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Abstract

We study a class of N -player stochastic differential games of singular control, motivated by the
study of a dynamic model of interbank lending with benchmark rates. We describe Pareto optima
for this game and show how they may be achieved through the intervention of a regulator, whose
policy is a solution to a singular stochastic control problem. Pareto optima are characterized in
terms of the solution to a new class of Skorokhod problems with piecewise-continuous free boundary.

Pareto optimal policies are shown to correspond to the enforcement of endogenous bounds on
interbank lending rates. Analytical comparison between Pareto optima and Nash equilibria for the
case of two players allows to quantify the impact of regulatory intervention on the stability of the
interbank rate.

Keywords: LIBOR rate, interbank markets, stochastic differential game, singular stochastic control,
Pareto optimum, Nash equilibrium, Skorokhod problem.
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1 Introduction
The market for interbank lending offers an interesting example of strategic interaction among financial
institutions in which players react to an average of the action of other players. One of the widely
commented features of the interbank market is the fixing mechanism for interbank benchmark interest
rates, the most well-known example of which is the London Interbank Offer Rate (LIBOR) which plays
a central role in financial markets. Historically these benchmarks have not been negotiated rates but
a ‘trimmed’ average of quotes collected daily from major banks. At every date t, participating banks
contribute a quote X i

t representing their offered rate; a calculation agent then ‘trims’ the tails of the
distribution by removing the highest and lowest quotes and computes the value of the benchmark rateX t

as a weighted average of the remaining non-discarded quotes (Avellaneda & Cont, 2010). The resulting
benchmark rate X t –the LIBOR rate– then serves as a reference for the valuation of interbank loans and
debt contracts, as well as many other financial contracts indexed on the benchmark rate. A deviation
(spread) of a bank’s rate from the benchmark may lead to a perception of credit risk and loss of market
share -if the spread is positive- or an opportunity cost if the spread is negative, thus incentivizing banks
to align their offered rates with the benchmark.

This mechanism leads to strategic interactions among market participants in a dynamic setting,
where interactions are mediated through an average action, or more generally through the distribution
of actions of other participants and has been criticized for its vulnerability to manipulations (Avellaneda
& Cont, 2010), which have been extensively documented (H.M. Treasury, 2012; Duffie & Stein, 2015).
One of the lessons from the manipulation of LIBOR and other benchmarks is that insufficient attention
had been paid to incentives, strategic interactions, mechanism design and the role of the regulator in
such markets.

1.1 A model of interbank lending with benchmark rates

We shall now describe a stylized model of interbank rates which represents interactions among banks
in terms of a stochastic dynamic game. Consider first an exogenous process rt representing a rate
set by the central bank, with respect to which banks will position their lending rates. rt is typically
modeled as a mean-reverting diffusion process driven by a Brownian motion B representing random
macroeconomic shocks. Each bank i quotes a rate rit at a ‘spread’ X i

t with respect to the reference rate
rt: rit = rt +X i

t . Bank i is also affected by the macroeconomic shocks represented by B but may control
its rate rit through positive or negative adjustments to its spread X i

t , which we may represent by a pair
(ξi,+, ξi,−) of non-decreasing processes.

dX i
t = σidBt + dξi,+t − dξ

i,−
t . (1.1)

The benchmark (‘LIBOR’) rate Lt is then defined as a weighted average of these offered rates:

Lt = rt +X t, X t =
N∑
i=1

aiX
i
t and ai ≥ 0,

N∑
i=1

ai = 1.

Note that the ’drift’ term in the dynamics (1.1) originates from the control. One may also consider an
additional drift term µidt in the uncontrolled dynamics, a positive drift corresponding to a bank whose
creditworthiness is gradually deteriorating, leading to a steady increase of its spread.

We now turn to the incentives and costs faced by banks. Each bank i receives interest income from
its lending activity, at rate rit. The interest income of the bank over a short period [t, t+ dt] is ritQi

t dt
where Qi

t > 0 is the volume of lending activity (loan volume). Given that the bank can borrow at the
interbank Lt = rt +X t, this represents an opportunity cost of (X t−X i

t)Q
i
t dt. In a competitive lending

market, the market share Qi
t of bank i will be a decreasing function qi(.) of its spread rit−Lt = X i

t −X t
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relative to the benchmark rate: Qi
t = qi(X

i
t −X t). Assuming an inter-temporal discount rate of ρ > 0,

this leads to a running cost term ∫ ∞
0

e−ρt(X t −X i
t)qi(X

i
t −X t) dt.

For example, a linear dependence qi(x) = −κix, where κi > 0 represents the sensitivity of loan volume
to the interest rate, leads to a quadratic running cost

∫∞
0
κ1 exp−ρt(X t −X i

t)
2dt.

These considerations only pertain to the relative costs of bank simultaneously engaging in borrowing
and lending. Other constraints prevent the banks from deviating from the reference rate beyond a certain
level; these are often ‘soft’, rather than hard (i.e., inequality), constraints and may be modeled by a
penalty on |rit|, or equivalently a running cost fi(X i

t) where fi is centered at some reference value and
increases fast enough (e.g., quadratically) at infinity. As an example we shall use fi(x) = νi(x − s0)2
with νi > 0.

The benchmark fixing mechanism described above may be incorporated in the model through a cost
term associated with the control (ξi,+, ξi,−). Recall that the LIBOR is computed as a trimmed average
of quotes, discarding the highest and lowest ‘outliers’. This means an offered rate X i will not be taken
into account if it lies too far from the mean. In absence of collusion between banks, this mechanism
discourages them from making large daily adjustments to their offered rates, as a large upward or
downward adjustment may result in their quote being disregarded in the benchmark calculation. This
may be modeled through a cost term which penalizes the size of the adjustment e.g., K+

i dξ
i,+
t +K−i dξ

i,−
t ,

with K+
i , K

−
i > 0, where 1/K+

i (resp. 1/K−i ) represents a typical distance (X i−X)+ (resp. (X−X i)+)
beyond which quotes are discarded. For instance one can take K+

i = K−i = 1/γ where γ represents a
measure of dispersion (interquartile range or multiple of standard deviation) of the quote distribution.
The case of an asymmetric penalty K+

i > K−i (resp. K+
i < K−i ) is useful to model the case of a bank i

systematically quoting above (or below) the benchmark. This leads to an objective function

J i(xxx;ξξξ) = E

[∫ ∞
0

e−ρt
(
(X t −X i

t)qi(X
i
t −X t)dt+ νi|X i

t − s0|2dt+K+
i dξ

i,+
t +K−i dξ

i,−
t

) ∣∣∣∣∣XXX0− = xxx

]
(1.2)

for bank i, where the control variable is a pair of non-decreasing processes ξi,+t , ξi,−t representing the
rate adjustments of bank i and the expectation is taken with respect to the law of the controlled process
(1.1). The controls ξi,+, ξi,− are in general allowed to be right-continuous with left limits (càdlàg) which
allows for jumps, representing impulses, as well as continuous adjustments to the rates. Such controls
are called singular controls (Karatzas, 1982) and have been used for analyzing optimal investment policy
and option pricing and hedging problems with transaction costs (Davis & Norman, 1990; Davis et al.,
1993; Kallsen & Muhle-Karbe, 2015, 2017; Zariphopoulou, 1992).

In the case where ai = 1
N
, qi = qj, νi = νj and K±i = K±j for i 6= j, the payoff structure is symmetric

under permutation of indices and this can be formulated as mean field game, which was studied in
(Lasry & Lions, 2007; Guo & Xu, 2019). However we shall not need this assumption and will treat
below the case of a more general, not necessarily symmetric, cost function hi(XXX t).

1.2 A class of stochastic differential games of singular control

Motivated by the example above, we study a class of N -player stochastic differential games, where
each player i = 1, · · · , N controls a diffusive process X i

t through (positive or negative) ξξξi := (ξi,+, ξi,−)
additive control terms

dX i
t = µidt+ σσσi · dBBBt + dξi,+t − dξ

i,−
t , X i

0− = xi. (1.3)
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and a seeks to minimize the sum of a discounted running cost and a proportional cost of intervention

J i(xxx;ξξξ) = E

[∫ ∞
0

e−ρt
(
hi(XXX t)dt+K+

i dξ
i,+
t +K−i dξ

i,−
t

) ∣∣∣∣∣XXX0− = xxx

]
.

The first two terms in (1.3) correspond to the ’baseline’ (uncontrolled) diffusion dynamics, and the
last two term correspond to the control ξξξi = (ξi,+, ξi,−), modeled as a pair of non-decreasing càdlàg
processes, leading to a singular control problem (Karatzas, 1982) for each player. Nash equilibria for
such singular control games have been studied in (Guo & Xu, 2019). In the present work, we focus on
Pareto-optimal outcomes.

Contribution. The present work is a study of Pareto-optimal policies for the class of stochastic singu-
lar control games considered above, motivated by the interbank lending problem. We relate the Pareto
optima of this game to the solution of a ’regulator’s problem’, characterized as a singular stochastic
control problem which we study in detail. The regularity analysis of the value function, following the
approach of Soner & Shreve (1989), for the regulator’s problem enables us to characterize the optimal
controls for this problem and subsequently the Pareto-optimal policies for the N -player game.

We obtain a description of Pareto-optimal policies in terms of a multidimensional Skorokhod problem
for a ’regulated diffusion’ in a bounded region whose boundary is piece-wise smooth with possible
corners. The state process follows a diffusion process in the interior, and the control intervenes only at
the boundary to reflect it back into the interior.

Finally, we derive explicit descriptions of Pareto-optimal policies when N = 2. This complements
the existing literature on Nash equilibrium for stochastic two player games (De Angelis & Ferrari,
2018; Dianetti & Ferrari, 2020; Hernandez-Hernandez et al., 2015; Kwon & Zhang, 2015). Analytical
comparison between the Pareto-optimal and the Nash equilibrium solutions demonstrates the role of
regulator in the interbank lending game.

Our analysis provides insights for regulatory intervention on the interbank market. In particular, it
allows us to quantify the impact of a regulator on the stability of the benchmark rate.

Relation with previous literature. Stylized mean-field models of interbank borrowing and lending
have been considered by Carmona et al. (2013) and Sun (2018), who focus on Nash equilibria and
general stochastic controls.

A related strand of literature consists of studies on central bank interventions on interest rates and
exchange rates using an impulse control approach (Bensoussan et al., 2012; Cadenillas & Zapatero,
2000; Jeanblanc-Picqué, 1993). In these approaches, interventions are associated with a fixed cost and
thus finite in number. The singular control framework adopted here seems more natural for modeling
situations such as interbank markets where participants intervene continuously and where the cost of
intervention is proportional to the action rather than fixed. Singular controls allow for discontinuities,
so include impulse control as a special case. However as we will observe in Section 4, Pareto-optimal
solutions do not include impulse and instead involve only continuous controls.

Nash equilibria for stochastic games of singular control have been studied by Chiarolla et al. (2013);
De Angelis & Ferrari (2018); Dianetti & Ferrari (2020); Hernandez-Hernandez et al. (2015); on the other
hand, there are few studies of Pareto-optimal strategies for such games. Aïd et al. (2017) considered
a two-player game in an impulse control framework between a representative energy consumer and a
representative electricity producer, and derived an asymptotic Pareto-optimal policy. Fischer & Livieri
(2016) solved explicitly a mean-variance portfolio optimization problem with N stocks. Ferrari et al.
(2017) and Wang & Ewald (2010) considered the problem of public good contribution and analyzed
the Pareto-optimal policy for the N -player stochastic game under the framework of regular control and
singular control, respectively.
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The analysis of Pareto optima in stochastic games is often done by studying an auxiliary N -
dimensional stochastic control problem. This approach can be traced back to the economic literature
on mechanism design and social welfare optimization in Bator (1957) and Coleman (1979). The math-
ematical challenge lies in analyzing the associated high-dimensional Hamilton–Jacobi–Bellman (HJB)
equations and characterizing the optimal control policy.

Outline. The remainder of the paper is organized as follows. Section 2 presents the mathematical
formulation of the N -player stochastic differential game, and describes its relation with the auxiliary
control problem. Section 3 provides detailed analysis of the auxiliary control problem and the con-
struction of the optimal strategies. Section 4 characterizes the Pareto optima in terms of a sequence
of Skorokhod problems. Implications of our analysis for the interbank lending problem are discussed
in Section 4.3. Section 5 provides explicit solutions in the case N = 2, and compares it with the Nash
equilibrium.

2 Mathematical formulation of the game
In this section, we describe the mathematical framework of the N -player game.

Controlled dynamics. Let (X i
t)t≥0 ∈ R denote the state of player i at time t, 1 ≤ i ≤ N . In the

absence of controls, XXX t := (X1
t , . . . , X

N
t ) ∈ RN follows

XXX t = XXX0 + µµµt+ σσσBBBt, XXX0 = (x1, . . . , xN), (2.1)

where BBB := (B1, . . . , BD) ∈ RD is a D-dimensional Brownian motion on a filtered probability space
(Ω,F , {Ft}t≥0,P), and µµµ := (µ1, . . . , µN) ∈ RN and σσσ := (σij)1≤i≤N,1≤j≤D ∈ RN×D are constants with
σσσσσσT � λI for some λ > 0.

When player i chooses a control ξξξi := (ξi,+, ξi,−) from an admissible control set U iN , then X i
t evolves

as

dX i
t = µidt+ σσσi · dBBBt + dξi,+t − dξ

i,−
t , X i

0− = xi. (2.2)

Here ξξξi = (ξi,+, ξi,−) is a pair of non-decreasing càdlàg processes and σσσi is the ith row of the volatility
matrix σσσ. We will denote by Pxxx the law of the process (2.2) and Exxx the expectation with respect to this
law.

Admissible controls U iN . The admissible control set for player i is defined as

U iN =
{

(ξi,+t , ξi,−t )t≥0 | ξi,+t and ξi,−t are Ft-progressively measurable, càdlàg non-decreasing,

with E
[∫ ∞

0

e−ρtdξi,+t

]
<∞,E

[∫ ∞
0

e−ρtdξi,−t

]
<∞, ξi,+0− = 0, ξi,−0− = 0

}
.

(2.3)

Objective functions. Each player i chooses a control (ξi,+, ξi,−) in U iN to minimize

J i(xxx;ξξξ) = Exxx
∫ ∞
0

e−ρt
[
hi(XXX t)dt+K+

i dξ
i,+
t +K−i dξ

i,−
t

]
. (N-player)

Here ρ > 0 is a constant discount factor, K+
i , K

−
i > 0 are the cost of controls, and hi(xxx) : RN → R+ is

the running cost function.
In this paper, we focus on characterizing Pareto optima of the game (N-player) subject to the

dynamics (2.2).

5



Definition 1 (Pareto optimality). ξξξ∗ ∈ UN := (U1
N , · · · ,UNN ) is a Pareto-optimal policy for the game

(N-player) if and only if there does not exist ξξξ ∈ UN such that

∀i ∈ {1, . . . , N}, J i (xxx;ξξξ) ≤ J i (xxx;ξξξ∗) ; and ∃j ∈ {1, . . . , N}, J j (xxx;ξξξ) < J j (xxx;ξξξ∗) .

Pareto optima correspond to efficient outcomes of a game, which may or may not result from
decentralized optimization by N players. The intervention of a regulator may be necessary to enforce a
Pareto-optimal policy.

3 Regulator’s problem
To study Pareto optima for game (N-player), we consider a ’welfare function’ defined as an aggregated
cost:

J(xxx;ξξξ) =
N∑
i=1

Li J
i(xxx,ξξξ) (3.1)

= Exxx
∫ ∞
0

e−ρt

[
H(XXX t)dt+

N∑
i=1

LiK
+
i dξ

i,+
t +

N∑
i=1

LiK
−
i dξ

i,−
t

]
,

were the dynamics of XXX t is given by (2.2), and

H(xxx) :=
N∑
i=1

Lih
i(xxx), with Li > 0 and

N∑
i=1

Li = 1. (3.2)

We will show that Pareto optima of (N-player) correspond to solutions of the following auxiliary
stochastic control problem

v(xxx) = min
ξξξ∈UN

JL(xxx;ξξξ), (Regulator)

which may be interpreted as the problem facing a market regulator seeking to optimize the aggregate
cost (3.1).

To ensure that the game is well defined, the following assumptions will be made throughout the
paper, unless otherwise specified:

Assumptions. There exist C > c > 0 such that

A1. ∀xxx ∈ RN , 0 ≤ H(xxx) ≤ C(1 + ‖xxx‖2).

A2. ∀xxx,xxx′ ∈ RN , |H(xxx)−H(xxx′)| ≤ C(1 + ‖xxx‖+ ‖xxx′‖)‖xxx− xxx′‖.

A3. H(xxx) ∈ C2(RN), H is convex, with 0 < c ≤ ∂2zzzH(xxx) ≤ C for all unit direction zzz ∈ RN .

For example, for the payoff described in the interbank lending problem in Section 1.1,

H(xxx) =
N∑
i=1

Li

κi(xi −∑
j 6=i

ajx
j

)2

+ νi(x
i)2

 with κi, νi > 0. (3.3)

Then H satisfies A1-A3 for any choice of weight Li > 0.
We shall first analyze the regularity property of the value function v, which is necessary for estab-

lishing subsequently the existence and uniqueness of the optimal control. We then see that the optimal
control for (Regulator) yields a Pareto-optimal policy for game (N-player).
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The regularity analysis of the value function involves several steps. The first step is to show that
the value function for (Regulator) is a viscosity solution to the following HJB equation

max{ρu− Lu−H(xxx), β(∇u)− 1} = 0, (3.4)

with the operator L = 1
2

∑N
i,j=1σσσ

i · σσσj ∂2xixj +
∑N

i=1 µ
i ∂xi , and

β(qqq) = max
1≤i≤N

[(
qi

LiK
−
i

)+

∨
(

qi

LiK
+
i

)−]
, (3.5)

where qqq := (q1, · · · , qN), (a)+ = max{0, a} and (a)− = max{0,−a} for any a ∈ R.
The second step is to show that the value function for (Regulator) is W2,∞

loc . The third step is to
show that the HJB equation (3.4) has a unique W2,∞

loc solution.
Let us start with the following property of the value function v for the control problem

(Regulator).

Proposition 2. Under Assumptions A1-A2, there exists K > 0 such that,

(i) 0 ≤ v(xxx) ≤ K(1 + ‖xxx‖2), ∀xxx ∈ RN ;

(ii) |v(xxx)− v(xxx′)| ≤ K(1 + ‖xxx‖+ ‖xxx′‖)‖xxx− xxx′‖, ∀xxx,xxx′ ∈ RN .

Proof. First, v(xxx) ≥ 0 is clear by the non-negativity of H(xxx). Moreover, by the property that σσσσσσT � λI
with λ > 0, it follows from a known estimate and the martingale argument (Menaldi & Robin, 1983,
(2.15)) that the solution {X̃XX t}t≥0 := {xxx+ µµµt+ σσσBBBt}t≥0 with ξξξ = 000 satisfies

Exxx
∫ ∞
0

e−ρt‖X̃XX t‖2dt ≤ K(1 + ‖xxx‖2), ∀xxx ∈ RN ,

for some constant K > 0. By Assumption A1, there exists a constant K > 0 such that

v(xxx) ≤ J(xxx,000) ≤ K(1 + ‖xxx‖2), ∀xxx ∈ RN .

Thus (i) of Proposition 2 is established.
For each fixed xxx ∈ RN , let

Uxxx = {ξξξ ∈ U : J(xxx,ξξξ) ≤ J(xxx; 000)}. (3.6)

By Assumption A1,

Exxx
∫ ∞
0

e−ρt‖XXX t‖2dt ≤ K(1 + ‖xxx‖2), ∀xxx ∈ RN , ξξξ ∈ Uxxx. (3.7)

For ξξξ ∈ Uxxx, it is easy to verify that

Exxx
∫ ∞
0

e−ρt‖ξξξt‖2dt ≤ K(1 + ‖xxx‖2), (3.8)

and

|v(xxx)− v(xxx′)| ≤ sup {|J(xxx;ξξξ)− J(xxx′;ξξξ)| : ξξξ ∈ Uxxx ∪ Uxxx′} ,∀xxx,xxx′ ∈ RN .

Meanwhile,

|J(xxx;ξξξ)− J(xxx′;ξξξ)| ≤ E
∫ ∞
0

e−ρt|H(XXXxxx
t )−H(XXXxxx′

t )|dt.
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Statement (ii) for v follows by Assumption A2, along with the facts that XXXxxx
t −XXXxxx′

t = xxx− xxx′ and that
for any ξξξ ∈ Uxxx ∪ Uxxx′ ,

Exxx
∫ ∞
0

e−ρt‖XXXxxx
t ‖dt ≤ K(1 + ‖xxx‖+ ‖xxx′‖), (3.9)

Exxx′
∫ ∞
0

e−ρt‖XXXxxx′

t ‖dt ≤ K(1 + ‖xxx‖+ ‖xxx′‖).

In fact, if ξξξ ∈ Uxxx, (3.9) follows immediately from (3.8) by the Hölder inequality. Meanwhile, if ξξξ ∈ Uxxx′ ,
(3.9) holds because

‖XXXxxx
t ‖ ≤ ‖XXXxxx′

t ‖+ ‖xxx− xxx′‖ ≤ ‖XXXxxx′

t ‖+ ‖xxx‖+ ‖xxx′‖.

Next, we establish the viscosity property of the value function in the following sense.

Definition 3 (Continuous viscosity solution). The value function v for problem (Regulator) is a
continuous viscosity solution to (3.4) on RN if

• ∀xxx0 ∈ RN , ∀φ ∈ C2(RN) such that xxx0 is a local minimum of (v − φ)(xxx) with v(xxx0) = φ(xxx0),

max{ρφ− Lφ−H(xxx), β(∇φ)− 1} ≥ 0.

• ∀xxx0 ∈ RN , ∀φ ∈ C2(RN) such that xxx0 is a local maximum of (v − φ)(xxx) with v(xxx0) = φ(xxx0),

max{ρφ− Lφ−H(xxx), β(∇φ)− 1} ≤ 0.

Theorem 4 (Viscosity solution). Under Assumptions A1 and A3, the value function v to the control
problem (Regulator) is a continuous viscosity solution of the HJB equation (3.4).

Proof. The convexity of v follows from the joint convexity of J(xxx;ξξξ) in the following sense:

J(θxxx+ (1− θ)xxx′; θξξξ + (1− θ)ξξξ′) ≤ θJ(xxx;ξξξ) + (1− θ)J(xxx′;ξξξ′), (3.10)

for any xxx,xxx′ ∈ RN and any ξξξ, ξξξ′ ∈ UN . The convexity of J in (xxx;ξξξ) is then obvious since XXXxxx
t depends

linearly on (xxx,ξξξ) and the set UN and the function H are both convex.
We now show that v is both a viscosity super-solution and sub-solution to the HJB equation (3.4).

Sub-solution. Consider the following controls: ξi,−t = 0 and

ξi,+t =

{
0, t = 0,
ηi,+, t ≥ 0,

where 0 ≤ ηi,+ ≤ ε. Define the exit time

τε := inf{t ≥ 0,XXX t /∈ B̄ε(xxx0)}.

Note that XXX has at most one jump at t = 0 and is continuous on [0, τε). By the dynamic programming
principle,

φ(xxx0) = v(xxx0) ≤ Exxx0
∫ τε∧h

0

e−ρt

[
H(XXX t)dt+

N∑
i=1

LiK
+
i dξ

i,+
t

]
+ Exxx0

[
e−ρ(τε∧h)φ(XXXτε∧h)

]
. (3.11)
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Applying Itô’s formula to the process e−ρtφ(XXX t) between 0 and τε∧h, and taking expectation, we obtain

Exxx0
[
e−ρ(τε∧h)φ(XXXτε∧h)

]
= φ(xxx0) + Exxx0

[∫ τε∧h

0

e−ρt(−ρφ+ Lφ)(XXX t)dt

]
+ Exxx0

[ ∑
0≤t≤τε∧h

[φ(XXX t)− φ(XXX t−)]

]
. (3.12)

Combining (3.11) and (3.12), we have

Exxx0
[∫ τε∧h

0

e−ρt(ρφ− Lφ−H)(XXX t)dt

]
− Exxx0

[∫ τε∧h

0

e−ρt(
N∑
i=1

LiK
+
i dξ

i,+
t )

]

− Exxx0

[ ∑
0≤t≤τε∧h

φ(XXX t)− φ(XXX t−)

]
≤ 0. (3.13)

• Taking first ηi,+ = 0 for all i = 1, 2, · · · , N , i.e., ξi,+ = ξi,− = 0, we see that XXX is continuous and
that only the first term in the LHS of (3.13) is nonzero. Dividing the above inequality (3.13) by
h and letting h→ 0, then by the dominated convergence theorem,

ρφ(xxx0)− Lφ(xxx0)−H(xxx0) ≤ 0.

• Now, by taking ηi,+ > 0 and ηj,+ = 0 for j 6= i in (3.13), and noting that ξi,+ and XXX jump only
at t = 0 with size ηi,+, we get[∫ τε∧h

0

e−ρt(ρφ− Lφ−H)(XXX t)dt

]
− LiK+

i η
i,+ − φ(xxx0 + ηi,+eeei) + φ(xxx0) ≤ 0.

Taking h→ 0, then dividing by ηi,+ and letting η → 0, we have

−LiK+
i ≤ ∂xiφ(xxx).

• Meanwhile, taking an admissible control such that ξi,+ = 0 and

ξi,−t =

{
0, t = 0,
ηi,−, t ≥ 0,

where 0 ≤ ηi,− ≤ ε. By a similar argument, we have

∀i = 1, 2, · · · , N, ∂xiφ(xxx) ≤ LiK
−
i .

This proves the sub-solution viscosity property

max{ρφ− Lφ−H(x), β(∇φ)− 1} ≤ 0.

Super-solution. This part is proved by contradiction. Suppose the claim is not true. Then there exist
xxx0 ∈ RN , ε > 0, φ(xxx) ∈ C2(RN) with φ(xxx0) = v(xxx0), v ≥ φ in B̄ε(xxx0) and ν > 0 such that for all
xxx ∈ B̄ε(xxx0),

ρφ(xxx0)− Lφ(xxx0)−H(xxx0) ≤ −ν, (3.14)
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and

−LiK+
i + ν ≤ ∂xiφ ≤ LiK

−
i − ν. (3.15)

Given any admissible control ξξξ, consider the exit time τε = inf{t ≥ 0,XXX t /∈ B̄ε(xxx0)}. Applying Itô’s
formula (Meyer, 1976, Theorem 21) to e−ρtφ(xxx) and any semi-martingale {XXX t}t≥0 under admissible
control (ξi,+, ξi,−)Ni=1 leads to

Exxx0
[
e−ρτεφ(XXXτε−)

]
= φ(xxx0) + Exxx0

[∫ τε

0

e−ρt(−ρφ+ Lφ)(XXX t)dt

]
+ Exxx0

[∫ τε

0

e−ρt
N∑
i=1

∂xiφ(XXX t)[(dξ
i,+
t )c − (dξi,−t )c]

]

+ Exxx0

[ ∑
0≤t<τε

e−ρt[φ(XXX t)− φ(XXX t−)]

]
.

Note that for all 0 ≤ t < τε, XXX t ∈ B̄ε(xxx0). Then, by (3.14), and noting that ∆X i
t = ∆ξi,+t −∆ξi,−t , we

have for all 0 ≤ t < τε,

φ(XXX t)− φ(XXX t−) =
N∑
i=1

∆X i
t

∫ 1

0

∂xiφ(XXX t + z∆XXX t)dz ≤
N∑
i=1

[
(LiK

−
i − ν)∆ξi,+t + (LiK

+
i − ν)∆ξi,−t

]
.

Similarly,

φ(XXX t)− φ(XXX t−) ≥
N∑
i=1

[
−(LiK

−
i − ν)∆ξi,−t − (LiK

+
i − ν)∆ξi,+t

]
. (3.16)

In light of relations (3.14)-(3.16),

Exxx0
[
e−ρτεφ(XXXτε−)

]
≥ φ(xxx0) + Exxx0

[∫ τε

0

e−ρt(−H + ν)(XXX t)dt

]
+ Exxx0

[∫ τε−

0

e−ρt
N∑
i=1

−(LiK
+
i − ν)dξi,+t − (LiK

−
i − ν)dξi,−t

]

= φ(xxx0) − Exxx0
∫ τε

0

e−ρt

[
H(XXX t)dt+

N∑
i=1

LiK
+
i dξ

i,+
t +

N∑
i=1

LiK
−
i dξ

i,−
t

]

+
N∑
i=1

(
Exxx0

[
e−ρτεLiK

+
i ∆ξi,+τε

]
+ Exxx0

[
e−ρτεLiK

−
i ∆ξi,−τε

])
+ ν

{
Exxx0

[∫ τε

0

e−ρtdt

]
+ Exxx0

[∫ τε−

0

e−ρt(dξi,+t + dξi,−t )

]}
. (3.17)

Note that XXXτε− ∈ Bε(xxx0), XXXτε is either on the boundary ∂Bε(xxx0) or out of Bε(xxx0). However, there is
some random variable δ valued in [0, 1] such that

xxxδ = XXXτε− + δ∆XXXτε = XXXτε− + δ(∆ξξξ+t −∆ξξξ−t ) ∈ ∂B̄ε(xxx0).

Then similar to (3.16), we have

φ(xxxδ)− φ(XXXτε−) ≥ δ
N∑
i=1

[
−(LiK

−
i − ν)∆ξi,−τε − (LiK

+
i − ν)∆ξi,+τε

]
. (3.18)
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Note that XXXτε = xxxδ + (1− δ)(∆ξξξ+t −∆ξξξ−t ), thus

v(xxxδ) ≤ (1− δ)
N∑
i=1

(
LiK

+
i ∆ξi,+τε + LiK

−
i ∆ξi,−τε

)
+ v(XXXτε). (3.19)

Recalling that v(xxxδ) ≥ φ(xxxδ), inequalities (3.18)-(3.19) imply

(1−δ)
N∑
i=1

(
LiK

+
i ∆ξi,+τε + LiK

−
i ∆ξi,−τε

)
+v(XXXτε) ≥ φ(XXXτε−)+δ

N∑
i=1

[
−(LiK

−
i − ν)∆ξi,−τε − (LiK

+
i − ν)∆ξi,+τε

]
.

Therefore,
N∑
i=1

(
(LiK

+
i − δν)∆ξi,+τε + (LiK

−
i − δν)∆ξi,−τε

)
+ v(XXXτε) ≥ φ(XXXτε−).

Plugging the last inequality into (3.17), along with φ(xxx0) = v(xxx0), yields

Exxx0e−τε
[

N∑
i=1

(
(LiK

+
i − δν)∆ξi,+τε + (LiK

−
i − δν)∆ξi,−τε

)
+ v(XXXτε)

]

≥ v(xxx0)− Exxx0
∫ τε

0

e−ρt

[
H(XXX t)dt+

N∑
i=1

LiK
+
i dξ

i,+
t +

N∑
i=1

LiK
−
i dξ

i,−
t

]

+
N∑
i=1

(
Exxx0

[
e−ρτεLiK

+
i ∆ξi,+τε

]
+ Exxx0

[
e−ρτεLiK

−
i ∆ξi,−τε

])
+ ν

{
Exxx0

[∫ τε

0

e−ρtdt

]
+ Exxx0

[∫ τε−

0

e−ρt(dξi,+t + dξi,−t )

]}
.

Hence

Exxx0e−τεv(XXXτε) + Exxx0
∫ τε

0

e−ρt

[
H(XXX t)dt+

N∑
i=1

LiK
+
i dξ

i,+
t +

N∑
i=1

LiK
−
i dξ

i,−
t

]

≥ v(xxx0) + ν

{
Exxx0

[∫ τε

0

e−ρtdt

]
+ Exxx0

[∫ τε−

0

e−ρt(dξi,+t + dξi,−t )

]
+ δExxx0

[
e−τε∆ξi,+τε + e−τε∆ξi,−τε

]}
.

We now claim that there exists a constant g0 > 0 such that for all admissible control ξξξ,

Exxx0
[∫ τε

0

e−ρtdt

]
+ Exxx0

[∫ τε−

0

e−ρt(dξi,+t + dξi,−t )

]
+ δExxx0

[
e−τε∆ξi,+τε + e−τε∆ξi,−τε

]
≥ g0. (3.20)

Indeed, one can always find some constant G0 such that the C2 function

ψ(xxx) = G0((xxx− xxx0)2 − ε2)

satisfies {
mini{ρψ − Lψ + 1, 1− |∂xiψ|} ≥ 0, on Bε(xxx0),

ψ = 0 on ∂Bε(xxx0).

Applying Meyer’s version of Itô’s formula (Meyer, 1976, Theorem 21) to e−ρtψ(xxx) and any semi-
martingale {XXX t}t≥0 under admissible control (ξi,+, ξi,−)Ni=1 leads to

Exxx0
[
e−ρτεψ(XXXτε−)

]
≤ ψ(xxx0) + Exxx0

[∫ τε

0

e−ρtdt

]
+

N∑
i=1

Exxx0
[∫ τε−

0

e−ρt(dξi,+t + dξi,−t )

]
. (3.21)
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Since ψxi(xxx0) ≥ −1 for all i = 1, 2, · · · , N ,

ψ(XXXτε−)− ψ(xxxδ) ≥ −∇ψ(XXXτε− − xxxδ) ≥ −δ
N∑
i=1

∆ξi,−τε ,

which, combined with (3.21), yields

Exxx0
[∫ τε

0

e−ρtdt

]
+

N∑
i=1

Exxx0
[∫ τε−

0

(dξi,+t + dξi,−t )

]
+ Exxx0

[
e−ρτεδ

N∑
i=1

∆ξi,−τε

]
≥ Exxx0

[
e−ρτεψ(xxxδ)

]
− ψ(xxx0) = G0ε

2.

Hence (3.20) holds with g0 = G0ε
2.

We can further show that the value function is the unique and W2,∞
loc (RN) solution to the HJB

equation (3.4).

Theorem 5 (Regularity and uniqueness.). Under Assumptions A3, the value function v to the control
problem (Regulator) is the unique W2,∞

loc (RN) solution to the HJB equation (3.4). In addition, there
exists K > 0 such that

0 ≤ ∂2zzzv(xxx) ≤ K, a.e. for xxx ∈ RN , (3.22)

for any second order directional derivative ∂2zzz . Finally, v is C4,α in the continuation region

CN := {xxx | β(∇v(xxx)) < 1} , (3.23)

and CN is bounded.

Proof. To prove v ∈ W2,∞
loc , let B be any open ball and let ψ ∈ C∞0 (RN) be any test function with

a support contained in B. Since (∆xi)−2δ2i v(xxx) is bounded on B for |∆xi| ≤ 1, there is a sequence
ηk → 0+ as k → ∞ such that, denoting by gk the result of replacing ∆xi by ηk in (∆xi)−2δ2i v(xxx), we
have gk → Q weakly in Lp(B) for some p with 1 < p <∞. It is then easy to see that∫

RN
ψ(xxx)Q(xxx)dxxx =

∫
RN
∂2xiψv(xxx)dxxx, ∀ψ ∈ C∞0 (B), (3.24)

where Q = ∂2xiv. The existence and local boundedness of second order derivatives is now immediate:
for k = 1, 2, . . . , N , let eeek denote the unit vector in the direction of the positive xk axis; for any fixed
i 6= j with 1 ≤ i, j ≤ N , let yyy be a new coordinate whose axis points to the eeei+eeej√

2
direction, then

∂2xixjv = ∂2yyyv − 1
2
(∂2xiv + ∂2xjv).

To show that v is the unique solution to HJB, we proceed by a contradiction argument. Suppose v1
and v2 are two non-negative solutions. Let yyy0 be the point where v2 attains its minimum value. Given
δ > 0, define

φδ(xxx) := v1(xxx)− v2(xxx)− δ‖xxx− yyy0‖2, ∀xxx ∈ RN .

The function φδ attains its maximum at some xδ ∈ RN and

0 = ∇φδ(xxxδ) = ∇v1(xxx)−∇v2(xxx)− 2δ(xxxδ − yyy0). (3.25)

This leads to

∇v1(xxxδ) = ∇v2(xxxδ) + 2δ(xxxδ − yyy0).
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Consequently,

1 ≥ β(∇v1(xxxδ)) = β(∇v2(xxxδ) + 2δ(xxxδ − yyy0)).

Since y0 is the minimal point of v2, we have

∇v2(xxxδ) · (xxxδ − yyy0) ≥ 0.

This means that either β(∆v2(xxxδ)) < 1, or for any i ∈ arg max β(∇v2(xxxδ)), (xxxδ − yyy0)i = 0. Suppose the
latter, then by (3.25),

0 = ∂xiv1(xxxδ)− ∂xiv2(xxxδ)− 2δ(xxxδ − yyy0)i.

Hence

∂xiv1(xxxδ) = ∂xiv2(xxxδ) = 0,

for i ∈ arg max β(∇v2(xxxδ)). This implies β(∇v2(xxxδ)) < 1. Meanwhile from (3.4), we know

∆v2(xxxδ) = v2(xxxδ)−H(xxxδ).

By Bony’s maximum principle (Lions, 1983),

0 ≥ lim inf essxxx→xxxδ∆φδ(xxx)

= lim inf essxxx→xxxδ∆v1(xxx)−∆v2(xxx)− 4δ

≥ v1(xxxδ)− v2(xxxδ)− 4δ.

It follows that for any xxx ∈ RN ,

v1(xxx)− v2(xxx) = φδ(xxx) + δ‖xxx− yyy0‖2 ≤ φδ(xxxδ) + δ‖xxx− yyy0‖2 ≤ δ(4 + ‖xxx− yyy0‖2).

Letting δ → 0, we have v1(xxx) ≤ v2(xxx). Similarly, we have v2(xxx) ≤ v1(xxx).
Since |∂xiv(xxx)| ≤ Li max{K+

i , K
−
i } (i = 1, 2, · · · , N) on RN but H grows at least quadratically by

Assumption A3, CN must be bounded.
Finally, let B be any open ball such that B̄ ∈ CN . By Theorem 6.13 in (Gilbarg & Trudinger, 2015),

the Dirichlet problem in B, {
ρṽ − Lṽ = H(xxx), ∀x ∈ B,
ṽ = v, ∀x ∈ ∂B, (3.26)

has a solution ṽ ∈ C0(B̄)∩C2,α(B). In particular, ṽ−v ∈ W2,∞(B), therefore by (3.26), ṽ−v ∈ W1,2
0 (B).

By Theorem 8.9 of (Gilbarg & Trudinger, 2015), v = ṽ in B, thus v ∈ C2,α(B). By Theorem 6.17 of
(Gilbarg & Trudinger, 2015), v ∈ C4,α(B) thus v ∈ C4,α(CN) for all α ∈ (0, 1).

To prove (3.22), let ∆ixxx := (0, · · · , 0,∆xi, 0, · · · , 0) be the N-dimensional row vector with the i-th
entry being ∆xi for i = 1, 2, · · · , N . For any function F : RN → R, define the second difference of F in
the xi direction by

δ2i F (xxx) = F (xxx+ ∆ixxx) + F (xxx−∆ixxx)− 2F (xxx). (3.27)

It is easy to check that

δ2i v(xxx) ≤ sup{δ2i J (xxx;ξξξ) : ξξξ ∈ Uxxx}. (3.28)
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Since H ∈ C2(RN), for xxx ∈ RN ,

δ2iH(xxx) = (∆xi)2
∫ 1

0

∫ λ

−λ
∂2xiH(x1, . . . , xi + µ∆xi, . . . , xN)dµdλ. (3.29)

By Assumption A3,

δ2iH(xxx) ≤ K(∆xi)2
∫ 1

0

∫ λ

−λ
dµdλ = (∆xi)2K. (3.30)

Hence

0 ≤ δ2i v(xxx) ≤ K(∆xi)2, xxx ∈ RN , |∆xi| ≤ 1. (3.31)

The lower bound of (3.31) follows from the convexity of v by Theorem 4.

Remark 6. The proof of Theorem 5 is inspired by the approach in (Soner & Shreve, 1989, Theorem
4.5) and (Williams et al., 1994, Theorem 3.1). In (Soner & Shreve, 1989), the following HJB equation
(3.32) (See Eqn. 3.1 in (Soner & Shreve, 1989)) was studied for an N -dimensional control problem

max

ρu− Lu−H(xxx),

√√√√ N∑
i=1

(∂xiu)2 − 1

 = 0. (3.32)

Comparing the gradient constraints in (3.32) with (3.4), it is clear that the operator β in (3.4) is less
regular than ‖∇u‖2 in (3.32) as ‖∇u(·)‖2 has smoother and gradual changes in the state space RN . In
contrast, β in (3.4) involves a maximum operator as a result of game interactions.

The very same HJB equation (3.4) has appeared in Menaldi & Taksar (1989) for analyzing the
convergence of finite variation controls from controls of bounded velocity. However, no characterization
of the optimal control nor regularity analysis has been studied.

4 Pareto-optimal policies
The regularity analysis of the value function for problem (Regulator) enables us to establish the
existence and the uniqueness of its optimal control, for any given weight (L1, · · · , LN) such that Li > 0
and

∑N
i=1 Li = 1 (Section 4.1). The optimal control in (Regulator) is then shown to lead to a Pareto-

optimal policy for game (N-player) ( Theorem 12) for each choice of weights (L1, · · · , LN).

4.1 Optimal policy for the regulator

To ensure the uniqueness of the Pareto-optimal policy, we impose the following assumption on the value
function v.

A4. The diagonal dominates the row/column in the Hessian matrix ∇2v. That is,

∂2xiv(xxx)>
∑
j 6=i

∣∣∂2xixjv(xxx)
∣∣ ,∀i,= 1, 2, · · · , N and xxx ∈ CN . (4.1)
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Note that a similar assumption was used in (Gomes et al., 2010, Assumption 3) to analyze Nash equilib-
rium strategies. This assumption guarantees that the reflection direction of the Skorokhod problem is
not parallel to the boundary, and that the controlled dynamics are continuous when xxx ∈ CN . Assump-
tion A4 may be relaxed using techniques of Kruk (2000) to deal with possible jumps at the reflection
boundary.

Given this additional assumption and the regularity of the value function, we are now ready to
characterize the Pareto-optimal policy to game (N-player).

We shall show that when xxx ∈ CN , the optimal policy can be constructed by formulating and solving
a sequence of Skorokhod problems with piecewise C1 boundaries, and then by passing to the limit of this
sequence of ε-optimal policies. We shall also show that the reflection field of the Skorokhod problem
can be extended to the entire state space under appropriate conditions, completing the construction of
the Pareto-optimal policy when xxx is outside CN .

Optimal policy for xxx ∈ CN . First, recall the definition of the Skorokhod problem Ramanan (2006).

Definition 7 (Skorokhod problem). Let G be an open domain in RN with S = ∂G. Let Γ(a, b) = {x ∈
RN : |x − a| = b}. To each point xxx ∈ S, we will associate a set rrr(xxx) ⊂ Γ(0, 1) called the directions of
reflection. We say that a continuous process

ξξξt =

∫ t

0

NNN sdηs, (4.2)

with ηt =
∨

[0,t] ξξξ, is a solution to a Skorokhod problem with data (xxx+ µµµt+ σσσBBBt, G,rrr,xxx) if

(a) |NNN t| = 1, ηt is continuous and nondecreasing;

(b) the process XXX t = xxx+ µµµt+ σσσBBBt +
∫ t
0
NNN sdηs satisfies XXX t ∈ G, 0 ≤ t <∞, a.s;

(c) for every 0 ≤ t <∞,

ηt =

∫ t

0

1(XXXs∈∂G,NNNs∈rrr(XXXs))dηs.

Now let us introduce some notations for the Skorokhod problem associated with the continuation
region CN defined in (3.23). By definition,

CN = {xxx | β(∇v(xxx)) < 1} = ∩2Nj=1Gj, (4.3)

where for i = 1, 2, · · · , N ,

Gi = {xxx | ∂xiv(xxx) < LiK
−
i }, Gi+N = {xxx | ∂xiv(xxx) > −LiK+

i }. (4.4)

Denote S = ∂CN as the boundary of CN , denote I(xxx) = {j | xxx /∈ Gj, j = 1, 2, · · · , 2N} as the boundary
that xxx lines on, and define the vector field γj on each face Gj as

γi = −eeei, γi+N = eeei, (4.5)

where eeei = (0, · · · , 0, 1, 0, · · · , 0) with the ith component being 1. Then the directions of the reflection
is defined as

rrr(xxx) =

∑
j∈I(xxx)

cjγj(xxx) : ci ≥ 0 and

∣∣∣∣∣∣
∑
j∈I(xxx)

cjγj(xxx)

∣∣∣∣∣∣ = 1

 . (4.6)
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Theorem 8 (ε-policy). Assume Assumptions A1-A4 holds and xxx ∈ CN . For any ε > 0, there exists a
unique solution to the Skorokhod problem with data (xxx+µµµt+σσσBBBt, Cε, rrrε,xxx) is an ε-optimal (admissible)
policy of the control problem (Regulator) with

ξξξεt =

∫ t

0

NNN ε
s · dηεs, (4.7)

and NNN ε
s = rrrε(XXX

ε
s) on Sε, where XXXε

t = xxx+ µµµt+ σσσBBBt + ξξξεt. That is,

J(xxx,ξξξε) < v(xxx)− C0ε,

for some constant C0 that is independent of ε. Here Cε ⊆ C has piecewise smooth boundaries.

Proof. The proof consists two steps. We first construct an approximation Cε of CN with piecewise C1
boundaries. Clearly, if ∂CN itself is piecewise C1, the Cε = CN . We then show that the solution to
the Skorokhod problem with piecewise smooth boundary provides an ε-policy to the regulator’s control
problem.

Step 1: Skorokhod problem with piecewise smooth boundary. Let φδ(x) ∈ C∞(RN ,R+) be
such that φδ(xxx) = 0 for |xxx| ≥ δ and ∫

RN
φδ(xxx)dxxx = 1. (4.8)

Since v ∈ W2,∞
loc (RN), consider a regularization of v(xxx) via φε, such that

vδ(xxx) = φδ ∗ v(xxx). (4.9)

The boundedness of v, ∇v, D2v on BR(0), with CN ⊂ BR−1(0), implies that Hδ, vδ are bounded
uniformly on CN for δ < 1, and

vδ → v, ∇vδ → ∇v, Hδ → H uniformly in CN .

Denote Kmax = maxi=1,2,··· ,N{LiK+
i , LiK

−
i }, Kmin = mini=1,2,··· ,N{LiK+

i , LiK
−
i } and recall K in (3.22)

such that 0 ≤ ∂2zzzv(xxx) ≤ K for any second order directional derivative ∂2zzz . Then, for any εk ∈ (0, 1
4
),

there exists δk := δk(εk) ∈
(
0, εkKmin

K

)
such that for all δ ∈ [0, δk], ‖∇vδ − ∇v‖1 < Kminεk. Take a

non-negative and non-increasing sequence {εk}k such that limk→∞ εk = 0. Denote wδk(xxx) = β(∇vδk(xxx))
and Cεk := {xxx | wδk(xxx) < 1− 2εk} = ∩2Nj=1G

εk
j , where i = 1, 2, · · · , N ,

Gεk
i = {xxx | ∂xivδk(xxx) < (1− 2εk)LiK

−
i },

Gεk
i+N = {xxx | ∂xivδk(xxx) > (−1 + 2εk)LiK

+
i }. (4.10)

Since ‖∇vδk −∇v‖1 < Kminεk in CN and by the definition in (4.10), we have Cεk ⊂ CN . Also notice that
∂Gεk

j ∩ Cεk ∈ C2 because vδk is smooth. Now, take any ε from the sequence {εk}k, and denote Sε = ∂Cε
as the boundary of Cε, and Iε(xxx) =

{
j | xxx /∈ Gε

j, j = 1, 2, · · · , 2N
}
. Define the vector field γj on each

face Gε
j as (4.5) and the directions of reflection by

rrrε(xxx) =

 ∑
j∈Iε(xxx)

cjγj(xxx) : ci ≥ 0 and

∣∣∣∣∣∣
∑
j∈Iε(xxx)

cjγj(xxx)

∣∣∣∣∣∣ = 1

 . (4.11)
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When ε = 0, denote I(xxx) := I0(xxx) and rrr(xxx) := rrr0(xxx) for the index set and reflection cone of region CN ,
respectively. Then define the normal direction on face Gε

j as nεj (j = 1, 2, · · · , 2N) with

nεi = − ∇(∂xiv
δ)

‖∇(∂xivδ)‖2
,

nεi+N =
∇(∂xiv

δ)

‖∇(∂xivδ)‖2
, i = 1, 2, · · · , N.

Note that the normal direction nεj (j = 1, 2, · · · , 2N) is well-defined by the construction of (4.10).

Next we want to show that nεi ·γi =
∂2
xi
vδ

‖∇(∂xivδ)‖2
> 0 and nεi+N ·γi+N =

∂2
xi
vδ

‖∇(∂xivδ)‖2
> 0 for i = 1, 2, · · · , N .

To do so, we want to show that Bδ(xxx) ∈ CN for xxx ∈ Sε. Note that (−1 + 2ε)LiK
+
i ≤ ∂xiv(xxx) ≤

(1− 2ε)LiK
−
i for xxx ∈ C̄ε. For any yyy ∈ Bδ(xxx), |∂xiv(xxx)− ∂xiv(yyy)| ≤ K‖xxx−yyy‖ ≤ Kδ ≤ εKmin. Therefore,

(−1+ε)LiK
+
i ≤ (−1+2ε)LiK

+
i −εKmin ≤ ∂xiv(yyy) ≤ (1−2ε)LiK

−
i +εKmin ≤ (1−ε)LiK−i . Thus, yyy ∈ CN

for all yyy ∈ Bδ(xxx) and xxx ∈ Sε. Moreover, under Assumption A4, ∂2xiv
δ(xxx) =

∫
yyy∈Bδ(xxx)

∂2xiv(xxx)φδ(xxx−yyy)dyyy >
0 for all xxx ∈ Sε.

Furthermore, at each point xxx ∈ Sε, there exists γ ∈ rrrε(xxx) pointing into Cε. This is because there is
no xxx ∈ ∂Cε such that i, i + N ∈ Iε(xxx) for all i = 1, 2, · · · , N . This implies |Iε(xxx)| ≤ N for all xxx ∈ ∂Cε.
Now Assumption A4 implies the following condition (3.8) in Dupuis & Ishii (1993)): the existence of
scalars bj ≥ 0 j ∈ Iε(xxx), such that

bj 〈γj(xxx), nj(xxx)〉 >
∑

k∈Iε(xxx)\{i}

bk |〈γk(xxx), nk(xxx)〉| .

Here we can simply take bj = 1 for all j ∈ Iε(xxx). Therefore, by (Dupuis & Ishii, 1993, Theorem
4.8 and Corollary 5.2), there exists a unique strong solution to the Skorokhod problem with data
({xxx+ µµµt+ σσσBt}t≥0, Cε, rrrε,xxx).

Step 2. ε-optimal policy. Now we shall show that the solution to the Skorokhod problem with
data(xxx+ µµµt+ σσσBBBt, Cε, rrrε,xxx) is an ε-optimal policy of the control problem (Regulator) with

ξξξεt =

∫ t

0

NNN ε
s · dηεs, (4.12)

and NNN ε
s ∈ rrrε(XXXε

s) on Sε, with XXXε
t = xxx + µµµt + σσσBBBt + ξξξεt. By (Dupuis & Ishii, 1993, Theorem 4.8), XXXε is

a continuous process. Since v ∈ C4,α(CN), applying the Itô formula to the continuous semi-martingale
yields

v(xxx) = Exxx
∫ ∞
0

e−ρt [H(XXXε
t)dt+∇v(XXXε

t) ·NNN ε
tdη

ε
t ]

≥ Exxx
∫ ∞
0

e−ρt
[
H(XXXε

t)dt+ (1− 3ε)
[
(NNN ε

t)
+ ·K+

LK
+
LK
+
L + (NNN ε

t)
− ·K+

LK
+
LK
+
L

]
dηεt
]

= Exxx
∫ ∞
0

e−ρt
[
H(XXXε

t)dt+
[
(NNN ε

t)
+ ·K+

LK
+
LK
+
L + (NNN ε

t)
− ·K+

LK
+
LK
+
L

]
dηεt
]

(4.13)

−3εExxx
∫ ∞
0

e−ρt
[
(NNN ε

t)
+ ·K+

LK
+
LK
+
L + (NNN ε

t)
− ·K+

LK
+
LK
+
L

]
dηεt

≥ Exxx
∫ ∞
0

e−ρt
[
H(XXXε

t)dt+
[
(NNN ε

t)
+ ·K+

LK
+
LK
+
L + (NNN ε

t)
− ·K+

LK
+
LK
+
L

]
dηεt
]

−3εKmaxExxx
∫ ∞
0

e−ρtdηεt ,
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where NNN ε(xxx) ∈ rrrε(xxx) on Sε,

K+
LK
+
LK
+
L := (L1K

+
1 , · · · , LNK+

N), K−LK
−
LK
−
L := (L1K

−
1 , · · · , LNK−N), and Kmax = max

1≤i≤N
{LiK+

i , LiK
−
i }. (4.14)

The first inequality of (4.13) holds since ‖∇vδ −∇v‖L1 < Kminε for δ ∈ [0, δ(ε)] and (4.10).
Moreover, there exists constant C > 0 such that Exxx

[∫∞
0
e−ρtdηεt

]
≤ C for all ε < 1

2
. Hence

v(xxx) ≥ J(xxx;ξξξεt)− 3εCKmax.

Proposition 9. Assume Assumptions A1-A4 hold, when xxx ∈ CN .The optimal policy acts only on ∂CN ,
and its reflection direction is in rrr(xxx).

Proof. Take the smooth function φε in (4.8) and the smooth version of value function vε in (4.9). Let
Hε(xxx) = φε ∗H(xxx). From the HJB Equation (3.4),

ρv − Lv ≤ H, β(∇v) ≤ 1 in RN ,

and

ρvε − Lvε ≤ Hε, β(∇vε) ≤ 1 in RN . (4.15)

Letting T > 0 and applying Meyer’s version of Itô’s formula (Meyer, 1976, Theorem 21) to e−ρtvε(xxx)
and any semi-martingale {XXX t}t≥0 under admissible control (ξi,+, ξi,−)Ni=1 yield

Exxx
[
e−ρtvε(XXXT )

]
= vε(xxx) + Exxx

∫ T

0

e−ρt (Lvε − ρvε) (XXX t)dt

+ Exxx
∫ T

0

e−ρt∇vε(XXX t) · dξξξt

+ Exxx
∫ T

0

∑
0≤t<T

e−ρt(vε(XXX t)− vε(XXX t−)−∇vε · (XXX t)(ξξξt − ξξξt−)),

with the last term coming from the jumps of XXX t. By (4.15),

Exxx
[
e−ρTvε(XXXT )

]
+ Exxx

∫ T

0

e−ρtHε(XXX t)dt− Exxx
∫ T

0

e−ρt∇vε(XXX t) · dξξξt

+Exxx
∫ T

0

∑
0≤t<T

e−ρt(−vε(XXX t) + vε(XXX t−) +∇vε(XXX t) · (ξξξt − ξξξt−)) ≥ vε(xxx).
(4.16)

Moreover, Hε, vε are bounded uniformly on CN for ε < 1 because v, ∇v, D2v are bounded on BR(0),
with CN ⊂ BR−1(0), thus

vε → v, ∇vε → ∇v, Hε → H uniformly in CN .

Meanwhile, for ∀xxx ∈ CN ,

v(xxx) = Exxx
∫ ∞
0

e−ρt
[
H(XXX∗t )dt+

[
(NNN∗t )

+ ·K+
LK
+
LK
+
L + (NNN∗t )

− ·K−LK
−
LK
−
L

]
dη∗t
]
, (4.17)
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where XXX∗t = xxx+µµµt+σσσBBBt + ξξξ∗t with ξξξ∗t :=
∫ t
0
NNN∗sdη

∗
s the optimal control, and K+

LK
+
LK
+
L and K−LK

−
LK
−
L are defined in

(4.14). In particular,

Exxx
∫ ∞
0

e−ρtdη∗t <∞, (4.18)

which leads to

Exxx
∫ T

0

e−ρt
[
(NNN∗t )

+ ·K+
LK
+
LK
+
L + (NNN∗t )

− ·K−LK
−
LK
−
L

]
dη∗t <∞.

By the bounded convergence theorem and (4.16),

Exxx
[
e−ρTv(XXX∗T )

]
+ Exxx

∫ T

0

e−ρtH(XXX∗t )dt− Exxx
∫ T

0

e−ρt∇v(XXX∗t ) ·NNN∗tdηt

+Exxx
∫ T

0

∑
0≤t<T

e−ρt
(
−v(XXX∗t ) + vε(XXX∗t−) +∇v(XXX∗t ) ·NNN∗t (η∗t − η∗t−)

)
≥ v(xxx).

(4.19)

The last term on the left-hand side is nonpositive because of convexity of v, hence

Exxx
[
e−ρTv(XXX∗T )

]
+ Exxx

∫ T

0

e−ρtH(XXX∗t )dt− Exxx
∫ T

0

e−ρt∇v(XXX∗t ) ·NNN∗tdη∗t ≥ v(xxx).

Letting T →∞, by the boundedness of XXX∗t , β(∇v) ≤ 1, |NNN∗t | = 1, and (4.18),

Exxx
∫ T

0

e−ρtH(XXX∗t )dt− Exxx
∫ T

0

e−ρt∇v(XXX∗t ) ·NNN∗tdη∗t ≥ v(xxx).

Along with (4.17), we have

0 ≥ Exxx
∫ ∞
0

e−ρt
([
∇v(XXX∗t ) +K+

LK
+
LK
+
L

]
· (NNN∗t )+dη∗t +

[
−∇v(XXX∗t ) +K−LK

−
LK
−
L

]
· (NNN∗t )−dη∗t

)
.

Given β(∇v) ≤ 1, we have −K+
i ≤ vxi(xxx) ≤ K−i , ∀x ∈ RN and i = 1, 2, · · · , N. Hence

0 ≥ Exxx
∫ ∞
0

e−ρt
([
∇v(XXX∗t ) +K+

LK
+
LK
+
L

]
· (NNN∗t )+dη∗t +

[
−∇v(XXX∗t ) +K−LK

−
LK
−
L

]
· (NNN∗t )−dη∗t

)
≥ 0.

This implies dη∗t = 0 when β(∇v(XXX∗t )) < 1 a.e. in t. Also, when dη∗t 6= 0, NNN∗t (xxx) ∈ rrr(xxx) for xxx ∈ S a.e.
for t ∈ [0,∞), where the reflection cone rrr(xxx) is defined in (4.6).

Now we are ready to establish the main theorem when xxx ∈ CN .

Theorem 10 (Existence and uniqueness of optimal controls). Take xxx ∈ CN and assume A1- A4. Then
there exists a unique optimal control ξξξ∗ to problem (Regulator), which is a solution to the Skorokhod
problem (7) with data (xxx+ µµµt+ σσσBBBt, CN , rrr,xxx) such that XXX∗t ∈ CN .

Proof. The existence of the optimal control to the control problem (Regulator) follows from an appro-
priate modification of Theorem 4.5 and Corollary 4.11 in (Menaldi & Taksar, 1989), as below.

First, J(xxx;ξξξε)→ v(xxx) as ε→ 0, then ξξξεt(ω) converges under measure mT on ([0, T ]×Ω, B[0, T ]×F)
for any T > 0, which equals to the product of Lebesgue measure and P. Furthermore, there exists an
unique optimal policy ξξξ∗ which is the limit of a subsequence of {ξξξε}ε.
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If (NNN εk , ηεk) is a sequence of εk−optimal policies for xxx and limk→∞ εk → 0, then one can extract a
subsequence εk′ such that

ξξξ
εk′
t =

∫ t

0

NNN εk′
s dηεk′s → ξξξ∗t , (4.20)

under Leb× P for almost all (t, ω), where Leb is the Lebesgue measure on [0,∞).
By the analysis in Theorem 8, there exits a sequence of εk−optimal policy and εk → 0 when k →∞.

Therefore, the optimal control exists. Let

A =
{
ω |XXXεk′

t (ω) ∈ Cεk′ for all 0 ≤ t <∞ and all k′ ≥ 0
}
,

then by definition (4.12), P (A) = 1. Also define

B =
{
ω |XXXεk′

t →XXX t a.e. Leb on [0,∞)
}
,

then by (4.20), P (B) = 1. For all ω ∈ A ∩B, since CN is closed,

XXX t(ω) ∈ CN Leb a.e. on [0,∞).

Properties (b) and (c) of the Skorokhod problem (Definition 7) follow from Theorem 8 and Propo-
sition 9, respectively. By Assumption A4, for any xxx ∈ ∂CN and γ(xxx) ∈ rrr(xxx), γ(xxx) is not parallel to ∂CN
at xxx. Hence, property (a) holds, i.e., the optimal control is continuous.

It remains to show the uniqueness of the optimal control. This is done by a contradiction argument.
Suppose that there are two optimal controls {ξξξ∗}t≥0 and {ξξξ∗∗}t≥0 such that ξξξ∗ 6= ξξξ∗∗ almost surely. Let
{XXX∗t}t≥0 and {XXX∗∗t }t≥0 be the corresponding trajectories. Let ξξξt =

ξξξ∗t+ξξξ
∗∗
t

2
and XXX t =

XXX∗t+XXX
∗∗
t

2
. Then by

Assumption A3,

v(xxx)− J(xxx;ξξξt) =
(J(xxx;ξξξ∗) + J(xxx;ξξξ∗∗))

2
− J(x;ξξξ)

≥ Exxx
∫ ∞
0

e−ρt
[
H(XXX∗t ) +H(XXX∗∗t )

2
−H

(
XXX∗t +XXX∗∗t

2

)]
dt > 0.

Therefore v(xxx) > J(xxx;ξξξ), which contradicts the optimality of {ξξξ∗t}t≥0 and {ξξξ∗∗t }t≥0. Hence the uniqueness
of the optimal control.

Optimal policy for xxx /∈ CN . When xxx /∈ CN , the optimal policy is to jump immediately to some point
x̂xx ∈ CN and then follows the optimal policy in CN . We will need the following assumption so that the
reflection field of the Skorokhod problem is extendable to the RN plane (Dupuis & Ishii, 1991). Note
that when N = 2, A5 follows directly from Assumptions A1-A3.

A5. There is a map π : RN → CN satisfying π(xxx) = xxx for all xxx ∈ CN and π(xxx)− xxx ∈ rrr(π(xxx)).

This assumption was also adopted in (Dupuis & Ishii, 1991, Assumption 3.1).

Theorem 11. Given A1-A3, and A5. For any xxx /∈ CN , there exists an optimal policy π such that
π(xxx) ∈ ∂CN at time 0 and

v(xxx) = v(π(xxx)) + l(xxx− π(xxx)),

with l(yyy) =
∑

i li(yi), where

li(yi) =

{
LiK

−
i yi, if yi ≥ 0,

−LiK+
i yi, if yi < 0.

(4.21)
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Proof. Notice that l(yyy) is convex and

li(yi) = max
−LiK+

i ≤k≤LiK
−
i

{kyi} = max{−LiK+
i yi, LiK

−
i yi} for yi ∈ R.

Here we define two linear approximations which correspond to the lower and the upper bounds of the
value function v(xxx), respectively.

For xxx 6∈ CN , define

u1(xxx) = v(π(xxx)) +∇v(π(xxx)) · (xxx− π(xxx)),

u2(xxx) = v(π(xxx)) + l(xxx− π(xxx)). (4.22)

Then u2(xxx) ≥ v(xxx) by the sub-optimality of the policy, and u1(xxx) ≤ v(xxx) by convexity. Thus,

u1(xxx) ≤ v(xxx) ≤ u2(xxx). (4.23)

We now show u1(xxx) = u2(xxx). By Assumption A5, u1 and u2 in (4.22) can be rewritten as

u1(xxx) = v(π(xxx)) +∇v(π(xxx)) · d(π(xxx))‖xxx− π(xxx)‖,
u2(xxx) = v(π(xxx)) +PPP (π(xxx)) · d(π(xxx))‖xxx− π(xxx)‖,

where d(π(xxx)) ∈ rrr(π(xxx)) and PPP (xxx) = (P1, · · · , PN)(xxx), with

Pi(xxx) = LiK
+
i 1(∂xiv(xxx) < 0) + LiK

−
i 1(∂xiv(xxx) > 0).

Therefore u1(xxx) = u2(xxx).

4.2 Pareto-optimal policy

Pareto-optimal policy for (N-player) can now be constructed from the optimal control for problem
(Regulator) according to the following.

Theorem 12. The optimal control of problem (Regulator) yields a Pareto-optimal policy for the game
(N-player).

Proof. The proof is straightforward. To see this, take the payoff function J i in (N-player), v(xxx) the
value function in (Regulator), and the optimal control ξξξ∗ := (ξξξ1∗, . . . , ξξξN∗), if exists, to problem
(Regulator), then for any ξξξ := (ξξξ1, . . . , ξξξN) ∈ UN and Li, with Li > 0,

∑N
i=1 Li = 1,

N∑
i=1

LiJ
i(xxx;ξξξ) ≥ v(xxx), (4.24)

where value v(xxx) is reached when player i takes the control ξξξi∗t (i = 1, 2, . . . , N).
If there is another ξξξ′ := (ξξξ1

′
, . . . , ξξξN

′
) ∈ UN and k ∈ {1, . . . , N} such that

Jk(xxx;ξξξ1
′
, . . . , ξξξN

′
) < Jk(xxx;ξξξ1∗, . . . , ξξξN∗),

then given Li > 0 for all i, there must exists j ∈ {1, . . . , N} such that

J j(xxx;ξξξ1
′
, . . . , ξξξN

′
) > J j(xxx;ξξξ1∗, . . . , ξξξN∗).

Hence the control ξξξ∗ is a Pareto-optimal policy by definition.

21



Combining Theorems 10, 11 and 12 yields the following result which summarizes the structure of the
set of Pareto optima:

Theorem 13 (Pareto-optimal policies). Under Assumptions A1-A5, for any set of weights LLL =
(L1, · · · , LN) with Li > 0 and

∑N
i=1 Li = 1, the unique solution ξLξLξL ∈ UN to the regulator’s problem

(Regulator) yields a Pareto-optimal policy for the game (N-player).

The analytical structure of the continuation region (4.3) and the Pareto-optimal policy suggest the
following description: XXX t evolves according to the uncontrolled diffusion process inside the interior of
CN and when it hits boundary at a point belonging to ∂Gi or ∂Gi+N , then bank i will adjust its rate
to push it back continuously inside CN . In particular the optimal policies lead to continuous controls ξi
i.e. no impulses are used.

4.3 Pareto-optimal policies for interbank lending

Let us now translate these results in the setting of the interbank lending model described in Section 1.1.
Theorem 13 implies that Pareto optima for the interbank lending market may be described in terms

of policies of a regulator facing the optimization problem (Regulator) with an aggregate payoff function
(3.2) representing a weighted average of payoffs of individual banks. Under a Pareto-optimal policy, the
interbank rates may be described as a ‘regulated diffusion’ in a bounded region CN defined by (4.3).
The boundedness of CN implies that from the payoff structure (1.2) emerges an endogenous bound on
the interbank rates: the Pareto-optimal policy guides XXX t to remain confined in the bounded region
CN , which implies in particular that both the benchmark and the spreads X i remain bounded. In the
context of the LIBOR mechanism, this can be seen as the impact of ‘trimmed’ averaging, which is the
origin of the terms K+

i , K
−
i , as explained in Section 1.1: as banks internalize the risk of being ‘outliers’

in the benchmark fixing, they confine their rates to a bounded region.
The process XXX t diffuses in the interior of CN , following the random shocks banks are subjected to,

and is pushed into the interior when it reaches the boundary. More precisely, the boundary ∂CN is
composed of 2N ’faces’ corresponding to the saturation of the constraints in (4.4). Edges correspond to
intersections of two or more faces. WhenXXX t reaches a point xxx ∈ ∂CN , action is taken by all banks i such
that xxx /∈ Gi ∪ Gi+N : if xxx /∈ Gi then X i is reduced i.e. dξi,− > 0 and if xxx /∈ Gi+N then X i is increased
i.e. dξi,+ > 0. When XXX t reaches the interior of such a face, only bank i adjusts its rate in order to
continuously push back XXX t to the interior. Similarly, if XXX t reaches an edge, two or more banks need
to simultaneously adjust their rates. The rate at which such simultaneous adjustments occur is given
by the intersection local time (Rosen, 1987) of (X1, ..., XN) on the boundary. Therefore Pareto-optimal
policy rarely leads to more than one bank’s rate to be adjusted; a simultaneous rate adjustment by
several banks is most likely not associated with a Pareto-optimal policy and is thus the signature of a
non-optimal behavior by banks.

We also note that, although the admissible controls allow for ‘impulses’ i.e. discontinuous adjust-
ments of rates, such impulses are not optimal and Pareto-optimal policies correspond to continuously
pushing the process to the interior. The only possible discontinuity in Pareto-optimal policies (discussed
in Theorem 11) is the case of an initial impulse at t = 0 to bring the initial condition into CN , which
we may interpret as the entry of a new bank into the interbank market.

The set of all such Pareto optima is parameterized by the set of allocations L = (L1, ..., LN) with
Li > 0 and

∑N
i=1 Li = 1. These allocations lead to different outcomes across banks. A natural choice

is to take Li proportional to the market share (or loan volume) of bank i; (3.2) then represents an
aggregate wealth maximization problem and this policy leads to the same pro-rata cost across banks.
As is clear from (3.5), choosing a higher weight Li leads to a tighter control on the rates of bank i.
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5 Explicit solution for N = 2 players
We now study in more detail the structure of the optimal strategies for the case of N = 2. Our analytical
results illustrate the difference between Nash equilibria and Pareto optima and demonstrate the impact
of regulatory intervention in this game.

5.1 Pareto-optimal solution for N = 2

For the special case of N = 2, we can derive explicitly its Pareto-optimal solution. For ease of exposition,
we shall assume the following conditions in the case of N = 2.

B1. a1 = a2 and L1 = L2. In other words, the regulator allocates equal weights to the banks.

B2. h1(x1, x2) = h2 = h1(x1, x2) = h(x1−x2), h ∈ C3(R) is symmetric, and there exist 0 < c < C such
that c < h′′ < C, and h′′ is non-decreasing and bounded away from 0.

B3. µ1 = µ2 = 0, K+
1 = K−1 =: K1 > 0 and K+

2 = K−2 =: K2 > 0.

Note that Assumption B2 is more general than Assumptions A1-A3. As a result, we will see in
Proposition 16 that the non-action region may not necessarily be bounded and the Pareto-optimal policy
for the game may not be unique with fixed weights L1 = L2.

Under Assumption B3, the rates X1
t and X2

t are assumed to be

X i
t = σσσi · dBBBt + dξi,+t − dξ

i,−
t , with xi0− = xi, i = 1, 2. (5.1)

The regulator’s value function v(x1, x2) is

v(x1, x2) = inf
(ξξξ1,ξξξ2)∈U2

J(x1, x2, ξξξ1, ξξξ2) = inf
(ξξξ1,ξξξ2)∈U2

1

2

[
J1(x1, x2, ξξξ1, ξξξ2) + J2(x1, x2, ξξξ1, ξξξ2)

]
(5.2)

= inf
(ξξξ1,ξξξ2)∈U2

E(x1,x2)

[∫ ∞
0

e−ρt
(
h
(
X1
t −X2

t

)
dt+

K1

2
dξ1,+t +

K1

2
dξ1,−t +

K2

2
dξ2,+t +

K2

2
dξ2,−t

)]
,

subject to (5.1).

Lemma 14. Assume K2 < K1 and B1-B3. Then for any (ξξξ1∗, ξξξ2∗) ∈ arg inf(ξξξ1,ξξξ2)∈U2 J(x1, x2, ξξξ1, ξξξ2),

(ξ1,+∗t , ξ1,−∗t ) = (0, 0) for any t ≥ 0 a.s..

Proof. The statement is proved by contradiction. Assume there exists an optimal policy (ξξξ1∗, ξξξ2∗) ∈
arg inf(ξξξ1, ξξξ2)∈U2 J(x1, x2, (ξξξ1, ξξξ2)) and t0 ≥ 0 such that

ξ1∗,+t0 > 0.

Since ξ1,+∗ is a non-decreasing process, we have ξ1,+∗t > 0 for all t ≥ t0. Now construct the following
admissible policy (ξξξ1, ξξξ2) such that, ∀t ≥ 0,

ξ
2,−
t = ξ1∗,+t + ξ2∗,−t ,

ξ
1,+

t = 0,

ξ
1,−
t = ξ1∗,−t , ξ

2,+

t = ξ2∗,+t .

(5.3)

Then
J(x1, x2, ξξξ1∗, ξξξ2∗)− J(x1, x2, ξξξ

1
, ξξξ

2
) = E(x1,x2)

[∫ ∞
0

e−ρt
K1 −K2

2
dξ1∗,+t

]
> 0,

which contradicts the optimality of the control process (ξξξ1∗, ξξξ2∗).
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We now show that solving the control problem (5.1)-(5.2) is equivalent to the following control
problem (5.4)-(5.5) when K1 > K2,

u(y) = inf
ηηη∈U1

Ĵ(y,ηηη)

= inf
ηηη∈U1

Ey
[∫ ∞

0

e−ρt
(
h (Yt) dt+

K2

2
dη+t +

K2

2
dη−t

)]
, (5.4)

subject to

dYt = (σσσ1 − σσσ2) · dBBBt − dη+t + dη−t , with Y0− = y. (5.5)

Lemma 15 (Equivalence). Assume B1-B3 and K1 > K2, then

(i) v(x1, x2) = u(x1 − x2);

(ii) If (ξξξ1∗, ξξξ2∗) ∈ arg inf(ξξξ1,ξξξ2)∈U2 J(x1, x2, (ξξξ1, ξξξ2)), then (ξ1∗,+t , ξ1∗,−t ) = (0, 0) ∀t a.s., and
ξξξ2∗ ∈ arg infηηη∈U1 Ĵ(x1 − x2, ηηη);

(iii) If ηηη∗ ∈ arg infηηη∈U1 Ĵ(x1 − x2, ηηη), then ((000,000), ηηη) ∈ arg inf(ξξξ1,ξξξ2)∈U2 J(x1, x2, (ξξξ1, ξξξ2)).

Proof. By Lemma 14, (ξ1∗,+t , ξ1∗,−t ) = (0, 0) for any t ≥ 0 a.s.. Therefore, we can consider a smaller class
of admissible control set where (ξ1,+t , ξ1,−t ) = (0, 0) ∀t ≥ 0 and ξξξ2 ∈ U1. Note that with (ξ1,+t , ξ1,−t ) =
(0, 0), we have

X1
t −X2

t = (σσσ1 − σσσ2) ·BBBt − ξ2,+t + ξ2,−t + (x1 − x2), (5.6)

and

J(x1, x2, ξξξ1, ξξξ2) = E(x1,x2)

[∫ ∞
0

e−ρt
(
h
(
X1
t −X2

t

)
dt+

K2

2
dξ2,+ +

K2

2
dξ2,−

)]
. (5.7)

Clearly problem (5.6)-(5.7) is equivalent to the one-dimensional control problem (5.4)-(5.5) with y =
x1 − x2. Hence the claim.

Proposition 16 (Pareto-optimal solution when N = 2). Assume B1-B3, then

(i) If K1 = K2 = K, then the following control yields one Pareto-optimal policy to game (5.1)-(5.2):

ξξξ1∗t = (ξ1∗,+t , ξ1∗,−t ) =

(
0,max

{
0, max

0≤u≤t

{
(x1 − x2) + (σσσ1 − σσσ2) ·BBBu + ξ2∗,−u − c1

}})
,

ξξξ2∗t = (ξ2∗,+t , ξ2∗,−t ) =

(
0,max

{
0, max

0≤u≤t

{
−(x1 − x2) + (σσσ2 − σσσ1) ·BBBu + ξ1∗,−u − c1

}})
,

(5.8)

where c1 is the unique solution to

σ̃√
2ρ

tanh

(√
2ρ

σ̃
x

)
=
p′1(x)− K

2

p′′1(x)
, (5.9)

and

p1(x) = E
[∫ ∞

0

e−ρth (x+ σ̃Bt) dt

]
, (5.10)
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with σ̃ =
√∑2

i=1

∑D
j=1 σ

2
ij. The associated Pareto-optimal value is

v(x1, x2) =


−
σ̃2p′′1 (c1) cosh

(
(x1−x2)

√
2ρ
σ̃

)
2ρ cosh

(
c1
√
2ρ
σ̃

) + p1(x
1 − x2), 0 ≤ x1 − x2 ≤ c1,

v(x2 + c1, x
2) + K

2
(x1 − x2 − c1), x1 − x2 ≥ c1,

v(−x1,−x2), x1 − x2 < 0.

(5.11)

(ii) If K1 > K2 then the following control yields a Pareto-optimal policy to game (5.1)-(5.2),

ξξξ1∗t = (0, 0), and ξξξ2∗t = (ξ2∗,+t , ξ2∗,−t ) with (5.12)

ξ2∗,−t = max

{
0, max

0≤u≤t

{
−(x1 − x2) + (σσσ2 − σσσ1) ·BBBu + ξ2∗,+u − c̃1

}}
, (5.13)

ξ2∗,+t = max

{
0, max

0≤u≤t

{
(x1 − x2) + (σσσ1 − σσσ2) ·BBBu + ξ2∗,−u − c̃1

}}
, (5.14)

where c̃1 is the unique solution to

σ̃√
2ρ

tanh

(√
2ρ

σ̃
x

)
=
p′1(x)− K2

2

p′′1(x)
, (5.15)

and the associated Pareto-optimal value is

v(x1, x2) =


−
σ̃2p′′1 (c̃1) cosh

(
(x1−x2)

√
2ρ
σ̃

)
2ρ cosh

(
c̃1
√
2ρ
σ̃

) + p1(x
1 − x2), 0 ≤ x1 − x2 ≤ c̃1,

v(x2 + c̃1, x
2) + K2

2
((x1 − x2)− c̃1), x1 − x2 ≥ c̃1,

v(−x1,−x2), x1 − x2 < 0.

(5.16)

Remark 17. Note that under B1-B3, the Pareto-optimal policy is no longer unique with fixed L1 =
L2 = 1

2
. For instance, when K1 = K2 = K, the following control yields another Pareto-optimal policy

with the same value function defined in (5.11):

ξξξ1∗t = (ξ1∗,+t , ξ1∗,−t ) = (0, 0) and ξξξ2∗t = (ξ2∗,+t , ξ2∗,−t ), with

ξ2∗,−t = max

{
0, max

0≤u≤t

{
−(x1 − x2) + (σσσ2 − σσσ1) ·BBBu + ξ2∗,+u − c1

}}
,

ξ2∗,+t = max

{
0, max

0≤u≤t

{
(x1 − x2) + (σσσ1 − σσσ2) ·BBBu + ξ2∗,−u − c1

}}
.

(5.17)

Remark 18. According to the Pareto-optimal policy, the optimally controlled dynamics X1∗
t and X2∗

t

are such that P(‖X1∗
t − X2∗

t ‖ ≤ c1,∀t ≥ 0) = 1. This suggests that there should be mechanism, such
as ‘trimming’, to maintain the dispersion of rates within a certain range. In addition, this solution
form indicates that it is socially optimal for the more efficient bank (i.e., the one with the lower cost of
control) to take the lead in lending rate adjustment. Consequently, the other bank is a free rider in the
game.

Proof. First let us prove the case when K1 > K2. By Lemma 15, it is sufficient to focus on the
single-agent problem (5.4)-(5.5) with y = x1 − x2. Following the standard analysis (Beneš et al., 1980;
Karatzas, 1982), the HJB equation for the one-dimensional control problem follows (5.4)-(5.5) is

max

{
ρu(x)− h(x)− σ̃2

2
u′′(x), u′(x)− K2

2
, −u′(x)− K2

2

}
= 0. (5.18)
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There is a C2 solution (Beneš et al., 1980; Karatzas, 1982) given by

u(x) =


−
σ̃2p′′1 (c̃1) cosh

(
x
√
2ρ
σ̃

)
2ρ cosh

(
c̃1
√
2ρ
σ̃

) + p1(x), 0 ≤ x ≤ c̃1,

u(c̃1) + K2

2
(x− c̃1), x ≥ c̃1,

u(−x), x < 0,

(5.19)

where c̃1 is the unique positive solution to (5.15) and p1(x) is defined as in (5.10). The corresponding
control of the regulator is a bang-bang type such that (5.13)-(5.14) hold. Furthermore, it is easy to see
that v(x1, x2) := u(x1 − x2), with u(x) defined in (5.19), is indeed the value function of problem (5.2).

Next when K1 = K2, ξ1,+ and ξ2,− controls Yt in the same direction with the same cost. The same
holds for ξ2,+ or ξ1,−, hence the Pareto-optimal policy (5.8) and (5.17).

5.2 Pareto optimum vs Nash equilibrium

We now use the above analytical results to compare the Pareto-optimal strategies with the Nash equi-
librium strategies, whose definition we recall:

Definition 19 (Nash equilibrium). ηηη =
(
η1, . . . , ηN

)
∈ UN is a Nash equilibrium strategy of the

stochastic game (N-Player), if for any i = 1, . . . , N , XXX0− = xxx, and any (ηηη−i, ξi) ∈ UN , the following
inequality holds,

J i (xxx;ηηη) ≤ J i
(
xxx;
(
ηηη−i, ξi

))
.

vi(xxx) := J i (xxx;ηηη) is called the Nash equilibrium value for player i associated with ηηη.

Proposition 20 (Pareto-optimal vs Nash equilibrium solutions when N = 2). Assume B1-B3 and
K1 = K2 = K, then

(i) The following controls give a Nash equilibrium policy to game (5.1)-(5.2):

(η1,+t , η1,−t ) =

(
0,max

{
0, max

0≤u≤t

{
(x1 − x2) + (σσσ1 − σσσ2) ·BBBu + η2,−u − c2

}})
,

(η2,+t , η2,−t ) =

(
0,max

{
0, max

0≤u≤t

{
−(x1 − x2) + (σσσ2 − σσσ1) ·BBBu + η1,−u − c2

}})
,

(5.20)

where c2 > 0 is the unique positive solution to

σ̃√
2ρ

tanh

(√
2ρ

σ̃
x

)
=
p′1(x)−K
p′′1(x)

, (5.21)

with p1 defined in (5.10). The value functions v1 and v2 corresponding to the Nash equilibrium
(ηηη1, ηηη2) defined in (5.20) are

v1(x1, x2) =


v1(x2 − c2, x2), x1 ≤ x2 − c2,

−
σ̃2p′′1 (c2) cosh

(√
2ρ
σ̃

(x1−x2)
)

2ρ cosh
(
c2
√
2ρ
σ̃

) + p1(x
1 − x2), x2 − c2 ≤ x1 ≤ x2 + c2,

K(x1 − x2 − c2) + v1(x2 + c2, x
2), x1 ≥ x2 + c2,

(5.22)

and

v2(x1, x2) =


v2(x1, x1 − c2), x2 ≤ x1 − c2,

−
σ̃2p′′1 (c2) cosh

(√
2ρ
σ̃

(x2−x1)
)

2ρ cosh
(
c2
√
2ρ
σ̃

) + p1(x
2 − x1), x1 − c2 ≤ x2 ≤ x1 + c2,

K(x2 − x1 − c2) + v2(x1, x1 + c2), x2 ≥ x1 + c2;

(5.23)
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(ii) c2 > c1, where c1 is the unique positive solution to (5.9) and c2 is the unique positive solution to
(5.21).

That is, Pareto-optimal policy yields tighter threshold for spread, hence game is more stable than
that under the Nash equilibrium policy. (See Figure 1.)

Figure 1: Comparison: Nash and Pareto (K1 = K2).

Proof. Similar to the derivation in (Guo & Xu, 2019), we have the following Quasi-variational inequalities
for the Nash equilibrium of game (5.1) with J1 and J2 and K1 = K2 = K,

max
{
ρvi(x1, x2)− h(x1 − x2)− σ̃2

2

(
∂2x1v

i(x1, x2) + ∂2x2v
i(x1, x2)

)
,

∂xiv
i(x1, x2)−K,−∂xivi(x1, x2)−K

}
= 0,

on {(x1, x2) : −K < ∂xjv
j(x1, x2) < K} ,

∂xiv
i(x1, x2) = 0, on {(x1, x2) : ∂xjv

j(x1, x2) = K or ∂xjvj(x1, x2) = −K} ,

for i 6= j and 1 ≤ i, j ≤ 2. Moreover, one can show that (5.22)-(5.23) are the solution to (5.24).
By verification theorem (Guo & Xu, 2019, Theorem 3), some detailed calculations can verify that
(5.22)-(5.23) are the game values associated with the Nash equilibrium policy (5.20).

Now we provide the proof for Claim (ii). Define g(x) = σ̃√
2ρ

tanh
(√

2ρ
σ̃
x
)
, g1(x) =

p′1(x)−
K
2

p′′1 (x)
and

g2(x) =
p′1(x)−K
p′′1 (x)

, where p1 is defined in (5.10). Then g(0) = 0, g′(x) > 0 for any x ∈ R+, and
limx→∞g(x) = σ̃√

2ρ
.

Thanks to Assumption (B2),

0 <
c

ρ
≤ p′′1(x) = E

∫ ∞
0

e−ρth′′(x+ σ̃Bt)dt ≤
C

ρ
.

The function p′1(x) is negative at x = 0 and increases monotonically to∞ on R+. Hence there exists an
unique positive zero c0. Moreover, for any x > c0, g′1(x) = 1− p′′′1 (x)

p′′1 (x)
g1(x) ≥ 1. This is because p′′′1 (x) ≤ 0

for x ≥ 0. We conclude that there exists a unique point c0 < c1 <∞ such that g(c1) = g1(c1).
Now apply similar analysis to c2, which is the unique solution to g(x) = g2(x) such that 0 < c2 <∞.

Notice that, g1(x)− g2(x) = K
2p′′1 (x)

> 0 because p′′2(x) > 0. Hence c2 > c1.
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