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LACK OF NULL CONTROLLABILITY OF ONE DIMENSIONAL LINEAR

COUPLED TRANSPORT-PARABOLIC SYSTEM WITH VARIABLE

COEFFICIENTS

SAKIL AHAMED, DEBAYAN MAITY, AND DEBANJANA MITRA∗

Abstract. In this article, we study the null controllability of linear coupled transport-parabolic
systems with variable coefficients in one space dimension. We consider coupled systems with
coupling of order zero, one and two. The systems are considered with homogeneous Dirichlet
boundary conditions and with localized interior controls acting on both transport and para-
bolic equations. We show that coupled systems are not null controllable at small time. This
time depends on the transport velocity and the support of the controls. When the transport
velocity is identically zero, the systems are not null controllable at any time. To achieve these
results, we construct highly localized solutions, known as Gaussian beams, corresponding to the
adjoint systems, and using them, we show that the corresponding observability inqualities fail.
However, these systems are null controllable at any time by controls acting everywhere in the
parabolic equation, under suitable assumptions on the initial data and the coefficients.

1. Introduction and main results

The study of the controllability of coupled hyperbolic-parabolic systems has been an active
area of research over the last few years. The coupled system arises to describe the physical
phenomena in fluid dynamics, plasma physics, aeronautics, weather prediction and so on. Our
motivation to study such coupled system comes from viscous compressible fluid models. The
Navier-Stokes system of a viscous, compressible, isothermal barotropic fluid (density is function
of pressure only), in a bounded domain (0, L) is given by{

∂tρ̂+ ∂x(ρ̂û) = 0 in (0, T )× (0, L),

ρ̂ (∂tû+ û∂xû)− µ∂xxû+ ∂xp̂ = 0 in (0, T )× (0, L),
(1.1)

where ρ̂(t, x) is the density of the fluid and û(t, x) is its velocity, and the positive constant µ
represents the fluid viscosity. The pressure p̂ satisfies the following constitutive law

p̂(ρ̂) = aρ̂γ , a > 0, γ > 1.

We assume that (ρs(x), us(x)) , x ∈ [0, L] is a stationary trajectory to the system (1.1). By
setting

ρ̂(t, x) = ρ(t, x) + ρs(x), û(t, x) = u(t, x) + us(x), x ∈ (0, L), t ∈ (0, T ),

and collecting the linear terms in ρ and u, we obtain the following linear system :{
∂tρ+ ∂x(ρsu) + ∂x(usρ) = 0 in (0, T )× (0, L),

ρs∂tu− µ∂xxu+ ρs∂x(usu) + (us∂xus + aγ∂x(ργ−1s ))ρ+ aγργ−1s ∂xρ = 0 in (0, T )× (0, L).

(1.2)
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Motivated by the above example, in this article, we first consider the following linear coupled
transport-parabolic system with coupling of order zero and one, and with controls f1 and f2:{

∂tρ+ a0∂xρ+ a1ρ+ c1∂xu+ c2u = 1O1f1 in (0, T )× (0, L),

∂tu− b0∂xxu+ b1∂xu+ b2u+ d1∂xρ+ d2ρ = 1O2f2 in (0, T )× (0, L),
(1.3)

where 1Oj is the characteristic function of an open set Oj ⊆ (0, L), j = 1, 2. We complete
the system (1.3) with the following initial condition

ρ(0, ·) = ρ0, u(0, ·) = u0 in (0, L), (1.4)

and the boundary conditions
u(t, 0) = u(t, L) = 0 in (0, T ),

ρ(t, 0) = 0 in (0, T ), if a0(0) > 0,

ρ(t, L) = 0 in (0, T ), if a0(L) < 0.

(1.5)

Throughout this article we make the following assumptions on the coefficients :

ai, bj , ci, di ∈ C∞([0, L]), for all i = 0, 1, for all j = 0, 1, 2,

b0(x) > b > 0 for all x ∈ [0, L]. (1.6)

In Section 2, we will show that the system (1.3)-(1.5) is well-posed in
(
L2(0, L)

)2
(see Proposi-

tion 2.2). We are interested in the null controllability of the system (1.3)-(1.5).

Definition 1.1. The system (1.3)-(1.5) is null controllable in
(
L2(0, L)

)2
at time T > 0 if for

any
(
ρ0, u0

)
∈
(
L2(0, L)

)2
, there exist controls fi ∈ L2(0, T ;L2(0, L)), i = 1, 2, such that, (ρ, u),

the solution to the system (1.3)-(1.5) satisfies

(ρ, u) (T, x) = 0 for all x ∈ (0, L) .

For later purpose, we introduce the spaces

L2
m(0, L) =

{
f ∈ L2(0, L) |

∫ L

0
f dx = 0

}
, Hs

m(0, L) = Hs(0, L) ∩ L2
m(0, L), s > 0.

Before stating our main results, let us mention some related works in this direction from
the literature. As mentioned above, the compressible Navier-Stokes system linearized around
a constant trajectory (ρs, us) for ρs > 0, yields a coupled system with constant coefficients:
in particular, a coupled ODE-parabolic system for us = 0 and a coupled transport-parabolic
system for us 6= 0 (see (1.2)). The controllability of such systems with constant coefficients in
one dimension has been extensively studied. In [7], the linearized compressible Navier-Stokes
system around (ρs, 0), i.e., the coupled ODE-parabolic system, is considered in (0, L) with
Dirichlet boundary conditions. In that paper, the authors proved that the system is not null
controllable at any time T > 0 by a localized interior control acting only in the parabolic
equation. However, the system is null controllable in H1

m(0, L) × L2(0, L) at any time T > 0
using everywhere L2-control in the parabolic equation. The case us 6= 0 was considered in [6, 5].
In both the articles, the system was considered in (0, 2π) with periodic boundary conditions,
and with localized control acting only in the parabolic equation. In [5], using moment method,
the authors proved the null controllability in Hs+1

m (0, 2π)×Hs(0, 2π), s > 6.5, at time T > 2π
|us| .

This result was improved in [6] by showing that the null controllability holds for any initial data
in H1

m(0, 2π)× L2(0, 2π). Moreover, it was also proved that, the system in consideration is not
null controllable in Hs

m(0, 2π) × L2(0, 2π), 0 6 s < 1, at any time T > 0 by L2-control acting
in the parabolic equation. Thus H1

m(0, 2π)× L2(0, 2π) is the largest space in which the system
is null controllable by a L2-parabolic control. It is worth mentioning that, all the above works
consider only the case where control is active on the parabolic equation only. Furthermore,
the proofs are based on explicit computation of the eigenvalues and eigenfunctions of the linear
operator, and thus restricted to certain boundary conditions.
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Later in [20], the lack of null controllability issues associated to the linearized compress-
ible Navier-Stokes systems have been studied in detail. In this article, the author studied
compressible Navier-Stokes-Fourier systems for non-barotropic fluid linearized around constant
steady states (ρs, us, θs) with ρs > 0, θs > 0 in (0, L). The systems are coupled between
two parabolic equations and an ODE (if us = 0) or an transport equation (if us 6= 0). If
us = 0, the system is not null controllable in (L2(0, L))3, by a localized control acting on the
ODE/transport component and parabolic controls, at any time T > 0. If us 6= 0, the same
result holds only for small time. Moreover, in the case us = 0, the system is null controllable in
H1

m(0, L)×L2(0, L)×L2(0, L) at any finite time T > 0 using controls in both parabolic equations
acting everywhere in the domain. And, this result is optimal in the sense that, null controlla-
bility cannot be achieved by localized parabolic controls. Let us mention that the proofs in [20]
do not require the knowledge of the spectrum. Thus the results can be extended to any suitable
boundary conditions. Recently, in [1], the above results have been extended to more general
constant coefficient coupled transport-parabolic systems. They considered coupling of several
transport and parabolic equations in one dimensional torus. They proved null controllability in
optimal time. Moreover, an algebraic necessary and sufficient condition, on the coupling term,
was proved when controls act only on the parabolic or transport components.

In the context of compressible Navier-Stokes systems, the local exact controllability around
constant states was studied in [10, 9, 24, 23, 25], and an analogous result around variable
trajectories was obtained in [11].

We also note that such coupled system may arise to model parabolic equations with memory
terms, damped wave equations, visco-elastic flows and so on, for instance see [22, 28, 3, 4, 18, 13,
2, 21]. Using a change of variables, for a suitable memory term, parabolic equation with memory
can be written as a coupled ODE-parabolic system. An extensive study of controllability of
evolution equations with memory term has been done in [4]. In particular, the lack of null
controllability has been studied in [15, 16, 17] (heat equation with memory), [21, 28, 27] (viscous-
elastic flows) and references therein.

In this present work, our first aim is to show the lack of null controllability of (1.3)-(1.5), when
the coefficients are not necessarily constant. To state our results, we need to introduce some
notations. We take an extension of a0 on R, still denoted by a0. We introduce the characteristics
X associated with a0: {

∂tX(t, x) = −a0 (X(t, x)) (t > 0),

X(0, x) = x x ∈ R.
(1.7)

Let O ⊂ (0, L) be such that (0, L)\O is a nonempty open subset of (0, L). For each x ∈ (0, L)\O,
we set

Tx,O := sup
{
τ | X(t, x) ∈ (0, L) \ O for all t ∈ [0, τ)

}
, (1.8)

and
TO := sup

x∈(0,L)\O
Tx,O. (1.9)

If O is the empty set of (0, L), we set for each x ∈ (0, L),

Tx,∅ = sup {τ | X(t, x) ∈ (0, L) for all t ∈ [0, τ)} , and T∅ = sup
x∈(0,L)

Tx,∅. (1.10)

Our first main result indicates the lack of null controllability of (1.3)-(1.5) for initial data in
L2(0, L)× L2(0, L) :

Theorem 1.2. Assume (1.6), and

O1 ⊂ (0, L), O2 ⊆ (0, L),

be such that (0, L) \ O1 is a nonempty open subset of (0, L). Then the system (1.3)-(1.5) is
not null controllable in L2(0, L) × L2(0, L), at any time 0 < T < TO1 , by interior controls
f1 ∈ L2(0, T ;L2(0, L)) supported in O1 and f2 ∈ L2(0, T ;L2(0, L)) with support in O2.

Remark 1.3. Let us make the following remarks:
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(1) In the above theorem, for the controllability of (1.3)-(1.5), the minimal time TO1 can
be either finite or infinite. Whenever TO1 = +∞, we say that the system is not null
controllable at any time. For instance, if a0 = 0, then the system is coupled between an
ODE and a parabolic equation. In this case, TO1 = +∞, for O1, any proper open subset
of (0, L), and the system is not null controllable at any time T > 0. Furthermore, if
a0(x) = 0 for some x ∈ (0, L) \ O1, then also TO1 = +∞, and the corresponding system
is not null controllable at any time T > 0.

(2) If a0 = ā(constant) and O1 = (`1, `2) ⊂ (0, L) then TO1 = max

{
`1
|ā|
,
L− `2
|ā|

}
. Note

that, this minimal time coincides with minimal time obtained in [1, Eq (3)]. Moreover,
according to [1, Theorem 2], the system (1.3)-(1.4), with constant coefficients and pe-
riodic boundary conditions, is null controllable at time T > TO1 . This indicates that,
perhaps in general, the minimal time obtained here is sharp. More precisely, we may ex-
pect null controllability of the system (1.3)-(1.5) if T > TO1 . However, to the best of our
knowledge, this is still not known, even in the constant coefficient case with homogeneous
Dirichlet boundary conditions.

(3) In Theorem 1.2, the time TO1 depends only on a0 and O1, and is independent of the
choice of O2. In particular, in the theorem, the control f2 may act everywhere in (0, L).

Let us now give some special attention to the case where control is not active in the transport
equation (1.3)1, i.e., f1 ≡ 0. In this case, according to Theorem 1.2, the system (1.3)-(1.5) is
not null controllable at any time 0 < T < T∅ (see (1.10)). In particular, the time to obtain the
controllability depends only on the transport velocity a0. However, if there is no inflow, or if
a0(x) = 0 for some x ∈ (0, L), then the system is not null controllable at any time T > 0. This
is precisely stated in the next theorem.

Theorem 1.4. Assume (1.6), f1 ≡ 0 and O2 ⊆ (0, L).

(i) Then the system (1.3)-(1.5) is not null controllable in L2(0, L) × L2(0, L), at any time
0 < T < T∅, by interior control f2 ∈ L2(0, T ;L2(0, L)) with support in O2.

(ii) Assume further that

either a0(x∗) = 0 for some x∗ ∈ (0, L) or a0(0) 6 0, a0(L) > 0. (1.11)

Then the system (1.3)-(1.5) is not null controllable in L2(0, L) × L2(0, L), at any time
T > 0, by interior control f2 ∈ L2(0, T ;L2(0, L)) with support in O2.

Remark 1.5. Let us point out that, when the coefficients in (1.3) are constant, similar results
to Theorem 1.2 and Theorem 1.4, were already proved in [7, 20, 1]. More precisely, we refer the
reader to [20, Theorem 1.1, Theorem 1.5], [7, Theorem 5.10] and [1, Theorem 2(i)] for precise
statements of the results when the coefficients are constant.

In (1.3)-(1.5), we have dealt with the coupled transport-parabolic system with coupling of
order one or zero. Next, we consider the following coupled transport-parabolic system with
coupling of order two in the transport equation:

∂tρ+ a0∂xρ+ a1ρ+ c0∂xxu+ c1∂xu+ c2u = 1O1f1 in (0, T )× (0, L),

∂tu− b0∂xxu+ b1∂xu+ b2u+ d2ρ = 1O2f2 in (0, T )× (0, L),

u(t, 0) = u(t, L) = 0 in (0, T ),

ρ(t, 0) = 0 in (0, T ), if a0(0) > 0,

ρ(t, L) = 0 in (0, T ), if a0(L) < 0,

ρ(0, x) = ρ0(x), u(0, x) = u0(x) in (0, L).

(1.12)

We make the following assumptions on the coefficients :

ai, bj , cj , d2 ∈ C∞([0, L]), for all i = 0, 1, for all j = 0, 1, 2,

b0(x) > b > 0, c0(x) 6= 0 for all x ∈ [0, L]. (1.13)
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The above type of systems arises in many physical phenomena, mostly to model fluid flows with
visco-elastic effects; for example heat equation with memory terms, linearized Burgers equation
with memory terms etc. The well-posedness of (1.12) is studied in Theorem 2.8. Regarding the
lack of null controllability of (1.12), we obtain the following result:

Theorem 1.6. Assume (1.13), and

O1 ⊂ (0, L), O2 ⊂ (0, L),

be such that (0, L)\O1 ∪ O2 is a nonempty open subset of (0, L). Then the system (1.12) is
not null controllable in L2(0, L) × L2(0, L), at any time 0 < T < TO1∪O2 , by interior controls
f1 ∈ L2(0, T ;L2(0, L)) supported in O1 and f2 ∈ L2(0, T ;L2(0, L)) with support in O2.

In contrast to Theorem 1.2, the minimal time in the above theorem also depends on the
support of the parabolic control. This is essentially due to different order of coupling (see
Remark 3.4 for more details).

Remark 1.7. (1) In this article, for simplicity, we have assumed all the coefficients are
smooth. However, a careful reading of the proofs indicate that it is enough to assume
that the coefficients belong to C4.

(2) The results mentioned above can also be extended to the case where coefficients depend
on both time and space, and the inflow boundary is independent of time. For the time
independent case, in Section 2, we have used semigroup theory for well-posedness of
the systems. Also, in this case the systems are autonomous, and we can directly use
the duality between controllability and observability (see for instance[8, Chapter 2.3])
to derive required observability inequalities. However, in Section 3, the main tool to
prove the main results i.e. Gaussian beam solutions are constructed for coefficients
depending on both space and time variables. Thus all the results mentioned above also
hold for coefficients depending on both time and space, provided one has well-posedness
for all the systems considered above and duality between controllability and observability
of such systems. In Section 6, we briefly indicate how to extend the above results to the
non-autonomous case.

When the coefficients are constant, the lack of null controllability of a system similar to
(1.12) was studied in [20] (see Eq. (2.58) of [20]). Moreover, using this result, the lack of null
controllability of (1.3)-(1.5) in H1(0, L)×L2(0, L) was proved in [20, Theorem 1.4], in the case
where the coefficients are constant. Thus we may expect a similar behaviour for our case also.
In fact, as a consequence of Theorem 1.6, we prove the lack of null controllability of (1.3)-(1.5)
in small time in H1(0, L) × L2(0, L) under suitable assumptions on the coefficients. This is
precisely stated in Theorem 4.3.

We note that the null controllability property for (1.12) is different from that of (1.3)-(1.5).
In contrast to Theorem 1.2, the above theorem holds if O2, the support of the control for the
parabolic component, is a proper subset of (0, L). Therefore, one may expect null controllability
of the system (1.12) if the control is active everywhere. In fact, under some assumptions on
the coefficients we have obtained such a result in Section 5 (see for instance Theorem 5.4).
Moreover, as a consequence of the results obtained in Section 5, we prove Theorem 5.5 which
shows null controllability of (1.3)-(1.5) in H1

m(0, L) × L2(0, L) by everywhere control in the
parabolic equation.

The proof of these results is based on duality arguments. It is well known that the null
controllability of a linear system is equivalent to a certain observability inequality satisfied
by the solution of the corresponding adjoint problem (see [8, Chapter 2]). Thus to prove
Theorem 1.2, Theorem 1.4 and Theorem 1.6, we construct special solutions to the corresponding
adjoint problems violating the observability inequality. The idea is to construct highly localized
solutions known as “Gaussian beam”. These are high frequency solutions to PDEs which are
concentrated on a single ray (characteristic) through space-time. This kind of construction has
been used for hyperbolic systems in [26] to study the propagation of singularities of solution.
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In order to observe these Gaussian beams, the observation set must intersect every ray. If
not, one could construct a Gaussian beam along a ray that would not hit the observation set
and clearly that Gaussian beam could not be observed, since the estimate of the observation
would be negligible outside an arbitrarily small neighborhood of the ray. Exploiting this idea,
in this article, we construct Gaussian beam solutions for coupled transport-parabolic systems
with variable coefficients. It is clear that our systems are not strictly hyperbolic. Thus the
Gaussian beam construction of [26] cannot be applied directly here. We also refer the reader to
[19] for construction of such solutions and its application to prove the lack of observability for
wave equation with variable coefficients (transmission problems, oscillating coefficients etc).

The novelty of our work is that we thoroughly study the null controllability of the transport-
parabolic coupled systems with variable coefficients and with different orders of coupling, for
example, zero, first and second order of coupling. The behavior of the null controllability of
the coupled system may change according to the order of the coupling. Moreover, our results
are a generalization of results available for the coupled systems with constant coefficients. It
is clear that our systems are not strictly hyperbolic and they consist of the properties of both
hyperbolic and parabolic equations. Further, if the initial conditions and controls are regular,
then we may get the null controllability of the coupled system provided the coefficients satisfy
some conditions (see Section 5). The results can be applicable to the coupled system with
different boundary conditions or even to study the null controllability using boundary controls
(see Section 7). This study leads to some interesting questions regarding the controllability of
the coupled systems (see Section 7.3), which we plan to study in our future work.

The outline of the paper is as follows. In Section 2, we study the well-posedness of the coupled
systems using semigroup theory, and we determine the adjoints of the linear operators. Section 3
is devoted towards the constructions of Gaussian beam solutions for the coupled systems. Our
main results, Theorem 1.2, Theorem 1.4 and Theorem 1.6, are proved in Section 4. In Section 5,
we prove the null controllability of the coupled system by parabolic control acting everywhere
in the domain, under some extra assumptions on the coefficients. In Section 6, we extend the
results to the case where coefficients depend both on space and time variables. Finally, in
Section 7, we mention some further extensions of our main results to the system with periodic
boundary conditions and to the system with boundary controls along with some interesting
comments on some open problems.

2. Well-posedness of the linear systems

In this section, we will study well-posedness of the systems in consideration via semigroup
theory. We will show that the associated unbounded linear operator generates a C0-semigroup
in a suitable Hilbert space. Moreover, we will determine the adjoint of the associated linear
operators.

2.1. Well-posedness of the system (1.3)− (1.5). Our aim is to prove the following result.

Theorem 2.1. For any (ρ0, u0) ∈
(
L2(0, L)

)2
and fi ∈ L2(0, T ;L2(0, L)), i = 1, 2, the system

(1.3)-(1.5) admits a unique solution (ρ, u) ∈ C
(

[0, T ];
(
L2(0, L)

)2)
.

Let us set

Z = L2(0, L)× L2(0, L).

We define the unbounded operator (A,D(A;Z)) in Z by

D(A;Z) =
{

(ρ, u) ∈ L2(0, L)×H1
0 (0, L) | a0ρ′ ∈ L2(0, L),

ρ(0) = 0 if a0(0) > 0, ρ(L) = 0 if a0(L) < 0, b0u
′ − d1ρ ∈ H1(0, L)

}
,
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and

A =

−a0 ddx − a1 −c1
d

dx
− c2

−d1
d

dx
− d2 b0

d2

dx2
− b1

d

dx
− b2

 . (2.1)

We introduce the input space U = Z and the control operator B ∈ L(U ;Z) defined by

Bf = (1O1f1,1O2f2) , f = (f1, f2) ∈ U . (2.2)

With the above notations, the system (1.3) - (1.5) can be rewritten as

ż(t) = Az(t) + Bf(t), t ∈ (0, T ), z(0) = z0,

where z(t) = (ρ(t, ·), u(t, ·)), z0 = (ρ0, u0) and f(t) = (f1(t, ·), f2(t, ·)).
The well-posedness of the system (1.3) - (1.5), in particular Theorem 2.1 follows as soon as

we prove the following result.

Proposition 2.2. The operator (A,D(A;Z)) is the infinitesimal generator of a strongly con-
tinuous semigroup T on Z.

Proof. The proof is similar to Proposition I.5 and Theorem III.2 in [14]. For the sake of com-
pleteness, we give the proof of the proposition.
Step 1. Quasi-dissipativity: Using a density argument (see for instance [14, Proposition I.1]),
integration by parts and Young’s inequality, one can easily verify that

Re

〈
A
(
ρ
u

)
,

(
ρ
u

)〉
Z
6 ω ‖(ρ, u)‖2Z , for all (ρ, u) ∈ D(A;Z),

for some ω > 0 sufficiently large. Therefore, there exists ω > 0 such that A− ωI is dissipative
on Z.

Step 2. Maximality : We want to show that Range (λI − A) = Z, for λ large enough. We
consider only the case, where

a0(0) > 0, a0(L) > 0.

The other cases can be treated in a similar manner. We take λ > ω. We need to show for any
(f, g) ∈ Z, there exists a unique (ρ, u) ∈ D(A;Z) such that

λρ+ a0ρ
′ + a1ρ+ c1u

′ + c2u = f in (0, L),

λu− b0u′′ + b1u
′ + b2u+ d1ρ

′ + d2ρ = g in (0, L),

ρ(0) = 0, u(0) = u(L) = 0.

(2.3)

The idea is to consider a regularised resolvent equation, where we add −ερ′′ in (2.3)1. More
precisely, for ε > 0, we consider the following system

λρε − ερ′′ε + a0ρ
′
ε + a1ρε + c1u

′
ε + c2uε = f in (0, L),

λuε − b0u′′ε + b1u
′
ε + b2uε + d1ρ

′
ε + d2ρε = g in (0, L),

ρε(0) = ρ′ε(L) = 0, uε(0) = uε(L) = 0,

(2.4)

where (f, g) ∈ Z. The above system is a coupled parabolic system. Using Lax-Milgram
theorem we show that, for every ε > 0, the above system admits a unique solution ρε ∈
H1
{0}(0, L) ∩ H2(0, L) and uε ∈ H1

0 (0, L) ∩ H2(0, L), satisfying some estimates uniform in ε,

where H1
{0}(0, L) = {f ∈ H1(0, L) | f(0) = 0}.

To this aim, we set V = H1
{0}(0, L)×H1

0 (0, L) with the inner-product〈(
ρ
u

)
,

(
σ
v

)〉
V

:=

∫ L

0
ρ′σ̄′ dx+

∫ L

0
u′v̄′ dx,
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where σ̄ and v̄ are the complex conjugates of σ and v, respectively. We define the functional
B : V × V → C by

B

((
ρ
u

)
,

(
σ
v

))
= λ

∫ L

0
ρσ̄ dx+ ε

∫ L

0
ρ′σ̄′ dx+

∫ L

0

(
a0ρ
′ + a1ρ+ c1u

′ + c2u
)
σ̄ dx

+λ

∫ L

0
uv̄ dx+

∫ L

0
u′(b0v̄)′ dx+

∫ L

0

(
b1u
′ + b2u+ d1ρ

′ + d2ρ
)
v̄ dx. (2.5)

We can verify that, B is a continuous, sesquilinear form on V × V and coercive, i.e,

Re
(
B

((
ρ
u

)
,

(
ρ
u

)))
> (λ− ω)

(
‖ρ‖2L2(0,L) + ‖u‖2L2(0,L)

)
+ ε‖ρ′‖2L2(0,L) +

b

2
‖u′‖2L2(0,L) +

a0(L)

2
|ρ(L)|2

> C(ε)‖(ρ, u)‖2V , for all (ρ, u) ∈ V, (2.6)

for some positive constant C depending on ε. Thus using Lax-Milgram theorem, for each ε > 0,
for any (f, g) ∈ Z, there exists a unique (ρε, uε) ∈ V satisfying

B

((
ρε
uε

)
,

(
σ
v

))
=

∫ L

0
fσ̄ dx+

∫ L

0
gv̄ dx, for all (σ, v) ∈ V. (2.7)

Further, from (2.7), it can be derived that ρ′′ε ∈ L2(0, L) and u′′ε ∈ L2(0, L). Now multiplying
(2.4)1 by σ̄ ∈ H1

{0}(0, L) and using an integration by parts, we get

λ

∫ L

0
ρεσ̄ dx+ ε

∫ L

0
ρ′εσ̄
′ dx− ερ′ε(L)σ̄(L) +

∫ L

0

(
a0ρ
′
ε + a1ρε + c1u

′
ε + c2uε

)
σ̄ dx =

∫ L

0
fσ̄ dx.

Then, using (2.7) for (σ, 0) ∈ V, the above identity yields ρ′ε(L) = 0. Thus for all ε > 0, (ρε, uε)

belongs to
(
H1
{0}(0, L) ∩H2(0, L)

)
×
(
H1

0 (0, L) ∩H2(0, L)
)

and it satisfies (2.4).

Taking (σ, v) = (ρε, uε) in (2.7), using a similar estimate as in (2.6) along with the Cauchy-
Schwarz inequality, we get

λ− ω
2

(
‖ρε‖2L2(0,L) + ‖uε‖2L2(0,L)

)
+ ε‖ρ′ε‖2L2(0,L) +

b

2
‖u′ε‖2L2(0,L) +

a0(L)

2
|ρε(L)|2

6
1

2(λ− ω)

(
‖f‖2L2(0,L) + ‖g‖2L2(0,L)

)
.

From the above estimate, it follows that, there exist ρ ∈ L2(0, L), u ∈ H1
0 (0, L) and ` ∈ C such

that, upto a subsequence, as ε→ 0,

uε ⇀ u in H1
0 (0, L), ρε ⇀ ρ in L2(0, L), (2.8)

ε(ρε)
′ → 0 in L2(0, L), a0(L)ρε(L)→ ` in C.

Note that from (2.7), for σ ∈ C∞c (0, L) and v = 0, we obtain

λ

∫ L

0
ρεσ̄dx+ε

∫ L

0
ρ′εσ̄
′dx−

∫ L

0
ρε(a0σ̄)′dx+

∫ L

0

(
a1ρε + c1u

′
ε + c2uε

)
σ̄dx =

∫ L

0
fσ̄ dx. (2.9)

Taking ε → 0 in the above identity, we get that (ρ, u) satisfies (2.3)1 in the distribution sense
and hence from (2.3)1, it follows that a0ρ

′ ∈ L2(0, L). Similarly, from (2.7), for σ = 0 and
v ∈ C∞c (0, L), we obtain

λ

∫ L

0
uεv̄ dx+

∫ L

0
u′ε(b0v̄)′ dx−

∫ L

0
ρε(d1v̄)′ dx+

∫ L

0

(
b1u
′
ε + b2uε + d2ρε

)
v̄ dx =

∫ L

0
gv̄ dx.

(2.10)
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Taking ε → 0 in the above identity, we get that (ρ, u) satisfies (2.3)2 in the distribution sense
and hence from (2.3)2, it follows that (b0u

′ − d1ρ) ∈ H1(0, L). Next, multiplying (2.4)1 by
σ̄ ∈ C∞c (0, L) and using an integration by parts along with (2.8) and (2.9), we obtain∫ L

0
a0ρ
′
εσ̄ dx→

∫ L

0
a0ρ
′σ̄ dx, for all σ̄ ∈ C∞c (0, L),

and using a density argument, we derive that

a0ρ
′
ε ⇀ a0ρ

′, in L2(0, L), as ε→ 0. (2.11)

Similarly, multiplying (2.3)2 by v̄ ∈ C∞c (0, L) and using an integration by parts along with
(2.8) and (2.10), it can be derived that

(b0u
′
ε − d1ρε) ⇀ (b0u

′ − d1ρ), in H1(0, L), as ε→ 0, (2.12)

by noticing that as ε → 0, (b0u
′
ε − d1ρε) ⇀ (b0u

′ − d1ρ) in L2(0, L) and (b0u
′
ε − d1ρε)

′ ⇀
(b0u

′ − d1ρ)′ in L2(0, L).
It only remains to show (ρ, u) ∈ D(A;Z). To this aim, we set

W =
{

(ρ, u) ∈ L2(0, L)×H1
0 (0, L) | a0ρ′ ∈ L2(0, L), (b0u

′ − d1ρ) ∈ H1(0, L)
}
.

Note that, W is a Hilbert space with the graph norm, and D(A;Z) is a closed subspace of W.
Thus, the weak closure and the strong closure of D(A;Z) in W are same. In the calculation
above we have actually shown that (ρ, u) lies in the weak closure of D(A;Z). Therefore (ρ, u) ∈
D(A;Z), and in particular, ρ(0) = 0.Thus, for any given (f, g) ∈ Z, there exists a (ρ, u) ∈
D(A;Z) satisfying (2.3).

Finally, we show uniqueness of solution to (2.3). For given (f, g) ∈ Z, let (ρ1, u1), (ρ2, u2) ∈
D(A;Z) be two solutions of (2.3). Setting ρ = ρ1 − ρ2, u = u1 − u2, it is enough to show that

(ρ, u) = (0, 0). To do it, we note that (ρ, u) ∈ D(A;Z) satisfying (λI −A)

[
ρ
u

]
=

[
0
0

]
. Now

taking the inner product with (ρ, u) and using quasi-dissipativity property from Step 1, we get

λ ‖(ρ, u)‖2Z = Re

〈
A
(
ρ
u

)
,

(
ρ
u

)〉
Z
6 ω ‖(ρ, u)‖2Z .

Since λ > ω in (2.3), it yields (ρ, u) = (0, 0). This completes the proof of the proposition. �

Remark 2.3. In the proof above, we can actually show that a0(L)ρ(L) = `. In fact, multiplying
(2.3)1 by σ̄ ∈ H1

{0}(0, L), we obtain

λ

∫ L

0
ρσ̄dx−

∫ L

0
ρ(a0σ̄)′dx+a0(L)ρ(L)σ̄(L)+

∫ L

0

(
a1ρ+ c1u

′ + c2u
)
σ̄dx =

∫ L

0
fσ̄ dx. (2.13)

From (2.7), for σ ∈ H1
{0}(0, L) and v = 0, it follows that

λ

∫ L

0
ρεσ̄ dx+ ε

∫ L

0
ρ′εσ̄
′ dx−

∫ L

0
ρε(a0σ̄)′ dx

+a0(L)ρε(L)σ̄(L) +

∫ L

0

(
a1ρε + c1u

′
ε + c2uε

)
σ̄ dx =

∫ L

0
fσ̄ dx.

Taking ε→ 0 in the above identity, along with (2.13) we get a0(L)ρ(L) = `.

It is well known that the null controllability of the pair (A,B) is equivalent to the final-
state observability of the pair (A∗,B∗), where A∗ and B∗ are the adjoint operators of A and
B respectively (see for instance [8, Chapter 2.3],[29, Section 11.2]). Thus it is important to
determine the adjoint of the operator A :
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Proposition 2.4. The adjoint of (A,D(A;Z)) in Z is defined by

D(A∗;Z) =
{

(σ, v) ∈ L2(0, L)×H1
0 (0, L) | a0σ′ ∈ L2(0, L),

σ(L) = 0 if a0(0) > 0, σ(0) = 0 if a0(L) < 0, b0v
′ + c1σ ∈ H1(0, L)

}
, (2.14)

and

A∗ =

a0 ddx − (a1 − a′0) d1
d

dx
+ (d′1 − d2)

c1
d

dx
− (c2 − c′1) b0

d2

dx2
+ (2b′0 + b1)

d

dx
+ (b′′0 + b′1 − b2)

 . (2.15)

For future purpose, we also need to study the well-posedness of the adjoint system with
non-homogenous source terms and boundary data. More precisely, we consider the following
non-homogeneous system

∂tσ − a0∂xσ + (a1 − a′0)σ − d1∂xv − (d′1 − d2)v = ζ1 in (0, T )× (0, L),

∂tv − b0∂xxv − (2b′0 + b1)∂xv + (b2 − b′1 − b′′0)v

−c1∂xσ + (c2 − c′1)σ = ζ2 in (0, T )× (0, L),

v(t, 0) = h0(t), v(t, L) = hL(t) in (0, T ),

σ(t, 0) = g0(t) if a0(L) < 0, σ(t, L) = gL(t) if a0(0) > 0 in (0, T ),

σ(0, x) = σ0(x), v(0, x) = v0(x), in (0, L).

(2.16)

From the well-posedness of the adjoint operator A∗, the result below can be obtained easily.

Proposition 2.5. Let T > 0. Then for any (σ0, v0) ∈ Z, (ζ1, ζ2) ∈
(
L2(0, T ;L2(0, L))

)2
and

(h0, hL, g0, gL) ∈
(
H1(0, T )

)4
, the system (2.16) admits a unique solution (σ, v) ∈ C([0, T ];Z),

satisfying

‖(σ, v)‖C([0,T ];Z) 6 C
(∥∥(σ0, v0)

∥∥
Z+‖(ζ1, ζ2)‖(L2(0,T ;L2(0,L)))2 +‖(h0, hL, g0, gL)‖(H1(0,T ))4

)
,

where the positive constant C depends only on T, L and the coefficients of the system.

We also need to show the operator A generates a C0-semigroup on H := H1(0, L)×L2(0, L),
under some suitable assumptions on the coefficients. We assume (1.6) and

a0(0) 6 0, a0(L) > 0. (2.17)

Note that, under the above assumption on a0, we do not need to provide any boundary condition
for ρ in (1.5). We consider the unbounded operator (A,D(A;H)) in H with

D(A;H) =
{

(ρ, u) ∈ H1(0, L)×H2(0, L) ∩H1
0 (0, L) | a0ρ′ ∈ H1(0, L)

}
.

We prove the following result:

Theorem 2.6. Assume (1.6) and (2.17). The operator (A,D(A;H)) is the infinitesimal gen-
erator of a strongly continuous semigroup T on H.

Proof. We rewrite A := A1 +A2, with

A1 =

−a0 ddx −c1
d

dx
− c2

0 b0
d2

dx2
− b1

d

dx
− b2

 , A2 =

[ −a1 0

−d1
d

dx
− d2 0

]
.

Note that, there exists a positive constant C such that∥∥∥∥A2

[
ρ
u

]∥∥∥∥
H
6 C

∥∥∥∥[ρu
]∥∥∥∥
H

for all

[
ρ
u

]
∈ H.
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Thus A2 is a bounded perturbation of the operator A1 on H (for details, see [29, Theorem
2.11.2]). Therefore, it is sufficient to show that A1 generates a C0-semigroup on H. Considering
a1 = 0, d1 = 0 = d2 in Proposition 2.2, we get that A1, with D(A1;Z) defined by

D(A1;Z) =
{

(ρ, u) ∈ L2(0, L)×H2(0, L) ∩H1
0 (0, L) | a0ρ′ ∈ L2(0, L)

}
,

generates a C0-semigroup T̃ on Z. For any (ρ0, u0) ∈ Z and T > 0, we set[
ρ(t, ·)
u(t, ·)

]
= T̃t

[
ρ0

u0

]
(t ∈ [0, T ]).

Then ρ ∈ C([0, T ];L2(Ω)) and u ∈ C([0, T ];L2(Ω)), and (ρ, u) satisfies the following system
∂tρ+ a0∂xρ+ c1∂xu+ c2u = 0 in (0, T )× (0, L),

∂tu− b0∂xxu+ b1∂xu+ b2u = 0 in (0, T )× (0, L),

u(t, 0) = u(t, L) = 0 on (0, T ),

ρ(0, x) = ρ0(x), u(0, x) = u0(x) in (0, L).

(2.18)

Moreover, using standard results for parabolic equations (see for instance [12, Chapter 7.1]), we
obtain u ∈ L2(0, T ;H1

0 (0, L)) ∩ C([0, T ];L2(0, L)).

In view of [29, Proposition 2.4.4], we need to show H is invariant under T̃ and the restriction

of T̃ to H is a strongly continuous on H. To this aim, we first show that for any (ρ0, u0) ∈ H,
(ρ, u), the solution to (2.18) belongs to C([0, T ];H). We define

η =
c1
b0
u+ ∂xρ.

Then η solves ∂tη + a0∂xη + a′0η = g in (0, T )× (0, L),

η(0) =
c1
b0
u0 + (ρ0)′ in (0, L),

(2.19)

where η(0) ∈ L2(0, L), and

g =

((
a0c1
b0

)′
− c1b2

b0
− c′2

)
u+

(
c1a0
b0
− c′1 − c2 −

c1b1
b0

)
∂xu ∈ L2(0, T ;L2(0, L)).

Thus, for (ρ0, u0) ∈ H, it yields η ∈ C([0, T ];L2(0, L)) and, hence ρ ∈ C([0, T ];H1(0, L)). This

gives that H is invariant under T̃, and the restriction of the semigroup T̃ is a strongly continuous
semigroup in H. It is easy to verify that its domain is D(A1;Z) ∩H = D(A;H). �

Remark 2.7. Let us remark that, under the condition (2.17), we do not need to provide any
boundary conditions for η in (2.19). This is the reason why we have assumed the condition
(2.17). Otherwise, we need to recover the boundary condition for η from (2.18)1, which requires
∂xu(t, 0) to be well-defined. This seems possible if we have more regular initial data for the
parabolic component. Alternatively, if we consider (2.18) with periodic boundary conditions
and with all the coefficients and quantities being periodic with respect to x, we obtain η is also
periodic with respect to x. Thus in this case, any extra assumption on a0 is not required to
obtain our results.

2.2. Well-posedness of the system (1.12). In this subsection we prove the following result

Theorem 2.8. Let us assume (1.13). For any (ρ0, u0) ∈
(
L2(0, L)

)2
and fi ∈ L2(0, T ;L2(0, L)),

i = 1, 2, the system (1.12) admits a unique solution (ρ, u) ∈ C
(

[0, T ];
(
L2(0, L)

)2)
.
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We define the unbounded operator (Â,D(Â;Z)) in Z by

D(Â;Z) =
{

(ρ, u) ∈ L2(0, L)×H2(0, L) ∩H1
0 (0, L) | a0ρ′ ∈ L2(0, L)

ρ(0) = 0 if a0(0) > 0, ρ(L) = 0 if a0(L) < 0
}
,

and

Â =

−a0 ddx − a1 −c0
d2

dx2
− c1

d

dx
− c2

−d2 b0
d2

dx2
− b1

d

dx
− b2

 . (2.20)

We rewrite Â := Â1 + Â2, with

Â1 =

−a0 ddx − a1 −c0
d2

dx2
− c1

d

dx
− c2

0 b0
d2

dx2
− b̂1

d

dx
− b̂2

 , Â2 =

[
0 0

−d2 (̂b1 − b1)
d

dx
+ (̂b2 − b2),

]

where

b̂1 =
a0c0 − b0c1

c0
, b̂2 =

b0a1 − a0b′0
b0

+
a0c
′
0 − b0c2
c0

.

With the above notations, system (1.12) can be rewritten as

ż(t) = Âz(t) + Bf(t), t ∈ (0, T ), z(0) = z0,

where z(t) = (ρ(t, ·), u(t, ·)), z0 = (ρ0, u0), f(t) = (f1(t, ·), f2(t, ·)), and B is defined in (2.2).

We want to show that, the operator Â generates a C0-semigroup on Z. To this aim, let us first
consider the system

d

dt

[
ρ
u

]
= Â1

[
ρ
u

]
,

[
ρ
u

]
(0) =

[
ρ0

u0

]
∈ Z. (2.21)

By setting η = b0ρ+ c0u, we obtain the following system satisfied by (η, u) :

∂tη + a0∂xη + â1η = 0 in (0, T )× (0, L),

∂tu− b0∂xxu+ b̂1∂xu+ b̂2u = 0 in (0, T )× (0, L),

u(t, 0) = u(t, L) = 0 in (0, T ),

η(t, 0) = 0 in (0, T ), if a0(0) > 0,

η(t, L) = 0 in (0, T ), if a0(L) < 0,

η(0) = b0ρ
0 + c0u

0, u(0) = u0 in (0, L),

where â1 =
a1b0 − a0b′0

b0
. We now define

D(Atr) =
{
η ∈ L2(0, L) | a0η′ ∈ L2(0, L), η(0) = 0 if a0(0) > 0, η(L) = 0 if a0(L) < 0

}
,

Atr = −a0η′ − â1η,
and

D(Ap) = H2(0, L) ∩H1
0 (0, L), Apu = b0u

′′ − b̂1u′ − b̂2u.
Note that, (Atr,D(Atr)) generetes a C0 semigroup Ttr on L2(0, L). Also, (Ap,D(Ap)) generetes
a C0 semigroup Tp on L2(0, L). Then the solution of (2.21), can be written as

ρ(t) =
1

b0

(
Ttr
t (b0ρ

0 + c0u
0)− c0Tp

t u
0
)
, u(t) = Tp

t u
0.

This motivates us to define a semigroup T̂1 on Z as follows:

T̂1
t

[
ρ
u

]
=

 1

b0

(
Ttr
t (b0ρ+ c0u)− c0Tp

t u
)

Tp
t u

 . (2.22)
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The following result can be obtained easily. Thus the proof is omitted here.

Lemma 2.9. The family of operators T̂1 defined in (2.22) is a C0-semigroup on Z. Moreover,

its generator is (Â1,D(Â;Z)).

We are now in a position to prove Theorem 2.8.

Proof of Theorem 2.8. We want to show that the operator (Â,D(Â;Z)) generates a C0-semigroup

on Z. In view of [29, Theorem 5.4.2], it is enough to show that Â2 : D(Â;Z)→ Z is an admis-

sible observation operator for T̂1. Using the standard regularity results for parabolic equation,
it is easy to see that, there exists a positive constant C, such that∫ T

0

∥∥∥Â2T̂1
t (ρ

0, u0)
∥∥∥2
Z
dt 6 C

∥∥(ρ0, u0)
∥∥2
Z , ∀ (ρ0, u0) ∈ D(Â;Z).

Therefore, Â2 is an admissible observation operator for T̂1 (see for instance [29, Definition
4.3.1]). This completes the proof. �

We now determine the adjoint of the operator Â.

Proposition 2.10. The adjoint of (Â,D(Â;Z)) in Z is defined by

D(Â∗;Z) =
{

(σ, v) ∈ L2(0, L)× L2(0, L) | a0σ′ ∈ L2(0, L),

σ(L) = 0 if a0(0) > 0, σ(0) = 0 if a0(L) < 0, b0v − c0σ ∈ H1
0 (0, L),

∂xx(b0v − c0σ) + ∂x(b1v + c1σ) ∈ L2(0, L)
}
, (2.23)

and

Â∗
[
σ
v

]
=

[
∂x(a0σ)− a1σ − d2v

∂xx(b0v − c0σ) + ∂x(b1v + c1σ)− (b2v + c2σ)

]
. (2.24)

3. Gaussian beam construction

In this section, we construct Gaussian beam solutions for coupled ODE-parabolic and coupled
transport-parabolic systems with variable coefficients in one space dimension. These solutions
are highly localized near certain curves in space-time. In the case, where the coefficients are
constant, such solutions were constructed in [20] using Fourier transform. However, for the sys-
tem with variable coefficients, we cannot use the Fourier transform to construct such solutions.
Our approach is inspired by the ideas in [26], where such solutions were constructed for strictly
hyperbolic equations. We adapt them to the case for our coupled systems.

3.1. Coupled ODE-parabolic systems : coupling of order zero or one. We consider
the following coupled ODE-parabolic system, that will be used to prove our main results. More
precisely, we will construct Gaussian beam for the following operator:

L1
(
σ
v

)
=

(
∂tσ + α1σ + γ1∂xv + γ2v

∂tv − β0∂xxv + β1∂xv + β2v + δ1∂xσ + δ2σ

)
, in [0, T ]× R. (3.1)

We assume that the coefficients satisfy the following conditions

inf
[0,T ]×R

β0 > 0, α1, βi, γj , δj ∈ C∞b ([0, T ]× R), for all i = 0, 1, 2, for all j = 1, 2. (3.2)

We prove the following result.

Theorem 3.1. Assume (3.2) is satisfied by the coefficients in L1, introduced in (3.1). Let
T > 0, x0 ∈ R and k ∈ N. Then, there exist a positive constant C, which may depend on T but
independent of k, and a sequence of functions (σk, vk)k∈N satisfying

σk ∈ C1([0, T ];C1
b (R)), vk ∈ C1([0, T ];C2

b (R)), (3.3)
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such that the following holds:

sup
t∈[0,T ]

∥∥∥∥L1(σkvk
)

(t, ·)
∥∥∥∥
L2(R)×L2(R)

6 Ck−1, (3.4)

lim
k→∞

∫
R
|σk(t, x)|2 dx = A(t) > 0 (t ∈ [0, T ]), (3.5)

sup
t∈[0,T ]

∫
|x−x0|>k−1/4

|σk(t, x)|2 dx 6 Ce−
√
k/2, (3.6)

sup
t∈[0,T ]

∫
R
|vk(t, x)|2 dx 6 Ck−2, (3.7)

where A(t) is positive for all t ∈ [0, T ] and is independent of k.

Proof. In what follows, the positive constant C, which may change from line to line, is indepen-
dent of k ∈ N. The proof of Theorem 3.1 is divided into several steps.

Step 1: Construction of (σk, vk) :
Let us set

ϕ(x) =
i

2
(x− x0)2 + (x− x0) (x ∈ R). (3.8)

Then for each k ∈ N, we look for (σk, vk) in the form

σk(t, x) = k1/4eikϕ(x)η(t, x) (t ∈ [0, T ], x ∈ R), (3.9)

vk(t, x) = k−3/4eikϕ(x)
[
w0(t, x) +

w1(t, x)

k

]
(t ∈ [0, T ], x ∈ R). (3.10)

Our aim is to choose η, w0 and w1 suitably so that (3.4) - (3.7) holds. Plugging the above
expressions of σk and vk in (3.1) and after some standard computations, we obtain

L1
(
σk
vk

)
= k−3/4eikϕ(x)

(
kg1 + g0 + k−1g−1

k2h2 + kh1 + h0 + k−1h−1

)
, (3.11)

where

g1 = ∂tη + α1η + iγ1ϕ
′w0, g0 = γ1

(
iϕ′w1 + ∂xw0

)
+ γ2w0, g−1 = γ1∂xw1 + γ2w1,

h2 = β0(ϕ
′)2w0 + iδ1ϕ

′η,

h1 = β0(ϕ
′)2w1 − iβ0ϕ′′w0 − 2iβ0ϕ

′∂xw0 + iβ1ϕ
′w0 + δ2η + δ1∂xη,

h0 = ∂tw0 − iβ0ϕ′′w1 − 2iβ0ϕ
′∂xw1 − β0∂xxw0 + iβ1ϕ

′w1 + β1∂xw0 + β2w0,

h−1 = ∂tw1 − β0∂xxw1 + β1∂xw1 + β2w1.

Since we want (σk, vk) such that (3.4) holds, we choose η, w0 and w1 such that

g1(t, x) = h2(t, x) = h1(t, x) = 0 for all t ∈ [0, T ], x ∈ R. (3.12)

The condition h2 = 0 implies that w0 = − iδ1η
β0ϕ′

. Using this in the expression of g1 above, we

obtain the following ODE for η :

∂tη(t, x) +
(
α1(t, x) + γ1(t, x)

δ1(t, x)

β0(t, x)

)
η(t, x) = 0 (t ∈ [0, T ], x ∈ R) . (3.13)

Let ζ ∈ C∞c (R) with ζ(x0) 6= 0. We choose

η(t, x) = exp

(
−
∫ t

0

(
α1(s, x) + γ1(s, x)

δ1(s, x)

β0(s, x)

)
ds

)
ζ(x) (t ∈ [0, T ], x ∈ R) . (3.14)
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With the above choice of η, we take

w0(t, x) =
−iδ1(t, x)η(t, x)

β0(t, x)ϕ′(x)
(t ∈ [0, T ], x ∈ R) , (3.15)

and

w1(t, x) =
1

β0(t, x) (ϕ′(x))2

[
iβ0(t, x)ϕ′′(x)w0(t, x) + 2iβ0(t, x)ϕ′(x)∂xw0(t, x)

− iβ1(t, x)ϕ′(x)w0(t, x)− δ2(t, x)η(t, x)− δ1(t, x)∂xη(t, x)
]

(t ∈ [0, T ], x ∈ R) .

(3.16)

Using (3.2) it is easy to verify that

η ∈ C1([0, T ];C1
b (R)), w0, w1 ∈ C1([0, T ];C2

b (R)),

so that (σk, vk) satisfies (3.3). Moreover,

g0, g−1, h0, h−1 ∈ C([0, T ];Cb(R)).

We are now in a position to show that (σk, vk) defined in (3.9) - (3.10), with η, w0, w1 given by
(3.14) - (3.16), satisfy the estimates (3.4) – (3.7).

Step 2: Proof of (3.4) : In view of (3.11) and (3.12), to prove (3.4), it is enough to show the
following estimates∫

R

∣∣∣k−3/4eikϕ(x)g0(t, x)
∣∣∣2 dx 6 k−2

√
π ‖g0‖2L∞((0,T )×R) , (3.17)∫

R

∣∣∣k−7/4eikϕ(x)g−1(t, x)
∣∣∣2 dx 6 k−4

√
π ‖g−1‖2L∞((0,T )×R) , (3.18)∫

R

∣∣∣k−3/4eikϕ(x)h0(t, x)
∣∣∣2dx 6 k−2√π ‖h0‖2L∞((0,T )×R) , (3.19)∫

R

∣∣∣k−7/4eikϕ(x)h−1(t, x)
∣∣∣2dx 6 k−4√π ‖h−1‖2L∞((0,T )×R) , (3.20)

hold for any t ∈ [0, T ]. We provide a proof of (3.17) only. The other estimates will follow in a
similar fashion. Using (3.8), we deduce∫

R

∣∣∣k−3/4eikϕ(x)g0(t, x)
∣∣∣2 dx 6 k−3/2 ‖g0‖2L∞((0,T )×R)

∫
R
e−k(x−x0)

2
dx

= k−2 ‖g0‖2L∞((0,T )×R)

∫
R
e−z

2
dz = k−2

√
π ‖g0‖2L∞((0,T )×R) .

Step 3: Proof of the estimates (3.5)-(3.7) : The estimate (3.7) can be obtained similarly as
Step 2 above. Using (3.8), (3.9) and (3.14), we have∫

|x−x0|>k−1/4

|σk(t, x)|2 dx 6 k1/2 ‖η‖2L∞((0,T )×R)

∫
|x−x0|>k−1/4

e−k(x−x0)
2
dx

=
√

2 ‖η‖2L∞((0,T )×R)

∫
|z|> k

1
4√
2

e−2z
2
dz 6 Ce−

√
k/2

∫
R

e−z
2
dz = C

√
πe−

√
k/2.

This proves (3.6). To prove (3.5), noting that k
1
2

∫
R e
−k(x−x0)2dx =

√
π, we first obtain∫

R
|σk(t, x)|2 dx = k

1
2

∫
R
e−k(x−x0)

2 |η(t, x)|2dx

= η2(t, x0)k
1
2

∫
R
e−k(x−x0)

2
dx+ k

1
2

∫
R
e−k(x−x0)

2
(
η2(t, x)− η2(t, x0)

)
dx

=
√
πη2(t, x0) +Rk(t), (3.21)
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where

Rk(t) = k
1
2

∫
R

e−k(x−x0)
2
(
η2(t, x)− η2(t, x0)

)
dx.

By proceeding similarly as the proof of (3.6) above, we obtain

|Rk(t)| 6 Ck1/2
∫
|x−x0|>k−1/4

e−k(x−x0)
2
dx+ k

1
2

∫
|x−x0|6k−1/4

e−k(x−x0)
2
∣∣∣η2(t, x)− η2(t, x0)

∣∣∣dx
6 Ce−

√
k/2 + k

1
2

∫
|x−x0|6k−1/4

e−k(x−x0)
2
∣∣∣η2(t, x)− η2(t, x0)

∣∣∣dx.
Since η ∈ C1([0, T ];C1

b (R)), we have∣∣∣η2(t, x)− η2(t, x0)
∣∣∣ =

∣∣∣η(t, x) + η(t, x0)
∣∣∣∣∣∣η(t, x)− η(t, x0)

∣∣∣
6 C

∥∥∥∥∂η∂x
∥∥∥∥
L∞([0,T ]×R)

|x− x0| 6 C|x− x0|.

Therefore, using the above estimate we get

|Rk(t)| 6 Ce−
√
k/2 + Ck−

1
4

∫
R
k

1
2 e−k(x−x0)

2
dx 6 C(e−

√
k/2 +

√
πk−

1
4 ).

Therefore, from (3.21) we obtain (3.5) with A(t) =
√
π|η(t, x0)|2 6= 0 for all t ∈ [0, T ]. This

completes the proof of Theorem 3.1. �

As a consequence of Theorem 3.1, we also have the following result.

Lemma 3.2. Let T > 0, x0 ∈ (0, L), and let (σk, vk)k∈N be constructed as in Theorem 3.1.

(i) Let `1 : [0, T ]→ R be a smooth function such that

|`1(t)− x0| > k
−1/4
0 for all t ∈ [0, T ], for some k0 ∈ N.

Then, for all k > k0,

‖σk(·, `1(·))‖H1(0,T ) 6 Ce
−
√
k
4 ,

where C is a positive constant, which may depend on k0 and T, but independent of k.
(ii) Let `2 : [0, T ]→ R be a smooth function. Then, for all k > k0,

‖vk(·, `2(·))‖H1(0,T ) 6 Ck
−3/4,

where C is a positive constant, which may depend on k0 and T, but independent of k.

Proof. From (3.9), using η ∈ C1([0, T ];C1
b (R)) along with the estimate |`1(t)− x0| > k

−1/4
0 , for

all t ∈ [0, T ], we have, for all k > k0,

|σk(t, `1(t))| 6 Ck1/4e−
√

k
2 , |∂tσk(t, `1(t))| 6 Ck3/4e−

√
k
2 , for all t ∈ [0, T ],

for some constant C depending on k0, T but independent of k. Therefore, using the fact that

k1/4e−
√
k
4 6 1 and k3/4e−

√
k
4 6 4 for all k ∈ N, we get

‖σk(·, `1(·))‖H1(0,T ) 6 Ce
−
√
k
4 , ∀ k > k0.

Similarly, the other estimates mentioned in the lemma can be obtained. �
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3.2. Coupled ODE-parabolic systems : coupling of order two. In this subsection, we
construct Gaussian beam solutions for the following coupled ode-parabolic system with coupling
of order two. More precisely, we consider

L2
(
σ
v

)
=

(
∂tσ + α1σ + γ2v

∂tv − β0∂xxv + β1∂xv + β2v + δ0∂xxσ + δ1∂xσ + δ2σ

)
, in [0, T ]× R. (3.22)

Let us assume that

inf
[0,T ]×R

β0 > 0, δ0 6= 0, α1, βi, γ2, δi ∈ C∞b ([0, T ]× R) for all i = 0, 1, 2. (3.23)

We prove the following result.

Theorem 3.3. Assume (3.23), T > 0, x0 ∈ R and k ∈ N. Then, there exist a positive con-
stant C, which may depend on T but independent of k, and a sequence of functions (σk, vk)k∈N
satisfying

σk ∈ C1([0, T ];C2
b (R)), vk ∈ C1([0, T ];C2

b (R)),

such that the following holds:

sup
t∈[0,T ]

∥∥∥∥L2(σkvk
)

(t, ·)
∥∥∥∥
L2(R)×L2(R)

6 Ck−1, (3.24)

lim
k→∞

∫
R
|σk(t, x)|2 dx = A(t) > 0 (t ∈ [0, T ]), (3.25)

sup
t∈[0,T ]

∫
|x−x0|>k−1/4

|σk(t, x)|2 dx 6 Ce−
√
k/2, (3.26)

lim
k→∞

∫
R
|vk(t, x)|2 dx = B(t) > 0 (t ∈ [0, T ]), (3.27)

sup
t∈[0,T ]

∫
|x−x0|>k−1/4

|vk(t, x)|2 dx 6 Ce−
√
k/2, (3.28)

where A(t) and B(t) are positive for all t ∈ [0, T ] and do not depend on k.

Proof. The proof is similar to that of Theorem 3.1. We just provide the expressions of σk and
vk. For each k ∈ N, we look for (σk, vk)k∈N in the form

σk(t, x) = k1/4eikϕ(x)η(t, x), (t ∈ [0, T ], x ∈ R),

vk(t, x) = k1/4eikϕ(x)
[
w0(t, x) +

w1(t, x)

k
+
w2(t, x)

k2

]
, (t ∈ [0, T ], x ∈ R),

where ϕ is defined in (3.8) and η, w0, w1 and w2 are given by

η(t, x) = exp

(
−
∫ t

0

(
α1(s, x) + γ2(s, x)

δ0(s, x)

β0(s, x)

)
ds

)
ζ(x) (t ∈ [0, T ], x ∈ R),

for some ζ ∈ C∞c (R) with ζ(x0) 6= 0 and

w0(t, x) =
δ0(t, x)

β0(t, x)
η(t, x) (t ∈ [0, T ], x ∈ R),

w1(t, x) =
1

β0(t, x) (ϕ′(x))2

[
2iβ0(t, x)ϕ′(x)∂xw0(t, x) + iβ0(t, x)ϕ′′(x)w0(t, x)

− iβ1(t, x)ϕ′(x)w0(t, x)− 2iδ0(t, x)ϕ′(x)∂xη(t, x)− iδ0(t, x)ϕ′′(x)η(t, x)

− iδ1(t, x)ϕ′(x)η(t, x)
]

(t ∈ [0, T ], x ∈ R),
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w2(t, x) =
1

β0(t, x) (ϕ′(x))2

[
− ∂tw0(t, x) + iβ0(t, x)ϕ′′(x)w1(t, x) + 2iβ0(t, x)ϕ′(x)∂xw1(t, x)

+ β0(t, x)∂xxw0(t, x)− iβ1(t, x)ϕ′(x)w1(t, x)− β1(t, x)∂xw0(t, x)− β2(t, x)w0(t, x)

− δ0(t, x)∂xxη(t, x)− δ1(t, x)∂xη(t, x)− δ2(t, x)η(t, x)
]

(t ∈ [0, T ], x ∈ R).

The rest of the proof is similar to that of Theorem 3.1. Moreover,

A(t) =
√
π|η(t, x0)|2 6= 0 and B(t) =

√
π|w0(t, x0)|2 6= 0 for all t ∈ [0, T ].

�

Remark 3.4. Due to the different order of coupling in the operators L1 and L2, the Gaussian
beam solutions in Theorem 3.3 corresponding to the operator L2 are different from the solutions
obtained in Theorem 3.1 for the operator L1. In contrast to (3.7), in Theorem 3.3, for all
t ∈ [0, T ], ‖vk(t, ·)‖2L2(R) converges to a nonzero constant B(t) as k →∞. It leads to a different

behaviour of the null controllability of (1.12) than that of (1.3)-(1.5). In particular, the lack
of null controllability of (1.3)-(1.5) is obtained in Theorem 1.2 and Theorem 1.4 using even
everywhere control in the parabolic equation, whereas the lack of null controllability of (1.12)
is obtained in Theorem 1.6, using localized control in the parabolic equation. In fact, using
everywhere control in the parabolic equation, (1.12) with some assumptions on the coefficients
is null controllable (see Theorem 5.4).

3.3. Coupled transport-parabolic systems : coupling of order one or zero. In this sub-
section, we prove analogous result of Theorem 3.1, for the coupled transport-parabolic operator.
We consider the following operator:

L3
(
σ
v

)
=

(
∂tσ + α0∂xσ + α1σ + γ1∂xv + γ2v

∂tv − β0∂xxv + β1∂xv + β2v + δ1∂xσ + δ2σ

)
, in [0, T ]× R, (3.29)

where the coefficients satisfy (3.2) along with

α0 ∈ C∞b ([0, T ]× R). (3.30)

We introduce the characteristics X associated with α0:{
∂tX(t, x) = α0

(
t,X(t, x)

)
, (t > 0),

X(0, x) = x, x ∈ R.
(3.31)

Note that for each t ≥ 0, the mapping x 7→ X(t, x) is a C1 diffeomorphism from R to R and
the smoothness of X follows from that of α0.

We set

σ̃(t, x) = σ(t,X(t, x)), ṽ(t, x) = v(t,X(t, x)), (t ∈ [0, T ], x ∈ R) . (3.32)

Then the operator L3 transforms into

L3
(
σ
v

)
=

(
∂tσ̃ + α̃1σ̃ + γ̃1∂xṽ + γ̃2ṽ

∂tṽ − β̃0∂xxṽ + β̃1∂xṽ + β̃2ṽ + δ̃1∂xσ̃ + δ̃2σ̃

)
, (3.33)
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where

α̃1(t, x) = α1(t,X(t, x)), γ̃1(t, x) = γ1(t,X(t, x))

(
∂X(t, x)

∂x

)−1
, γ̃2(t, x) = γ2(t,X(t, x)),

β̃0(t, x) = β0(t,X(t, x))

(
∂X(t, x)

∂x

)−2
, β̃2(t, x) = β2(t,X(t, x)), δ̃2(t, x) = δ2(t,X(t, x)),

β̃1(t, x) = β0(t,X(t, x))

(
∂X(t, x)

∂x

)−3
∂2X(t, x)

∂x2

+ (β1(t,X(t, x))− α0(t,X(t, x)))

(
∂X(t, x)

∂x

)−1
,

δ̃1(t, x) = δ1(t,X(t, x))

(
∂X(t, x)

∂x

)−1
.

According to Theorem 3.1, we can construct sequence of functions (σ̃k, ṽk)k∈N satisfying (3.3)-
(3.7). Gathering the above properties, we have obtained the following result:

Theorem 3.5. Assume (3.2), (3.30), T > 0, x0 ∈ R and k ∈ N. Then, there exist a positive
constant C, which may depend on T but independent of k, and a sequence of functions (σk, vk)k∈N
satisfying

σk ∈ C1([0, T ];C1
b (R)), vk ∈ C1([0, T ];C2

b (R)), (3.34)

such that the following holds:

sup
t∈[0,T ]

∥∥∥∥L3(σkvk
)

(t, ·)
∥∥∥∥
L2(R)×L2(R)

6 Ck−1, (3.35)

lim
k→∞

∫
R
|σk(t, x)|2 dx > A(t) > 0 (t ∈ [0, T ]), (3.36)

sup
t∈[0,T ]

∫
|x−X(t,x0)|>k−1/4

|σk(t, x)|2 dx 6 Ce−
√
k/2, (3.37)

sup
t∈[0,T ]

∫
R
|vk(t, x)|2 dx 6 Ck−2, (3.38)

where A(t) is positive for all t ∈ [0, T ], and is independent of k.

In view of Lemma 3.2 and Theorem 3.5, we have the following result.

Lemma 3.6. Let x0 ∈ (0, L), and let (σk, vk)k∈N be constructed as in Theorem 3.5. Let us
define

Tx0,0 := sup
{
τ | X(t, x0) > 0 for all t ∈ [0, τ)

}
,

Tx0,L := sup
{
τ | X(t, x0) < L for all t ∈ [0, τ)

}
. (3.39)

Then there exists k0 ∈ N, such that for any k > k0 the following estimates hold

‖vk(·, 0)‖H1(0,T ) 6 Ck
−3/4, ‖vk(·, L)‖H1(0,T ) 6 Ck

−3/4 for any 0 < T <∞,

‖σk(·, 0)‖H1(0,T ) 6 Ce
−
√
k
4 for T ∈ (0, Tx0,0),

‖σk(·, L)‖H1(0,T ) 6 Ce
−
√
k
4 for T ∈ (0, Tx0,L),

where C is a positive constant, which may depend on k0 and T, but independent of k.

Proof. Let x0 ∈ (0, L), and 0 < T < Tx0,0. Then there exists k0 ∈ N such that

|X(t, x0)| > k
−1/4
0 for all t ∈ [0, T ].
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For each t > 0, we denote by X(t, ·)−1, the inverse of X(t, ·). We set `1(t) = X(t, 0)−1. Then,
after suitably redefining k0, we have

|`1(t)− x0| > k
−1/4
0 for all t ∈ [0, T ].

Thus by Lemma 3.2(i) we get, for k > k0

‖σ̃k(·, `1(·))‖H1(0,T ) 6 Ce
−
√
k
4 ,

where the positive constant C may depend on k0 and T but is independent of k. From the
above estimate together with (3.32) and bounds of X(·, ·), we infer that

‖σk(·, 0)‖H1(0,T ) 6 Ce
−
√
k
4 for T ∈ (0, Tx0,0),

for some positive constant C, independent of k. The other estimate of σk can be proved similarly.
To prove the estimates of vk, we simply take `2(t) = X(t, 0)−1 or `2(t) = X(t, L)−1, and apply
Lemma 3.2(ii). �

Lemma 3.7. Let x0 ∈ (0, L) and 0 < T < min{Tx0,0, Tx0,L}, where Tx0,0, Tx0,L are as defined
in (3.39). Let (σk, vk)k∈N be constructed as in Theorem 3.5. It can be shown that

lim
k→∞

∫ L

0
|σk(T, x)|2 dx >

A(T )

2
,

for A(T ) > 0, same as in (3.36), independent of k.

Proof. Let x0 ∈ (0, L) and 0 < T < min{Tx0,0, Tx0,L}. By the definitions of Tx0,0 and Tx0,L, it

follows that for any 0 < T < min{Tx0,0, Tx0,L}, X(T, x0) ∈ (0, L). Thus, there exists a large
k0 ∈ N such that for all k ≥ k0,

S = {x ∈ R | |x−X(T, x0)| < k−1/4} ⊂ (0, L),

and thus we have∫
S
|σk(T, x)|2 dx =

∫
R
|σk(T, x)|2 dx−

∫
|x−X(T,x0)|≥k−1/4

|σk(T, x)|2 dx.

Now from (3.36), (3.37) and the above inequality, it follows that

lim
k→∞

∫ L

0
|σk(T, x)|2 dx > lim

k→∞

∫
S
|σk(T, x)|2 dx >

A(T )

2
,

for the positive constant A(T ), same as in (3.36), independent of k. �

3.4. Coupled transport-parabolic systems : coupling of order two. We consider the
following operator:

L4
(
σ
v

)
=

(
∂tσ + α0σ + α1σ + γ2v

∂tv − β0∂xxv + β1∂xv + β2v + δ0∂xxσ + δ1∂xσ + δ2σ

)
, in [0, T ]× R, (3.40)

where the coefficients satisfy (3.23) and (3.30).
Combining Theorem 3.3 and the change of coordinates introduced in (3.31), we deduce the

following result.

Theorem 3.8. Assume (3.23), (3.30), T > 0, x0 ∈ R and k ∈ N. Then, there exist a positive
constant C, which may depend on T but independent of k, and a sequence of functions (σk, vk)k∈N
satisfying

σk ∈ C1([0, T ];C2
b (R)), vk ∈ C1([0, T ];C2

b (R)),
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(a) σk constructed in Theorem 3.1.
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(b) σk constructed in Theorem 3.5.

Figure 1. Localization of σk for the operators L1 and L3. In the horizontal
axis we represent the space variable, and the vertical one represents time vari-
able. Left: Plot of |σk(t, x)|2 constructed in Theorem 3.1 with suitable choice
of coefficients and x0 = 1. According to (3.5) and (3.6), σk is localized around
the curve (t, x0). Right: Plot of |σk(t, x)|2 constructed in Theorem 3.5 with
α0(x) = −0.2(1 + x) and x0 = 1. In this case, X(t, x0) = (1 + x0)e

−.2t − 1.
According to (3.36) and (3.37), σk is localized around the curve (t,X(t, x0)).

such that the following holds:

sup
t∈[0,T ]

∥∥∥∥L4(σkvk
)

(t, ·)
∥∥∥∥
L2(R)×L2(R)

6 Ck−1, (3.41)

lim
k→∞

∫
R
|σk(t, x)|2 dx > A(t) 6= 0 (t ∈ [0, T ]), (3.42)

sup
t∈[0,T ]

∫
|x−X(t,x0)|>k−1/4

|σk(t, x)|2 dx 6 Ce−
√
k/2, (3.43)

lim
k→∞

∫
R
|vk(t, x)|2 dx > B(t) 6= 0 (t ∈ [0, T ]), (3.44)

sup
t∈[0,T ]

∫
|x−X(t,x0)|>k−1/4

|vk(t, x)|2 dx 6 Ce−
√
k/2, (3.45)

where A(t) and B(t) are positive for all t ∈ [0, T ] and do not depend on k.

4. Proof of the main results

In this section we prove Theorem 1.2 and Theorem 1.6. As mentioned earlier, null controlla-
bility of a pair (A,B) is equivalent to the final-state observability of the pair (A∗,B∗). We recall
the final state observability of (A∗,B∗) :
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Definition 4.1. The pair (A∗,B∗) is final-state observable at time T if there exists a positive
constant CT > 0 such that∫ T

0
‖B∗T∗t z‖

2
U dt > CT ‖T∗T z‖

2
Z , ∀ z ∈ D(A∗),

where T∗ is the C0-semigroup generated by (A∗,D(A∗)) in the Hilbert space Z.

For (A∗,D(A∗;Z)) defined in (2.14)-(2.15) and (σ0, v0) ∈ Z, we set

(σ(t), v(t)) = T∗t (σ0, v0) (t > 0),

where T∗ is the C0-semigroup generated by (A∗,D(A∗;Z)) on Z. In view of Proposition 2.4,
(σ, v) belongs to C([0, T ];Z) and satisfies:

∂tσ − a0∂xσ + (a1 − a′0)σ − d1∂xv − (d′1 − d2)v = 0 in (0, T )× (0, L),

∂tv − b0∂xxv − (2b′0 + b1)∂xv − (b′′0 + b′1 − b2)v
−c1∂xσ + (c2 − c′1)σ = 0 in (0, T )× (0, L),

v(t, 0) = v(t, L) = 0 in (0, T ),

σ(t, L) = 0 if a0(0) > 0, σ(t, 0) = 0 if a0(L) < 0 in (0, T ),

σ(0, x) = σ0(x), v(0, x) = v0(x) in (0, L).

(4.1)

In view of [29, Theorem 11.2.1], null controllability of the system (1.3)-(1.5) is equivalent to
the following observability inequality:

Proposition 4.2. The system (1.3)-(1.5) is null controllable in Z at time T > 0 using two
controls f1 and f2 in L2(0, T ;L2(0, L)) with supports in O1 and O2 respectively, if and only if,
for T > 0, there exists a positive constant CT > 0 such that for any (σ0, v0) ∈ Z, (σ, v), the
solution of (4.1), satisfies the following observability inequality:∫ L

0
|σ(T, x)|2 dx +

∫ L

0
|v(T, x)|2 dx 6 CT

(∫ T

0

∫
O1

|σ(x, t)|2 dx dt+

∫ T

0

∫
O2

|v(x, t)|2 dx dt
)
.

(4.2)

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Recall the definition of TO1 from (1.9) and fix 0 < T < TO1 . In view of
Proposition 4.2, it is enough to show that, there exists a sequence of initial conditions

(
σ0k, v

0
k

)
k∈N

in Z, such that, the corresponding solution (σk, vk) to the system (4.1) satisfy the following
estimates

lim
k→∞

(∫ T

0

∫
O1

|σk(t, x)|2 dxdt+

∫ T

0

∫
O2

|vk(t, x)|2 dxdt

)
= 0,

lim
k→∞

(∫ L

0
|σk(T, x)|2 dx +

∫ L

0
|vk(T, x)|2 dx

)
> A,

for some A > 0, independent of k.
We take extensions of the functions ai, bi, ci, di on R, still denoted by the same notation.

Further, for a0 we take the same extension that we have used to define X in (1.7). From the
definition of TO1 , we deduce that, there exist x0 ∈ (0, L) \ O1 and k0 ∈ N such that{

x | |x−X(t, x0)| < k
−1/4
0

}
⊂ (0, L)\O1 for all t ∈ [0, T ],

where X is defined in (1.7). Let us fix such x0. Let
(
σ]k, v

]
k

)
k∈N

be sequence of functions

constructed in Theorem 3.5, with

α0 = −a0, α1 = a1 − a′0, γ1 = −d1, γ2 = −(d′1 − d2),
β0 = b0, β1 = −(2b′0 + b1), β2 = −(b′′0 + b′1 − b2), δ1 = −c1, δ2 = c2 − c′1. (4.3)
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Note that, with the above choice of α0, X coincides with X. For k > k0, let us define

g0,k(t) := σ]k(t, 0), gL,k(t) := σ]k(t, L) (t ∈ [0, T ]),

h0,k(t) := v]k(t, 0), hL,k(t) := v]k(t, L) (t ∈ [0, T ]),

and (
ζ1,k
ζ2,k

)
(t, x) := 1(0,L)L3

(
σ]k
v]k

)
(t, x) (t ∈ [0, T ], x ∈ [0, L]) ,

where L3 is the operator defind in (3.29) with coefficients as in (4.3). Next, for k > k0, we
consider the following system.

∂tσ
†
k − a0∂xσ

†
k + (a1 − a′0)σ

†
k − d1∂xv

†
k − (d′1 − d2)v

†
k = ζ1,k in (0, T )× (0, L),

∂tv
†
k − b0∂xxv

†
k − (2b′0 + b1)∂xv

†
k − (b′′0 + b′1 − b2)v

†
k

−c1∂xσ†k + (c2 − c′1)σ
†
k = ζ2,k in (0, T )× (0, L),

v†k(t, 0) = h0,k(t), v†k(t, L) = hL,k(t) in (0, T ),

σ†k(t, L) = gL,k(t) if a0(0) > 0, σ†k(t, 0) = g0,k(t) if a0(L) < 0 in (0, T ),

σ†k(0, x) = 0, v†k(0, x) = 0 in (0, L).

(4.4)

In view of Proposition 2.5, (3.35) and Lemma 3.6, for k > k0, the system (4.4) admits a unique

solution (σ†k, v
†
k) ∈ C([0, T ];Z) together with the estimate∥∥∥(σ†k, v

†
k)
∥∥∥
C([0,T ];Z)

6 Ck−3/4 (k > k0) , (4.5)

where the positive constant C is independent of k. Finally, we set

σk = σ]k − σ
†
k, vk = v]k − v

†
k.

Then (σk, vk) satisfies the system (4.1) with the initial data
(
σ0k, v

0
k

)
=
(
σ]k(0), v]k(0)

)
. Note

that for any given 0 < T < TO1 , from the choice of x0 and the definition of TO1 in (1.9), we have
that X(t, x0) ∈ (0, L)\O1 for all t ∈ [0, T ]. From the definitions of Tx0,0 and Tx0,L in (3.39), it
follows that 0 < T < min{Tx0,0, Tx0,L}. Using Lemma 3.7 and (4.5), we deduce that

lim
k→∞

(∫ L

0
|σk(T, x)|2 dx +

∫ L

0
|vk(T, x)|2 dx

)
> lim

k→∞

∫ L

0
|σk(T, x)|2 dx >

A(T )

2
,

for some positive constant A(T ). Similarly, from (3.37), (3.38) and (4.5), it follows that

lim
k→∞

(∫ T

0

∫
O1

|σk(t, x)|2 dxdt+

∫ T

0

∫
O2

|vk(t, x)|2 dxdt
)

= 0.

This completes the proof of the theorem. �

Next, we prove Theorem 1.4.

Proof of Theorem 1.4. Let us take O2 = (0, L). Then the system (1.3)-(1.5) is null controllable
in Z at time T > 0 using a control f2 in L2(0, T ;L2(0, L)), if and only if, for T > 0, there exists
a positive constant CT > 0 such that for any (σ0, v0) ∈ Z, (σ, v), the solution of (4.1), satisfies
the following observability inequality:∫ L

0
|σ(T, x)|2 dx +

∫ L

0
|v(T, x)|2 dx 6 CT

∫ T

0

∫ L

0
|v(t, x)|2 dx dt.

Noting (1.10), the proof of Theorem 1.4(i) follows similarly as that of Theorem 1.2. To prove
Theorem 1.4(ii), we show that under the assumptions (1.11), T∅ = +∞. This is divided in
several cases.
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Case 1. a0(x∗) = 0 for some x∗ ∈ (0, L) : In this case, X(t, x∗) = x∗ for all t > 0, and hence
Tx∗,∅ = +∞.
Case 2. a0(0) < 0 and a0(L) > 0: In such case, there exist x∗ ∈ (0, L) such that a0(x∗) = 0
and we are back to Case 1.
Case 3. a0(0) = 0 = a0(L) : In this case, X(t, 0) = 0 and X(t, L) = L for all t > 0. Thus, for
any x ∈ (0, L), X(t, x) ∈ (0, L) for t > 0.
Case 4. a0(0) < 0, a0(L) = 0 and a0 < 0 in (0, L): In this case, X(t, L) = L for all t > 0, and
X(t, 0) > 0 for all t > 0. Thus, there exists x∗ ∈ (0, L) such that X(t, x∗) ∈ (0, L), for all t > 0.
Therefore, T∅ =∞.

The other cases can be treated in a similar manner and thus the theorem is proved. �

Finally, we give a proof of Theorem 1.6.

Proof of Theorem 1.6. The proof of Theorem 1.6 is similar to that of Theorem 1.2. First of
all, the null controllability of (1.12) is equivalent to the final-state observability of the pair

(Â∗,B∗), where Â∗ is the adjoint of Â defined in Proposition 2.10. Note that, the operator

L4 defined in (3.40), corresponds to the adjoint operator Â∗. To prove Theorem 1.6, we can
proceed in a similar manner as in the proof of Theorem 1.2 using Gaussian beams constructed
in Theorem 3.8 instead of Theorem 3.5. �

As indicated in the introduction, the system (1.12) is related to the system (1.3)-(1.5), if
initial data lies in H1(0, L)× L2(0, L). Therefore, as a consequence of Theorem 1.6, we obtain
following result for the system (1.3)-(1.5).

Theorem 4.3. Assume (1.6), and

a0(0) 6 0, a0(L) > 0, (4.6)

d2(a
′
0d1 − a0d′1) = d1(d1a

′
1 − a0d′2), (4.7)

c1 6= 0, d1 6= 0. (4.8)

Further, let f1 ≡ 0 in (1.3) and O2 ⊂ (0, L) be such that (0, L) \ O2 is a nonempty open subset
of (0, L). Then the system (1.3)-(1.5) is not null controllable in H1(0, L)×L2(0, L), at any time
0 < T < TO2 , by an interior control f2 ∈ L2(0, T ;L2(0, L)) supported in O2.

Proof. The proof relies on a contradiction argument. Let us assume that, under the hypothesis
of Theorem 4.3, the system (1.3)-(1.5) is null controllable in H1(0, L) × L2(0, L), at any time
0 < T < TO2 , by an interior control f2 ∈ L2(0, T ;L2(0, L)) supported in O2, where (0, L)\O2 is
a nonempty open subset of (0, L). Thus (ρ, u) ∈ C([0, T ];H1(0, L)×L2(0, L)) (see Theorem 2.6),
and

ρ(T, x) = u(T, x) = 0, for all x ∈ (0, L). (4.9)

Setting, η = d1∂xρ+ d2ρ, we observe

η(T, x) = u(T, x) = 0, for all x ∈ (0, L). (4.10)

Using (4.6) - (4.8), it is easy to verify that, (η, u) solves the following system
∂tη + a0∂xη + ā1η + c̄0∂xxu+ c̄1∂xu+ c̄2u = 0 in (0, T )× (0, L),

∂tu− b0∂xxu+ b1∂xu+ b2u+ η = 1O2f2 in (0, T )× (0, L),

u(t, 0) = u(t, L) = 0 in (0, T ),

η(0) = d1(ρ
0)′ + d2ρ

0, u(0) = u0 in (0, L),

(4.11)

where

ā1 = a1 +
a′0d1 − a0d′1

d1
, c̄0 = c1d1, c̄1 = (d1c

′
1 + d1c2 + d2c1), c̄2 = d1c

′
2 + d2c2.

Note that (4.11) is similar to (1.12) with the coefficients satisfying the assumptions in Theorem
1.6. Hence, using Theorem 1.6, we obtain that (4.11) is not null controllable in L2(0, L)×L2(0, L)
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at any time 0 < T < TO2 using a localized control in the parabolic equation, which contradicts
(4.10). Hence the proof is complete. �

Remark 4.4. Let us compare the results of Theorem 1.4(ii) and Theorem 4.3, under the as-
sumption (4.6), as both correspond to the same system (1.3)-(1.5) with parabolic control only,
i.e., O1 = ∅. In Theorem 1.4(ii), the system is not null controllable in L2(0, L) × L2(0, L) at
any time T > 0 using any control in the parabolic equation even with support everywhere in
(0, L). Thus, it is reasonable to ask whether the controllability property of the system improves
for the regular initial data. In Theorem 4.3, under the additional assumptions (4.7) and (4.8),
for initial data in H1(0, L) × L2(0, L), the lack of null controllability of the system using any
control in the parabolic equation with support in O2 is obtained at time T , where 0 < T < TO2

and O2 is a proper subset of (0, L). Thus the results of Theorem 4.3, indicates the possibility
to obtain the null controllability in H1(0, L) × L2(0, L) using only one control in the parabolic
equation acting everywhere in (0, L), whereas Theorem 1.4(ii) shows that no control acting only
in the parabolic equation even with support everywhere in (0, L) can give the null controllability
of the system in L2(0, L)× L2(0, L) at time T > 0.

5. Null controllability by parabolic control

In Theorem 1.6 and Theorem 4.3, we have seen that the corresponding systems are not
controllable for small time with localized interior controls. Furthermore, if a0 ≡ 0, as mentioned
in Remark 1.3, the corresponding systems are not controllable at any finite time by localized
interior controls. Nevertheless, if a0 ≡ 0, the system can be null controllable by using even a
control acting only in the parabolic equation but with support everywhere in the domain and
the goal of this section is to prove the result. To this aim, we first study the null controllability
of the following auxiliary system:

∂tρ+ α0∂xx(γ0u) = 0 in (0, T )× (0, L),

∂tu−
b0
γ0
∂xx

(
γ0u
)

+ ρ = g in (0, T )× (0, L),

u(t, 0) = u(t, L) = 0 in (0, T ),

ρ(0) = ρ0, u(0) = u0 in (0, L),

(5.1)

where g is the control.
We assume

α0, γ0, b0 ∈ C∞([0, L]), min
[0,L]

b0 > 0, α0 6= 0, min
[0,L]

γ0 > 0. (5.2)

The system (5.1) is well posed in L2(0, L) × L2(0, L) due to Theorem 2.8. We prove the
following controllability result for the system (5.1).

Theorem 5.1. Let us assume (5.2) and T > 0. For any (ρ0, u0) ∈ L2(0, L) × L2(0, L), there
exists a control g ∈ L2(0, T ;L2(0, L)) such that (ρ, u), the corresponding solution to (5.1),

belongs to C([0, T ];L2(0, L))×
(
L2(0, T ;H1

0 (0, L)) ∩ C([0, T ];L2(0, L))
)

and satisfies

ρ(T, x) = u(T, x) = 0, for all x ∈ (0, L).

The null controllability of the system (5.1) is equivalent to the final-state observability of the
adjoint system. According to Proposition 2.10, the corresponding adjoint system reads as:

∂tσ + v = 0 in (0, T )× (0, L),

∂tv − γ0∂xx
( b0
γ0
v − α0σ

)
= 0 in (0, T )× (0, L),( b0

γ0
v − α0σ

)
(t, 0) =

( b0
γ0
v − α0σ

)
(t, L) = 0 in ∈ (0, T ),

σ(0) = σ0, v(0) = v0 in (0, L).

(5.3)
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In view of [29, Theorem 11.2.1], the statement of Theorem 5.1 is equivalent to the following
theorem

Theorem 5.2. Under the assumptions of Theorem 5.1, for any T > 0, there exists a positive
constant CT such that (σ, v), the solution to (5.3) with initial condition (σ0, v0), satisfies∫ L

0
|σ(T, x)|2 dx +

∫ L

0
|v(T, x)|2 dx 6 CT

∫ T

0

∫ L

0
|v(x, t)|2 dx dt for all (σ0, v0) ∈ D(Â∗),

(5.4)

where D(Â∗) is the domain of the linear operator corresponding to (5.3) as defined in (2.23).

Proof. Let Ã denotes the linear operator associated with the system (5.3). In view of Proposi-

tion 2.10, this operator Ã is the adjoint of the operator Â defined in (2.20) with suitable choice

of coefficients. In particular, we have Ã generates a C0-semigeoup T̃ in Z. Moreover, there exist
M > 1 and ω ∈ R such that ∥∥∥T̃t∥∥∥ 6Meωt, t ≥ 0.

Using the above property, it is easy to see that, for any (σ0, v0) ∈ Z, the solution (σ, v) to
the system (5.3) satisfies

‖(σ(T2, ·), v(T2, ·)‖Z 6Meω(T2−T1) ‖(σ(T1, ·), v(T1, ·)‖Z ,
for any 0 6 T1 < T2 6 T. For any t ∈ [0, T ), choosing T2 = T and T1 = t, and noting (T−t) 6 T ,
from the above estimate it follows that∫ L

0
|σ(T, x)|2 dx+

∫ L

0
|v(T, x)|2dx 6M2e2ωT

(∫ L

0
|σ(t, x)|2 dx+

∫ L

0
|v(t, x)|2 dx

)
(0 6 t < T ).

Now integrating both side of the above inequality over [0, T ] with respect to t, we have the
existence of a positive constant C such that∫ L

0
|σ(T, x)|2 dx+

∫ L

0
|v(T, x)|2dx 6 C

(∫ T

0

∫ L

0
|σ(t, x)|2 dxdt+

∫ T

0

∫ L

0
|v(t, x)|2 dxdt

)
.

(5.5)
The desired conclusion of this theorem holds provided that there exits a constant CT > 0 such
that ∫ T

0

∫ L

0
|σ(t, x)|2 dxdt 6 CT

∫ T

0

∫ L

0
|v(t, x)|2 dxdt. (5.6)

Multiplying (5.3)1 by σ we first obtain∫ T

0

∫ L

0
|σ(t, x)|2 dxdt 6 C

(∫ L

0
|σ0(x)|2 dx+

∫ T

0

∫ L

0
|v(t, x)|2 dxdt

)
, (5.7)

for some C > 0 constant.

Let us consider ζ ∈ C∞c (0, T ) with ζ > 0 on (0, T ). Setting Ψ(t) =

∫ T

t
ζ(s) ds, we note that

Ψ′(t) = −ζ(t) for all t ∈ (0, T ) and Ψ(T ) = 0, Ψ(0) > 0.
Multiplying (5.3)1 by Ψ(t) and using an integration by parts, we obtain

σ0(x)Ψ(0) +

∫ T

0
σ(t, x)Ψ′(t) dt =

∫ T

0
v(t, x)Ψ(t) dt, ∀x ∈ (0, L),

and then using the definition of Ψ and integrating over [0, L] with respect to x variable along
with the Cauchy-Schwarz inequality, we derive∫ L

0
|σ0(x)|2 dx 6 C

(∫ T

0

∫ L

0
|v(t, x)|2 dxdt+

∫ L

0

∣∣∣ ∫ T

0
σ(t, x)ζ(t) dt

∣∣∣2 dx
)
, (5.8)

for some positive constant C. Note that, (5.3)2 can be written as

b0
γ0
v − α0σ = (−∆D)−1

(
− 1

γ0
∂tv

)
,
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where −∆D : H1
0 (0, L)→ H−1(0, L) is an isomorphism. Multiplying the above identity by ζ(t),

after integration by parts, we have∫ T

0
α0(x)σ(t, x)ζ(t) dt =

∫ T

0
(−∆D)−1

(
− 1

γ0
v

)
ζ ′(t) dt+

∫ T

0

b0(x)

γ0(x)
v(t, x)ζ(t) dt, (5.9)

and it yields ∫ L

0

∣∣∣ ∫ T

0
σ(t, x)ζ(t) dt

∣∣∣2 dx 6 C
∫ T

0

∫ L

0
|v(t, x)|2 dxdt, (5.10)

for some positive constant C. Combining the above estimate together with (5.8) and (5.7) we
get (5.6). This completes the proof of the theorem. �

Remark 5.3. Let us point out that, by duality, the estimate (5.5) is equivalent to the fact that
the system (5.1) is null controllable by controls acting everywhere in the both components. In
fact, this can be proved directly by multiplying the free system, i.e. the system without any
control, by a smooth function of time, which is 1 at t = 0 and 0 at t = T. And, the rest of the
proof after the estimate (5.5) is actually one way of removing control from the first component.

As a consequence of Theorem 5.1, we obtain the following null controllability result for the
system (1.12).

Theorem 5.4. Assume (1.13), a0 = a1 = 0 and

c0 = α0γ0, c1 = 2α0γ
′
0, c2 = α0γ

′′
0 ,

for any α0, γ0 ∈ C∞([0, L]) with α0 6= 0 and γ0 > 0. Let f1 ≡ 0 in (1.12)1 and O2 = (0, L)
in (1.12)2. Then for every T > 0 and for any (ρ0, u0) ∈ L2(0, L) × L2(0, L), there exists a
control f2 ∈ L2(0, T ;L2(0, L)) such that (ρ, u), the corresponding solution to (1.12) belongs to

C([0, T ];L2(0, L))×
(
L2(0, T ;H1

0 (0, L)) ∩ C([0, T ];L2(0, L))
)

and satisfies

ρ(T, x) = u(T, x) = 0 for all x ∈ (0, L).

Proof. Let (ρ, u) be the trajectory of (5.1) reaching to zero at time T > 0 using the control g
as constructed in Theorem 5.1. We define,

f2 = g +

(
b1 +

2γ′0b0
γ0

)
∂xu+

(
b2 +

γ′′0 b0
γ0

)
u+ (d2 − 1)ρ.

Then (ρ, u) satisfies the system (1.12) with f2 defined above. Moreover, it satisfies

ρ(T, x) = u(T, x) = 0 for all x ∈ (0, L).

�

We now focus on the null controllability of the system (1.3)-(1.5). Let us recall the spaces
from the introduction

L2
m(0, L) =

{
f ∈ L2(0, L) |

∫ L

0
f dx = 0

}
, H1

m(0, L) = H1(0, L) ∩ L2
m(0, L).

We prove the following result:

Theorem 5.5. Assume (1.6), and

a0(x) = 0 = a1(x), c1(x) 6= 0, c2(x) = c′1(x) for all x ∈ [0, L]. (5.11)

Let f1 ≡ 0 and O2 = (0, L) in (1.3). The following results hold:

(i) The system (1.3)-(1.5) with initial condition (ρ0, u0) ∈ H1(0, L) × L2(0, L) is not null

controllable at any time T > 0, if

∫ L

0
ρ0(x) dx 6= 0.
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(ii) For every T > 0 and for any (ρ0, u0) ∈ H1
m(0, L) × L2(0, L), there exists a control

f2 ∈ L2(0, T ;L2(0, L)) such that (ρ, u), the corresponding solution to (1.3)-(1.5), belongs
to C([0, T ];H1

m(0, L)× L2(0, L)) and satisfies

ρ(T, x) = u(T, x) = 0 for all x ∈ (0, L). (5.12)

Proof. (i) Integrating the first equation of (1.3) and using the above assumptions and boundary
conditions, we deduce that∫ L

0
ρ(t, x) dx =

∫ L

0
ρ0(x) dx for all t ∈ [0, T ].

Therefore, for (ρ0, u0) ∈ H1(0, L) × L2(0, L), if (1.3) − (1.5) is null controllable in H1(0, L) ×

L2(0, L) at time T > 0, then necessarily ρ0 satisfies

∫ L

0
ρ0(x) dx = 0.

(ii) Let us assume that (ρ0, u0) ∈ H1
m(0, L) × L2(0, L). Without loss of generality, we may

assume that c1(x) > 0, for all x ∈ [0, L]. Consider the following control system

∂tρ+ ∂x(c1u) = 0 in (0, T )× (0, L),

∂tu−
b0
c1
∂xx(c1u) + ∂xρ = g in (0, T )× (0, L),

u(t, 0) = u(t, L) = 0 in (0, T ),

ρ(0) = ρ0, u(0) = u0 in (0, L),

(5.13)

where g is the control. Set η = ∂xρ. Then (η, u) satisfies

∂tη + ∂xx(c1u) = 0 in (0, T )× (0, L),

∂tu−
b0
c1
∂xx(c1u) + η = g in (0, T )× (0, L),

u(t, 0) = u(t, L) = 0 in (0, T ),

η(0) = (ρ0)′, u(0) = u0 in (0, L).

(5.14)

Note that, due to the average zero condition, the null controllability of (5.13) in H1
m(0, L) ×

L2(0, L) is equivalent to the null controllability of the system (5.14) in L2(0, L) × L2(0, L).
Therefore, by Theorem 5.1, for every (ρ0, u0) ∈ H1

m(0, L) × L2(0, L) there exists a control
g ∈ L2(0, T ;L2(0, L)) such that (ρ, u), the corresponding solution to (5.13), belongs to C([0, T ];
H1

m(0, L)× L2(0, L)) and satisfies

ρ(T, x) = u(T, x) = 0 for all x ∈ (0, L).

Finally, by setting

f2 = g +

(
b1 +

2c′1b0
c1

)
∂xu+

(
b2 +

c′′1b0
c1

)
u+ (d1 − 1)∂xρ+ d2ρ,

it is easy to verify that (ρ, u) solves the system (1.3)-(1.5) satisfying (5.12). �

Remark 5.6. The purpose of Theorem 5.5 is to check if the anticipation in Remark 4.4 regarding
the null controllability using everywhere control in the parabolic equation holds true. We observe
that for the system (1.3)-(1.5) with f1 ≡ 0 and with coefficients satisfying (1.6) along with

a0(x) = 0 = a1(x), c1(x) 6= 0, c2(x) = c′1(x), d1(x) 6= 0 for all x ∈ [0, L],

both the lack of null controllability results Theorem 1.4(ii) and Theorem 4.3 and the null con-
trollability result Theorem 5.5 hold. Theorem 1.4(ii) gives the lack of null controllability of the
system in L2(0, L)×L2(0, L) at any time T > 0 using any control in the parabolic equation even
acting everywhere in the domain. In Theorem 4.3, since a0 ≡ 0 in [0, L], TO2 = ∞, where O2

is a proper subset of (0, L) and hence the system is not null controllable in H1(0, L)× L2(0, L)
at any time T > 0 using any localized control in the parabolic equation. Then for the case of
using everywhere control in the parabolic equation, Theorem 5.5 gives the null controllability of
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the system in H1
m(0, L) × L2(0, L), at any time T > 0 and thus in this context, this is the best

possible null controllability result expected for the system using a control only in the parabolic
equation.

It is expected to obtain an analogous result of Theorem 5.5 at any time T > 0 even if a0 is
not identically zero in (0, L), provided the coefficients in (1.3) satisfy suitable conditions.

6. Time dependent coefficients

In this section, we extend the above results to the case where the coefficients depend on both
space and time.

6.1. Extension of Theorem 1.2 and Theorem 1.4 to the time dependent case. Let us
assume that

ai, bj , ci, di ∈ C∞([0, T ]× [0, L]), for all i = 0, 1, for all j = 0, 1, 2,

b0(t, x) > b > 0 for all t ∈ [0, T ], x ∈ [0, L]. (6.1)

Furthermore, we also assume one of the following three conditions is satisfied by a0(t, x) on the
boundary:

a0(t, 0) > 0, a0(t, L) > 0 for all t ∈ [0, T ], (6.2)

or

a0(t, 0) 6 0, a0(t, L) < 0 for all t ∈ [0, T ], (6.3)

or

a0(t, 0) 6 0, a0(t, L) > 0 for all t ∈ [0, T ]. (6.4)

Throughout this subsection we shall assume the coefficients satisfy (6.1), and one of (6.2) -
(6.4), unless specified otherwise.

We consider the system (1.3) with the above hypothesis on coefficients. More precisely, we
consider

∂tρ+ a0∂xρ+ a1ρ+ c1∂xu+ c2u = 1O1f1 in (0, T )× (0, L),

∂tu− b0∂xxu+ b1∂xu+ b2u+ d1∂xρ+ d2ρ = 1O2f2 in (0, T )× (0, L),

u(t, 0) = u(t, L) = 0 in (0, T ),

ρ(t, 0) = 0 in (0, T ), if a0(t, 0) > 0,

ρ(t, L) = 0 in (0, T ), if a0(t, L) < 0,

ρ(0, ·) = ρ0, u(0, ·) = u0 in (0, L).

(6.5)

Note that the conditions (6.2)-(6.4) ensure that the inflow boundary is time independent. We
first study the well-posedness of the above system.

Theorem 6.1. (i) Let (ρ0, u0) ∈
(
L2(0, L)

)2
and fi ∈ L2(0, T ;L2(0, L)), i = 1, 2. Then

the system (6.5) admits an unique solution (ρ, u) ∈ C
(

[0, T ];
(
L2(0, L)

)2)
together with

the estimate

‖(ρ, u)‖C([0,T ];(L2(0,L))2) 6 C
(
‖(ρ0, u0)‖L2(0,L)×L2(0,L) + ‖(f1, f2)‖L2(0,T ;(L2(0,L))2)

)
, (6.6)

where the positive constant C depends only on T, L and the coefficients of the system.
(ii) Assume (6.1) and (6.4). Let (ρ0, u0) ∈ H1(0, L)×L2(0, L), f1 = 0 and f2 ∈ L2(0, T ;L2(0, L)).

Then the system (6.5) admits an unique solution (ρ, u) ∈ C([0, T ];H1(0, L)× L2(0, L))
together with the estimate

‖(ρ, u)‖C([0,T ];H1(0,L)×L2(0,L)) 6 C
(
‖(ρ0, u0)‖H1(0,L)×L2(0,L) + ‖f2 ‖L2(0,T ;L2(0,L)

)
, (6.7)

where the positive constant C depends only on T, L and the coefficients of the system.
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Proof. Without loss of generality, let us assume that (6.2) holds. We will show the existence
and uniqueness of the solution of (6.5) by a fixed point argument. Let 0 < T1 6 T, ρ̂ ∈
C([0, T ];L2(0, L)), and we consider the following system



∂tρ+ a0∂xρ+ a1ρ+ c1∂xu+ c2u = 1O1f1 in (0, T )× (0, L),

∂tu− b0∂xxu+ b1∂xu+ b2u = 1O2f2 − d1∂xρ̂− d2ρ̂ in (0, T )× (0, L),

u(t, 0) = u(t, L) = 0 in (0, T ),

ρ(t, 0) = 0 in (0, T ),

ρ(0, ·) = ρ0, u(0, ·) = u0 in (0, L).

(6.8)

Note that, the above system can be solved in cascades. Indeed, 1O2f2 − d1∂xρ̂ − d2ρ̂ ∈
L2(0, T ;H−1(0, L)), and therefore using standard results for parabolic equation, we obtain
u ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1

0 (0, L)) satisfying the estimate for all t ∈ (0, T1],

‖u(t)‖L2(0,L) + ‖u‖L2(0,T1;H1(0,L)) 6M1

(
‖u0‖L2(0,L) + ‖f2‖L2(0,T1;L2(0,L)) + ‖ρ̂‖L2(0,T1;L2(0,L))

)
,

(6.9)
where M1 depends on T, L and the coefficients, but independent of T1. Next, solving the trans-
port equation (6.8)1 we have ρ ∈ C([0, T1];L

2(0, L)) and

‖ρ(t)‖L2(0,L) 6M2

(∥∥ρ0∥∥
L2(0,L)

+ ‖f1‖L2(0,T1;L2(0,L)) + ‖u‖L2(0,T1;H1
0 (0,L))

)
t ∈ (0, T1],

(6.10)
where M2 depends on T, L and the coefficients, but independent of T1. This allows us to define
a map I from C([0, T1];L

2(0, L)) into itself by I(ρ̂) = ρ, where (ρ, u) solves (6.8). Let ρ̂1, ρ̂2 ∈
C([0, T ];L2(0, L)), and (ρ1, u1), (ρ2, u2) be the corresponding solutions of (6.8) when ρ̂ = ρ̂1
and ρ̂ = ρ̂2 respectively. Note that (ρ1 − ρ2, u1 − u2) satisfies (6.8) with initial condition (0, 0)
and with f1 = 0 = f2 and it obeys the corresponding estimates (6.9)-(6.10). Combing the above
estimates it is easy to see that

‖I(ρ̂1)− I(ρ̂2)‖C([0,T1];L2(0,L)) 6M2M1 ‖ρ̂1 − ρ̂2‖L2(0,T1;L2(0,L))

6M2M1

√
T1 ‖ρ̂1 − ρ̂2‖C([0,T1];L2(0,L)) .

Let N be a natural number such that N > TM2
1M

2
2 . We take T1 = T/N. Then I is a contraction

on C([0, T1];L
2(0, L)). It is standard to pass from local to global existence by subdividing [0, T ]

for T > T1, into N subintervals and getting the existence in each [kT1, (k + 1)T1] using above.
This completes the proof of (i).

To prove (ii) under assumptions (6.1) and (6.4), let us define

η =
c1
b0
u+ ∂xρ in (0, T )× (0, L).

Then (η, u) solves the system

∂tη + a0∂xη + ã1η + c̃1∂xu+ c̃2u = f̃1 in (0, T )× (0, L),

∂tu− b0∂xxu+ b1∂xu+ b̃2u+ d̃2η = f̃2 in (0, T )× (0, L),

u(t, 0) = u(t, L) = 0 in (0, T ),

η(0, ·) =
c1(0, ·)
b0(0, ·)

u0(·) +
(
ρ0
)′

(·), u(0, ·) = u0(·) in (0, L),

(6.11)
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where

ã1 =∂xa0 + a1 +
c1d1
b0

, c̃1 = ∂xc1 + c2 +
c1b1 − a0c1

b0

c̃2 =∂xc2 +
c1b2 − ∂xa0c1 − a1c1

b0
− c21d1

b20
− ∂t

(
c1
b0

)
− a0∂x

(
c1
b0

)
f̃1 =

c1
b0
1O2f2 −

(
∂xa1 +

c1d2
b0

)
ρ, b̃2 = b2 −

c1d1
b0

, d̃2 = d1, f̃2 = 1O2f2 − d2ρ.

Note that no boundary condition is needed for η because of (6.4). Then using (i) we complete
the proof of (ii). �

Next, we show that the controllability of the system (6.5) is equivalent to final-state ob-
servability of the adjoint system. In particular, we want to prove Proposition 4.2 when the
coefficients depend both t and x variable. Consider the adjoint system (4.1) with the hypoth-
esis (6.1) - (6.4) on the coefficients. Following the proof of Theorem 6.1, we can show that
the adjoint system (4.1) well-posed, and Proposition 2.5 holds in this case also. We have the
following identity equivalent to null controllability.

Proposition 6.2. The system (6.5) is null controllable in Z at time T > 0 using two controls
f1 and f2 in L2(0, T ;L2(0, L)) with supports in O1 and O2 respectively if and only if∫ T

0

∫
O1

σ(T − t, x)f1(t, x) dxdt+

∫ T

0

∫
O2

v(T − t, x)f2(t, x) dxdt

+

∫ L

0
ρ0(x)σ(T, x) dx+

∫ L

0
u0(x)v(T, x) dx = 0, (6.12)

for all (σ0, v0) ∈ Z, and (σ, v) is the corresponding solution of (4.1) with coefficients satisfying
the hypothesis (6.1) - (6.4).

Proof. Let (ρ, u) be the solution of the system (6.5) with initial condition (ρ0, u0) ∈ Z and two
controls f1 and f2 in L2(0, T ;L2(0, L)) with supports in O1 and O2. Let for any (σ0, v0) ∈ Z,
(σ, v) be the corresponding solution of (4.1).

Multiplying (6.5)1 by σ(T − t, x) and (6.5)2 by v(T − t, x) and using an integration by parts
for continuous data and then using a density argument, for any (ρ0, u0) ∈ Z and f1 and f2 in
L2(0, T ;L2(0, L)) with supports in O1 and O2 and (σ0, v0) ∈ Z, we obtain∫ T

0

∫
O1

σ(T − t, x)f1(t, x) dxdt+

∫ T

0

∫
O2

v(T − t, x)f2(t, x) dxdt

+

∫ L

0
ρ0(x)σ(T, x) dx+

∫ L

0
u0(x)v(T, x) dx =

∫ L

0
ρ(T, x)σ0(x) dx+

∫ L

0
u(T, x)v0(x) dx.

From the above identity, it follows that (ρ(T, ·), u(T, ·) = (0, 0) in Z for the controls f1 and
f2 in L2(0, T ;L2(0, L)) with supports in O1 and O2 if and only if (6.12) holds and hence the
proposition follows.

�

With the help of the above proposition, we now prove Proposition 4.2 in the case when
coefficients are also time dependent.

Proof of Proposition 4.2 for non-autonomous case: Let us assume that the system (6.5) is null
controllable in Z at time T > 0 using two controls f1 and f2 in L2(0, T ;L2(0, L)) with supports
in O1 and O2 respectively. We want to show that (4.2) holds. We prove it using a contradiction
argument. Assume that (4.2) is not true. Then there exists a sequence (σ0n, v

0
n) in Z such
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that, the corresponding solution (σn, vn) to (4.1) with the hypothesis (6.1) - (6.4) on coefficients
satisfies∫ T

0

∫
O1

|σn(t, x)|2 dx dt+

∫ T

0

∫
O2

|vn(t, x)|2 dx dt

6
1

n2

(∫ L

0
|σn(T, x)|2 dx +

∫ L

0
|vn(T, x)|2 dx

)
. (6.13)

We set (σ̃0n, ṽ
0
n) =

√
n

‖(σn(T ),vn(T ))‖Z
(σ0n, v

0
n). Let (σ̃n, ṽn) be the corresponding solution to (4.1).

Then, for each n ∈ N, it yields

‖(σ̃n(T ), ṽn(T ))‖Z =
√
n, (6.14)

and (6.13) gives ∫ T

0

∫
O1

|σ̃n(t, x)|2 dx dt+

∫ T

0

∫
O2

|ṽn(t, x)|2 dx dt 6
1

n
. (6.15)

Since the system (6.5) is assumed to be null controllable in Z, by Proposition 6.2, we have∫ T

0

∫
O1

σ̃n(T − t, x)f1(t, x) dxdt+

∫ T

0

∫
O2

ṽn(T − t, x)f2(t, x) dxdt

+

∫ L

0
ρ0(x)σ̃n(T, x) dx+

∫ L

0
u0(x)ṽn(T, x) dx = 0. (6.16)

From the above identity and (6.15), it is easy to see that (σ̃n(T ), ṽn(T )) converges weakly to
0 in Z, and hence the sequence {(σ̃n(T ), ṽn(T ))}n∈N is uniformly bounded in Z. This is a
contradiction to (6.14).

Conversely, let us assume that the observability inequality (4.2) holds. We want to show

that the system (6.5) is null controllable in Z. Denoting, Ũ = L2(O1) × L2(O2), consider the

subspace X of L2(0, T ; Ũ) defined by

X =
{

(1O1σ,1O2v) | (σ, v) solves (4.1) for some (σ0, v0) ∈ Z
}
.

Given (ρ0, u0) ∈ Z, consider the linear functional F on X defined by

F(1O1σ,1O2v) = −
(∫ L

0
ρ0(x)σ(T, x) dx+

∫ L

0
u0(x)v(T, x) dx

)
.

By the observability inequality (4.2), F is well-defined and bounded linear functional on X .
Thus by Hahn-Banach theorem, we can extend the linear functional F to a bounded linear

functional, still denoted by F , on L2(0, T ; Ũ). By the Riesz representation theorem, there exists

(f̃1, f̃2) ∈ L2(0, T ; Ũ) such that∫ T

0

∫
O1

σ(t, x)f̃1(t, x) dxdt+

∫ T

0

∫
O2

v(t, x)f̃2(t, x) dxdt

+

∫ L

0
ρ0(x)σ(T, x) dx+

∫ L

0
u0(x)v(T, x) dx = 0. (6.17)

By setting f1(t, x) = f̃1(T − t, x), for all x ∈ O1 and t ∈ (0, T ) and f2(t, x) = f̃2(T − t, x), for
all x ∈ O2 and t ∈ (0, T ), and using Proposition 6.2, it is easy to see that, (f1, f2) is the desired
control to obtain the null controllability of the system (6.5) in Z. �

Now we can follow exactly same steps used in the proofs of Theorem 1.2 and Theorem 1.4
in Section 4, to conclude that Theorem 1.2 and Theorem 1.4 also hold for time dependent
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coefficients. Obviously, we just need to modify the definition of X given in (1.7) in the following
way {

∂tX(t, x) = −a0 (t,X(t, x)) (t > 0),

X(0, x) = x x ∈ R.
(6.18)

6.2. Extension of Theorem 1.6 and Theorem 4.3 to the time dependent case. Through-
out this subsection we assume (6.1)-(6.4) and

c0(t, x) 6= 0 for all t ∈ [0, T ], x ∈ [0, L]. (6.19)

We consider the system (1.12) with time dependent coefficients:

∂tρ+ a0∂xρ+ a1ρ+ c0∂xxu+ c1∂xu+ c2u = 1O1f1 in (0, T )× (0, L),

∂tu− b0∂xxu+ b1∂xu+ b2u+ d2ρ = 1O2f2 in (0, T )× (0, L),

u(t, 0) = u(t, L) = 0 in (0, T ),

ρ(t, 0) = 0 in (0, T ), if a0(t, 0) > 0,

ρ(t, L) = 0 in (0, T ), if a0(t, L) < 0,

ρ(0, x) = ρ0(x), u(0, x) = u0(x) in (0, L).

(6.20)

Regarding existence and uniqueness of the solution of the above system we have the following
result.

Theorem 6.3. Let (ρ0, u0) ∈
(
L2(0, L)

)2
and fi ∈ L2(0, T ;L2(0, L)), i = 1, 2. Then the system

(6.20) admits an unique solution (ρ, u) ∈ C
(

[0, T ];
(
L2(0, L)

)2)
together with the estimate

‖(ρ, u)‖C([0,T ];L2(0,L))2 6 C
(
‖(ρ0, u0)‖L2(0,L)×L2(0,L) + ‖(f1, f2)‖L2(0,T ;L2(0,L))2

)
, (6.21)

where the positive constant C depends only on T, L and the coefficients of the system.

Proof. Let us set η = b0ρ+ c0u. Then (η, u) solves the following system

∂tη + a0∂xη + ã1η + c̃1∂xu+ c̃2u = f̃1 in (0, T )× (0, L),

∂tu− b0∂xxu+ b1∂xu+ b̃2u+ d̃2η = f̃2 in (0, T )× (0, L),

u(t, 0) = u(t, L) = 0 in (0, T ),

η(t, 0) = 0 in (0, T ), if a0(t, 0) > 0,

η(t, L) = 0 in (0, T ), if a0(t, L) < 0,

η(0, x) = η0(x) := b0(0, x)ρ0(x) + c0(0, x)u0(x), u(0, x) = u0(x) in (0, L),
(6.22)

where

ã1 =
1

b0
(a1b0 + c0d2 − ∂tb0 − a0∂xb0) , c̃1 = b0c1 + c0b1 − a0c0,

c̃2 =
1

b0

(
b20c2 + b0c0b2 − b0coa1 − c20d2 + c0 (∂tb0 + a0∂xb0)− b0 (∂tc0 + a0∂xc0)

)
,

f̃1 =b01O1f1 + c01O2f2, b̃2 = b2 −
d2c0
b0

, d̃2 =
d2
b0
, f̃2 = 1O2f2.

The system (6.22) is similar to the system (6.5). Thus by proceeding similarly to the proof of
Theorem 6.1 we can prove this theorem. �
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We now derive a suitable observability inequality, which is equivalent to the null controllability
of the system (6.20). To this aim, we consider the adjoint system of (6.20) :

∂tσ − ∂x(a0σ) + a1σ + d2v = 0 in (0, T )× (0, L),

∂tv − ∂xx(b0v − c0σ)− ∂x(b1v + c1σ) + (b2v + c2σ) = 0 in (0, T )× (0, L),

(b0v − c0σ)(t, 0) = (b0v − c0σ)(t, L) = 0 in (0, T ),

σ(t, L) = 0 if a0(t, 0) > 0, σ(t, 0) = 0 if a0(t, L) < 0 in (0, T ),

σ(0, x) = σ0(x), v(0, x) = v0(x) in (0, L).

(6.23)

Following the similar arguments of the proof of Theorem 6.3, we can show that the adjoint
system (6.23) is well-posed in Z. Moreover, using the similar argument used in the preceding
subsection, we can easily prove the following equivalence between the null controllability of the
system (6.20) and the following observability inequality:

Proposition 6.4. The system (6.20) is null controllable in Z at time T > 0 using two controls
f1 and f2 in L2(0, T ;L2(0, L)) with supports in O1 and O2 respectively, if and only if, for T > 0,
there exists a positive constant CT > 0 such that for any (σ0, v0) ∈ Z, (σ, v), the solution of
(6.23), satisfies the following observability inequality:∫ L

0
|σ(T, x)|2 dx +

∫ L

0
|v(T, x)|2 dx 6 CT

(∫ T

0

∫
O1

|σ(x, t)|2 dx dt+

∫ T

0

∫
O2

|v(x, t)|2 dx dt
)
.

(6.24)

Now using the above observability inequality and the Gaussian beam solutions constructed
in Theorem 3.8, we can easily proof Theorem 1.6 for the case with time dependent coefficients.
Moreover, Theorem 4.3 also holds provided the coefficients satisfy (6.1), (6.4) and

d2(d1∂xa0 − a0∂xd1) = d1(d1∂xa1 − a0∂xd2), c1 6= 0, d1 6= 0, in [0,T]× [0,L].

6.3. Extension of Theorem 5.1, Theorem 5.4 and Theorem 5.5 to the time depen-
dent case. The proofs given in Section 5 also hold for time dependent coefficients. Thus
Theorem 5.1, Theorem 5.4 and Theorem 5.5 also hold for time dependent coefficients with
suitable assumptions. In particular

(i) Theorem 5.1 holds for the system (5.1) with coefficients satisfying

α0, γ0, b0 ∈ C∞([0, T ]× [0, L]), min
[0,T ]×[0,L]

b0 > 0, α0 6= 0, min
[0,T ]×[0,L]

γ0 > 0. (6.25)

(ii) Theorem 5.4 holds for the system (6.20) with f1 = 0 andO2 = (0, L) and with coefficients
satisfying a0 = a1 = 0 on [0, T ]× [0, L] and

bj ∈ C∞([0, T ]× [0, L]), j = 0, 1, 2, b0(t, x) > b > 0 for all t ∈ [0, T ], x ∈ [0, L],
α0, γ0 ∈ C∞([0, T ]× [0, L]), α0(t, x) 6= 0, γ0(t, x) > 0 for all t ∈ [0, T ], x ∈ [0, L],
c0 = α0γ0, c1 = 2α0∂xγ0, c2 = α0∂xxγ0, on [0,T]× [0,L].

(iii) Theorem 5.5 holds for the system (6.5) with f1 = 0 and O2 = (0, L) and with the
coefficients satisfying a0 = 0 = a1 on [0, T ]× [0, L] and

bj , ci, di ∈ C∞([0, T ]× [0, L]), i = 0, 1, j = 0, 1, 2,

b0(t, x) > b > 0, c1(t, x) 6= 0, c2(t, x) = ∂xc1(t, x), for all t ∈ [0, T ], x ∈ [0, L].

7. Extensions and comments

In this section, we give some possible extension of our results and formulate some open
problems.
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7.1. Periodic boundary conditions. Let us set S = R/LZ. We consider the control system
(1.3)-(1.4) in (0, T )×S. By working on the torus S, we assume that all the coefficients and the
quantities at stake are L-periodic with respect to x.

We obtain the following well-posedness result :

Theorem 7.1. Assume (1.6). Let us consider the system (1.3)-(1.4) in (0, T ) × S. Let us
denote by A] the associated linear operator. Then the operator A] generates a C0-semigroup on
L2(S)× L2(S) as well as on H1(S)× L2(S).

The proof of this theorem is similar to the proof of Proposition 2.2 and Theorem 2.6. Re-
garding null controllability we have the following results.

Theorem 7.2. Assume (1.6). The system (1.3)-(1.4) with periodic boundary conditions is not
null controllable at time T using interior controls f1 ∈ L2(0, T ;L2(S)) supported in O1 and
f2 ∈ L2(0, T ;L2(S)) with support in O2, in the following scenarios:

(i) if 0 < T < TO1 ; (ρ0, u0) ∈ L2(S)×L2(S); O1 ⊂ S such that S \O1 is a nonempty open
subset of S; O2 ⊆ S.

(ii) if 0 < T < TO2 ; (ρ0, u0) ∈ H1(S) × L2(S); f1 ≡ 0; O2 ⊂ S such that S \ O2 is a
nonempty open subset of S; and along with (1.6), the coefficients in (1.3) satisfy

d2(a
′
0d1 − a0d′1) = d1(d1a

′
1 − a0d′2), c1 6= 0, d1 6= 0, on [0, L].

Furthermore, assume (5.11), f1 ≡ 0 and O2 = S. Then the system (1.3)-(1.4) with periodic
boundary conditions is null controllable in H1(S)∩L2

m(S)×L2(S), at any time T > 0, by control
acting everywhere in the parabolic component.

Remark 7.3. In a similar fashion, we can also consider the system (1.12) with periodic bound-
ary conditions. Both Theorem 1.6 and Theorem 5.4 hold in this case also. In fact, Theorem 1.2
and Theorem 1.6 can be extended to the coupled system with any suitable boundary conditions,
where the corresponding linear operator is well-posed.

7.2. Boundary control. Assume (1.6), a0(0) > 0 and a0(L) > 0. We consider the following
boundary control system:

∂tρ+ a0∂xρ+ a1ρ+ c1∂xu+ c2u = 0 in (0, T )× (0, L),

∂tu− b0∂xxu+ b1∂xu+ b2u+ d1∂xρ+ d2ρ = 0 in (0, T )× (0, L),

u(t, 0) = h0(t), u(t, L) = hL(t) t ∈ (0, T ),

ρ(t, 0) = g0(t) t ∈ (0, T ),

(7.1)

where controls g0, h0, hL belong to L2(0, T ). In this case, the system (7.1) is null controllable
in Z at time T by controls (g0, h0, hL) ∈ (L2(0, T ))3 if and only if, for T > 0, there exists a
positive constant CT > 0 such that for any (σ0, v0) ∈ D(A∗;Z), defined in (2.15), (σ, v), the
solution of (4.1), satisfies the following observability inequality:∫ L

0
|σ(T, x)|2 dx +

∫ L

0
|v(T, x)|2 dx

6 CT
(∫ T

0
|a0(0)σ(t, 0)|2 dt+

∫ T

0
|c1(0)σ(t, 0) + ∂x(b0v)(t, 0)|2dt+

∫ T

0
|∂x(b0v)(t, L)|2dt

)
.

(7.2)

Recall the definitions of T∅ from (1.10). By proceeding similarly as the proof of Theorem 1.2,
we obtain the following results:

Theorem 7.4. Let T∅ be as defined in (1.10). The system (7.1) is not null controllable at any
time 0 < T < T∅ using controls g0, h0, hL in L2(0, T ) acting on the boundary.

Remark 7.5. In a similar manner, we can also prove that the system (1.12) is not null con-
trollable at any time 0 < T < T∅ by the boundary controls.
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7.3. Concluding remarks and open problems. The main results in this article concern
the lack of null controllability of coupled transport-parabolic systems with variable coefficients.
These results are generalizations of the results available for the coupled systems with constant
coefficients. Moreover, when the transport velocity a0 = 0, these systems are null controllable at
any time by the control acting everywhere in the parabolic equation, under suitable assumptions
on the initial data and the coefficients. In view of our results, several open questions seem natural
and are under investigation currently.

Null controllability: In [1, 5, 6], the null controllability results are proved for the coupled sys-
tem with constant coefficients within the periodic setup. In view of these articles, it is reasonable
to expect that, the systems in consideration are null controllable, under suitable geometric as-
sumptions. Perhaps, one could follow the arguments of [11] to conclude null controllability of
(1.3) with boundary controls, under suitable geometric assumptions. However, as far as we
know, if a0 is not identically equal to zero, there are no controllability results available for the
systems (1.3) and (1.12), with Dirichlet boundary conditions and localized interior controls,
even in the constant coefficient case. Furthermore, it would also be interesting to see whether
the positive results in Section 5 can also be obtained by a moving control instead of control
acting everywhere.

Lack of null controllability in Hs × L2, 0 6 s < 1, by parabolic control: If the coefficients
are constant, the system (1.3)-(1.5) is not null controllable in Hs × L2, 0 6 s < 1, at any time
T > 0, by a parabolic control acting everywhere in the domain, see for instance [7, Theorem 5.1]
(if a0 = 0) and [6, Theorem 1.3] (if a0 6= 0 and the system with periodic boundary conditions).
In Theorem 1.4, we prove this result only for s = 0 under the assumption (1.11). It would be
interesting to see whether Theorem 1.4 holds in Hs × L2, 0 < s < 1.

Weaker type controllability - possibility of controlling only one component: In view of the lack
of null controllability of the system (1.3)-(1.5), it may be natural to ask a weaker controllability
result i.e., if only one component of the solution of the system can be brought at rest at time
T > 0 and in that case if the minimal time is needed. We observe that the system (1.3) with
periodic boundary conditions, a0 = c1 = b0 = b1 = d1 = 1, and a1 = c2 = b2 = d2 = 0, can be
reduced to an equation in u-variable as

∂txxu+ ∂xxxu− ∂ttu− 2∂txu = F,

with periodic boundary conditions and control F . This system exhibits hyperbolic nature, and
therefore the minimal time is required to control such system. This indicates that we need the
minimal time to obtain the controllability even for one component u. However, this reduction of
the system to a single equation for general coefficients with Dirichlet boundary conditions is not
so obvious at all. Another possibility could be to derive suitable observability inequality which
is equivalent to the controllability for one component. Having suitable observability inequality,
perhaps the Gaussian beam construction can be used to show the existence of the minimal time.

Degenerate coefficients: In this article, we have always assumed that, the “viscosity” coef-
ficient b0 is strictly positive. However, one can ask if the results hold, in the case when b0 is
degenerate either at boundary or at an interior point. But this require new techniques.

Coupling of several transport and parabolic systems: In the spirit of [1], it would also be
interesting to consider coupling of several transport and parabolic equations with variable co-
efficients.

Multi-dimension: The techniques used in this article can be extended to the coupled system
posed in higher space dimensions. Thus analogous results can be anticipated for the systems in
higher dimensions.
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