)~F~l~{~,~} for ~ (the upper bound follows from Cor- 

ollary 8.3 below). When ~ w ~  the order of growth of %~(W,%~) is between ~/~ and 

~/~ (the author does not know more exact bounds). Further, it was shown in [9] that for 

certain ~x~ -matrices ~4,'"~ with coefficients from the set ~!} the order of 

growth of ~p (~4~..., ~m) differs from W$ by no more than a multiplicative constant (in 

contrast to the situation of polynomials -- see the end of Sec. 3 -- with coefficients from the 

set {0,1} , the order of growth of whose complexity is less than maximum at least in the 

multiplicative logarithm). In the plan of the general study of rank we note that the group of 

linear transformations preserving the tensor's rank has been computed as well in [9]. 

8. Rank of a Pair of Bilinear Forms 

In this section we sun~narize the results due to the author on the estimates of ~A~) , 

where ~ is a field, following [9, 32, 33]. We take it below that all matrices have been de- 

fined over 

We define the relation ~ ~ between matrices if ~(~)~---~ , Further, we 

introduce the relative rank ~(A/~)=F~4~ ~ (A-~) , where the minimum ranges over 
C~B 

all ~B 

8.1 C91. 
Now, up to the end of the section, let ~ be algebraically closed. We derive an explicit 

formula for  w(A,B) in terms of the canonic form of the pair ~,B) relative to the 

transformations ( ~ { ~  where ~,~ are nonsingular, which is called the Weierstrass-- 

Kronecker canonic form of the matrix sheaf ~A +~ (for example, see [5]; from this same 

book we have borrowed the terminology needed in the next theorem). 

THEOREM 8.2 [8, 9, 32, 33]. In the sheaf +~B let the nonzero minimal indices 

, for the columns and ~...,~ for the rows. Further, let the regular 

elementary 

Then 

The theorem's proof relies on Theorem 8.1. 

tained independently in [38]. Further, W$~W 

A result close to Theorem 8.2 has been ob- 

in the formulations. 
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7); 

COROLLARY 8.3 [9]. For fl~Xl~ -matrices: 
i) 4~(A,~) almost everywhere equals ~#~W~}--~(~,~,~) 

From this corollary we see, in particular, that ~(A,~) 

ous function of A,~ 

(in the notation of Sec. 

is not an upper-semicontinu- 

9. Multiplicative Complexity of a Bilinear Form Over a Commutative Ring 

If in the case when K~ is the ground field the difficulties were due to the estima- 

tion of the rank R~(A,B) of a pair of matrices (see set.8), then over an arbitrary commu, 

tative ring ~ the difficulties are due now to the estimation of ~K(A} (by Theorem 7.1 

the latter quantity coincides with the multiplicative complexity of a bilinear form A over 

). Thus, let ~ be a conmlutative Noether ring with unity and A be an ~$x~ -matrix over 

. In this section we present the author's results on the bounds for ~KCA) (see [i0, 

34]). By ~ we denote the usual rank of matrix ~ , equal to the size of the largest 

nonzero minor in it. Obviously, ~~K(A) Let us explicitly describe those rings 

(we call them ~ -rings) for which the equality ~K(~)~-~ is fulfilled for any 

over K . The concepts from homological algebra used below can be found in [14]. By ~k(~) 

we denote the global homological dimension of ring 

THEOREM 9.1 [i0, 34]. Ring K is an 4-ring if and only if K-K~Q,..~K~ for some 

uniquely defined integer rings KI~...= K~ such that: 

1) 

2) every projective ~ -module is free ( ~ )  �9 

COROLLARY 9.2 [10]. ~[%,,~] is an ~-ring. 

How does ~KLAi behave for the polynomial ring ~=K~---- p[~1,...,z~] when ~ ? 

This question has been resolved practically completely 'in the case of matrices of the form 

A=z~AI+...+~A ~ . where ~ ~ )  is a matrix over field ~ (such matrices are called 

square-free and, up to the end of the present section, excepting the last paragraph in it, we 

retain for them the notation ~ with or without indices). We denote ~(~)%A~=_~(A) 

and ~ (~) = ~ ~ (~) 

THEOREM 9.3 [i0, 34]. 1) l~,(~§ 

3) 

4) 
An example of a matrix family 

is constructed as follows. 

~[Ai,} on which the sequence 

We consider the Koszul complex (see [14, 15]) of the ring ~- K~ 

relative to the element system {W~,...,Z~ : 

A ~ ~A (@ K'--'-O. 
It can be shown [i0] that 
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As the sequence ~A~} we can take the middle terms of the Koszul complexes, i.e., A&=A~,b - 

In concluding this section we mention that additivity is not fulfilled,^for ---~K(A) for 

K A| 
% 

all rings relative to the direct sum of matrices, defined as == ~ ~) (of. Stras- 

men's conjecture of the additivity of rank, mentioned in the next section). For example, let 

~-~-~] and A= 1 ~-~ ~+II Then ~K.(A)----~ but ~K(A" -. ,A)~p+ I where p 

is the number of summands in the direct sum mentioned. At the same time, the additivity of 

~ K(A) holds over a polynomial ring and for square-free matrices [i0]. The author permits 

h~mself to make two conjectures: a) the additivity of a rank is fulfilled over the polynomial 

ring for any matrices; b) for every regular ring K (i.e., ~ K ~  ~O ) we can find a num- 

ber 0 K such that ~(A)~cK~A for an arbitrary matrix A over 

10. Bounds on the Rank of Algebras 

Various complexity problems of linear algebra, for example, the multiplication of matrices 

or polynomials, lead to estimating the rank of certain algebras. The rank of an algebra 

over a field ~ (we denote it ~p(~) ) is defined as the rank of its structure tensor in 

some base of this algebra, and is independent of the choice of the base (see [54]). The rank 

~ (~) can be interpreted as the multiplicative complexity of the multiplication of two 

elements of algebra ~ , i.e., to find, from the expansion of the factors with respect to the 

base, the expansion of their products. Let ~%~ be the algebra of Wx ~ -matrices. Then 

~ (~) equals the multiplicative complexity of the multiplication of Wx ~ -matrices, 

i.e., C~(~i~}4~K,~ The next theorem is due to Alder and Streamer. 

i0.i [24]. --__~(~)~ff~P(~)-K , where K equals the number of maximal THEOREM 

ideals in ~ . 

The proof is broken up into the following two lemmas. 

LEMMA 10.2 [24]. ~(~)~(r ~ ~ is the radical of 

algebra ~ ). 

LEMMA i0.3 [24]. If ~ is a simple algebra, then ~O~)~Id~--~§ (we 

recall that an algebra is called simple if its only ideal is the zero ideal). 

Since ~ is a simple algebra, we obtain 

COROLLARY 10.4 [24]. ~ (~)~.~-4. 
We note that Theorem i0.i (as also the three assertions following it) has been proved 

in [24] actually in a stronger form, viz., for the multiplicative complexity ~fff~ of multi- 

plication in the algebra under the assumption of commutation of the input variables ~#~ 

=~S# of bilinear forms (see the beginning of Sec. 7). It is easily seen (see [64], for 

that C 7 , ~ = C , ~  for families of bilinear forms. instance) 

We mention two further useful inequalities for the rank of tensors: 

(5) 
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(6) 

Inequality (6) is applied in the follo~ing form for obtaining upper bounds for ]~ (~ )  
(see [52, 54], for example): if ~K(~),N. for some ~,~o , then ~K(~) 

0(~No) (inequality (6) is used here in the form ~ ( ~ ~ ( ~ ) ~ ( ~ .  , taking 

it that ~%'-~0~ ). Here it is appropriate to mention an estimate, asymptotically 

the best one known up to the moment of writing the present survey, for the complexity of ma- 

trix multiplication: 

THEOREM 10.5 [291. ~(~)---0C~,4|J8~"). 
The proof of this estimate relies on the following concept, interesting in its own right, 

of the bounda/-y rank ~(gj (see [29, 52], for example). To be precise, we define 

where K is some posi t ive integer; % ,  are some vector  over the r ing ; r 

is a tensor over ring R[~] Informally we say that the inequality W(~)~ p signifies 

that tensors of rank not exceeding ~exist"arbitrarily close"(in the Zariski topology sence) 

to tensor �9 . The main instrument in the use of ~ is the boundary analog of inequality 

(6) [52]: if ~(~%)~N, for some No , then ~(~)=~w~ ~) A number 

of examples of such kind of bounds for suitable weaN0 have been constructed in [29, 52]. 

Strassen [54] has conjectured that ~,(~O%)=~p(~)+ ~(%) (cf. inequality (5)). 

It is false for the boundary rank (see [52]). 

By AK==~ }&~K_ @ we denote a bilinear form expressing the coefficient (in terms of 

the coefficients of the cofactor) of the K -th power in the product of two ~ -th-degree 

polynomials, i.e.,  rcA0, ,A,,) is the multiplicative complexity of the multiplication 

of two polynomials. The results mentioned at the end of Sec. 5 can be reformulated in the 

language adopted in the present section as follows: 

THEOREM 10.6. i) [31] ~(~[~]/(~))= ~--K , where ~ is an infinite field, 

J~,~=~ and ~=~IP~...~W M~W ; moreover, ~--~[,] is irreducible over ~(~'~(K) and 

the {~} are pairwise relatively prime. 

2) [8, 9, 32, 33] ~p(&,...,AS~)(~(~) for a finite field ~ and for some function 

growing more slowly than any fixed iteration of the logarithm. 

3) [28] ~p(A~ for a field ~ of two elements. Obviously, ~F{~[Z~)) 

~ ~ ( ~..., A|~ )~(~]/(~) ,where ~ = ~  The estimate ~,~ ~A0,...,~)--~(~) 
for any field ~ followed from [22]. The upper bound in item i) follows from inequality (5) 

and the isomorphism ~[Z]/~)~ ~[~]/(~) ; the lower bound follows from Theorem 

i0.i. 

We now sketch the proof of item 3). We fix a certain 0 ~  Obviously, ~A0,..., 
By Theorem 7.1, ~=~ equals the smallest number ~,..., 

C~ of bilinear forms of rank i, whose linear hull, linear over ~ , contains the linear hull 

~'= ~(A~rI,..., A~_~+I ) of the bilinear forms being examined. On the other hand, for any 

bilinear form 0~A~ the inequality ~A~ is fulfilled; therefore, ~ can be treat- 

1410 



ed as a linear code in the linear hull ~(~,...,~) (with base ~ ~,...,Cpl ); moreover, 

the code distance of this code is not less than ~ (for the required concepts from coding 

theory see [19], for example). Therefore, to bound p from below we can apply the Varsham- 

ov-Gilbert bounds (see [19, Chap. 4]), which leads to the inequality p~(~,~)W for a suit- 

able choice of 

The strengthening of the bounds for items 2) and 3) of the theorem is apparently a subtle 

number-theoretic problem. 

ii. Linearized Multiplicative Complexity 

In the preceding sections of Chap. II we examined the rank of the elements of a tensor 

product of vector spaces (more precisely, of a product of three spaces, but, in principle, of 

a larger number; see the remark in Sec. 7). In the present section we consider the analog of 

rank for the elements of a syrmnetric product (more precisely, of a symmetric 4 -dimensional 

-th-degree vector space over a field ~ ; in other words, of the space of homogeneous forms 

forms of degree ~ in the polynomial ring ~Er ). Namely, for every form ~G~4, 

{N ; �9 ~3 of degree ~ the quantity ~ :~=~ . , where v~ is a linear form is 
~ N  

called its linearized multipliaative complexity C~) We set forth a method for obtaining 

nonlinear lower bounds on C~) ; the method yields nonlinear bounds when ~i~# Below 

we take it that the degree 4-~-~ is even; this assumption has been made for convenience 

of notation (without a great loss of generality on account of the nature of the bounds being 

proposed in this section). 

We shall examine auxiliary matrices ~ of dimension ~x n $ Their rows and columns 

are numbered by all possible vectors I=(~, .... ~) , where ~,...,~ ; in this nota- 

tion By ~ we denote the $ -th-degree monomial ~i...~ and by IIJ we 

denote the number KI!...K~[ , where K~ is the number of occurrences of the number ~ in 

vector I �9 

On the space of ~ x~ ~ -matrices we define a linear operator ~ (we call it the com- 

mutation operator), having set ~(~)=~ , where ~Q=( ~ ~ ^ K ~'3) J~l , i.e., 
, ~T. ~ ~=~=~'=L.=~ 

~G=~K and the summation is over all pairs of vectors ~,~ such that ~I~_____~K 

Every matrix ~ can be associated with a form ~AI,~3 ~3~I ~3 of degree ~ , where the 

summation is over all pairs of vectors I~ ~ Conversely, every form ~ can be associated 

with a matrix ~ such that ~A= ~ , but now nonuniquely; namely, we have 

LEMMA ii.i. The.equality ~A= ~ of forms is equivalent to ~(~)=~(B) �9 

w i t h  e v e r y  ( o r d e r e d )  f a m i l y  o f  l i n e a r  forms we can a , o c i a t e  an 
i 

mat ,x . . . .  up e omen  . 

where the form ~= ~ ~ $  and I=(~,...,~),~={~,...,$~) Obviously, the form ~A~,..,~& 

-~-~"'~9~$ is a product of linear forms. We clarify the action of the commutation operator 

on the matrix ~,...~. constructed. 

LEMMA 11.2. ~(A~t...,f,,~)-- ~.]~\A~.ll),...,~r(~,(~), " ' a ~ ~  where the summation is over all permuta- 

tions of 
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Consequently, ~( ~ ( A ~ . . , ~ ) ) ' ( ~ ) r  

Now l e t  and 

A~... , .~[ Then ~ = ~ . . . + ~  ~1.....~N 
i s  an inva r i an t  of form ~ . F ina l l y ,  by Lemma 11.2, 

! - ,  

and as a result we obtain 

THEOREM 11.3. For every form 

By ~ we denote the matrix 

By Lemma ii.i the matrix ~{~.-~..-+~)-----].(~) 

of degree ~., 

We present an example of the application of the theorem, demonstrating the presence of 

a large gap between the linearized multiplicative complexity and the total complexity ~ (see 

Sec. i). Let ~ ~-(~i~+... + ~ ) ~  be a ~-th-degree form in the ~ variables ~, .... ~, 

~,..., ~-~ For every vectors 1,3 we denote ocT_ ~i"'" ~4~, ~----- ~-7. ~4 In 

the matrix i,(~) we pick out a submatrix ]3 of dimension ~z~ . spanned by a row of form 

I and a column of form ~ (over all I,~ of the form indicated above). Now in matrix 

we pick out a submatrix C spanned by any such maximal collection of rows [I} for which 

all monomials ~I are pairwise distinct; we choose the columns with corresponding indices 

{T} * as for the rows. Then the square matrix ~ has (W~__~I) rows and it is diagonal with 

nonzero elements on the diagonal; ~ _-- (N~I -I) According to Theorem ii.3, 

On the other hand, ~(~),~W-~ It is clear that for ~ sufficiently small 

comparison with ~ (to be precise, here we can take ~$~.~G ) the quantity ~(~)~.(~/~5)@'" in 

is not bounded from above by, say, any polynomial of ~(~) , i.e., of ~ . 

For completeness we remark here that in [37] it has been shown that the multiplicative 

complexity ~(~) of a form ~ (here two cases can be examined: with commuting and noncom- 

muting input variables) of degree ~I can be bounded from above in terms of the following 

quantity (whose definition is close in spirit to the definitions of rank and of ~(~) 

examined in the present chapter): ~wv~[N:~ ~ , where ~,~ are forms and 
N 

~'n-" ~--~ ~[ A method was proposed in [37] for estimating this quantity from below 

(and, by the same token, the multiplicative complexity) in the case when it is not assumed 

that the input variables are commuting. As yet it is not clear how to obtain lower bounds for 

this quantity in the case of commuting variables. 

In concluding Chap. II we say a few words on the fact that the rank of a f~m~ly of bi- 

linear forms harbors in the meanwhile many mysteries. One of the most interesting unsolved 

problems is the obtaining of nonlinear (in the number of variables and the number of forms) 

lower bounds for the rank of some natural families of forms (here we can refer to practically 

everything we said at the beginning of Sec. 3 on the computational complexity of polynomials), 

�9 Translator's note: This might be a misprint; I feel it ought to be {J}. 
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for example, for problems, arousing great interest, of the multiplication of polynomials (over 

a finite field) or of the multiplication of matrices (see Sec. i0). The author cherishes the 

hope that for rank a breakthrough in obtaining nonlinear lower bounds occurs faster than in the 

other directions of algebraic complexity, which apparently requires a further algebraization 

of the concept of the rank of a family of bilinear forms. 

CHAPTER III. COMPLEXITY FOR STRAIGHT-LINE PROGRAMS OF NONSTANDARD TYPES 

In the last chapter the sections are less interrelated than in the preceding two chapters. 

What connects them is perhaps the fact that in them we examine SLP and complexity measures of 

nonstandard types, satisfying (excepting Sec. 12) some restrictions (different ones in differ- 

ent sections) in comparison with SLP of a sufficiently general form studied in Chapters I and 

II. The adoption of precisely these restrictions sometimes has practical grounds and is ex- 

plainable by the possibility of obtaining lower bounds which we have been unable to obtain as 

yet for SLP of general form. Frequently for nonstandard (restricted) computing models we have 

succeeded in revealing the connection of the complexity with objects classical for mathematics 

(it is precisely on this basis that the author chose the material for the present chapter). 

In addition, the restrictions sometimes permit us to trace the influence of individual factors 

on the total complexity (see Sec. i), which is useful for penetration into the secrets of com- 

plexity lower bounds. 

12. Irrational Computational Complexity of Algebraic Functions 

In this section we examine SLP of the following type (in the terminology of Sec. i): 

is a ground field of characteristic other than two; P~-~+,x,4~U~X~; ~=A~, 

~(X)----- ~(/)--~(;~)=0, ~ = ~  ; the set of input variables is empty (somewhat modify, 

ing the definition from Sec. i, we take it that constants from field ~ can stand as the 

arguments of the base operation in item 4 of the definition). Here the sign ~ denotes 

the unary operation of taking the square root; rational operations are freely allowed; there- 

fore, co~le~ measles of the kind indicated are naturally called irrational. 

If ~ ~ then the element ~ of the extension of field ~ is called a simple 

radical. Let {~..,~=~{~w.-.,~ ), where ~,...,#e, ~ ; the problem examined in the 

present section is the estimation of the irrational complexity ~,...,~) The extension 

of field ~{~,..., ~) is the Abelian Galois extension of degree ~G (for some G ) with 

the Galois group ~ - ~  (the direct product of ~ copies of the cyclic group ~ of order 

two). It is not difficult to see that G--~,...,~K~ The inequality G~ ~C~,,...,~ 

follows from the fact that the addition of one new simple radical increases the extension!s 

degree by no more than twice; on the other h~nd, each floor (of degree two) of the tower of 

~_~_ ~o=~=...=~G= ~,...,~K~ is obtained from the preceding one by the addition of field 

one new radical, whence follows the opposite inequality. 

We present an example, coming from antiquity. Let ~ ~-~,~ , and then ~(~,..., 

~K) equals precisely the necessary number of applications of a compass for the construc- 

tion of ~,...~ with the aid of compass and straightedge. 
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The difficulty is that often in the interesting examples it is not clear how to estimate 

a priori from below the degree of the field extension. Therefore, a method for estimating 

~ was proposed in [53] for the case when ~= ~ (~,...,~m) where ~ ~ , and it 

was shown that ~ )  ~ N  where ~ is the number of sheets of the Riemann surface 

of the analytic function ~ . The complete rigorous proof of this result requires a cumbersome 

technique (not carried out to the end in [53]), and we restrict ourselves here to the more 

elementary method, convenient for applications, suggested in [45]. 

Let ~=~$~,..~} be the set of simple radicals; we denote ~i-----~ ~ for ~~ 

~{~,...,K} (~=~) We say that set �9 is radical-independent if ~ ~ for every I=~@ . 

By ~(~ we denote the radical dimension of set ~ , i.e., the largest number of radical- 

independent elements among ~,...,$~ It is not difficult to show ([45]) that in any maxi- 

mal-by-inclusion radical-independent subset of r there are ~(~) elements, i.e., the radical 

dimension possesses the same general (matroid) properties as does the usual dimension of a 

vector space: degree of transcendence of the field extension, etc. In connection with this, 

~ is convenient for computation. 

If ~ is a radical-independent set, then the elements ~I~l~, .... ~} constitute the 

base of the extension of ~=~(%) , whose degree, by the same token, equals ~ [45]. Let 

---- ~I,...,~K~= ~(~) , then the support ~, ~) 

for some ~ K  in the (unique) decomposition 

coefficient C~, I of ~ is nonzero. 

LEMMA 12.1 [45]. If 

LEMMA 12.2 [45]. If 

As a corollary we obtain 

of family ~ is the set of ~ such that 

~i,...~ C~,~ ~ where ~ , the 

is a radical-independent set and ~c~(~) , then ~(~)= 

is some set of simple radicals, then ~ ) =  ~(~)= ~[~(~): 

G ~(~)' , then ~(~) THEOREM 12.3 [45]. Let �9 be a radical-independent set and 

Since in applications often ~c~(~) , where 6 is some given set of simple radicals, 

the theorem yields the following path to the computation of ~(~) , which sometimes proves 

effective. From ~ it is necessary to pick out an arbitrary maximal-by-inclusion radical- 

independent set ~c~ ; further, having decomposed ~ with respect to the base from 

~} , it is necessary to find ~(~,~) , which is some set of simple radicals, and finally, 

to pick out in it a maximal-by-inclusion radical-independent subset; its cardinality also 

equals ~ (~) 

We give one concrete application of the theorem [45]. Let ~----- ~(I~,~I~,N) , 

then 

In the case given the set of simple radicals ~==~ = (~- (%~-~ ~ N  is radical- 

independent; this follows from the fact that the functions [(~-~,(~-~)Z}4~N are pair- 

wise relatively prime. As a result ~=S(~,~) and ~$)----(~) 
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13. Monotone Programs 

Monotone computations are a rather narrow but sufficiently natural class of SLP for which 

we have managed to obtain complexity lower bounds and even to compute then explicitly for cer- 

tain cases. This was done for various problems in a large series of papers. Here we present 

Schnorr's theorem [49] which generalizes the arguments contained in many of these papers. 

Thus, a monotone SLP is the name given to a SLP (using the notation from Sec. i) in which 

the role of the ground ring ~ is played by a certain semiring ~c~\[0} for some field 

(the semiring forms a monoid with respect to addition and a monoid with respect to multi- 

plication); . [ )= {+ ,x }U[§  ; ~-----~+ (see Sec. 2), i.e., ~)----- ~=~,~X)=~0~ 

[~1,..v~} is some set of input variables; the corresponding (monotone) complexity measure is de- 

noted CH~)~ For example, if ~-----~ , then as ~ we can take all positive numbers. 

For every polynomial ~ , by Mo~(~) we denote the set of monomials occurring in ~ with 

nonzero coefficients. A subset of monomials BC~(~) is called separating if for every 

~,~'B and %,~(~) , if there is fulfilled ~ (the vertical bar signifies the 

divisibility relation), then either ~=6 or ~-~ Schnorr showed that C~(~)~)~J 

-~ (here and below we assume ~(~)~=~ if it has not been defined). Furthermore, for 

the purposes of [49] the following strengthening of this result was proved. Let ~ be some 

mapping from the set of variables to the set of monomials; then for every monomial ~ we de- 

note by q~ the result of replacing in ~ every variable ~ by the monomial ~(~) 

THEOREM 13.1 [49]. For every polynomial ~ ~(~) ~I~-~ for any separating set B 

of polynomial ~ 
As applications it was shown in [49] that Cltf '~ ~ O ~ O ~ 6 ` ' ~ ) - - - ( " + ~ - , . t , =  - - -  is ful- 

l s - -  

filled for the computation of the product of W -th degree polynomials and C~[t4~L' 6- ~K~" 

~} ) == ~'- ~ for the multiplication of ~xn -matrices (compare with Sec. i0). 

Further, we consider the polynomial 

of degree C~) in the (~) variables [X~,~}4,~ W From Theorem 13.1 it follows 

that C~(~L~K)~ )- I On the other hand, the question on the presence of a polynomial 

upper bound for the total complexity %(~K) (see Sec.l) is closely connected with the 

~ problem, since the polynomial ~K corresponds to the NP -universal problem 

on the existence of a K -clique in an ~ -vertex graph (for example, see [I, Chap. i0]). 

In spite of the fact that many different lower bounds were obtained for ~ , the 

question of how large can the gap be between ~(~) and ~(~) for a polynomial @ re- 

mained open for some time. In [62] it was shown that this gap can be exponential. To be pre- 

cise, we construct a family of plane graphs I~} by induction on W : 
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A , . . . ,  , . . . ,  

i.e., ~ forms a regular triangle with side ~ , decomposed into a parquet of regular tri- 

angles with side i. 

Every set of edges of graph ~m , not having pairwise-common vertices and covering in 

aggregate all vertices (in particular, the number (~+~)(W+~)/~ of vertices must be even), 

is called a perfect matching of the graph. To each edge of graph ~ we assume its own 

variable, and for each set ~ of edges we denote by ~ the monomial equal to the product of 

the variables assigned to the edges of I. We define the polynomial ~ as the sum ~ 

over all perfect matchings I of graph ~ . 

THEOREM 13.2 [62]. For some constant ~ , ~mo~(~) ~ ~ is fulfilled for all ~ . 

On the other hand, according to one result of Kasteleyn (see [62], for example) we can 

effectively construct (the construction suits every plane graph) for every ~ a skew-symme- 

tric matrix ~ such that ~=~G~(~)=~-~ , which proves that %(~) can be 

bounded from above by a polynomial of ~ (see [i, Chap. 6]). In combination with Valiant's 

Theorem 13.2 this answers the question posed above on the gap between total and monotone com- 

plexities. 

For completeness we remark that in the Boolean case, i.e., when field ~ consists of 

two elements, monotone computations have been very intensively studied (for example, see [7] 

and the literature cited therein). 

14. Lower Bounds for Time--Space Tradeoff 

In this section we deviate somewhat from the concept of SLP adopted in Sec. i, in order 

to introduce the concept of a SLP with storage ~ (see [6, Sec. 2]). Let ~ be the ground 

field, ~-----~+,X,/IU[X~}~ } {3~}44~, ~ be a collection of input variables. Every instruc- 

tion of a SLP ~ with storage ~ (where ~ is some positive integer) has the form 

Z~o= ~(z~ .... , z ~ ,  |  

where ~G~, ~o,~,...,~ (it is important to note that the indices ~,...,~ can be 

greater than 6o , in contrast to the SLP defined in Sec. i). 

Let a SLP ~ with storage ~ (further in this section we shall sometimes omit these lat~ 

ter words) consist of ~ instructions and let the instruction written out be the ~o -th in 

order in the program for some ~e~T For each ~ r  and ~ 6 ~  it is natural 

to determine, by induction on ~ , a rational function ~:~'C~ ~) called the 

value of the working variable ~ at instant ~ The induction base Z~ ~-- 0 for any 

~6~ ~ If Z~ ~) has already been determined for all ~0 , then in the case 

being examined ~Z ~B~ ~(Z~?.. Z ~*-~) ~0)= Z~.-O for all 6~ k ~o , , and 

we say that the functions ~, . . . ,@~6T(|  are computed by the given ~ i f  for every 

~ K  we can find 4 ~ 6 ~  and ~ T  such that Z~ )--- ~ It is natural to in- 

terpret the number ~ as space and ~ as time. 
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Let ~ be a field of two elements, ~--t+jX}U {+I} In this case, a method was sug- 

gested in Sec. 2 of [6] for establishing a lower bound on the product -~ for the SLP comput- 

ing the family of polynomials ~I,...,~K~[~1,..., ~] satisfying some condition of ~ .-inde- 

pendence (I~K) Let us state the following two variants i) and 2) of it (as a matter 

of fact, the first is a corollary of the second). For ~[~...,~] we denote by ~. the 

partioning of the iS-dimensional cube ~ into two sets: 

We say that the family ~"I,"'~"~'KI possesses the property of ~ -independence if for every 

{~V~ and for every ~}4<...<~Ir and ~1~...<~r one of the following two 

conditions is fulfilled (see the remark above): 

;~(o) Otto) i) a collection of values of the variables X~I----- ;~, ,..., %~---~ ~r can be found such 

that for these fixed values the function vector (~,...,9~_~) takes more than ~-~-i val.- 

ups (as the remaining variables vary); 

where H is the conditional entropy in uniform measure on the cube ~ , and the symbol V 

is the atomization of partitionings (see [3]). 

THEOREM 14.1 [6, Sec. 2]. Let the family {~I,'.',~K} satisfy the ~-independence con- 

dition. Then for every SLP with storage ~ computing this family ~}K~/~ is fulfilled. 

In many of the results in the present section we encounter a lower bound on the product 

~ which can be looked upon as a certain analog of the uncertainty principle, called a time-- 

space tradeoff for the storage (space) and time. 

As an application of the theorem we get (see [16]) that ~ ~/~ for the problem 

of multiplying iS -th-degree polynomials (cf. Theorem 10.6) and ~ / 8  for the matrix 

multiplication problem (cf. Corollary 10.4 and Theorem 10.5). 

In a number of subsequent papers the method of proof of Theorem 14.1 was generalized to 

arbitrary fields ~ . To state the generalization we restrict ourselves to the case of SLP 

with space ~ computing a family of linear forms, i.e., ~-----~+}~tX~}~ and we denote the 

function ~-=A~ corresponding to the complexity measure (time or number of instructions) by 

~ (the subscript is the abbreviation of the word "additive"). The problem consists of 

estimating , where ~}~-4~ ~#~~ is a linear form (~}(W) We denote 

the ~x W -matrix of coefficients of these forms by A=(~r 

THEOREM 14.2 [58]. Let all minors (see [5]) of matrix ~ be nonzero. Then for every 

SLP with space .~, computing the family {Ai,'", A~ , there is fulfilled ~ ~ $  

The idea of the proof goes back to [6, 47, 48, 59] and relies on the concept of a super- 

concentrator (see [44, 59], for example), which is a certain strengthening of the concept of 

a concentrator introduced independently in [16, 43]. Superconcentrators played a significant 

role in the establishment of lower complexity bounds; therefore, we consider them here in 

somewhat greater detail. 
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Let G be a directed graph without directed loops (graphs of this type are precisely 

those which have a partial ordering at vertices, and we shall call them ordered graphs). Verti- 

ces of graph ~ into which arcs do not enter are called input vertices W4~... ~ W~ ; vertices 

of graph ~ from which arcs do not leave are called output vertices ~..,~ Let ~=~ . 

We say that ~ is an ~-superconcentrator if for every ~'K~ and for every two K ~elem- 

ent sets l,~={~,...,~ , in graph ~ we can trace K directed paths pairwise nonintersect- 

ing at vertices, where the starts of the paths lie in I and the ends in ~ The motivation 

for this definition will be clear from what follows. 

Here and in the next section an extended construction which associates with every SLP 

(of the usual type, as defined in See. i) some ordered graph ~ will be useful (for example, 

see [6, 58, 59]). Graph ~ has ~ input vertices, one for each input variable ~4,"', ~ �9 

Further, to each instruction ~=~(Z~,...,~I , .... ~) (see Sec. i) there corresponds a 

vertex into which enter arcs from vertices corresponding to the working variables ~,...;~ 

and to the input variables ~, .... ~f (thus, ~ is the number of noninput vertices of graph 

~). Having made trivial transformations, we can take it that the input vertices of graph 

~ correspond precisely to functions computable by the SLP ~ Below in the present section, 

by SLP we shall understand as well SLP with space, which can be looked upon as a special case 

of the usual SLP (forgetting about the restriction on the space). 

LEMMA 14.3 [59]. If a SLP ~ computes a family of linear forms with an ~ ~ coeffi- 

cient matrix ~ all of whose minors are nonzero, then ~ is an ~-superconcentrator. 

We remark, as was shown in [16, 43, 44, 59], that there exists a family of ~ -supercon- 

centrators with a number, linear in ~ , of edges (an upper bound of ~ on the number of 

edges is given in [44]); therefore, by itself Lemma 14.3 does not lead directly to nonlinear 

lower bounds on the complexity. 

LEMMA 14.4 [58]. If ~ is a SLP with space ~ and ~ is an ~ -superconcentrator, 

then ~T~ ~ 

Theorem 14.2 now follows easily from these two lemmas. 

As an application of the theorem (besides it, still other additional arguments are brought 

in to prove the results listed below) we cite the following examples: 

COROLLARY 14.5. i) [58] for the problem of multiplication on ~ -th-degree polynomials 

(over any field), ~ ; 

2) [47, 58] for the computation of the discrete Fourier transform, i.e., of a family of 

linear forms with an ~x ~ coefficient matrix (~(~K))I~,~ ~ , there is fulfilled 

~ ~ (to eliminate possible ambiguities we remark that here ~--~) ; 

3) [58, 39] for the multiplication of ~ -matrices, ~ ~ , and for the inversion 

of ~ -matrices, ~ ~ ; 

4) [48] for the multiplication of integers not exceeding ~ (i.e., for finding the bin- 

ary digits of the product of ~-digit numbers) there is fulfilled ~ T ~  

15. Graph-Theoretic Methods in Algebraic Complexity 

The applications of graph theory in algebraic complexity are based on the construction 

of the ordered graph ~ described in the preceding section. One such application (to the 
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establishment of the "uncertainty principle") was considered above (see Sec. 14). In the pres~ 

ent section we set forth fewer applications of graph theory than in Sec. 14, but, in the auth- 

or's opinion, the methods and the problem statements themselves are of interest. 

We shall not begin (as we usually did above) by fixing the class of SLP ~ (i.e., the 

parameters from the definition in Sec. i), since the main object of consideration will be the 

graph ~ We shall merely assume that the complexity measure C~ is defined in terms 

of a function ~ equal to unity (compare with total complexity; see Sec. i) for each base 

operation from ~ (i.e., C~) equals the number of noninput vertices of graph ~ ). The 

number of input variables of the SLP is denoted by ~ . We note here one important difference 

in the construction of the graph ~----~# from that presented in Sec. 14. Namely (this is 

based on the constraint (7) stated below on the class of SLP to be examined), we shall reckon 

that graph ~ can have more than ~ input vertices and that one input variable can corres- 

pond to several input vertices (this assumption only widens the class of admissible SLP). 

In the first application with which we deal the graph ~-----~ will satisfy the follow- 

ing constraint (see [6, Sec. I]). By ~ we denote the subgraph of graph ~ containing the 

vertices located in it above vertex ~ (and containing all arcs from ~ , both ends of which 

lie in these vertices), i.e., vertices from which there are directed paths to ~ (in the lan- 

guage of orderings ~ contains vertices less than or equal to ~ ). The constraint is that 

~ is a tree for every vertex ~. (~) 

We say that the family of functions t~"'~'~} (according to what we said above, the 

nature of the functions is not essential) is (~,~) -separable if for every SLP ~, satisfy- 

ing constraint (7) and computing the family {~,...,~ , when deleting any ~ vertices 

from graph ~ we can find ~ different pairs of vertices such that one member of each pair 

is some input vertex of graph ~ and the other is an output vertax, and between the verti- 

ces -- members of every pair -- we can draw in ~ a path (according to (7) such a path is 

unique) not passing through the deleted vertices (informally speaking, even if ~ arbitrary 

functions are used "free of charge," then for many indices ~(~) it is required to 

address many inputs for computing the output ~ ). The concept formulated was already essen- 

tially contained in Sec. 1 of [6] and is very close to the concept Of the ( ~ ) ) - ~  

proposed independently in [60]. 

The separability condition (just as the concept of ~ )  has been described in the lan- 

guage, constructed with respect to computable functions, of a sufficiently wide class of SLP, 

which, undoubtedly, complicates the verification of its fulfillment. In [60] there was cited 

a certain more intrinsic property of the family of linear forms t~1,"', ~ , under 

whose fulfillment this family is a ~ (and satisfies as well the separability condition) 

for suitable values of parameters. To be precise, by ~ we denote the coefficient matrix of 

family {~i,...,~ , and for every matrix ~ , such that ~ ~ , let there be no fewer 

than ~ nonzero elements in matrix (~* ~) Then the family ~1,...j~ is (~) ~sep~ 

arable. Two open questions were posed in [60], whose essence reduces to the following (togeth~ 

er they can be looked upon as some scheme along the way to obtaining lower bounds): 
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i) to construct (explicitly- compare with the beginning of Sec. 3) an example of a fam- 

ily of functions I~I' .... ~,~I satisfying the C~,~) -separability condition for "nontrivial" 

values of ~ and ~ (for example, ~XN$~Xm~ ) ; 

2) to show that the complexity r is nonlinear in W~.~I~ } for certain ~ and 

(we take it that ~ computes a family of functions satisfying the (~,~) -separability condi- 

tion). 

The following theorem, due to the author, serves as a partial answer to Valiant's ques- 

tion 2); the method for proving this theorem is contained in Sec. i of [6] (it was proved 

there for the case ~ ~ ,~XW$~ and was stated in a less general form). 

THEOREM 15.1. If the family I~I""'~,~I is ~,~) -separable, then for every SLP ~ com- 

puting this family and whose graph ~ satisfies constraint (7), there is fulfilled ~#) m.. 

where ~ is the unique positive solution of the equation 

(4+ .- rJ 

We r e m a r k  t h a t  f o r  and t h e r e  i s  f u l f i l l e d  The 

method for proving the theorem was used as well in [7] to obtain lower bounds (now without con- 

straints of type (7)) for the monotone complexity of a family of disjunctives (cfl Sec. 13). 

In Sec. 1 of [6] we proposed applying the theorem to estimating the additive complexity 

of computing a family of linear forms over ~ (as before, under assumption (7)), where 

]~ '=' t ' t ' lUtX~l l~i t  ; ~ll--~l;  is the total complexity (see Sec. i). Let the family of vectors 

~1,...,a,$G~ ~ be such that 

where ~)n~ denotes the convex hull, ~, is the metric corresponding to the norm ~(~I, ""' 

~)=~ i~ i,..~ (in Sec. 1 of [6] such a family of vectors was called an (~,G) -system). On 

the basis of Radon's theorem (see [12]) it was shown in Sec. i of [6] that the family ~I~"'~ 

�9 ,+ (having the stated property) satisfies an (,$/$ , ~/~ )-separability condition in the 

situation being examined. Hence, by Theorem 15.1 we get that ~Ii(~1,...,a,~)~ ~ , where 

is taken from the theorem for the parameters @=~/~ ,~----~/~ It would be interesting 

to try a condition analogous to the one stated, to be used in situations where there are no 

theorems of the type of Helly's theorem ([12]) and there is not even a direct analog of con- 

vexity (in the case being considered Radon's theorem was actually used to answer Valiant's 

question i posed above). 

A SLP over ~ (or ~ ) with the same ~ as in the preceding paragraph (here and below 

we can forget about condition (7)) was examined in [40] where it was noted that in case ~=~ 

r  . The bound from the preceding paragraph is the complexity 

weaker, in the interesting cases, than Morgenstern's bound, but possibly the realization made 

of the path suggested in Valiant's questions I) and 2) is of independent interest (recall 

Theorem 15.1). 

In [61] Valiant ga'e another partial answer to the question 2) posed above. The largest 

length-of a directed path in an ordered graph ~ is called the depth ~(~) of graph 
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THEOREM 15.2 [61]. For some ~ 0 let some (O,~) -separable family, where ~ ~I+$ , 

be computed by a SLP ~ for which the depth ~(~)'--0(~) Then 

16. Additive Complexity in Triangular and Directed Computations and Bruhat Decomposition 

In this last section we introduce two classes of SLP (triangular and directed), computing 

families of linear forms (see [35]). For triangular SLP a method for establishing nonlinear 

complexity lower bounds is proposed below. For directed computations, besides lower bounds, 

we propose, furthermore, an explicit formula for the complexity on the basis of the technique 

developed by the author in the theory of Chevalley groups (the information needed here is pre- 

sented in such a way that no preliminary information on Chevalley groups is assumed). 

Thus, we examine the following somewhat modified SLP. In the notation of Sac. i, ~ is 

the ground field, ~,...,X~ are the input variables, ~-~-'~+~}~G~ U[X~Gp 

In matrix terminology, elementary operations correspond naturally to these instructions. There 

are also N variables ~f'""~N (which can be treated as storage) from which we can pick 

out ~ variables Z~I, .... Z~ (I~i~...~ ~ ~ N ) , which are called basic (the rest are 

called auxiliary). The SLP @ itself is a sequence of rows, and for every ~ T  and 

~$~N there is naturally determined by induction on ~ (analogously to Sac. 14) a linear 

form Z~ ~ in the variables ~t,"" ~ with coefficients from ~ At the initial instant 

_~--~ (~") for the basic variables and Z~0 (5~;...,@w) for the 

auxiliary ones. By definition we take it that ~ computes the family of ~ linear forms 

~ ~(~) This restriction, i.e., reckoning at the end of the computation of Z ..., -~ 

the outputs at the place where there were inputs at the initial instant, which is not essen- 

tial for SLP of general form, is very important in our case. 

At first we turn to triangular computations. By definition, every instruction of a tri ~ 

angular SLP ~ has the form ~----~+ ~Z~ , where ~-~ or Z}=~ (~e~) These 

instructions (in matrix language) correspond to upper-triangular elementary transformations. 

We set the function ~=AA (see Sac. i) equal to one on instructions of the first type and 

to zero on instructions of the second type. The complexity measure CK resulting here (see 

Sac. i) is called triangular. If A is an ~x~ -matrix of the coefficients of the family 

of linear forms ~I'"" a~ , then we denote ~A(~)=%(~,...,~) We remark that in justifica- 

tion of its name the triangular complexity OA(A) has been defined only for upper-triangular 

matrices A (i.e., matrices with zeros below the diagonal). 

THEOREM 16.1 [35]. Let an upper-triangular matrix A be represented in the form A = 

(~I ~I , where At, A ~ are upper-triangular. Then 

As an application of the theorem we consider a family of upper-triangular matrices 

A , }  , where A,=  o , . . . ;  here E is  the uni t  matr ix  ( i . e .  has the d i -  

mension ~'~ ). Then we have 
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COROLLARY 16.2 [35]. OA(A$)= ~.~-( 

In other words, the growth of the triangular complexity CA(A~ ) is nonlinear in the 

dimension of the matrices. 

The second class of SLP which we consider here is that of directed SLP. Every instruc- 

tion of a directed SLP ~ has the form 

We s e t  t h e  f u n c t i o n  ~ - - h ~  e q u a l  to  u n i t y  on i n s t r u c t i o n s  o f  t h e  f i r s t  t y p e  and to  z e r o  on 

i n s t r u c t i o n s  o f  the  second  t y p e .  The c o m p l e x i t y  measure  G~ r e s u l t i n g  h e r e  ( s e e  Sec .  1) i s  

called directed. In contrast to triangular complexity, the directed complexity ~(A) (we 

use the notation introduced above) is defined for any quadratic (~x ~) matrix ~ . 

For ~g(~) it is not difficult to obtain nonlinear (in ~ ) lower bounds, but we have 

succeeded in doing considerably more: to obtain an explicit formula for G~(A) To state 

this result we need certain preliminary information, which we now present. 

Let ~ be a symmetric group (i.e., the group of all permutations of an ~-element set) 

which we shall simultaneously treat as a subgroup of the group ~ of nonsingular matrices 

(all matrices encountered here and later are of dimension ~x~ ). By ~ we denote the man- 

ifold of upper-triangular matrices and by ~=~n~ the subgroup of all nonsingular upper- 

triangular matrices. A Bruhat decomposition (see Sec. 3 of [20]) consists in that for every 

matrix ~@~ there exists and is unique a permutation WAG ~ such that ~e~W A 

On group ~ there is defined (see Sec. 1 of Chap. 4 in [4]) a length function ~(W) , where 

W ~  , as the smallest ~ such that W~4...~ , where ~--(~ ~,~) is the trans- 

position of two adjacent indices ( ~ )  Every decomposition of W into a product of 

transpositions of form ~ with the smallest number of factors equal to ~'={(~9 is 

called reduced. It is easy to see that ~(W) coincides with the number of inversions in W , 

i.e., the number of pairs % < ~ for which W(~>W(}) We denote , we 

define the function ~ on ~ (on nonsingular matrices). 

On group ~W we introduce (see Sec. 8 of [20]) the relation ~ of partial ordering: 

W~W$ (Wf,Wle~) if W I equals some subproduct (with preservation of order of factors) of 

some reduced decomposition of element W$ It can he shown (see Sec. 8 of [20]) that the de- 

termination of the order is independent of the choice of the reduced decomposition of W~ . The 

worth in the following theorem (see Sec. 8 of [20]): ~W~W~Wd~ order shows its 

where the bar signifies closure in the Zariski topology (here it is assumed that field ~ is 

infinite). As follows from the Bruhat decomposition, under the union sign there stand pair- 

wise-nonintersecting sets. 

It is easy to see that ~(A)~(A) for nonsingular matrices A In order to estab- 

lish the reverse inequality, the author had to extend the function { from ~h~ to ~ ( ~ 

denotes the manifold of all ~, ~ -matrices), to prove an analog of the Bruhat decompositioh 

(see Theorem 16.3 below) and an analog of the Chevalley theorem (see Corollary 16.4 below) 

for ~ , then to establish a certain monotonicity property of the resultant function 

(see Lemma 16.5 below), and, finally, to prove the equality now for all A'~W. 
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THEOREM 16.3 [ii, 35]. 

WAe ~ such that: 

1) Ac,Fw^ ,9" 
2) if .A~,.~"W,~ 
Permutation W A 

For every A e ~  there exists and is unique a permutation 

for some WG~ , then WA'~W 

is constructed in time 0{B s) from "~ Now, on the theorem's basis 

we can extend function ~ to ~ , having set ~(A)=~(w A) 

COROLLARY 16.4 [ll, 35]. i) ~W~ ~- U ~Wf ~ 
w~,,J w 

2) function ~ is upper-semicontinuous on ~ 

In contrast to the nonsingular case, the sets occurring in the union in item i) of the 

corollary may intersect. 

We say that the 15 x ~ -matrix ~ is a principal submatrix of the F~x W$ -matrix 

(~$~) , if A is a submatrix of matrix ~ and its diagonal lies on the diagonal of matrix 

; in other words, submatrix ~ is picked out from matrix ~ with the aid of rows and col- 

umns having one and the same indices. 

LEMMA 16.5 [ii, 35]. If ~ is a principal submatrix of matrix ~, then ~(A)~(~) 

Finally, having proved a number of assertions for function ~ (see [ii, 35]) and relying 

on 16.3, 16.4, 16.5, we obtain as a result the promised explicit formula for ~(A) 

THEOREM 16.6 [35]. 

We remark that Theorems 16.3 and 16.6 and Lemma 16.5 are true also over a finite ground 

field 

In conclusion, we mention that Theorem 16.3 and Corollary 16.4, and partially also Lemma 

16.5, generalize (in invariant form) to arbitrary classical Chevalley groups ([ii]). 
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