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YAO’S MILLIONAIRES’ PROBLEM AND DECOY-BASED

PUBLIC KEY ENCRYPTION BY CLASSICAL PHYSICS

DIMA GRIGORIEV AND VLADIMIR SHPILRAIN

Abstract. We use various laws of classical physics to offer several so-
lutions of Yao’s millionaires’ problem without using any one-way func-
tions. We also describe several informationally secure public key en-
cryption protocols, i.e., protocols secure against passive computationally
unbounded adversary. This introduces a new paradigm of decoy-based
cryptography, as opposed to “traditional” complexity-based cryptogra-
phy. In particular, our protocols do not employ any one-way functions.

1. Introduction

The “two millionaires problem” introduced by Yao in [3] is: Alice has a
private number a and Bob has a private number b, and the goal of the two
parties is to solve the inequality a ≤ b? without revealing the actual values
of a or b, or more stringently, without revealing any information about a or
b other than a ≤ b or a > b.

We note that all known solutions of this problem (including Yao’s original
solution) use one-way functions one way or another. (Informally, a function
is one-way if it is efficient to compute but computationally infeasible to
invert on “most” inputs.) The problem with those solutions is that it is still
not known whether one-way functions actually exist, i.e., the functions used
in the aforementioned solutions are just assumed to be one-way.

In this paper, we offer several very simple solutions of Yao’s millionaires’
problem without using any one-way functions, but using various laws of clas-
sical, everyday physics instead. We group our solutions in several sections
of this paper, emphasizing not only different laws of physics employed, but
also different underlying ideas. More specifically, in Section 3 we offer a so-
lution that does not even employ any particular “laws” of physics, but just
uses a simple mechanism, an elevator in a building. In Section 4, we offer
a solution that can actually be implemented on a “usual” computer if we
allow two different programs to work with the same file at the same time.
In Section 5, we employ the law of communicating vessels.

In Section 6, we offer public key encryption protocols that do not use
any one-way functions and are secure against passive computationally un-
bounded adversary. Using one-way functions is considered unavoidable in
the “traditional”, complexity-based, public key cryptography. (We suggest
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2 YAO’S MILLIONAIRES’ PROBLEM AND PUBLIC KEY ENCRYPTION

[7] as a general reference.) Security of our protocols, on the other hand,
is decoy-based (we explain below what it means) rather than complexity-
based, and this allows us to get rid of one-way functions together with
problems that accompany this concept, including the lack of proof of the
very existence of one-way functions.

We note that in our earlier paper [2], we have offered an encryption pro-
tocol with similar properties, based on principles of electrical engineering.
That paper has invited criticism of two kinds: (1) claims that our scheme
is similar to schemes of Kish et al. (see [4], [5], [6]) because we “use elec-
trical wires”, like Kish does; (2) suggesting naive “man-in-the-middle” at-
tacks based on misunderstanding of principles of electrical engineering. This
kind of criticism distracts attention from the main point made in our pa-
per [2], which is showing that there are secure encryption protocols that
do not employ any one-way functions, but instead rely in their security
on numerous “decoys” of the actual encrypted message, and this “decoy-
based” cryptography presents an important alternative to the “traditional”,
complexity-based, cryptography. The work of Kish et al. does not use
the idea of decoy; their protocols rely in their security on something else,
namely: (1) (allegedly) one-way functions; it is just that the justification of
their functions being one-way comes from physics (e.g. they use the second
law of thermodynamics) rather than from mathematics; (2) intruder detec-
tion mechanisms; the same idea is the basis of quantum cryptography, but
Kish et al. implement this idea using tools from classical physics. See [5],
[6], and further references at [4] for more details.

Our idea of decoy in cryptography seems to be new, and the idea itself
is independent of physical properties of our world; it is just that in the
present paper, we use (simple) physics to implement this idea. An obvious
advantage of decoy-based schemes is that they are secure even against com-
putationally unbounded (passive) adversary, which cannot possibly be the
case with complexity-based schemes. Perhaps a disadvantage is that our
schemes in this paper (that employ principles of classical physics) appeal to
physical properties of a medium, and therefore do not quite belong to the
realm of what is now called “theoretical cryptography”, but they definitely
belong to the realm of practical cryptography. Indeed, about 90% of all
Internet communications are currently done using electromagnetic waves in
fiber optic cables, and this fits in just fine with our proposal.

It is a challenging open question whether or not some of our schemes
based on laws of physics can be mimicked in the “traditional” scenario where
communicating parties can only exchange sequences of bits with each other.

In this paper, we try to only use very simple physics in order to focus on
the very concept of decoy-based cryptography. Specifically, in Section 6.1,
we use classical Newton’s laws of motion for public key encryption. This
scenario, although not really practical, provides a crystal clear illustration
of our “decoy” method. This particular protocol can only be used for com-
munication over rather short distances, but on the other hand, it relays the
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idea of decoy-based encryption very clearly. It also clearly relays the partic-
ular way to implement the general idea of decoy that we use in the present
paper, namely, combining private keys of Alice and Bob during the trans-
mission. We note that in our paper [2], the implementation of the “decoy”
idea was different: the adversary there faced an underdetermined system of
equations, with multiple solutions for an unknown secret number.

In Section 6.2, building on the idea of combining private keys of the
two parties, we describe a more practical protocol (using acoustic waves)
that allows communication over longer distances, although it still requires a
physical medium, which somewhat limits the range. Finally, in Sections 6.3
and 6.4 we speculate on how to increase the range of transmission by using
other kinds of waves. We make a disclaimer that we do not address here
questions of practical implementation of our protocols from the engineering
point of view. We realize that there are technical aspects that have to be
considered in implementations; notably, wave damping is a serious issue that
can affect not only the range of transmission, but also the security, if this
issue is not properly addressed. These aspects, however, would take us too
far in the realm of engineering, and we re-iterate that in this paper we want
to focus on the very concept of decoy-based cryptography.

2. Range, private space, and private keys

In the following three sections we address Yao’s millionaires’ problem. We
assume here that a and b are positive integers, such that both are in the
interval [N1, N2] for some N1, N2 ∈ Z+. Let n = N2 − N1. We note that
this n can be made, by re-scaling, as large or as small as is convenient for
a particular approach. For example, if n is too large to handle by real-life
tools, we can express a as a = a1 ·m+ ra, and b = b1 ·m+ rb for some public
positive integer m < n and positive integers ra, rb < m, and then compare
a1 to b1, etc. One can think of this as representing a and b in, say, decimal
form and then comparing them one digit at a time, going left to right.

An important part of our model is the concept of a private space. In the
“traditional” setting, where the parties communicate over the Internet, the
private space is a private computer that can, in particular, secretly generate
private keys. Without this facility, there obviously would be no security. In
our situation, where we use real-life tools, a private space for, say, Alice is
typically a private room or other kind of container where nobody can observe
her actions. Usually, the other party (Bob) also has a private space where
nobody can observe his actions.

On the other hand, we assume that everybody (Alice, Bob, the eavesdrop-
pers, if any) can observe (and measure) everything that is going on in the
“public space”, i.e., outside the union of Alice’s and Bob’s private spaces.
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3. “Elevator” solution

This is logistically the simplest solution. Suppose there is an elevator
building with at least n = N2 − N1 floors. Bob gets to the floor number
b and steps inside an elevator (Bob’s private space). Alice then positions
herself on the floor number a. After that, Bob goes down in the elevator,
stopping at every floor. Alice is just watching the elevator doors on her
floor, making sure that Bob does not see her when the elevator doors open
(here is Alice’s private space). If she ever sees the elevator doors open,
she knows that Bob’s number is larger. If not, then his number is smaller.
Alternatively, when Bob gets to the ground floor, he can get in touch with
Alice to find out whether she has seen the elevator doors open on her floor.
That way, both parties will end up knowing whose number is larger.

We are assuming in this solution that neither party leaves his/her private
space in an attempt to cheat, which is not too hard to arrange in real life if
necessary.

4. “Race track” solution

Here Alice and Bob run toward each other from the opposite ends of a
race track of length n = N2 − N1. Alice maintains the speed of a m/s,
and Bob maintains the speed of b m/s. Whoever gets to the midpoint of
the track first, leaves a mark there and runs back, knowing that he/she was
faster, without knowing the actual speed of the other party. Then, when the
other party gets to the midpoint, he/she will know that he/she was slower,
again without knowing the actual speed of the other party. To arrange for
their private space in this scenario, the parties have to put an impenetrable
fence across the track at the midpoint.

The “race track” idea can be actually implemented on a “usual” computer
if we allow two different programs to work with the same file at the same
time. That shared file would be a bit string of length n, with all bits initially
equal to 1. Alice provides a program that goes over this bit string left to
right, replacing the current “1” symbol by “0” at the speed of one symbol
per a time units. Bob provides a similar program going over the same bit
string right to left, at the speed of one symbol per b time units. When
either program replaces n

2 symbols, it replaces the current symbol by “X”
and stops. Whose program stops first has the smaller number. Note that
both programs will have to use the computer’s internal clock, which is not
impossible.

We also note that this solution only works if both parties are honest
because there is an easy way to cheat here: for example, the party who
reaches the fence first does not run back but just waits to see when the
other party arrives, thus figuring out the other party’s speed.
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5. “Communicating vessels” solution

Here we have two communicating vessels. One of them, call it U , is in
Alice’s private space, and the other one, call it V , is in Bob’s private space.
These vessels are connected by a horizontal pipe attached to their bottoms.
The shapes of the vessels are part of the parties’ private keys.

In the beginning the system is “almost”, but not completely, filled with
water. Then Alice starts pumping the water out of her vessel at the speed
of a gallons (or whatever units) per second, while Bob starts pumping the
water in his vessel at the speed of b gallons per second. The parties are
just watching whether the level of water is decreasing or increasing. If it is
decreasing, then a > b; if it is increasing, then a < b.

Note that the final level of water in the system depends not only on a
and b, but also on the shapes of both vessels. Also, quantities that can be
measured outside of, say, Alice’s vessel (water pressure, speed of flow, etc.)
depend only on the level of water in Alice’s vessel, whereas Alice’s private
number a represents the volume of water that Alice pumps out of her vessel
every second. The relation between this volume and the level of water in
Alice’s vessel (and therefore the relation between a and quantities that can
be measured outside of Alice’s vessel) clearly depends on the shape of Alice’s
vessel, which is unknown to anybody except Alice herself.

Therefore, neither party will be able to determine the other party’s num-
ber based on the information available to them.

6. Encryption without one-way functions

In this section, we describe several encryption protocols, based on the
same idea but on different laws of physics, whose security is decoy-based
rather than complexity-based. These protocols are therefore secure even
against (passive) computationally unbounded adversary.

6.1. Using laws of motion. We start with a very simple protocol that is
not practical, but on the other hand, it relays the essence of the “decoy”
idea very clearly. Here Alice and Bob are positioned at points A and B (re-
spectively) of a long horizontal rod of known mass. Alice wants to transmit
to Bob her secret number Fa > 0.

First we describe the idea informally. Alice applies, at the point A, a
private force Fa to the rod, moving it in the direction of Bob’s point B.
At the same time, Bob applies, at the point B, his private force Fb in the
same direction. The total force acting on the rod therefore is F = Fa +
Fb. This total force is public information, i.e., anybody can measure it
(by measuring the acceleration of the rod, for example) at will. However,
only Bob knows Fb, so he can recover Fa as F − Fb, while the adversary
cannot. As far as the adversary is concerned, there are too many “decoy”
values of Fa because there are many ways to split public F as a sum F =
Fa + Fb. However, for the “decoy” to work, Alice and Bob would have
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to synchronize the moment when they start applying their private forces
because if somebody goes first, the adversary will be able to measure his/her
force alone. Instead of trying to synchronize Alice and Bob, we offer here
a more logistically feasible solution to this problem. Namely, Alice and
Bob are going to gradually (and randomly) increase their forces until they
stabilize at the values Fa and Fb, respectively. This strategy is also useful in
foiling some of the “man-in-the-middle” attacks, see discussion below, after
the protocol description.

Here is a more formal description of our encryption protocol.

(1) Alice starts applying to the rod a force F1(t), which is a (private)
random function of time t, moving the rod in the direction of Bob’s
point B. Bob starts applying, in the same direction, a force F2(t),
which is, too, a (private) random function of time t. (We do not
specify here what “a random function of t” means; although this
issue deserves special attention, addressing it here would lead us
too far away from the mainstream of the paper.) When Bob starts
applying his force, he tells Alice, publicly, that he is “in business”;
this is needed to foil a “man-in-the-middle” attack by impersonating
Bob (see discussion below).

(2) Eventually, after getting a confirmation that Bob is “in business”,
Alice stabilizes her force at Fa, and Bob subsequently stabilizes his
force at Fb. Bob detects the stabilization by observing that the
rod acceleration is not changing due to Alice’s efforts for some fixed
period of time, agreed upon by both parties up front.

(3) After the rod acceleration has stabilized, the force acting on it is
F = Fa + Fb, so Bob recovers Alice’s secret Fa as Fa = F − Fb.

We note once again that security of this protocol is based on the pres-
ence of numerous “decoy” possibilities for Fa, resulting from the fact that
there are many ways to split public F as a sum F = Fa + Fb. Different
combinations of possible values of these private keys can result in the same
observable quantities in the public space. Thus, it is impossible for the
adversary to single out, with non-negligible probability, the actual value of
Fa among all possible ones based on observations and measurements in the
public space. We emphasize that what makes this possible is that the re-
ceiver (Bob) is able to influence the very transmission of information from
the sender (Alice) by using his private key, which seems to be impossible in
typical scenarios in complexity-based cryptography.

If the adversary is active (i.e., if she is not just observing and measuring
but can interfere with the protocol itself), then she can, of course, just mess
up the transmission by applying her own force to the rod, for example.
This kind of interference cannot be avoided in any scenario including the
“traditional” communication over the Internet where the Internet cable can
be cut. However, this kind of interference is not so dangerous because the
adversary does not get a hold of the secret. A more dangerous kind of
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interference, known as “man-in-the-middle” attack, is where the adversary
is trying to impersonate the receiver, or sender, or both. In our scenario,
the adversary can try to impersonate Bob (the receiver), but to compute the
correct value of Alice’s force Fa, the adversary then would have to somehow
get rid of Bob’s contribution. To prevent from being excluded from the
protocol execution, Bob can just instruct Alice not to stabilize her force at
Fa until he tells her that he, too, has started to apply his force.

Thus, our protocol is also secure against some of the “man-in-the-middle”
attacks, although, of course, as any other two-party protocol it cannot be
secure against a “man-in-the-middle” who impersonates Bob to Alice and
Alice to Bob, unless there is an authentication mechanism accompanying
the protocol. We do not offer any new authentication mechanisms in this
paper, and we encourage the reader to focus on the new and important par-
adigm of decoy-based cryptography, which provides security against passive
computationally unbounded adversary.

Of course, the protocol in this section can only be used for communica-
tion over rather short distances, but on the other hand, it relays the idea of
decoy-based encryption very clearly. In the following subsections, we use the
same idea (combining private keys of Alice and Bob during the transmis-
sion) that we used in this simple protocol, but a different physical principle
(superposition of waves), to allow communication over longer distances.

6.2. Using acoustic waves. Now, building on the same ideas, we are going
to describe a much more practical protocol that allows communication over
longer distances, although it still requires a physical medium, which limits
the range.

Here Alice and Bob are going to generate acoustic waves in a common
medium; one can think of an “old-fashioned”, non-digital phone line, or
some other acoustic waveguide. Alice and Bob are positioned at points A
and B (respectively) of this common medium. Alice wants to transmit to
Bob her secret number A1 > 0, which is going to be the amplitude of her
wave. The arrangement is similar to that in our previous subsection: Alice
and Bob combine their waves (that have the same frequency and phase) to
get a wave whose amplitude A is the sum A1+A2 of the private amplitudes.
Bob then recovers Alice’s secret as A1 = A−A2.

Here is a more formal description of this encryption protocol.

(1) Alice and Bob publicly agree on the common frequency ω and phase
φ of their waves.

(2) Alice starts generating, at her point A, a wave with frequency ω and
phase φ, while at the same time modulating the amplitude A(t) as
a (private) random function of time t. Bob, too, starts generating
his wave at his point B, with frequency ω and phase φ, randomly
modulating its amplitude. When Bob starts generating his wave, he
tells Alice, publicly, that he is “in business”.
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(3) Eventually, after getting a confirmation that Bob is “in business”,
Alice stabilizes the amplitude of her wave at A1, and Bob stabilizes
the amplitude of his wave at A2.

(4) After the amplitudes have stabilized, the amplitude of the superpo-
sition of Alice’s and Bob’s waves is A1 +A2, so Bob recovers Alice’s
secret A1 as A1 = A−A2.

Security analysis here is the same as that in the previous subsection.
Again, the main point is that there are numerous “decoy” possibilities for
A1, resulting from the fact that there are many ways to split the public
amplitude A as a sum A = A1+A2. Thus, different combinations of possible
values of the private keys A1, A2 can result in the same observable quantities
in the public space, so that even a computationally unbounded adversary
cannot determine the actual secret A1.

At this point we have to mention that the legend has it that the idea of
using a superposition of waves to preserve privacy of communication (over
the phone) was studied (secretly) in Bell Labs during World War II [8],
as well as in the Soviet Union in the 1950s, and possibly also in the U.K.
[1]. However, the idea was (allegedly) rejected because of insurmountable
technological difficulties: in the pre-digital era, the “whole wave” (a person’s
voice), and not just its amplitude or frequency, would have to be retrieved
in real time to make this idea useful in practice.

6.3. Using fiber optic. Communication using a fiber optic cable is one of
the most widely used ways of transmitting information over the Internet. In
this case, pulses of light are sent through an optical fiber. The light forms an
electromagnetic carrier wave that is modulated to carry information. Thus,
the same idea of superposition of waves (generated by the sender and by the
receiver) that we described in Section 6.2 can be used in this situation as
well.

6.4. Using radio waves or lasers. One can also use other kinds of waves,
provided that Alice and Bob are connected by an appropriate waveguide (e.g.
electromagnetic or optical). The challenge now is to get rid of a waveguide
in order to increase the communication range dramatically, allowing secure
communication between, say, the planet surface and a satellite. One of
the most obvious ways to address this challenge would be using radio waves.
Another possibility is using laser emissions. It would be interesting to assess
technological feasibility, in this context, of protocols similar to that in our
Section 6.2, but in any case, the theoretical idea of using superposition of two
waves to hide the secret amplitude (or frequency) behind numerous decoys
seems to be valid in these situations as well.
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