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Abstract. We study two families of probability measures on integer partitions, which
are Schur measures with parameters tuned in such a way that the edge fluctuations
are characterized by a critical exponent different from the generic 1/3. We find that the
first part asymptotically follows a “higher-order analogue” of the Tracy-Widom GUE
distribution, previously encountered by Le Doussal, Majumdar and Schehr in quan-
tum statistical physics. We also compute limit shapes, and discuss an exact mapping
between one of our families and the multicritical unitary matrix models introduced by
Periwal and Shevitz.

Abstract. Nous considérons deux familles de mesures de Schur dont les fluctuations
de bord sont caractérisées par un exposant différant de la valeur générique 1/3. Les
distributions-limites, généralisant la loi de Tracy-Widom, ont été précédemment ren-
contrées par Le Doussal, Majumdar et Schehr. Nous calculons les formes-limites et
discutons du lien avec les modéles de matrices unitaires de Periwal et Shevitz.

1 Introduction

Background. Schur measures, introduced by Okounkov [12], are probability measures
on integer partitions A of the form

]P(A) = Z_ls)x[91/92/--']S/\[Qizeél---]- (11)

Here, the 0;, 6/ are numbers such that Z = exp }_;>1 91'7-91{ is well-defined, and s, [0, 6>, .. .|
is the Schur symmetric function indexed by A and evaluated at the specialization sending
the i-th power sum p; to the value 6;, for all i > 1. A more concrete expression is given
by the Jacobi-Trudi identity s[01,02,...] = det;;h,_i1;[01,62,...], the entries of the
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determinant being given by the generating series Y~ h[01, 6, .. JZF = exp Yis1 QZTZI

See [11, 17] for background on symmetric functions and specializations.

Example 1. For 6; = 6] = 6, and all other 6;,0/ set to zero, we obtain the poissonized

— o0 (gIA fa
—=e 0 B

of standard Young tableaux of shape A.

2
Plancherel measure IP(A) ) , discussed below. Here, f, denotes the number

Example 2. For 6; = 6], 6, = 67, and all other 6;, 0] set to zero, we get

XA(‘L[)X/\(V)Q?HH 932-&-52
2’12+b2a1 las'by!by!

IP(/\) _ 679%79%/2 Z Z

p=112%2 y=1b120

(1.2)

where x" is the irreducible character of the symmetric group S|p| indexed by A and p, v
are two-column partitions with |A| = |u| = |v| using the notation of [11, Ch. 1].

Schur measures and their generalizations appear in several combinatorial, proba-
bilistic, and statistical mechanical models of mathematical and physical interest. For
a brief list, see [12, 13, 4] and references therein. One notable instance is the resolu-
tion of Ulam’s problem on longest increasing subsequence of random permutations [1].
Namely, if we consider the poissonized Plancherel measure in Example 1, then the Baik—
Deift-Johansson theorem [1] states that the first part A; satisfies

. Ay —26
lim P (191# < s) = Frw(s) (1.3)

with Frw (s) the Tracy-Widom GUE distribution [18] from random matrix theory. By
Schensted’s theorem [16], A; is equal in distribution to the longest increasing subse-
quence of a random permutation on Sy, the symmetric group of N letters, where N in
our case is a Poisson random variable N ~ Poisson(6?). See [15] for more on this topic.

Main contribution. We consider multicritical Schur measures, having as their salient
feature an “edge” behavior different from (1.3). More precisely, for every n > 2, we
construct Schur measures for which the 1/3 fluctuation exponent is replaced by 1/(2n +
1) (we recover the poissonized Plancherel measure for n = 1). The limiting distribution
then becomes a “higher-order analogue” of the Tracy-Widom distribution. It is a 7-
function of a higher-order differential equation of the Painlevé II hierarchy [5] in the
same way the Tracy-Widom distribution is for the “classical” Painlevé II equation [18].

Our inspiration comes from the work of Le Doussal, Majumdar and Schehr [10], who
found the same limiting distributions in the momenta statistics of fermions in nonhar-
monic traps. They also noted a coincidental connection with the multicritical unitary
matrix models of Periwal and Shevitz [14], which involve the Painlevé II hierarchy in
their double scaling limit.
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Our multicritical Schur measures explain the origin of this connection. On the one
hand, as observed by Okounkov [12], Schur measures admit a convenient description
in terms of free fermions. Simple scaling arguments show that they have the same
asymptotic edge behavior as the models considered in [10]. On the other hand, through a
chain of classical identities that we will review, the distribution of A1 in a Schur measure
can be expressed as the partition function of a unitary matrix model. For multicritical
measures, we recover exactly the models of [14]. Let us point out that there is a known
connection between Ulam’s problem and the Gross—Witten unitary matrix model, see [9]
and references therein. We comment on the relation with our work in the conclusion.

Outline. In Section 2, we define the multicritical Schur measures and state our main
theorems (Theorems 1 and 2) concerning their edge behavior. We compute limit shapes
in Section 3. Section 4 reviews the connection between Schur measures and unitary ma-
trix integrals. The proof of Theorems 1 and 2 is sketched in Section 5. Finally, concluding
remarks are gathered in Section 6.

This is an extended abstract of the paper [2]. For brevity, we do not include a dis-
cussion of the physical interpretation in terms of fermions here, but we note that they
manifest themselves via the determinantal point processes used in Section 5.

2 Multicritical Schur measures and their edge behavior

A partition A may be characterized by the set S(A) = {A; —i+3|i > 1} C Z + 3, see
Figure 1 below. Note that the largest element of S(A) is A — %, and the smallest element
of its complement is —¢(A) + %, where /(A) denotes the length of A (number of nonzero
parts).

When A is a distributed according to a Schur measure (1.1), it was shown by Ok-
ounkov [12] that S(A) is a determinantal point process, whose kernel admits an explicit
expression (given in Section 5) in terms of the 6;, 6 parameters.

The study of the edge behavior—the statistics of the largest element(s) of S(A), or
of the smallest element(s) of its complement—is most conveniently done via a saddle-
point analysis [13]. For generic parameters 6;, 6/ (and, in particular, for the poissonized
Plancherel measure), it is found that the edge behavior is characterized by the coales-
cence of two saddle points, which implies that the “action” has a double critical point,
also known as “monkey saddle”, explaining the 1/3 fluctuation exponent. Multicritical
Schur measures are obtained by tuning the parameters in such a way that the action has
a critical point of higher order.

For simplicity, we restrict to the case where 6; = §/—ensuring that the probability (1.1)
is indeed nonnegative—and where the set {i : §; # 0} is finite and of fixed cardinal n > 1.
By symmetry reasons, the edge critical point is always of even order, and by tuning the
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0; we expect 2n to be the maximal possible order. This is indeed the case.

Theorem 1 (“odd-even multicritical measure”). Let IPY¢, denote the Schur measure (1.1)

where we set 6; = (71)(#1('; (’11)+5n+1 Ofori=1,...,n,and 0; = 0 for i > n. Then, we have:
lim P} ;le <s| =F@2n+1;s), lm P E()—N?G <s| =F(3s) (21)
00— o0 (Q/d)m f—o0 (9/ )g

with b = " d = (), b = "1 ((2(5?)1';” —1), d = (nf;l)”, F(3;s) = Frw(s) the Tracy-

Widom GLIE distribution and F(2n +1,s) its higher-order analogue defined at (2.6) below.

As we see, we obtain a nongeneric exponent 1/(2n + 1) for the fluctuations of A,
but we still have the generic exponent 1/3 for the fluctuations of ¢(A). It is actually
possible to have a more symmetric situation if, rather than taking 0, ..., 6, nonzero, we
take 64,03, ...,0,,_1 nonzero.

Theorem 2 (“odd multicritical measure”). Let IP} , denote the Schur measure (1.1) where we

—1)it+1 .. .
set ;1 = = 1;2 ()" (n1+'1”'1 0 fori=1,...,n, and all other 0; to zero. Then, P} o is invariant

under the conjugation of partitions A — A/, and we have:

lim IP° —)‘1 d = lim =06 | F2n+1;s) (22
n,0 n 0 1

f—o0 (6/d) T f—co (8/d) 2w

24;’171

o, d = Ez 13}:, and F(2n + 1; ) defined at (2.6) below.

Remark 3. For both measures, we have 6; = 6 and the parameters 8;, b and d satisfy

Y %0 = 0o YW + (2n)164 2,40, k=0,2,...,2n—2,2n. (2.3)
i

When n = 1, both measures reduce to the poissonized Plancherel measure, and we re-
cover the convergence in distribution (1.3). As soon as n > 2, they involve specializations
which are not Schur positive, but the measures are nevertheless probability measures.

Example 4. For n = 2, IPOe has the form given in Example 2 with 6; = 6, 6, = —g, while
lel phas 01 =0,0; = as nonzero parameters.

The distributions F(2n + 1;s) appearing in Theorems 1 and 2 have been previously
encountered in [10, 5], and we now give their definition in a self-contained way. First,
we recall that, if K is an integral operator with kernel K(x,y) acting on L?(X) (X is an
open interval in what follows), it acts on functions f € L?(X) via “matrix multiplication”
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x) = [x K(x,y)f(y)dy. For such operators which are trace-class one can define the
Fredholm determinant of 1 — K (1 the identity operator) on L*(X) by

det(l — K)LZ(X) = Z (_1)m /X s det [K(xi,xj)]dxl coodxy (2.4)

mso M X 1<ij<m

where there are m integrals in the m-th summand (and the case m = 0 yields 1).
Consider first the following generalized (order 2n + 1) Airy function:

-1 n—172n+1 d
M) = [ (UL ) 8t .

where 6 > 0 is small and the contour is up-oriented.! Notice they satisfy the generalized
2
Airy differential equation <%> ! A(x) = (=1)""1xA(x) and that Ais is the usual Airy
Ai function. Then F(2n + 1;s) is the following Fredholm determinant
F(2n+1;s) = det(1 — AZn—l—l)LZ(S,oo) (2.6)

where Ay, 11 is the higher order Airy kernel given by

-1 n—1,2n+1
/ ag o (St —x)
27

H —1)n—1y2n+1 _
27ti exp (( )2n+ci) _ yw) {—w

Appi1(x,y)
iR—¢ iR+6

= / A12n+1(x + t)AiZVH—l (]/ + t)dt
o TN 1) AL (AR (y)
xX—Yy

2.7)

= (=1)

(both contours above are up-oriented). Let us note that Az(x,y) = Alg (x)Ala (y i:?ié(x)A%(y)

is the usual Airy kernel and F(3;s) = Frw(s) the Tracy-Widom GUE distribution [18].
In the x = y case, the third equality should be taken in the 'Hopital limit sense.

3 Limit shapes

In this section we describe limit shapes for the multicritical IP} ;- and IP)-distributed
random partitions of Theorems 1 and 2. This section is descrlptwe stating precise results
is harder not least because of topological and analytical considerations beyond the scope
and space afforded by this note; see [15] for precise statements in the n = 1 case.

!Comparing with [10, Eq. (5)], we chose different integration conventions for the same function. Their
expression is different for n even and comes from the change of variables z = —{. Otherwise said, the
contours of [10, Eq. (5)] are such that R(z2"*1) < 0 whereas ours have R((—1)""17?"+1) < 0.
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Figure 1: The profile (thick blue) and the set S(A) (dots) for A = (4,2,1).

f Q°¢(u)

3t
i — =1
- 3

Tr =4
n=>5

-] ‘ 1 2 3 u
\:
0% (1) —
) ™ .

Figure 2: Limit shape and density profile of IP},-distributed random partitions.

To begin, recall that the Young diagram of a partition can be represented in “Russian
convention” as the graph of a piecewise linear function composed of slope +1 segments,
which we call its profile. See Figure 1.

If A is distributed according to the measures IP}% or P} 4 of Theorems 1 and 2, and

if we rescale by a factor 1/+/0 in both directions, then the profile converges as 6 — oo
to the graph of a deterministic 1-Lipschitz function, denoted (). We have () = 1 — 2p,
where p is the limiting density profile of the set S(A).

The limiting density profiles may be computed exactly. Let us denote them as follows:

/%% (1) = lim Y, PYRe(A). (3.1)
T \:0ueS(A)
In the oe case we have, with b = ”TH,E = ”TH ((2(5@1!;” - 1):

p°¢(u) = L arccos (1 — 2 (2" (b— u)’%) , u€[-bb] (3.2)
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L Q°(u)
2,
\:_—_—/ -_—n 1
1l =2
L =3
=4
n=>5
N 1 : 1 2 u
\77:
o ;\
“““ S S

Figure 3: Limit shape and density profile of IP} ,-distributed random partitions, for
n=1,...,5. Notice the symmetry with respect to the vertical axis.

and p°(u) = 1,u < —b, p°(u) = 0,u > b. The limit profile—depicted in Figure 2—is
0% (u) = b+ [*;[1—2p(v)]do. A similar profile, for n=2, was recently observed in
tight-binding fermions [3].

In the o case and for b = ?4;11)2 we have:
x(u) X o +1
) =L, [T @sing) Mg = (<1 (2w, we[-bb] (63)
0

continued to p°(u) = 1,u < —b, p°(u) = 0,u > b. The limit shape, symmetric under the
vertical axis and shown in Figure 3,is Q°(u) = b+ [*, [1 — 2p(v)] do.

Both )° and Q)°¢ are extensions of the Vershik—-Kerov-Logan-Shepp limit curve—see
e.g. [15]—to multicritical random partitions; indeed they become the former if n = 1.

4 Toeplitz determinants and unitary matrix integrals

In this section we review the connection between Schur measures and unitary matrix
integrals, and we relate our multicritical measures to the integrals studied in [14]. For
simplicity, we assume that the parameters 6;, 6/ of (1.1) are such that 6; = 6/ for all i, and
8; = 0 for i large enough. We introduce the polynomials V and V defined by

V(z) = g@f;, Viz+z H=V(Ez)+V(E. (4.1)

In physical parlance V, modulo a multiplicative constant, is often called the potential.

Example 5. If V(z) = 601z + %22 + 92% we have V(x) = —02 + (61 — 03)x + %% + %45,
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Proposition 6. For A distributed as above, we have:

D%/ P(0(A) <€) = det [fi-i] = Eueu [exptr V(U + U")] (4.2)

1<i, i<t

where the middle Toeplitz determinant has symbol Y ey iz = exp V(z +z71), and Eveu(r
is the expectation with respect to the Haar measure over the unitary group U(?).

Proof. The left-hand side is equal to }y(x)</(s1[61, 62, . . .]|)* which, by Gessel’s identity [8,
Thm. 16], is equal to the middle Toeplitz determinant. The second equality is Heine’s
identity—see e.g. [7]. O

We also have the following similar identity regarding A;.

Proposition 7. For A distributed as above, we have:

RPN < 0) = det [g5) = Eycyq [oxptr (<V(-U-U))]  @43)

1<i,j<¢

V(—z—z71).

It is a straightforward consequence of Proposition 6 and the following;:

where the middle Toeplitz determinant has symbol ¥ e gxz° = exp(—

Lemma 8. If A is distributed according to the Schur measure (1.1), then the conjugate partition
N is distributed according to the Schur measure of parameters 6; = (—1)i~19;, 6; = (—1)""1o..

Proof. This follows from the relation s,[01,0,,...] = sy[01,0,,...] that results from the
classical involution w on the algebra of symmetric function mapping the power sum p;
to (—1)"~1p; and the Schur function s, to sy O

Another consequence of the above lemma is the fact, mentioned in Theorem 2, that
IP° is invariant under conjugation.

When we specialize Proposition 7 to the multicritical measures IP)%, of Theorem 1,
then the right-hand side of (4.3) matches, up to a change of Var1able u — —Uu, the
multicritical unitary matrix integrals of Periwal and Shevitz [14]. Indeed, the derivative
V/(z) given on p. 737 of op. cit. is proportional to V’(z) for k = n in our present notations,
and the proportionality constant can be reabsorbed in 6. It seems that the case of an odd
multicritical potential was not considered in their paper.

5 Sketch of proof

Let us sketch the proof of Theorems 1 and 2. We present the argument for the IP) ,
measure as it is slightly simpler, and make comments at the end on the difference with
the IPY%, measure.
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We use the fact, already mentioned at the beginning of Section 2, that S(A) is a
determinantal point process. This means that, fixing m and ky, ...,k € Z + %, we have

PO({ky,..., kn} € S(A)) = det K(k;k;) (5.1)

1<i,j<m

where, by [12], the discrete (¢? operator) kernel K equals (for some small € > 0)

vz dzdw
K 52
(k.6) 2m 7|{w| —1- ej{z| 1+e eV V(™) gkt 1/2p=t+1/2(z — w) 52)

with V as in (4.1). Combinatorially, the above integral is just coefficient extraction: we
look at the coefficient of z

. Z—w

should be expanded as } ;- ;"Tll). Moreover, inclusion-exclusion gives that the gap proba-

bility IP°(A1 <) is equal to the discrete Fredholm determinant det(1 — K) 2741 /2,143/2,...}-
In the multicritical regime we look for numbers  and 64,65, ..., 6,,_1 satisfying

ko, = —(skloé, k=0,2,...,2n—2 (5.3)
i=1,3,...2n—1 2

and solve for each of them in terms of 6; = 6. The solution is, up to an overall factor,
given in the statement of the theorem:
24n—1

- B - ( 1)1—1—1( 1)'7’1'
b1 =9, 5‘n(znn)29’ 921_1‘(21'_1)(”_1) (n+i-1)"

We call b = 241-15~1 (22)"2 = B/§. The correlation kernel becomes

i=23,...,n (54)

So(@)ldzdw
K(k, 5.5
( 27T1 %w| =1l—¢ j|{z| 1+e Zk+1/2w €+1/2(Z — ?/U) ( )
n i i— —2i
with So(z) = ¥ = 1;) H(; (nll'lnll) (2 21i__211 ) The equations (5.3) ensure that
1:1
(20,)'[So(z) — blogz] =0 1<i<m (5.6)
z=
meaning z = 1 is a critical point of order 2n. The same is true for z = —1. Notice that

the relation (5.6) is automatically satisfied for even i by the symmetry relation Sy(z) +
So(z~1) = 0; the specific choice of coefficients ensures that it also holds for odd i between
1land 2n — 1.

We now analyze the scaling regime

0 oo, k= |bO+x(0d)mT|, €= |b0+y(6d)mn (5.7)
y
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with d = % In this regime, the integral (5.5) will be dominated by the vicinity of
the critical point z = w = 1 (if we considered instead the regime k, ¢/ ~ —bf, then the
critical point z = w = —1 would dominate). We perform the change of variable

z=1+(d0N)mm, w=1+w(d0 )zmm (5.8)

where ¢ and w are to be integrated over iR 4 and iR — ¢ respectively. The quantity
6So(z) — kInz which appears exponentiated in the integral may be approximated as

§@nt1)(1) g2+l 1 g 2t 1
2n+1)! d —x+0 (—91/(%“)) = (=" B <M) (5.9)

and we estimate —0Sp(w) + {Inw similarly. Plugging these estimates into (5.5), we
recognize the double integral representation (2.7) for Ay,1(x,y). Modulo standard
arguments (dominated convergence, tail bounds...) to justify the approximation, we
obtain

(d-1g) =K (be + x(d0)zT, bO + y(d@)z#ﬁ) — Appi1(x,y) asf —oco.  (5.10)

To finish the proof, we show that K(k, /) has exponential decay which then shows the
discrete Fredholm determinant Py ,(A1 < I) = det(1 — K)p2g111/2443/2,..) converges to

the continuous one det(1 — Azu+1)12(5,00) = F(21 4+ 1;5) when | = b6 + S(dG)ﬁ.

In the odd+even multicritical case, the analysis of the scaling regime (5.7) is the
same. However, we lose symmetry under conjugation. This means that V(z) and hence
the function Sp(z) appearing in (2.7) are not odd functions of z anymore. At the point
z = —1, which is relevant for studying the asymptotics of £(1), we find that So(z) +bInz
has a generic double critical point which, by standard calculations, leads to the second
equality in (2.1).

6 Concluding remarks

In this paper we have introduced Schur measures displaying the same multicritical edge
behavior as the fermionic models considered by Le Doussal, Majumdar and Schehr [10].
We also computed limit shapes and explained how our measures map exactly to the
Periwal-Shevitz multicritical unitary matrix models [14]. This gives a combinatorial
explanation to the coincidence noted in [10].

The approach of Periwal and Shevitz relies on the method of orthogonal polyno-
mials. Through this approach, one obtains a different expression for the higher order
distributions F(2n + 1;s) in terms of solutions of the Painlevé II hierarchy. It is shown
in [5]—see also Appendix G of the arXiv version of [10]—that it is indeed equal to the
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Fredholm determinant (2.6). Multicriticality of a similar flavor was also observed at the
spectrum edge of Hermitian random matrix ensembles by Claeys, Its and Krasovsky [6].
For n = 1, our measures reduce to the poissonized Plancherel measure, while on
the unitary random matrix side we obtain a model first studied by Gross and Witten,
see e.g. [9] and references therein. Our work shows that the connection observed by
Johansson in [9] extends to higher orders n > 2 of multicriticality, even though the
formulation in terms of longest increasing subsequences seems more elusive.

Main result of this note (odd case). Let us summarize, in one place, the results of
Theorem 2 on one hand and of Propositions 6 and 7 on the other.”

. . . . — i+1 — n!
Fix n > 1 and let A be P} o-distributed (1.1) with 61 = (2i(—1§2n—1()n!(n14)r'in—'1)!9 for
n— _ o 21
i=1,...,nand 8 > 0. Let b = :(12—7’)12; d= %, V(z) =Y, 9215%21; Viz+2z71) =

V(z) +V(z71); and Yyey fizk = exp[V(z) + V(z71)]. Then the quantities

deti<jj<olfj—i]  Bueu( [exptr V(U + U*)]
pLii1 05,/ (2i-1)7 eliz1 051/ (2i-1)

no(A < 0), PLo(L(A) < 0), (6.1)

are all equal, and equal to the Fredholm determinant det(1 — K) (K as in (5.2)) on {¢ +
1/2,0+3/2,...}. Asymptotically, they all equal the distribution F(2n + 1;s) in (2.6)
when ¢ = b6 +s(9d)2nlﬁ and 6 — oo.
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