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Linear Lower Bound on Degrees of
Positivstellensatz Calculus Proofs for the

Parity

Dima Grigoriev∗

Abstract

It is established a linear (thereby, sharp) lower bound on degrees
of Positivstellensatz calculus refutations over a real field introduced
in [GV99], for the Tseitin tautologies and for the parity (the mod 2
principle). We use the machinery of the Laurent proofs developped
for binomial systems in [BuGI 98], [BuGI 99].

keywords: Positivstellensatz calculus proofs, boolean binomial system, Tseitin
tautologies

Introduction

In recent years there was an intensive activity in the research of algebraic
proof systems ([BIK 96], [BuGI 98], [BuGI 99], [BuIK 96], [CEI 96], [G 98],
[IPS 97]). The approach relies on the Hilbert’s Nullstellensatz and treats the
problem of feasibility of a system of polynomial equations

f1 = · · · = fk = 0,

where among the polynomials f1, . . . , fk ∈ F [X1, . . . , Xn], there appear the
polynomials X2

1 −X1, . . . , X
2
n−Xn (so-called, Boolean case). Note that this

problem is, in general, NP -complete.

∗IRMAR, Université de Rennes, Campus de Beaulieu, 35042 Rennes, cedex France
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The Nullstellensatz proof system (NS) was first considered in [BIK 96].
The aim of the system is to find the polynomials g1, . . . , gk ∈ F [X1, . . . , Xn]
such that 1 = g1f1 + · · ·+gkfk. The latter representation is sometimes called
a Nullstellensatz refutation. The number max1≤i≤k{deg(gifi)} is called the
Nullstellensatz degree. A linear upper bound O(n) on the Nullstellensatz
degree is evident, in [BIK 96] a non-constant lower bound was proved, while
in [G 98] a linear (and thus sharp) lower bound was proved.

In [CEI 96] a stronger proof system — polynomial calculus (PC) was
introduced. Starting from axioms f1, . . . , fk, PC allows to derive from the
already obtained polynomials a, b ∈ F [X1, . . . , Xn] more polynomials, ac-
cording to the following two rules:

1. (additive) a, b ` αa+ βb, where α, β ∈ F ;

2. (multiplicative) a ` Xia for 1 ≤ i ≤ n.

The aim of a derivation is to reach 1.
The degree of a PC derivation is defined as the maximum of the degrees of

all intermediately derived polynomials. The first lower bound on the degrees
of PC derivations was obtained in [R 96] (see also [IPS 97] and [BuIK 96]).
A linear lower bound for PC was proved in [BuGI 99]. Note that the latter
bound is sharp.

In [GV 99] inequalities were involved along with equations into proof
systems, in particular we assume that the input polynomials f1, . . . , fk belong
to R[X1, . . . , Xn]. The case of linear inequalities with added conditions X2

i =
Xi (Boolean programming) was widely studied by means of cutting planes
proofs, for which an exponential lower bound on the length was obtained (a
survey and references can be found in [P 98]). Another approach to systems
of linear inequalities was undertaken in [LS 91], [L 94], [ST 98], where a
derivation system was introduced which allows from any linear polynomial e,
already derived linear inequalities a1 ≥ 0, a2 ≥ 0 and quadratic inequalities
p1 ≥ 0, p2 ≥ 0, to derive quadratic inequalities e2 ≥ 0, a1 + a2 ≥ 0, a1a2 ≥
0, p1 + p2 ≥ 0. In [P 98] one can find some remarks on the complexity
of this Lovász-Schrijver procedure, in particular, an upper bound for the
Pigeon Hole Principle which demonstrates an exponential gap between the
complexity of cutting planes proofs and the Lovász-Schrijver procedure.

More precisely, following [GV 99], let a system of equations and inequal-
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ities
f1 = · · · fk = 0, h1 ≥ 0, . . . , hm ≥ 0. (1)

be given. Dealing with systems of inequalities one could get profit from
using the axiom that any square is non-negative, and the rules of adding or
multiplying inequalities. This is formalized in the following notion of the cone
(which replaces the role of ideals for systems of equations) and in two proof
systems described below for refuting systems of inequalities, they extend the
systems NS and PC, respectively.

Definition 1 The cone c(h1, . . . , hm) generated by polynomials h1, . . . , hm ∈
R[X1, . . . , Xn] is the smallest family of polynomials containing h1, . . . , hm
and satisfying the following rules:

(a) e2 ∈ c(h1, . . . , hm) for any e ∈ R[X1, . . . , Xn];

if a, b ∈ c(h1, . . . , hm), then
(b) a+ b ∈ c(h1, . . . , hm);
(c) ab ∈ c(h1, . . . , hm).

Remark 1 The minimal cone c(∅) consists of all sums of squares of polyno-
mials.

Remark 2 Any element of c(h1, . . . , hm) can be represented in a form

∑
I⊂{1,...,m}

(∏
i∈I
hi

)(∑
j

e2I,j

)

for some polynomials eI,j ∈ R[X1, . . . , Xn].

Two proof systems (which could be viewed as static and dynamic, respec-
tively) introduced in [GV 99] rely on the following Positivestellensatz (see
[BCR 87], [S 74]).
Positivstellensatz. A system (1) has no common solutions in Rn if and
only if for a suitable polynomial f ∈ R[X1, . . . , Xn] from the ideal (f1, . . . , fk)
and a polynomial h ∈ c(h1, . . . , hm) we have: f + h = −1.

The first (static) proof system is stronger than NS refutations and could
be viewed as its Positivstellensatz analogue.
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Definition 2 A pair of polynomials

(f, h) =

( ∑
1≤s≤k

fsgs,
∑

I⊂{1,...,m}

(∏
i∈I
hi

)(∑
j

e2I,j

))

with f + h = −1 where gi, eI,j ∈ R[X1, . . . , Xn] we call a Positivstellensatz
refutation (denote it by PS>) for (1). The degree of the refutation is

max
s,I,j
{deg(fsgs), deg(e2I,j

∏
i∈I
hi)}.

The second (dynamic) proof system is stronger than PC and could be
viewed as its Positivstellensatz analogue.

Definition 3 Let a polynomial f ∈ (f1, . . . , fk) be derived in PC from the
axioms f1, . . . , fk, and a polynomial h ∈ c(h1, . . . , hm) be derived, applying
the rules (a), (b), (c) (see Definition 1), from the axioms h1, . . . , hm. Suppose
that f+h = −1. This pair of derivations we call a Positivstellensatz calculus
refutation (denote it by PC>) for (1). By its degree we mean the maximum
of the degrees of intermediate polynomials from both derivations. The length
of the refutation we define as the total number of steps in both derivations.

In the present paper we consider just the systems of equations f1 = · · · =
fn = 0 (the polynomials h1, . . . , hm are absent). In this case a polynomial h
is just a sum of squares

∑
j h

2
j (cf. remark 1).

In [GV 99] a so-called telescopic system of equations due to Lazard-Mora-
Philippon (see [Br 87]) is considered and an exponential lower bound on the
degree of any its PS > refutation (see definition 2) is proved. On the other
hand it is shown a linear upper bound for the telescopic system on the degree
of PC, being sharp because a linear lower bound is proved in [GV 99] for the
stronger system of the PC> refutations (see definition 3), and for the latter
one also an exponential lower bound on the lengths of proofs is established.

However, the telescopic system is not Boolean, whereas the main interest
in the proof theory is just in the Boolean systems. In the present paper we
prove a linear lower bound on the degree of PC> refutations for the Tseitin
tautologies (see Corollary 1 in section 3) and for the parity (see Corollary 2 in
section 3), the proofs extend the argument from [BuGI 98], [BuGI 99]. They
follow from the theorem in section 2 in which a lower bound on the degree of
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the PC> refutations is established for Boolean binomial systems in terms of
the Laurent proofs (see [BuGI 98], [BuGI 99] and also section 1 below). Let
us mention that unlike the results of [BuGI 98], [BuGI 99] being valid over
an arbitrary field F , the results of the present paper involving inequalities,
make sense just over real fields.

1 Laurent proofs for Boolean Thue systems

Let F be a field.
A product of variables m = X i1

1 · · ·X in
n is called a monomial, and am is

called a term where a coefficient a ∈ F ∗ = F − {0}.

Definition 4 (cf. [G 98], [BuGI 98], [BuGI 99]). A Boolean (multiplicative)
Thue system over F in variables X1, . . . , Xn is a family T = {(a1m1, a2m2)}
of pairs of terms such that (X2

i , 1) ∈ T for any 1 ≤ i ≤ n.

Throughout first two sections we fix a Boolean Thue system T .
As in [BuGI 98], [BuGI 99] we consider Laurent monomials l = X i1

1 · · ·X in
n

with (possibly negative) integer exponents i1, . . . , in. A product al where
a ∈ F ∗ is called a Laurent term. Laurent terms constitute a multiplicative
group L. We define the degree deg(l) = max{∑ij>0 ij,−

∑
ij<0 ij}.

Definition 5 (cf. [BuGI 98], [BuGI 99]). For any natural number d we
construct recursively a subset Ld ⊂ L of the terms of degrees at most d.
As a base we include in Ld any term a1a

−1
2 m1m

−1
2 from T (see definition

4), provided that its degree does not exceed d. As a recursive step for two
Laurent terms l1, l2 ∈ Ld we adjoin the product l1l2 in Ld if deg(l1l2) ≤ d.
Along with each l1 ∈ Ld we include l−11 ∈ Ld. Keep doing the recursion while
augmenting Ld.

Definition 6 (cf. [BuGI 98], [BuGI 99]). Two terms t1, t2 are d-equivalent
if t1 = lt2 for a certain l ∈ Ld.

Lemma 1 (cf. [BuGI 98], [BuGI 99]). (i) If t1 is d-equivalent to t2 then
t1Xj is d-equivalent to t2Xj, 1 ≤ j ≤ n.

(ii) d-equivalence is a relation of equivalence on any subset of the set of
all the terms of degrees at most d.
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Definition 7 (cf. [BuGI 98], [BuGI 99]). The refutation degree D = D(T )
is the minimal d such that Ld contains some 1 6= a ∈ F ∗.

By a support of a class of d-equivalence of terms we mean the set of
their monomials. The following lemma comprises few properties of classes of
d-equivalence of all the terms of degrees at most d.

Lemma 2 (cf. [BuGI 98], [BuGI 99]). Let d < D. The supports of two
classes of d-equivalence either coincide or disjoint. Two classes with the
same support are obtained from one another by simultaneous multiplication
of all the terms by an appropriate factor b ∈ F ∗. Thus, any class could be
represented by a vector {cm}m where cm ∈ F ∗ and m runs over the support.
Moreover, two classes with the same support has collinear corresponding vec-
tors.

As usual (cf. [G 98], [BuGI 98], [BuGI 99]) to each Thue system T one
can attach a binomial ideal PT ⊂ F [X1, . . . , Xn] generated by the binomials
a1m1 − a2m2 (see definition 4).

Lemma 3 (cf. [BuGI 98], [BuGI 99]). Let d < D. Assume that one can
express a certain f ∈ F [X1, . . . , Xn] as a F -linear combination of binomials
t1 − t2 where t1 = b1m3, t2 = b2m4 are d-equivalent and deg(t1), deg(t2) ≤ d.
Then such a linear combination could be chosen in a way that both monomials
m3,m4 occur in f (this holds for all occurring binomials t1 − t2).

Proof. Take any term am occurring in f . The vector of coefficients of
a binomial t1 − t2 (which has just two nonzero coordinates) is orthogonal
to the vector {1/cm}m for the support of every class of d-equivalence (see
lemma 2). Hence the vector of the coefficients of f is also orthogonal to the
vector {1/cm}m. Therefore, there exists another term a0m0 occurring in f
with m0 from the support of the same class of d-equivalence as am. Due to
lemma 2 am is d-equivalent to a suitable term a

′
0m0. Then the polynomial

f − (am − a′
0m0) has less terms than f does, and we complete the proof of

the lemma by induction on the number of terms in a polynomial. 2

Lemma 4 (cf. [BuGI 98], [BuGI 99]). If a polynomial f is deduced from PT

in the fragment of the polynomial calculus of a degree at most d < D then f
can be expressed as a suitable F -linear combination of binomials of the form
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t1−t2 for d-equivalent t1 = b1m3, t2 = b2m4 where deg(t1), deg(t2) ≤ d. More-
over, such a linear combination could be chosen in a way that both monomials
m3,m4 occur in f for any binomial t1 − t2 from the linear combination.

The proof of the lemma proceeds by a direct induction along the inference
of f in the PC. Herein after each inference step g1, g2 → g1 + g2 we apply
lemma 3. For justifying any inference step g1 → aXig1 we apply lemma 1(i).
2

The previous lemmas are valid for an arbitrary (not necessary Boolean)
Thue system (see [BuGI 98], [BuGI 99]), from now on we take into the
account that T is just a Boolean Thue system.

Lemma 5 Let d < D/2 and a Laurent term al ∈ Ld. Then a ∈ {−1,+1}.

Proof. Since al ∈ Ld ⊂ LD−1 we obtain (al)2 ∈ LD−1 because deg(l2) < D.
Let l = X i1

1 · · ·X in
n . Taking into the account that X2

1 , . . . , X
2
n ∈ LD−1, we

conclude that l2 ∈ LD−1, hence a2 ∈ LD−1, i.e. a2 = 1 by definition 7. 2

2 Positivstellensatz calculus proofs for

Boolean binomial systems

The results of the previous section are valid for an arbitrary field F (actually,
over a commutative ring, with some modifications [BuGI 98], [BuGI 99]). In
the sequel we suppose that F is a real field [BCR 87] (in particular, −1
cannot be represented as a sum of squares).

Assume now that we are given a PC> refutation (see definition 3 and the
remark after it) of a Boolean binomial ideal PT (taking into account remark
1 from the introduction):

1 +
∑
j

h2j =
∑
i

figi (2)

where the binomials fi = a1m1 − a2m2 ∈ PT (cf. definition 4).
The main purpose of this section is to prove the following lower bound

on the degree of the PC> refutations.
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Theorem. The degree of any PC > refutation of a Boolean binomial
ideal PT (over a real field) is greater or equal to D/2.

Suppose that the right-hand side
∑

i figi of (2) is deduced in the PC
within a degree d0 < D/2. Therefore, d0 is an upper bound on the degree
of PC > refutations of PT since deg(h2j) ≤ deg(

∑
i figi) (to show the latter

inequality consider the highest with respect to the deglex monomial ordering
term from all the polynomials hj, then the coefficient at the square of this
monomial in the sum 1 +

∑
h2j should be positive).

Due to lemma 4 one can represent

∑
i

figi =
∑

(b1m3 − b2m4) (3)

where in each summand from the right-hand side the terms b1m3 and
b2m4 are d0-equivalent and occur in the left-hand side

∑
i figi, in particular,

deg(m3), deg(m4) ≤ d0.
We introduce the following linear mapping φ from the space of polynomi-

als of the degree at most d0 to F . It suffices to define φ for all the monomials
of the degree at most d0. If a monomial is d0-equivalent to a certain element
b ∈ F ∗ then φ sends this monomial to b, otherwise φ sends the monomial
to zero. The mapping φ is correctly defined because b is unique, provided
it does exist, due to lemma 1(ii) and to definition 7. Now let us consider
the result of application of φ to the polynomial

∑
i figi. It can be calculated

in two different ways: denote by Σ(2) the result of the evaluation of φ at
the polynomial 1 +

∑
j h

2
j and by Σ(3) the result of evaluation of φ at the

polynomial
∑

(b1m3 − b2m4). Evidently, Σ(2) = Σ(3). If b1m3 is d0-equivalent
to a certain b ∈ F ∗ (see (3)) then b2m4 is also d0-equivalent to b (again due
to lemma 1(ii)). Therefore, Σ(3) = 0.

On the other hand, we will prove the following

Lemma 6 Σ(2) ≥ 1

which would lead to a contradiction with the supposition d0 < D/2 and
complete the proof of the theorem.
Proof of lemma 6. Fix for a time being one of the items h = hj =

∑
I aIX

I

(see (2)) where the latter sum contains q terms of the form aIX
I , aI ∈ F ∗, I ∈

Zn being a multiindex. Then deg(XI) ≤ (1/2)deg(
∑
figi); indeed, to show
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the latter again as above consider the highest (with respect to the deglex
monomial ordering) term in all polynomials hj, see (2). Hence deg(XI) ≤
d0/2 < D/4.

Introduce an (undirected) graph Q with q vertices which correspond to
the monomials XI occurring in h (we identify a vertex with the corresponding
I). The graph Q contains an edge (I, J) if and only if bXIXJ ∈ Ld0 for a
pertinent b ∈ F ∗. Since (XI)2 ∈ Ld0 for any vertex I (cf. the proof of lemma
5), we treat also the loop (I, I) as an edge of Q.

Observe that after opening the parenthesis in the square h2 = h2j , just the
terms 2aIaJX

IXJ (in addition to the terms (aIX
I)2), where (I, J) is an edge

of Q not being a loop, give contribution to the sum Σ(2) under consideration.
Let us show that the graph Q is a (disjoint) union of cliques. Indeed,

assume that (I, J) and (J,K) are two edges of Q. Then b1X
IXJ , b2X

JXK ∈
Ld0 for suitable b1, b2 ∈ F ∗. We have (b2X

JXK)−1 ∈ Ld0 and b1(b2)
−1XI(XK)−1

∈ Ld0 (see definition 5), hence b1(b2)
−1XIXK ∈ Ld0 because (XK)2 ∈ Ld0

and deg(XIXK) ≤ d0. Thus, (I,K) is also an edge of Q.
Fix for a time being a clique C of Q. Our next purpose is to prove that the

contribution ΣC of the terms corresponding to the egdes of C into the sum
Σ(2) is non-negative. Note that the contribution of the term (aIX

I)2 into Σ(2)

equals to a2I since (XI)2 ∈ Ld0 . For every edge (I, J) of C either XIXJ ∈ Ld0

holds (in this case we label (I, J) by 1) or −XIXJ ∈ Ld0 holds (in this case
we label (I, J) by −1) due to lemma 5. For each triple of vertices I, J,K of C
the product of the labels of three edges (I, J), (J,K), (K, I) equals to 1 (see
definition 5). Therefore, one can partition the vertices of C into two parts
V1, V2: if an edge links two vertices from the same part then it is labeled by
1, otherwise it is labeled by −1. Hence ΣC =

∑
I∈V1∪V2

(aI)
2 + 2

∑
I1,J1∈V1

aI1aJ1 + 2
∑

I2,J2∈V2

aI2aJ2 − 2
∑

I1∈V1,I2∈V2

aI1aI2

= (
∑

I1∈V1

aI1)
2 + (

∑
I2∈V2

aI2)
2 − 2(

∑
I1∈V1

aI1)(
∑

I2∈V2

aI2) ≥ 0.

Thus, the contribution into the sum Σ(2) of each hj from the left-hand
side of (2) is non-negative. 2

9



3 Lower bounds on Positivstellensatz calcu-

lus refutations for the Tseitin tautologies

and the parity

The purpose of this section is to prove lower bounds on the degrees of PC>
refutations for Tseitin tautologies (see [T 68], [U 95], [G 98], [BuGI 98],
[BuGI 99]) and for the parity (or mod 2 principle, see [BuGI 98], [BuGI 99]).

To describe Tseitin tautologies mod 2 (following [BuGI 98], [BuGI 99] we
denote them by TSk(2)) we start with an (undirected) graph G. To each its
node v a charge uv ∈ {−1, 1} is assigned with the property that

∏
v uv = −1.

Besides, we assign to each edge e of G a variable Xe.
We construct a Boolean Thue system T = TG (see definition 4) according

to these data. The system TG contains a pair of terms (for each node v)
(X(v) = uv

∏
Xe, 1) where the product ranges over all the edges e incident

to v (apart from the Boolean pairs (X2
e , 1)).

One can obviously deduce in T that
∏

v uv = 1 and thereby in the PC the
element 1−∏v uv ∈ F ∗ (which actually equals to 2) from the binomial ideal
PT (see section 2).

Any Laurent monomial in the variables {Xe}e could be reduced using the
Boolean pairs to the (uniquely defined) multilinear monomial (we call it re-
duced). By the pseudo-degree of a monomial we mean the number of variables
which occur in its reduction. Observe that the pseudo-degree of a Laurent
monomial does not exceed the double degree of this Laurent monomial (see
section 1).

From now on we assume that G = Gk is an expander [LPS 88], [M 88] with
k nodes and being r-regular (r will be a constant, one could take, say r = 6
[LPS 88], [M 88]). That means that for any subset S of the set of the nodes
of G the number of adjacent to S nodes in G is at least (1 + ε(1− |S|/k))|S|
for an appropriate constant ε > 0. The corresponding to Gk Boolean Thue
system we denote by TSk(2).

Any Laurent monomial in {X2
e}e, {X(v)}v could be also (uniquely) re-

duced invoking the Boolean pairs, to a multilinear monomial in {X(v)}v
(obviously, this reduction does not change the pseudo-degree). By a weight
of such a Laurent monomial we mean the number of X(v) which occur in the
reduced product.

The following lemma is similar to lemma 2 [G 98] (see also [BuGI 98],
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[BuGI 99]) and its item (i) justifies the correctness of the described reduction
and of the weight because

∏
vX(v) = −1 6= 1.

Lemma 7 (i) Any reduced monomial in {X2
e}e, {X(v)}v which is equal to

an element of the form am2 where a ∈ F ∗ and m is a monomial, is either 1
or
∏

vX(v) = −1;
(ii) For any 1/2 ≥ ε1 > 0 there exists ε0 > 0 such that any reduced

monomial in {X2
e}e, {X(v)}v with the weight between ε1k and (1 − ε1)k has

the pseudo-degree at least ε0k.

Proof. (i) If not all X(v) occur in the reduced (non-empty) product U then
(due to the connectedness of expanders) there is an edge e = (v1, v2) of G such
that X(v1) occurs in U and X(v2) does not occur in U . Hence U contains
Xe with the exponent 1 and thereby, could not be of the form am2.

(ii) Denote by S the set of nodes v of G such that X(v) occurs in U .
Then applying to S the property of the expanders, we conclude that there
are at least ε0k edges of G with one endpoint in S and another endpoint not
in S for a suitable ε0. These edges give a contribution to the pseudo-degree
of U . 2

The following lemma is similar to lemma 5.9 [U 95] and to lemma 4 [G
98] (see also [BuGI 98], [BuGI 99]).

Lemma 8 The refutation degree D = D(TSk(2)) is greater than Ω(k).

Proof. By definition 7 there exists a chain of Laurent monomials l1, . . . , lN
in {X2

e}e, {X(v)}v such that 1 6= lN ∈ F ∗ and that each lj is either one of
{X2

e}e, {X(v)}v, either l−1j1 or lj1lj2 for some j1, j2 < j, moreover the degree
of each lj does not exceed D. Then the pseudo-degrees of lj do not exceed
2D (see above). Due to lemma 7(i) lN = −1 and the weight w(lN) = k.
Since w(X(v)) = 1 and w(lj) ≤ w(lj1) +w(lj2), we conclude that there exists
1 < j0 < N for which (1/3)k ≤ w(lj0) ≤ (2/3)k. Then lemma 7(ii) implies
that the pseudo-degree of lj0 is greater or equal to ε0k. 2

Lemma 8 and the theorem (see section 2) entail the following linear
(thereby, sharp) lower bound on the degree of PC > refutations for the
Boolean binomial system corresponding to Tseitin tautologies.

Corollary 1 The degree of any PC > refutation of the Boolean binomial
system PTSk(2) is greater than Ω(k).
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Following [BuGI 98], [BuGI 99] we consider (the negation of) mod 2 prin-

ciple (or the parity) as a system of equations in
(
n
2

)
variables Xe where

e ⊂ {1, . . . , n}, |e| = 2, denoted by MODn
2 :

X2
e = Xe;XeXf = 0 for every e, f such that e 6= f, e ∩ f 6= ∅;

1 =
∑

i∈eXe for each i ∈ {1, . . . , n}.
Obviously, MODn

2 is feasible if and only if n is even.
Note that MODn

2 is not a binomial system unlike PTSk(2).

Definition 8 (see [BuGI 98], [BuGI 99]). Let P = P (x1, . . . , xn), Q =
Q(y1, . . . , ym) be two sets of polynomials. Then P is (d1, d2)-reducible to
Q if for every 1 ≤ i ≤ m there exists a polynomial si(x1, . . . , xn) of a degree
at most d1 such that there exists a degree d2 derivation in the PC of the
polynomials Q(s1, . . . , sm) from the polynomials P .

Lemma 9 (cf. [BuGI 98], [BuGI 99]). Suppose that P is (d1, d2)-reducible
to Q. Then if there is a degree d3 PC> refutation of Q then there is a degree
max{d2, d3d1} PC> refutation of P .

Lemma 10 (see [BuGI 98], [BuGI 99]). For all k the Boolean binomial sys-

tem PTSk(2) is (4r, 4r)-reducible to MOD
k(1+2r)
2 (where r denotes the valency

of the expander Gk, one could take r = 6, see above).

Lemmas 9, 10 and Corollary 1 imply the following linear (thereby, sharp)
lower bound on the degree of PC> refutations for the parity.

Corollary 2 (cf. [BuGI 98], [BuGI 99]). The degree of any PC> refutation
of MODk

2 is greater than Ω(k).
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