The origin of the elements and other implications of gravitational wave detection for nuclear physics - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue 4open Année : 2020

The origin of the elements and other implications of gravitational wave detection for nuclear physics

Résumé

The neutron-star collision revealed by the event GW170817 gave us a first glimpse of a possible birthplace of most of our heavy elements. The multi-messenger nature of this historical event combined gravitational waves, a gamma-ray burst and optical astronomy of a “kilonova”, bringing the first observations of rapid neutron capture (r process) nucleosynthesis after 60 years of speculation. Modeling the r process requires a prodigious amount of nuclear-physics ingredients: practically all the quantum state and interaction properties of virtually all neutron-rich nuclides, many of which may never be produced in the laboratory! Another essential contribution of nuclear physics to neutron stars (and their eventual coalescence) is the equation of state (EoS) that defines their structure and composition. The EoS, combined with the knowledge of nuclear binding energies, determines the elemental profile of the outer crust of a neutron star and the relationship between its radius and mass. In addition, the EoS determines the form of the gravitational wave signal. This article combines a tutorial presentation and bibliography with recent results that link nuclear mass spectrometry to gravitational waves via neutron stars.Key words: Gravitational waves / Nuclear binding energy / Nuclear equation of state / r-process nucleosynthesis / Chemical elements
Fichier principal
Vignette du fichier
fopen200016.pdf (594.53 Ko) Télécharger le fichier
Origine : Publication financée par une institution

Dates et versions

hal-03047571 , version 1 (08-03-2021)

Identifiants

Citer

David Lunney. The origin of the elements and other implications of gravitational wave detection for nuclear physics. 4open, 2020, 3, pp.14. ⟨10.1051/fopen/2020014⟩. ⟨hal-03047571⟩
43 Consultations
63 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More