
HAL Id: hal-03051751
https://hal.science/hal-03051751

Submitted on 10 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Caching Policies for Delay Minimization in Small Cell
Networks with Joint Transmissions

Guilherme Iecker Ricardo, Giovanni Neglia, Thrasyvoulos Spyropoulos

To cite this version:
Guilherme Iecker Ricardo, Giovanni Neglia, Thrasyvoulos Spyropoulos. Caching Policies for Delay
Minimization in Small Cell Networks with Joint Transmissions. ICC 2020 - IEEE International Confer-
ence on Communications (ICC), Jun 2020, Dublin, Ireland. pp.1-6, �10.1109/ICC40277.2020.9149237�.
�hal-03051751�

https://hal.science/hal-03051751
https://hal.archives-ouvertes.fr

Caching Policies for Delay Minimization in
Small Cell Networks with Joint Transmissions

Guilherme Ricardo1,2, Giovanni Neglia1, and Thrasyvoulos Spyropoulos2

1Inria Université Côte d’Azur, Sophia Antipolis, France
2EURECOM, Communication Systems Department, Sophia Antipolis, France

Emails: {guilherme.ricardo, thrasyvoulos.spyropoulos}@eurecom.fr, giovanni.neglia@inria.fr

Abstract—In 5G and beyond network architectures, operators
and content providers base their content distribution strategies
on Heterogeneous Networks, where macro and small(er) cells
are combined to offer better Quality of Service (QoS) to wireless
users. On top of such networks, edge caching and Coordinated
Multi-Point (CoMP) transmissions are used to further improve
performance. The problem of optimally utilizing the cache space
in dense and heterogeneous cell networks has been extensively
studied under the name of “FemtoCaching.” However, related
literature usually assumes relatively simple physical layer (PHY)
setups and known or stationary content popularity. In this
paper, we address these issues by proposing a class of fully
distributed and dynamic caching algorithms that take advantage
of CoMP capabilities towards minimizing PHY-aware metrics,
such as end-to-end (E2E) delay. Our policies outperform existing
dynamic solutions that are PHY-unaware, under both synthetic
and real (non-stationary) request processes, and converge to
efficient centralized solutions, in static setups.

Index Terms—Edge caching, joint transmission, CoMP, het-
erogeneous cellular networks, distributed algorithms.

I. INTRODUCTION

With the ever-growing popularization of social media and
on-demand video streaming, cellular data consumption has
experienced an unprecedented increase. According to latest
CISCO’s forecast [1], by 2022 mobile data traffic will increase
nearly three times compared to 2017. Network densification
is considered a key strategy to cope with the traffic deluge in
future networks [2]. The standard 3G/4G macro-cell topology
will be enriched by a large number of overlapping and often
heterogeneous small(er) cells (e.g., femto, pico), in order to
improve both coverage and capacity.

On top of such a densified network, two additional tech-
niques have been considered to provide high QoS: (i) caching
popular files directly at the base stations, henceforth referred
to as “helpers,” in order to reduce access latency and backhaul
congestion; and (ii) coordinated transmissions or CoMP [3],
i.e., jointly transmitting the same file from nearby helpers, in
order to improve PHY performance.

Caching at the edge to relieve (expensive) bandwidth re-
sources has recently attracted a large amount of research work.

This work has been supported by the French government, through the EUR
DS4H Investments in the Future project managed by the National Research
Agency (ANR) with the reference number ANR-17-EURE-0004 as well as the
“5C-for-5G” JCJC project with the reference number ANR-17-CE25-0001.

In the popular “FemtoCaching” model [4], helpers with par-
tially overlapping coverage can be seen as a distributed cache.
In such a dense setting, requests posed by a user equipment
(UE) can be satisfied by any helper in its communication
range. The idea is to find the file allocation, i.e., which
file to cache at each helper, that can optimize the hit rate,
assuming known and stationary file popularities. The authors
in [4] prove that this problem is NP-Hard. However, as the
objective is submodular, there exist polynomial algorithms
with approximation guarantees.

A number of follow-up works studying variations of the
basic problem have appeared in the last few years, e.g. [5],
[6], [7]. However, the majority of these works suffer from three
key shortcomings: (i) they focus only on cache hit rate as the
performance metric and do not explicitly consider CoMP capa-
bilities; (ii) the proposed algorithms are centralized, requiring
a central entity aware of the entire topology to take global
decisions about the allocation; and (iii) popularities of all files
are assumed to be known and static.

There are a few exceptions in the literature, [8], [9], [10],
that address some of these issues. Targeting shortcoming (i),
the femto-caching optimization framework has been studied by
[8], [9], assuming CoMP capabilities. The former revisits ran-
domized caching policies for CoMP and considers clusters in a
multi-user MIMO setting. The latter proves that submodularity
is preserved when the objective is E2E delay minimization and
thus the problem can be efficiently approximated. However,
these algorithms still assume centralized and static policies.
On the other hand, the authors of [10] tackle points (ii) and
(iii) above, proposing dynamic and decentralized algorithms
without a priori knowledge of file popularities or caching
network topology. However, they consider the standard femto-
caching problem and do not exploit CoMP.

This paper proposes efficient algorithms that simultaneously
address all these concerns. Our main contributions are sum-
marized as follows:

• We propose novel distributed CoMP-aware caching poli-
cies that are executed independently by each helper,
without knowledge of global network topology or file
popularities.

• We show that these algorithms have desirable conver-
gence properties to locally optimal allocations.

• Using a real topology and real traffic trace, we show
that our policies reduce file retrieval time up to 23% in
comparison to existing dynamic schemes.

II. NETWORK MODEL

Consider H helpers arbitrarily located in a given region R.
Each helper has a cache that can store C files from a catalog of
F files. Similarly to [9], [10], in order to ease our exposition,
we assume that all files have the same size equal to M bits.
This is a reasonable assumption given that large files are often
split into smaller chunks of equal size. It is possible to adapt
our algorithms and our analysis to the heterogeneous file size
case.

Let X(h)
f ∈ {0, 1} indicate whether helper h caches a

copy of file f (X(h)
f = 1) or not (X(h)

f = 0). Then the
H × 1 vector Xf = (X

(1)
f , . . . X

(H)
f) ∈ {0, 1}H specifies

the distribution of file f across all caches, and the H × F
matrix X = (X1,X2, . . .XF) the allocation of all files in the
network. Let e(h) be the H × 1 vector with a 1 in position h
and all other components equal to 0. We write Xf ⊕ e(h) to
indicate a new placement where a copy of file f is added to
helper h, if not already present. Similarly, Xf	e(h) indicates a
new allocation where file f is removed from helper h’s cache,
if present.

There are U UEs spread over R, who can request files from
the catalog.1 We assume that the aggregate request process fol-
lows the IRM model: each request is for file f with probability
pf independently from the past, where p1 ≥ p2 ≥ · · · ≥ pF .
Moreover, each UE is equally likely to have generated the
request. We will also consider non-stationary traffic demand
later in Section V.

Because of the high density of helpers, each UE u will, in
general, be within communication range of multiple helpers.
We denote by Iu the set of helpers covering UE u and by
gh,u the signal-to-noise ratio (SNR) of the wireless channel
between helper h and UE u. If multiple helpers in A ⊆ Iu
cooperate to transmit the same file to u, we assume they are
able to achieve the aggregate channel capacity W log2(1 +∑

h∈A gh,u), where W is the channel bandwidth [11], [8].
We assume the following operation upon every request: UE

u broadcasts an inquiry message for file f that is received by
its neighboring helpers in Iu. Among these helpers, a subset
Ju,f ⊆ Iu is actually caching file f . There are then two
different modalities for the transmission of file f to UE u:

• If Ju,f 6= ∅ (hit at some cache), the file f can be directly
transmitted through the wireless channel. In particular, if
|Ju,f | > 1, the helpers cooperate to jointly transmit the
file and the UE experiences the radio access delay:

dr(u,Xf) =
M

W log2(1 +
∑

h∈Iu gh,uX
(h)
f)

(1)

1We assume each request is allocated an equal amount of resource blocks;
scheduling issues or other advanced interference management schemes are
subject of future work.

• If Ju,f = ∅ (miss), a helper h∗ ∈ Iu, chosen according
to some function (e.g., the helper with the highest SNR),
downloads f from the back-end server and then transmits
it to u. In this case, u experiences a delay consisting
of (i) the time to fetch the file through the backhaul
network, hereafter denoted by dB , plus (ii) the time for
h to transmit it back to u, referred to as the radio access
delay upon a cache miss, which is defined by:

dr(u,Xf) =
M

W log2(1 + gh∗,u)
(2)

The total E2E delay UE u experiences to download file f
is then:

df (u,Xf) = dB1Ju,f=∅ + dr(u,Xf), (3)

where 1c is the indicator function denoting if the condition c
is satisfied or not.

III. PROBLEM DEFINITION

Our goal is to design an online caching policy that min-
imizes the expected delay. Given a file allocation X in the
network, the expected delay for a request is:

d̄(X) =

F∑
f=1

1

U

U∑
u=1

pf · df (u,Xf), (4)

where we average over all users (uniformly) and all files
(according to popularity pf). We start by considering the static
optimization problem, that can be formalized by the following
integer programming problem:

minimize d̄(X)

subject to
F∑

f=1

X
(h)
f = C, h ∈ [H]

X
(h)
f ∈ {0, 1}, h ∈ [H], f ∈ [F]

(5)

where [n] denotes the set {1, 2, ..., n}.
This is the delay-minimization version of the femto-caching

problem [4] under stationary request process and CoMP. It was
studied for the first time in [9], under the homogeneous SNR
assumption, i.e., all the SNRs are equal (gh,u = g, for all
(h, u) channels). In this scenario, the total E2E delay becomes
a function of the number of copies of f available at u’s
neighboring caches, denoted by ku,f = 0, 1, ...,H . Thus, we
can rewrite Equation (3) as follows:

d(ku,f) = dB1ku,f=0 +
M

W log2(1 + (ku,f + 1ku,f=0)g)
(6)

Problem (5) was proven to be NP-Hard, even under this
simpler homogeneous SNR assumption. At the same time,
if d(1) ≤ dB , (5) is equivalent to maximizing a monotone
and submodular function with a matroid constraint.2 This
equivalent problem can be solved using a greedy (centralized)
algorithm (hereafter referred to as GreedyAD) with a guaran-
teed 1/2-approximation ratio [9].

2The new objective corresponds to the reduction of delay in comparison to
the case when each request is a miss (caches are empty).

A. Optimal Allocation in Full-Coverage Scenario

In order to get initial insights on Problem (5), we first study
the full-coverage scenario, which considers two additional
assumptions: (i) all SNRs are equal and (ii) each UE u can
connect to all helpers (Iu = [H], for all u), so the network
has an aggregate cache capacity of HC files.

If CoMP capabilities are not considered (i.e., classic femto-
caching problem), the optimal solution is to store the HC most
popular files across all caches [4]. This is not necessarily the
case when joint transmissions are allowed, and the goal is
to minimize the average delay (4). The network parameters,
g and dB , determine together how the average delay can be
reduced by CoMP and then influence the optimal allocation.

We first observe that, in the full-coverage scenario, it is
possible to compute the optimal allocation in polynomial time:

Proposition III.1. In the full-coverage scenario, if d(1) ≤ dB ,
an allocation provided by the greedy algorithm is optimal.

The proof relies on mapping problem (5) to a knapsack
problem with F×C objects with unit size for which the greedy
algorithm is optimal.

We then characterize, for the full-coverage scenario, the
necessary and sufficient conditions (NSCs) for the optimal
allocation to be one of the two extreme ones: full-diversity
(one copy of each of the HC most popular file is stored in
the network), and full-replication (the C most popular files are
cached in each one of the H helpers).

Proposition III.2. In the full-coverage scenario, if d(1) ≤ dB ,
full-diversity is an optimal allocation if and only if

dB ≥ DFD ,
p1
pHC

(d(1)− d(2)), (7)

and full-replication is an optimal allocation if and only if

dB ≤ DFR ,
pC
pC+1

(d(H − 1)− d(H)). (8)

Proof. In the full-coverage scenario, an allocation is optimal
iff it is not possible to replace any file in a cache and reduce
the expected delay d̄. Let us consider first the full-diversity
allocation. It is evident that it cannot be advantageous to
replace one of the HC most popular files with a less popular
file j > HC. The full-diversity allocation is then optimal iff it
is not worthy to replace any file i ∈ [HC] with an additional
copy of a file j ∈ [HC] \ {i}. This is the case iff

pi · dB ≥ pj(d(1)− d(2)),∀i ∈ [HC], j ∈ [HC] \ {i},

i.e., the delay increase due to the cost to retrieve i through the
backhaul is larger than the delay decrease due to the possibility
to have two helpers jointly transmitting j. The minimum of
the left-hand side of the inequality above is achieved when
i = HC (least popular file), and the maximum of the right-
hand side is achieved when j = 1 (most popular file). Then,
the set of inequalities above is satisfied iff

pHC · dB ≥ p1 (d(1)− d(2)) ,

i.e., we can restrain to consider the possibility to replace the
least popular of the HC files with an additional copy of the
most popular file 1.

The reasoning for the full-replication allocation is similar:
in this case we need to ensure that replacing one of the H
copies of file C with (a first copy of) file C + 1 does not
reduce the expected delay, i.e.

pC+1 · dB ≤ pC(d(H − 1)− d(H)).

Although Proposition III.2 does not hold for generic topolo-
gies, we can still derive new conditions for local optimality,
defined as follows:

Definition 1. A cache allocation X is locally optimal, if it
does not exist another allocation X′ such that d̄(X′) < d̄(X),
where X′ differs from X only by a single file at a single cache.

The following Corollary then holds:

Corollary 1. Assuming homogeneous SNRs, (i) Equation (7)
is a necessary condition for the full-diversity allocation to be
locally optimal and (ii) Equation (8) is a sufficient condition
for the full-replication allocation to be locally optimal.

The logic of Corollary 1’s proof is similar to Proposi-
tion III.2, and we omit it due to space limitations. Intuitively,
as we move from a full-coverage to a less dense scenario,
the optimal allocation replicates more the most popular files.
Correspondingly, the NSC for full-diversity in Proposition III.2
becomes only a necessary condition, while the NSC for full-
replication becomes a sufficient one.

As an application of the results above, Fig. 1 shows,
for a full-coverage scenario, regions of the parameter space
(g, dB), where full-replication and full-diversity are optimal.
The boundary curves, DFD(g) (blue dotted line) and DFR(g)
(green dashed curve), are shown as functions of the SNR g.
Any pair (g, dB) above DFD(g) will result in a full-diversity
allocation. However, any combination taken below DFR(g)
will result in a full-replication allocation.

Fig. 1: Boundaries of (dB , g) for extreme allocations: H = 10,
α = 1.5, F = 106, and C = 100. dB axis is in log scale.

IV. ONLINE CACHING POLICIES

In what follows, we will consider the marginal gain for
adding a copy of file f at helper h defined as:

∆d
(h)
f (u,Xf) , df (u,Xf 	 e(h))− df (u,Xf) (9)

We introduce the qLRU-∆d caching policy in Algorithm 1.
It is a variant of qLRU [12] in which cache updates take into
account the marginal delay reduction ∆d

(h)
f (u,Xf). Under

stationary request process, qLRU-∆d minimizes the expected
delay when q converges to 0 (the formal result is stated
in Proposition IV.1). The policy is inspired by qLRU-Lazy
in [10], that is shown to provide similar guarantees for hit rate.

Algorithm 1 (qLRU-∆d). Assume UE u has requested file f .
The request is served according to the general operation
described in Section II and caches update their state as follows:
• each helper h ∈ Ju,f moves the file to the front of the

cache with probability ρ(h)f proportional to the marginal
gain of keeping its local copy, i.e.

ρ
(h)
f (u,Xf) = β ·∆d(h)f (u,Xf), (10)

where the constant β guarantees that ρ(h)f is indeed a
probability.

• each helper h ∈ Iu \ Ju,f decides to store an additional
copy of f with probability

q
(h)
f (u,Xf) = q · σ(h)

f (u,Xf), (11)

where

σ
(h)
f (u,Xf) = γ ·∆d(h)f (u,Xf ⊕ e(h)), (12)

γ plays the same role of β above and q ∈ (0, 1] is a
dimensionless parameter.

Remark 1. In our experiments, we take simply

β = 1/(max
f,h,u,Xf

∆d
(h)
f (u,Xf))

γ = 1/(max
f,h,u,Xf

∆d
(h)
f (u,Xf ⊕ e(h))).

From (1), (2), and (9) we see that probabilities ρ(h)f and
q
(h)
f depend on the allocation of file f at nearby helpers

or, more precisely, on 1) the aggregate SNR all helpers in
Ju,f can achieve when transmitting to u (i.e.

∑
h′∈Ju,f

gh′,u),
2) the SNR gh,u of the local channel from h to u, and 3)
the backhaul delay dB . In cellular networks, each UE takes
SNR measurements of helpers within range [13]. Thus, the
information needed to set q(h)f and ρ

(h)
f can be piggybacked

in uplink communication from UE u to the helpers with lim-
ited overhead. Note that this exchange only provides limited
information about the local (immediate) topology, which is
significantly simpler than the global knowledge required by
standard femto-caching schemes.

Proposition IV.1. Under IRM request traffic, Che’s [14],
[15], and exponentialization [10] approximations, a network
of qLRU-∆d caches asymptotically achieves a locally-optimal
caching configuration in the sense of Definition 1 when q → 0.

Proposition IV.1 derives from a more general result [16,
Prop. IV.1]. We provide here an intuitive explanation of why
qLRU-∆d is optimal.

Intuition. We observe that, as q converges to 0, the cache
exhibits two different dynamics with very different timescales:
the insertion of new files tends to happen more and more rarely
(q(h)f converges to 0), while the frequency of position updates
for files already in the cache is unchanged (ρ(h)f does not
depend on q). A file f at cache h is moved to the front with
a probability proportional to ∆d

(h)
f (u,Xf), i.e. proportional

to how much the file contributes to reduce the delay of that
specific request. This is a very noisy signal: upon a given
request, the file is moved to the front or not. At the same
time, as q converges to 0, more and more moves to the front
occur between any two file evictions. The expected number of
moves-to-the-front file f experiences is proportional to 1) how
often it is requested (pf) and 2) how likely it is to be moved to
the front upon a request (ρ(h)f). Overall, the expected number
of moves is proportional to pf · ∆d(h)f (Xf), i.e. its average
contribution to the decrease of the expected delay. By the law
of large numbers, the random number of moves-to-the-front
will be close to its expected value and it becomes likely that
the least valuable file in the cache occupies the last position.

We can then think that, when a new file is inserted in the
cache, it will replace the file that contributes the least to the
decrease of the expected cost. qLRU-∆d then behaves as a
random greedy algorithm that, driven by the request process,
progressively replaces the least useful file from the cache, until
it reaches a local minimum.

In Section V, we observe that, under IRM request process,
the smaller q is, the closer qLRU-∆d’s delay is to the
GreedyAD, as it is stated by Proposition IV.1.

Remark 2. The probability q(h)f is analogous to q in the usual
qLRU policy. We note that setting q

(h)
f = q, i.e. a constant

value, suffices to prove the asymptotic convergence of the
policy (Prop. IV.1). However, we propose (11) to make it more
likely to add new copies to helpers bringing a larger marginal
gain ∆d

(h)
f (u,Xf ⊕ e(h)). This can speed up the transient

dynamics of the policy.

While qLRU-∆d converges to a local optimum for static
popularities, in practice, the slow insertion process of qLRU-
∆d, for small values of q, becomes problematic when some
files are popular over short time scale: a new file gets a chance
to be inserted in the cache every 1/q requests, and by that
time, its popularity may have declined. In order to gain in
reactivity, we propose 2LRU-∆d, whose operation is described
in Algorithm 2. 2LRU-∆d maintains a virtual cache (with file’s
identification data or, simply, ID) and a physical cache (actual
data). A given file is inserted in the physical cache only if its
ID is already in the virtual cache. 2LRU-∆d does not enjoy
the same theoretical guarantee as qLRU-∆d, but, thanks to its
reactivity, it provides even smaller delays under real request
processes with strong temporal locality [17].

Algorithm 2 (2LRU-∆d). Assume UE u has requested file f .
Let Ĵu,f be the subset of helpers storing the file’s IDs in the
virtual cache. The request is served according to the general

operation described in Section II and caches update their state
as follows:
• If h ∈ Ĵu,f , move f ’s ID to the front of h’s virtual cache

and,
– if h ∈ Ju,f , move f to the front of h’s physical cache

with probability ρ(h)f (u,Xf);
– else, evict the file in the physical cache’s last position

and insert f .
• If h 6∈ Ĵu,f , with probability σ

(h)
f (u,Xf), evict the ID

in h’s virtual cache’s last position and insert f ’s ID

V. NUMERICAL RESULTS

In our experimental approach, we first confirm qLRU-∆d
policy’s optimality as q tends to 0. Then, we compare it to
other policies over real network topologies and for different
request processes. Finally, we consider a heterogeneous SNR
scenario and observe the effect of SNR variability on policies’
performance.

A. qLRU-∆d Convergence Analysis

First, consider H = 2 helpers, whose cells partially overlap,
with storage capacity for C = 100 files out of a catalog adding
up to F = 106 files. Files popularity distribution follows a Zipf
law with exponent α = 1.2. We start considering dB = 100ms
and homogeneous SNR regime: every UE-helper channel has
the same SNR g = 10dB. In all our experiments, policies’
simulations have a warm up phase and a measurement phase
each consisting of 108 requests. Moreover, we fix the files size
to M = 1.0Mbits and the channel bandwidth to W = 5.0MHz.
Our comparison baseline is GreedyAD, i.e., the centralized
delay-minimization greedy algorithm that assumes network
topology and files popularities are known [9]. Upon a miss,
h∗ is chosen uniformly at random among all helpers in Iu.

Fig. 2: Convergence analysis: delay (left) and allocation (right)
convergence with q, for α = 1.2, dB = 100ms, and g = 10dB.

Fig. 2 (left) shows the average delay of qLRU-∆d and
GreedyAD for different values of q. As q decreases, qLRU-
∆d’s delay converges to GreedyAD. Fig. 2 (right) shows
the distance between qLRU-∆d and GreedyAD. The distance
dist(P1, P2) between policies P1 and P2 is defined as the
cosine distance3 between their occupancy vectors θ, which are
F×1 vectors containing the fraction of time every file spent in

3The cosine distance between vectors u and v is given by dist(u, v) =

1− 〈u,v〉
‖u‖2‖v‖2

, where 〈·, ·〉 denotes the inner product.

Fig. 3: Performance analysis of various policies in a real
topology with IRM request process (α = 1.2)

cache during measurement phase. For GreedyAD, we define
θ as its resulting allocation matrix. We observe a reduction
of the distance between qLRU-∆d and GreedyAD, indicating
that the files GreedyAD stores tend to be cached longer and
longer under qLRU-∆d as q decreases.

B. Performance Analysis

We compare the performance of our proposed policies,
qLRU-∆d and 2LRU-∆d, to other policies from the literature
that try to achieve coordination across caches: qLRU-Lazy
and 2LRU-Lazy from [10], LRU-All and LRU-One from [18].
As a comparison reference, we provide the results from
GreedyAD and the greedy hit rate maximization algorithm for
classic femto-caching problem [4] (GreedyHR). We consider
a topology where H = 10 helpers are located according to
the positions of T-mobile base stations in Berlin extracted
from [19]. We vary the network density by adjusting helpers’
coverage area from 25m to 200m, assuming constant spatial
user density, such that the expected number of helpers covering
a UE is between 1.1 and 9.4. For all helpers, the SNR is
g = 10dB and backhaul access delay is dB = 100ms.

In Fig. 3, we show the average delay for an IRM request
process (α = 1.2). The qLRU-∆d results are very close
to GreedyAD, confirming its convergence across different
topologies. qLRU-∆d reaches performance gains of up to 20%
related to GreedyHR and other hit rate maximization policies.
If compared to simpler policies, such as LRU-All and LRU-
One, qLRU-∆d achieves performance gains of up to 27%.

In Fig. 4, we consider a request process based on a real
trace from Akamai Content Delivery Network [20]. Requests
were observed for a period of 5 consecutive days. The greedy
allocation in this case was determined by estimating the
files popularities during this period. However, real request
processes exhibit strong temporal locality features. Static al-
locations are based on time-average popularities that smooth
out the variability over short time scale. On the contrary,
2LRU-like policies are highly reactive and may be able to
capture short time popularities variations, promising smaller
delays than qLRU-∆d and GreedyAD. The figure shows that

Fig. 4: Performance analysis of various policies in a real
topology with Akamai trace.

Fig. 5: Heterogeneous SNRs: Berlin topology with density 9.4,
g0 = 10.0dB, and dB = 100.0ms with Akamai trace.

indeed 2LRU-∆d outperforms both GreedyAD and qLRU-∆d
by 12% and 6%, respectively. Moreover, 2LRU-∆d provides
performance gains of around 15% in comparison with 2LRU-
Lazy and 23% in comparison with LRU-All.

C. Heterogeneous SNR

We use the same Berlin topology (with density
of 9.4 helpers/UE, in average) but now, at every request
(u, f), the SNRs gh,u,∀h ∈ Iu are chosen uniformly at
random within a range, i.e., gh,u ∈ [g0−∆g, g0 + ∆g], where
g0 is the base SNR and ∆g its variation. We fix g0 = 10dB
and dB = 100ms and observe the average delay of various
policies for different values of ∆g. Files are also requested
according to Akamai’s trace.

In Fig. 5, we observe that, for all tested policies, the average
delay tends to increase. This fact is explained by Jensen’s
inequality, since the delay is now a convex random function:
given that g = g0 +∆g and g′ = g0−∆g, the delay reduction
achieved with the larger g is smaller than the delay increase
due to g′. The relative performance gains between the policies
are almost constant across the different SNR variations and
similar to the previous experiment (Fig. 4).

VI. CONCLUSIONS

In this paper we have presented two novel distributed
caching policies able to optimize the average delay under
unknown and dynamic request process. We study how the
transmission parameters influence the optimal allocations in
delay-minimization problem and how they differ from the
traditional femto-caching solutions. In our experiments, we
observe qLRU-∆d’s convergence and evaluate both proposed
policies performances under different request processes and
SNR regimes. We show that such policies achieve consider-
able performance gains with negligible additional deployment
complexity.

REFERENCES

[1] CISCO, “Cisco visual networking index: Global mobile data traffic
forecast update, 2016–2021 white paper,” CISCO, Tech. Rep., Feb 2017.

[2] N. Bhushan et al., “Network densification: the dominant theme for
wireless evolution into 5g,” IEEE Communications Magazine, vol. 52,
no. 2, pp. 82–89, Feb. 2014.

[3] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata,
and K. Sayana, “Coordinated multipoint transmission and reception in
LTE-advanced: deployment scenarios and operational challenges,” IEEE
Communications Magazine, vol. 50, no. 2, pp. 148–155, Feb. 2012.

[4] N. Golrezaei, K. Shanmugam, A. Dimakis, A. Molisch, and G. Caire,
“Femtocaching: Wireless video content delivery through distributed
caching helpers,” in IEEE INFOCOM, A. G. Greenberg and K. Sohraby,
Eds. IEEE, 2012, pp. 1107–1115.

[5] T. Wang, L. Song, and Z. Han, “Dynamic femtocaching for mobile
users,” in 2015 IEEE WCNC. IEEE, 2015, pp. 861–865.

[6] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire, “Fem-
tocaching and device-to-device collaboration: A new architecture for
wireless video distribution,” IEEE Communications Magazine, vol. 51,
no. 4, pp. 142–149, April 2013.

[7] P. Sermpezis, T. Spyropoulos, L. Vigneri, and T. Giannakas, “Femto-
caching with soft cache hits: Improving performance with related content
recommendation,” in IEEE GLOBECOM 2017. IEEE, 2017, pp. 1–7.

[8] W. C. Ao and K. Psounis, “Distributed caching and small cell coopera-
tion for fast content delivery,” in MobiHoc. ACM, 2015, pp. 127–136.

[9] A. Tuholukova, G. Neglia, and T. Spyropoulos, “Optimal cache allo-
cation for Femto helpers with joint transmission capabilities,” in IEEE
ICC 2017, 21-25 May 2017, Paris, France, Paris, FRANCE, 05 2017.

[10] E. Leonardi and G. Neglia, “Implicit coordination of caches in small cell
networks under unknown popularity profiles,” IEEE Journal on Selected
Areas in Communications, vol. 36, no. 6, pp. 1276–1285, June 2018.

[11] D. Tse and P. Viswanath, Fundamentals of wireless communication.
Cambridge university press, 2005.

[12] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the
performance analysis of caching systems,” ACM Trans. Model. Perform.
Eval. Comput. Syst., vol. 1, no. 3, pp. 12:1–12:28, May 2016.

[13] S. Sesia, I. Toufik, and M. Baker, LTE - The UMTS Long Term Evolution:
From Theory to Practice. Wiley, 2011.

[14] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems:
modeling, design and experimental results,” Selected Areas in Commu-
nications, IEEE Journal on, vol. 20, no. 7, pp. 1305–1314, Sep 2002.

[15] R. Fagin, “Asymptotic miss ratios over independent references,” Journal
of Computer and System Sciences, vol. 14, no. 2, pp. 222 – 250, 1977.

[16] G. Neglia, E. Leonardi, G. Iecker, and T. Spyropoulos, “A Swiss
Army Knife for Dynamic Caching in Small Cell Networks,” 2019,
arXiv:1912.10149.

[17] S. Traverso et al., “Temporal Locality in Today’s Content Caching: Why
It Matters and How to Model It,” SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 5, pp. 5–12, Nov. 2013.

[18] A. Giovanidis and A. Avranas, “Spatial multi-lru caching for wireless
networks with coverage overlaps,” SIGMETRICS Perform. Eval. Rev.,
vol. 44, no. 1, pp. 403–405, Jun. 2016.

[19] “Openmobilenetwork.” [Online]. Available: openmobilenetwork.org/
[20] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai Network: A

Platform for High-performance Internet Applications,” SIGOPS Oper.
Syst. Rev., vol. 44, no. 3, pp. 2–19, Aug. 2010.

