The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Geophysical Research: Atmospheres Année : 2012

The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing

Vaishali Naik
  • Fonction : Auteur
J. Jason West
M. Daniel Schwarzkopf
  • Fonction : Auteur
Arlene Fiore
  • Fonction : Auteur
William Collins
  • Fonction : Auteur
Frank Dentener
Drew Shindell
  • Fonction : Auteur
Cyndi Atherton
  • Fonction : Auteur
Daniel Bergmann
  • Fonction : Auteur
Bryan Duncan
  • Fonction : Auteur
Peter Hess
  • Fonction : Auteur
Ian Mackenzie
  • Fonction : Auteur
Elina Marmer
  • Fonction : Auteur
Martin Schultz
  • Fonction : Auteur
Oliver Wild
  • Fonction : Auteur
Guang Zeng
  • Fonction : Auteur

Résumé

Ozone (O 3) precursor emissions influence regional and global climate and air quality through changes in tropospheric O 3 and oxidants, which also influence methane (CH 4) and sulfate aerosols (SO 4 2À). We examine changes in the tropospheric composition of O 3 , CH 4 , SO 4 2À and global net radiative forcing (RF) for 20% reductions in global CH 4 burden and in anthropogenic O 3 precursor emissions (NO x , NMVOC, and CO) from four regions (East Asia, Europe and Northern Africa, North America, and South Asia) using the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model (CTM) simulations, assessing uncertainty (mean AE 1 standard deviation) across multiple CTMs. We evaluate steady state O 3 responses, including long-term feedbacks via CH 4. With a radiative transfer model that includes greenhouse gases and the aerosol direct effect, we find that regional NO x reductions produce global, annually averaged positive net RFs (0.2 AE 0.6 to 1.7 AE 2 mWm À2 /Tg N yr À1), with some variation among models. Negative net RFs result from reductions in global CH 4 (À162.6 AE 2 mWm À2 for a change from 1760 to 1408 ppbv CH 4) and regional NMVOC (À0.4 AE 0.2 to À0.7 AE 0.2 mWm À2 /Tg C yr À1) and CO emissions (À0.13 AE 0.02 to À0.15 AE 0.02 mWm À2 /Tg CO yr À1). Including the effect of O 3 on CO 2 uptake by vegetation likely makes these net RFs more negative by À1.9 to À5.2 mWm À2 /Tg N yr À1 , À0.2 to À0.7 mWm À2 /Tg C yr À1 , and À0.02 to À0.05 mWm À2 / Tg CO yr À1. Net RF impacts reflect the distribution of concentration changes, where RF is affected locally by changes in SO 4 2À , regionally to hemispherically by O 3 , and globally by CH 4. Global annual average SO 4 2À responses to oxidant changes range from 0.4 AE 2.6 to À1.9 AE 1.3 Gg for NO x reductions, 0.1 AE 1.2 to À0.9 AE 0.8 Gg for NMVOC reductions, and À0.09 AE 0.5 to À0.9 AE 0.8 Gg for CO reductions, suggesting additional research is needed. The 100-year global warming potentials (GWP 100) are calculated for the global CH 4 reduction (20.9 AE 3.7 without stratospheric O 3 or water vapor, 24.2 AE 4.2 including those components), and for the regional NO x , NMVOC, and CO reductions (À18.7 AE 25.9 to À1.9 AE 8.7 for NO x , 4.8 AE 1.7 to 8.3 AE 1.9 for NMVOC, and 1.5 AE 0.4 to 1.7 AE 0.5 for CO). Variation in GWP 100 for NO x , NMVOC, and CO suggests that regionally specific GWPs may be necessary and could support the inclusion
Fichier principal
Vignette du fichier
Fry_et_al-2012-Journal_of_Geophysical_Research-_Atmospheres__1984-2012_.pdf (3.29 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03048476 , version 1 (10-12-2020)

Identifiants

Citer

Meridith Fry, Vaishali Naik, J. Jason West, M. Daniel Schwarzkopf, Arlene Fiore, et al.. The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing. Journal of Geophysical Research: Atmospheres, 2012, 117 (D7), pp.n/a-n/a. ⟨10.1029/2011JD017134⟩. ⟨hal-03048476⟩
29 Consultations
28 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More