Deep imaging in the brainstem reveals functional heterogeneity in V2a neurons controlling locomotion - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Science Advances Année : 2020

Deep imaging in the brainstem reveals functional heterogeneity in V2a neurons controlling locomotion

Résumé

V2a neurons are a genetically defined cell class that forms a major excitatory descending pathway from the brainstem reticular formation to the spinal cord. Their activation has been linked to the termination of locomotor activity based on broad optogenetic manipulations. However, because of the difficulties involved in accessing brainstem structures for in vivo cell type–specific recordings, V2a neuron function has never been directly observed during natural behaviors. Here, we imaged the activity of V2a neurons using micro-endoscopy in freely moving mice. We find that as many as half of the V2a neurons are excited at locomotion arrest and with low reliability. Other V2a neurons are inhibited at locomotor arrests and/or activated during other behaviors such as locomotion initiation or stationary grooming. Our results establish that V2a neurons not only drive stops as suggested by bulk optogenetics but also are stratified into subpopulations that likely contribute to diverse motor patterns.
Fichier principal
Vignette du fichier
eabc6309.full.pdf (4.94 Mo) Télécharger le fichier
Origine : Publication financée par une institution

Dates et versions

hal-03043145 , version 1 (23-12-2020)

Licence

Paternité - Pas d'utilisation commerciale - Pas de modification

Identifiants

Citer

Joanna Schwenkgrub, Evan Harrell, Brice Bathellier, Julien Bouvier. Deep imaging in the brainstem reveals functional heterogeneity in V2a neurons controlling locomotion. Science Advances , 2020, 6 (49), pp.eabc6309. ⟨10.1126/sciadv.abc6309⟩. ⟨hal-03043145⟩
199 Consultations
135 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More