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The development of a single-fluid solver supporting phase-change and able to capture the 
evolution of three fluids, two of which are miscible, into the sharp interface capturing 
Volume of Fluid (VOF) approximation, is presented. The transport of each phase-fraction is 
solved independently by a flux-corrected transport method to ensure the boundedness of 
the void fraction over the domain. The closure of the system of equations is achieved by 
a cavitation model, that handles the phase change between the liquid and the fuel vapor 
and it also accounts for the interaction with the non-condensable gases. Boundedness 
and conservativeness of the solver in the transport of the volume fraction are verified 
on two numerical benchmarks: a two-dimensional bubble rising in a liquid column 
and a cavitating/condensing liquid column. Finally, numerical predictions from large-
eddy simulations are compared against experimental results available from literature; 
in particular, validation against high-speed camera visualizations and Laser Doppler 
Velocimetry (LDV) measurements of cavitating microscopic in-nozzle flows in a fuel 
injector is reported.

1. Introduction

Cavitation plays a pivotal role in achieving finer atomization of spray to favor an improved fuel economy and reduced 
emission levels during combustion [1,2]; however, it may also cause a significant reduction in the nozzle volumetric effi-
ciency and in the stability of the spray [3] and to potential damage of the injector components, leading to reduced reliability 
of the injector. In injector nozzles, after a surface spot is initially surrounded by a cavitating flow region, it tends to erode 
at an accelerated pace: cavitation pits increase the turbulence of the flow and create crevices that act as nucleation sites 
for new cavitation bubbles, thus leading to an avalanche effect. From high speed camera visualizations on transparent glass 
nozzles, two different forms of cavitations have been distinguished [4,5] and they are known as “geometry-induced” and 
“vortex” (or string) cavitation respectively. Geometry-induced cavitation is initiated at sharp corners where the pressure falls 
below the saturation value [6–8] because of a sudden flow detachment and the accompanying recirculation region. String 
(or vortex) cavitation, conversely, develops by the evolution of the vorticity which allows the formation of geometry-scale 
vortices and is significantly influenced by the walls and the interaction with other vortices [9]; additionally, low pressure 
regions in the centers of the vortices in the nozzle can generate a phase-change or entrap and stabilize bubbles that were 

* Corresponding author at: Dept. of Aerospace Science and Technology (DAER), Politecnico di Milano, Italy.
E-mail address: filippo.giussani@polimi.it (F. Giussani).
https://doi.org/10.1016/j.jcp.2019.109068

https://doi.org/10.1016/j.jcp.2019.109068
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:filippo.giussani@polimi.it
https://doi.org/10.1016/j.jcp.2019.109068
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2019.109068&domain=pdf


entrained in their proximity, similarly to what is observed in hydromachines [10,11]. Vortex cavitation in the injector noz-
zles was first observed by Kim [12] and since then it has been described in further studies performed in enlarged nozzle 
replicas and was termed as “string cavitation” [13,14]. The main differences between vortex cavitation in propellers and 
turbines and those in fuel injectors arise from the geometric configuration of the nozzle and the operating conditions of the 
flow. String cavitation in nozzle flows develops in very confined volumes, that may allow formation of large-scale vortices 
relative to the nozzle geometry, where each cavitating vortex may interfere with other vortices and where the influence of 
the walls can be significant. Also, huge pressure drops in fuel injectors are encountered within very short distances (few 
hundreds of micrometers) while the lifetime of the formed vortical structure is usually only a fraction of the injection pe-
riod. Cavitation strings are usually formed during fuel injection in areas where large-scale vortical structures develop: this 
happens when local pressure level is lower than the vapor pressure of the fuel. In a typical nozzle geometry, cavitation 
vortices are located between the separation point on the needle surface and the separation point at the hole inlet corner, 
and where there is sharp flow turning inside the sac volume of the injector. Unlike geometrical cavitation, string cavita-
tion is present in any nozzle geometry: with sac-type and Valve Covered Orifice-type (VCO) nozzles, with either cylindrical 
or tapered holes, whose inlet can be either sharp or rounded. Cavitation modeling in high-pressure injection involves the 
simulation of multiphase (in the context of this paper refers to liquid and gas) and multicomponent (several instances of 
the same phase) flows and poses great challenges. These challenges are due to the presence of the interfaces between 
phases and large or discontinuous properties variations across interfaces between phases and/or components; additionally, 
the modeling of small-scale interactions between phases and components has a significant impact on macroscopic flow 
properties, this is why LES turbulence modeling is often required. Two approaches are commonly used for the simulation of 
multiphase and multicomponent flows. In the first approach, each phase and/or component is considered to fill a distinct 
volume and the interfaces between the phases and/or components are captured explicitly. This approach is a generalization 
of two-fluid approach [15]; typical applications [16–18] include the prediction of the motion of large bubbles in a liquid, 
the motion of liquid after a dam break, the prediction of jet breakup, and the capture of any liquid-gas interface. The 
mutual interaction at the interface can be described as an interfacial momentum transfer and, when interfacial mass and 
energy transfer are involved, they also need to be included in the equation sets. In order to model the transfer of mass 
for cavitation with a minimum set of equations for closure, an equation of state to correlate density and speed of sound 
with pressure and temperature is required: no additional transport equations are used for the vapor phase, whose void 
fraction is determined by the mixture composition. Similarly to barotropic models, the density is a function of pressure 
only. In the second approach, the phases and/or components are spatially averaged to lead to a homogeneous mixture; 
relative velocity among the phases is neglected, which implies the absence of closure for the transfer of mass, momentum 
and energy at the interfaces while thermal equilibrium among the different phases is usually assumed. These methods are 
generally identified by the Volume of Fluid (VOF) [19], the Level Set (LS) [20] and the Coupled Level Set-Volume of Fluid 
(CLSVOF) [21–23]. The number of phase fraction equations solved can vary depending on the number of fluid interfaces to 
capture. Fluid properties, such as density and viscosity, sharply vary across the interface of the different phases; finally, the 
rate of the transfer of mass is controlled by source term built on Rayleigh-Plesset equation [24–27]. Several attempts have 
been done to combine the potentiality of the VOF with the simplicity of mixture model. In [28] the cavitating fluid mixture 
(liquid and vapor) is considered as primary phase while the non-condensable gas is the secondary phase; in this case, only 
one interface is captured by solving the phase-fraction equation for the non-condensable (NC) gas and the void fraction of 
the cavitating fluid mixture is equal to (1 − αnc); the volume fraction of the fuel vapor in the cavitating fluid mixture is 
estimated from the mixture composition, where the densities of the different components are computed through non-linear 
equations of state. In [29], a mass transfer model published in [30] was extended to an eight-equation two fluid-model to 
include non-condensable gases. Other methods to describe a three-phase flow while considering non-condensable gases are 
the use of the homogeneous mixture model combined with a barotropic two-fluid cavitation model [31], or the coupling 
of a two-fluid approach with VOF [32]. In the latter case, a two-fluid approach is used to describe the interaction between 
liquid and vapor in the nozzle, while VOF is used to model the jet formation. All the mentioned models have in common 
the aspect that they capture a single interface between the non-condensable gases and a multi-component mixture [33,34]. 
Barotropic models are widely used for complex simulations because they are simple to implement and numerically sta-
ble. On the other hand, one of the main limitations using a barotropic equation of state is in the underestimation of the 
vorticity change, because it does not account for the misalignment between the gradient of pressure and the gradient of 
density (∇ρ × ∇p)/ρ2 [35], unless a non-linear correlation between pressure and density is used [33]. This contribution, 
called baroclinity, is important either in compressible fluids and also in incompressible and inhomogeneous fluids and it 
is identified by the interface in a VOF method. Another challenge when cavitation is modeled using barotropic models is 
in the definition of an appropriate equation of state for the mixture, which includes air in addition to liquid and vapor. 
Capture the interface between coexisting miscible phases (fuel vapor and non-condensable gases in this work) in injector 
nozzles may be important in presence of swirl cavitation and hydraulic flip regime [36,37], when a severe detachment of 
flow pockets [37,38] transported away from the hole allows non-condensable gases to flow back into the nozzle. This hap-
pens both in simplified, straight, central hole injectors [39] and in non-axial nozzles, in which large pressure fluctuations are 
observed in the nozzle. Recently, attempts to extend VOF, in order to include air in transport and in cavitation model have 
been done [40], [41] where each phase is considered as a compressible fluid but the cavitation model used [42,43] have 
been previously developed under incompressible formulation. Conversely, in [44] each phase is considered incompressible 
and isothermal but the change of density is addressed at the interface and keeps in consideration the presence of the air 



inside cavitation model. A multi-fluid quasi-VOF model with the transport of three phases has been proposed also in [45], 
considering different velocities among phases and thus momentum transfer rate among interfaces. Although several authors 
have developed different methodologies to describe cavitation and the jet formation, any simple benchmark has not been 
found in literature in order to provide any further information about the mass conservation guaranteed by the cavitation 
model, either using the Rayleigh-Plesset equation [24,27] or using a barotropic equation of state coupled with vapor quality. 
Some tests have been performed using a shock tube or Rayleigh bubble collapse test case [46–49], which deal with surface 
capture regardless of mass conservation when the phase change occurs.

The objective of this study is to present the development of a three phase VOF solver for three incompressible fluids 
(liquid fuel, fuel vapor and non-condensable gases), two of which are miscible, where fuel cavitation/condensation is mod-
eled through the Rayleigh-Plesset equation. Three different test cases are proposed for the solver validation: a) a modified 
version of the test case presented in [50,51] to explore the accuracy of the solver in capturing three interfaces without phase 
change. Different formulations to compute the surface tension in the VOF method have been investigated and a comparison 
among them has been shown; b) a novel one-dimensional test case, that consists of a 1D column half filled with liquid, 
where non-condensable gas (air) stays above the liquid. The hydrostatic pressure field resulting from the weight force of 
each fluid in quiescent state produces a pressure gradient �p at the interface, letting the onset of cavitation in the liquid. 
Later on, condensation of the vapor is enforced to reach the initial state. The relative mass conservation error is monitored, 
together with other relevant quantities, to prove the conservativeness of the solver; c) the three-dimensional internal-nozzle 
flow of an injector, whose experimental results are available in the literature at one operating point [52]. The discretization 
of the governing equations used in this study is based on the finite-volume approach as implemented in OpenFOAM [53]. 
Mass and momentum are solved using the pressure-implicit split-operator (PISO) algorithm [54]. The cavitation and the 
condensation term have been included in a semi-implicit formulation of the phase-fraction equations, where a flux cor-
rected transport technique [55] is used to preserve boundedness of the solution; cavitation modeling follows the theory by 
Schnerr and Sauer [43] with the extensions proposed by Yuan [56]. The implemented three-phase solver is able to capture 
the interface of three phases, namely the liquid, the condensable gas (vapor) and the non-condensable gas (air). Turbulence 
is modeled using LES: large turbulent scales are resolved, while smaller scales are modeled [57–59]. This separation of 
scales is explicitly or implicitly [60,61] obtained by filtering out the small flow scales that cannot be properly represented 
by the mesh [57]; their effect must be modeled on the filtered field by means of the so called subgrid-scale (SGS) model. 
Although the multiphase nature of the problem, the use of LES models is also very popular in multi-phase single-fluid VOF 
simulations [62–67]. It is worth mentioning that several numerical studies have been led with Unsteady Reynolds Averaged 
Naviers Stokes (URANS) equations but this approximation can significantly underestimate the formation and the extent of 
cavitation due to an overestimated turbulent viscosity in the cavitating zones [68–72]. A comparative study between URANS 
and LES models [46] shows that URANS models fail to predict the incipient cavitation when the inlet flow pressure is not 
far from the pressure at the nozzle outlet, while LES is able to better capture the cavitation onset thanks to a better charac-
terization of the different flow scales. A possible solution to overcome the limitations of URANS when applied to cavitation 
modeling consists in reducing the eddy-viscosity predicted by the turbulence model [68]; this approach looks promising, 
but its validity does not seem general; LES looks therefore to be the best approach for the problem discussed, despite of its 
high computational cost.

The paper is organized as follows: the theory of the three phase solver with phase change is discussed from Sec. 2
to Sec. 5; the discretized solution of the phase fraction equations in presence of phase-change, and its coupling to the 
segregated solution of the governing equations is presented in Sects. 6, 7 and Sec. 8. Then, the rising bubble test case [50]
and a new one-dimensional liquid-column benchmark test case have been used for validation in Sects. 10 and 11. Finally, 
the simulation of a three-dimensional internal nozzle flow and its validation is presented in Sec. 12. Main conclusions are 
summarized in Sec. 13.

2. Phase-fraction equations in the VOF solver

The cavitating fluid, the vapor and the non-condensable gas in the three-phase flow are represented in a single-fluid 
approximation as a mixture of phases, in which the phase-fraction distribution includes a sharp yet resolved transition 
between the phases.

An algebraic-type VoF method belonging to the family of the interface-capturing methods [73], is used to capture the 
interface; more specifically, the interface is visualized by the contour of a scalar function, that is assumed to be the iso-value 
(set to 0.5 in this work) of the void fraction of the phase considered. Each phase i has a partial volume V i , that is a fraction 
of the volume V of the cell element (V i ⊆ V ) and it is defined by its local volume fraction αi ∈ [0;1]:

αi = V i

V
(1)

with:

3∑
αi = 1 (2)
i=1



a “mixture” density:

ρ =
∑

i

αiρi (3)

and a “mixture” viscosity:

μ =
∑

i

αiμi (4)

It is important to note that density in the solver varies with pressure, through the phase transport equations. The effect 
of the heat transfer on the temperature, that should be accounted by solving the energy equation, is not considered in the 
present work. The complete system of equations for three-phase flow with phase change are the phase-fraction equations, 
that are written as:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂αl

∂t
+ ∇ · (Uαl) = − Sα

ρl

∂αv

∂t
+ ∇ · (Uαv) = Sα

ρv

∂αnc

∂t
+ ∇ · (Uαnc) = 0

(5)

In the system of equations (5), Sα is a source term to model the phase-change (cavitation or condensation) at the liquid 
interface through the cavitation model and couples the effects of the cavitation with the evolution of the interface directly:

Sα = ρvρl

ρ + αnc(ρl − ρnc)

Dαv

Dt
(6)

In Eq. (6) the subscripts l and v are adopted for liquid and vapor (that are involved in the phase change) respectively, 
while the subscript nc is adopted for non-condensable gases. It is important to note that the closure of the system of 
equations (5) in presence of a cavitation/condensation source term Sα requires to explicitly resolve the transport of a third 
phase fraction (non-condensable phase), to include a cavitation model and to couple the equations with the compatibility 
condition (2); in this way, the system is closed and implicitly bounded, thanks to (2). In absence of source terms, 3-phase 
VOF solvers usually calculate the void fraction of non-condensable gases directly from Eq. (2), that is sufficient for closure 
only in that case. These aspects are discussed in detail in Appendix A and Appendix B, where the derivation of the full 
system of equations is shown and the formulation of the source terms for the phase change is also described.

2.0.1. Counter-gradient transport in VOF
In the FV framework, numerical diffusion, which is very high in the transport term in second-order spatial discretiza-

tion, “smears” the sharp liquid-gas interface. In OpenFOAM, the strategy commonly followed in multiphase VOF solvers to 
model the transport of the void fraction consists in adding a convection term which compresses the interface and preserves 
boundedness: this is similar to what is done for the treatment of the scalar-flux second-moment closure, used for the 
“counter-gradient” transport in some complex combustion models describing the dynamic of turbulent flames [74]. In the 
VOF treatment, a common closure used for counter-gradient transport has the form:

∇ · [Uc α (1 − α)] (7)

where Uc is the compression velocity at the interface between the phases, which is a consequence of the different densities 
and the term α(1 − α) ensures boundedness [55]. In the VOF solver used, the compression velocity is modeled as:

Uc = cα |U|n̂i j (8)

The employed formulation of the compression velocity is:

Uc = min
[
cα |U|,max(|U|)] n̂i j (9)

The discretized form of Eq. (7) is a flux (counter-gradient term, Eq. (38)) computed at the cell faces using a Total Variation 
Diminishing (TVD) scheme. In this work, the TVD scheme used is called interfaceCompression scheme [55], in which 
the limiter ψ to compute the flux is defined as:

ψ(φP , φN) = min

{
max

[
1 − max

(√
1 − 4 · φP · (1 − φp),

√
1 − 4 · φN · (1 − φN)

)
,0

]
,1

}
(10)

ψ is bounded between 0 and 1; φP is the value of the variable, defined at the cell center, where the limiter is applied; φN
is the value of the same variable in the neighboring cells.



The compression rate should be set in order to ensure interface sharpness. Higher values of the compression rate might 
introduce numerical instability or slow convergence. The term Cα in Eq. (9) is the compression coefficient and it is set to 
unity in this work. The compression coefficient Cα is a binary coefficient which switches interface sharpening on (Cα ≥1) 
or off (Cα = 0). With Cα set to 0 for a given phase pair, there is no imposed interface compression resulting in phase 
dispersion according to the multi-fluid model. If Cα is set to 1, sharp interface capturing is applied and VOF-style phase 
fraction capturing occurs, forcing interface resolution on the mesh. If a compression term is not applied, the interface will 
be very diffuse. In most applications, it is suggested a cα of the order of unity [55]. A complete discussion about the 
interface compression method and the compression coefficient can be found in [75].

To ensure that the compression term does not bias the solution, it should only introduce flow of α, normal to the 
interface, in the direction of the volume average interface normal n̂i j . For a three-phase solver it has been computed as net 
gradient of the phase i-th at the interface [53]:

n̂i j = α j∇αi − αi∇α j

‖α j∇αi − αi∇α j‖ (11)

In the convention adopted (see Fig. 1), n̂i j always points towards the lighter fluid. A common practice is to use the 
compression term only where surface sharpness wants to be preserved: in the proposed formulation, the convection-based 
term is used only to compress the interface between the immiscible (liquid fuel) and the miscible phases (fuel vapor and 
non-condensable gases). The phase-fraction equations for the three phase VOF take the form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂αl

∂t
+ ∇ · (αlU) + ∇ · (αlαv Uclv ) + ∇ · (αlαncUclnc )︸ ︷︷ ︸

compression term, liquid-vapor + liquid-non condensable gases

= − ρv

ρ + αnc(ρl − ρnc)

Dαv

Dt

∂αv

∂t
+ ∇ · (αv U) + ∇ · (αlαv Uclv )︸ ︷︷ ︸

compression term, liquid-vapor

= ρl

ρ + αnc(ρl − ρnc)

Dαv

Dt

∂αnc

∂t
+ ∇ · (αncU) + ∇ · (αlαncUclnc )︸ ︷︷ ︸

compression term, liquid-non condensable gases

= 0

(12)

Fig. 1. Schematic of the interface between two fluids. fσ is the surface force per unit inter-facial area; n̂ and κ are namely the interface normal and the 
interface curvature. According to the sign convention adopted, fσ is always oriented towards the concave interface and n̂ always points towards lighter 
couple of fluids [76].

In Eqs. (12), no additional terms to model interface compression between miscible phases are used; numerical diffusion 
is assumed to be sufficient to model the small diffusion of mass at the interface when convection is dominant (i.e. with 
large values of Reynolds and low Schmidt numbers). Different modeling approaches for sub grid-scale computation of the 
mass transfer are only proposed for low-Re and high Schmidt number flows [77–79]. The term Dαv

Dt in Eqs. (12) includes 
the effects of the phase change (cavitation/condensation) and it is therefore linked to the cavitation/condensation model.

3. Mass conservation in the VOF solver

During cavitation and condensation, liquid and vapor phase are both affected by a strong variation of density. The latter 
influences significantly the numerics of the segregated solver. Therefore, to ensure the stability of the solver under the 
aforementioned condition, the continuity equation is used in its non-conservative form as suggested in [80] and which it 
has already been used [43,81,44]:

∇ · U = − 1 Dρ
(13)
ρ Dt



The advantage of using volume fluxes rather than mass fluxes (conservative form) consists of having continuous volume 
fluxes at the interface, thus favoring the solution of pressure correction equation. With phase change and three phases, Eq. 
(13) can be rewritten as:

∇ · U = ρl − ρv

ρ + αnc(ρl − ρnc)

Dαv

Dt
(14)

The derivation of the RHS of Eq. (14) is reported in Appendix A.

4. Momentum conservation in the VOF solver

The momentum equation reads:

∂ (ρU)

∂t
+ ∇ · (ρU ⊗ U) = −∇ p̂ + ∇ · τ + fσ + SU − g · x∇ρ (15)

where p̂ is a modified pressure, that is calculated by removing the hydrostatic part from the static pressure p, τ is the 
deviatoric stress tensor, SU includes the source terms, fσ is the surface force per unit inter-facial area calculated at the 
fluid interface in the control volume, g is the gravitational acceleration. The term −g · x∇ρ in the RHS of Eq. (15) is a 
consequence of the removal of the modified pressure p̂ from the static pressure:

p̂ = p − ρg · x (16)

which yields:

∇ p̂ = ∇p − ∇(ρg · x) = ∇p − ρg − g · x∇ρ (17)

so:

−∇p + ρg = −∇ p̂ − g · x∇ρ (18)

The use of p̂ in the momentum equation favors a more stable solution of the density jumps at the sharp interface and 
simplifies the implementation and setup of the boundary conditions on pressure. In Eq. (15), fσ is defined as:

fσ = σ κ n̂ δ (x − xs) (19)

where σ is the fluid surface tension coefficient in [N/m], n̂ is the unit vector normal to the liquid interface, whose center 
is located in xs , δ is the Dirac function to ensure that the force is applied only at the liquid interface, κ is the interface 
curvature [m−1], which is defined as:

κ ≡ −∇ · (n̂ · S f ) (20)

where S f is the cell faces surface area vector defined as the scalar product between the cell faces normal and the cell 
face area. In Eq. (19), fσ is always oriented towards the concave interface (Fig. 1). It is important to note that the interface 
curvature in Eq. (19) and (20) used is the one of the interfaces of the phase with highest density (liquid in this case):

n̂ = ∇αl

‖∇αl‖ (21)

The surface tension coefficient σ appearing in Eq. (19), has been written as an average of the surface tensions weighted 
with the phase-fractions computed in the control volume:

σ = αvσlv + αncσlnc

αv + αnc
(22)

where σlv is the surface tension between the liquid fuel and fuel vapor, while σlnc is the surface tension between liquid fuel 
and non-condensable gases. Similarly to viscosity and density, the surface tension coefficient σ for the mixture is computed 
as a weighted-average, where the weighting factors are the void fractions; the concept of miscible phases implies that their 
surface tension coefficient is zero, so σ does not include the surface tension between fuel vapor and non-condensable gases. 
Finally, to compute the surface tension force, the term n̂ δ (x − xs) in Eq. (23) must be also modeled. The Continuous Surface 
Force (CSF) approximation [82] is therefore used, yielding to:

fσi = σκ∇αi (23)

It must be remarked that CSF is the simplest model commonly used in VOF solvers. Despite its popularity, it has been 
proven (in surface tension dominated/driven flow) that it does not guarantee momentum conservation [83], leading to the 
onset of physically unrealistic velocities at the interface. This parasitic current can be relevant when the flow is highly 



dominated by surface tension forces. For that reason, several different formulations as the Continuum-Surface-Stress (CSS) 
approximation [84] and the Ghost fluid Method (GFM) [85] have been proposed. The former is based on the integral for-
mulation rather than on the volumetric one, and gives more advantages such as inclusion of the tangential stresses due 
to a variable surface tension (i.e. Marangoni Effect). However, since it was only applied within high-order (spline-based) 
front-tracking interface description framework [86,87], CSF is rather preferred for its simplicity, especially if surface tension 
is not dominant. On the contrary, the GFM is a technique used to handle sharp transitions and in the case of capillary 
forces, it explicitly introduces the singular pressure jump condition into the discretization equations. Each phase is then 
artificially extended across the interface, producing ghost cells which contain properties of the extrapolated phase used for 
the discretization scheme, removing the tendency for the adjacent inter-facial cells to diffuse due to the sharp transition. 
This method has been also extended by several authors [88–90] but always based on LS and CLSVOF since they can compute 
in a more accurate way the interface curvature [91].

If LES-specific filtering operations are applied to the momentum and to the phase-fraction equations in a single-fluid 
multiphase solver, additional sub-grid terms appear. These terms can be identified under the so called interface-specific 
sub-grid contributions. The term coming from the filtering applied to the term representing the surface tension forces 
(fσi = σκ∇αi ) in the momentum equation is a Sub-grid Curvature Tensor (SCT); while terms coming from the filtering of 
the phase advection terms (∇ · (Uαi)) are known as Sub-grid Mass Transfer terms (SMT). Published works on two-phase 
flow interfacial flows without phase-change [92–94] proved that in specific flow configurations [92], those sub-grid terms 
cannot be neglected. At least three possible closure terms have been published to model the Sub-grid Curvature Tensor: the 
Sub-Grid Surface Dynamics (SGSD) model [95], the Sub-grid curvature model [96] and the ADM-τ [97,98]. No works have 
been found by the authors where the Sub-grid Mass Transfer term has been modeled, even if in [92,99] it is reported that 
in some cases (like the “separation of phase” test case) it may have the same order of magnitude of the filtered resolved 
advection term. On the other hand, the vapor phase-fraction αv is hardly subject to high-frequency fluctuation according 
to the definition of Eq. (B.5), because the pressure fluctuations only acts directly on the time-derivative of the bubble 
radius R [65]. Since cavitation is modeled by several micro-bubbles, their status is little sensitive to pressure pulsation 
rather than to the mean pressure distribution; for this reason, the sub-grid scale related to the SMT should be negligible 
with respect to the filtered vapor volume fraction field in the cavitation regions where the mean pressure is relatively 
uniform. Moreover, in the flow regions with sharp pressure gradient, the vapor volume fraction is itself small enough 
to allow SMT to be neglected. It must be underlined that, the proposed closure terms for SCT have been developed for 
explicit filtering approach; when deconvolution is performed, the velocity obtained is not strictly equal to U = U + Usgs , 
being the deconvolution operator approximated. Finally, the “separation of phase” test [92], used for the sub-grid interface 
analysis, is dominated by the surface tension forces effects. According to authors’ research, no published works studied 
the contribution of the sub-grid interface with high speed flows including phase-change: such a study would therefore 
represent a big step towards an improved mathematical description of the formulation of LES single-fluid VOF solvers 
with phase-change. It is worth to remind that in the Finite Volume (FV) approach, both the computational grid and the 
discretization of the operators implicitly act as a top-hat filter to the equations [100]. Since most of the CFD solvers in the 
FV framework are usually limited to second order accuracy [101], the SCT and the SMT term coming from filtering of the 
equations would be probably biased by the discretization schemes and by the grid [102,103], even when explicit filtering is 
applied.

The filtering procedure would produce another additional term in the phase-fraction equations (Eqs. (12)) with phase-
change. However, no information about these terms was found in literature.

5. Cavitation model

Cavitation may consist either of small bubbles (bubbly-flow cavitation) or may contain large pockets of vapor (cloud 
cavitation) [104]; with a sharp interface-capture method, the bubble must be larger than the cell to be accurately resolved, 
otherwise a sub-model is needed. In the approach followed in this work, a sub-model for cavitation is always used to 
provide an expression for the term Dαv

Dt . This is required to close the system of governing equations (12), (14) and (15). 
The rates of fuel vaporization and condensation are determined by a simplification of the Rayleigh-Plesset equation which 
assumes spherical bubbles of radius R subject to uniform pressure variations. Spherical bubbles are then represented by a 
fraction of the vapor phase in the computational cell; from [81] and considering that liquid, vapor and non-condensable 
gases may coexist in a control volume, it follows:

V v = Nb
4

3
π R3 = n0 Vl

4

3
π R3 (24)

where V v and Vl are respectively the volume of the vapor and the liquid in the computational cell of volume V, Nb is 
the number of spherical bubbles of radius R in the computational cell and n0 is defined as the bubble concentration per 
unit volume of pure liquid. The use of relations of Eq. (24) requires an a-priori knowledge of the nuclei concentration n0

and an estimation of their initial radius R . Some measurements of cavitation nuclei were carried out a few decades ago 
on water using Cavitation Susceptibility Meter (CSM) and Holographic measurement [105]; even though the holographic 



measurements have proved to be more accurate than CSM, both techniques cannot detect bubbles at the sub-micrometer 
scale and they may omit many additional nuclei. In addition, the growth of the smallest bubbles is affected by the sur-
face tension, that is not considered [25] to have a simple correlation describing the bubble growth. A proper estimation 
of the surface tension would require a numerical approach to determine the bubble growth rate, but it would require a 
significant increase of the computational cost [25]. Nucleation can be originated either by homogeneous and by hetero-
geneous nuclei as well (air dissolved in the liquid, particles, etc.) [104,106]. For the sake of simplicity, only homogeneous 
nuclei have been considered in the present model; as a consequence, it is not straightforward to set the value of this 
parameter for the case of high-pressure injection, since measurements of nuclei are not available in literature. For fuel 
injection, it is usually accepted that the number of nuclei, due to impurities, are large enough that they should not influ-
ence the results of the model. Dissolved gas could also contribute [107], but as a first step, in the present study they are 
not considered as nucleon precursors. The complete expression for the rate of fuel vaporization, derived in Appendix B, 
is:

Dαv

Dt
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which can be rewritten as a net contribution between cavitation and the condensation:

Dαv

Dt
=

(
Dαv

Dt

)+
αv +

(
Dαv

Dt

)−
αl (26)

In the transport equation for the liquid phase αl in the system (12) Dαv
Dt is replaced by rewriting Eq. (26) in the form:

Dαv

Dt
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(
Dαv

Dt

)+
αv +

(
Dαv

Dt
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αl
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(

Dαv
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[(
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Dt
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−

(
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(
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Dt
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(27)

while in the transport equation of the vapor phase αv , still in the system (12), Eq. (26) is manipulated to write Dαv
Dt in the 

form:
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(
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(28)

Both in Eq. (27) and (28), the first term in the square brackets is the coefficient of a part of the equation that will be 
implicitly solved, while the remaining part is explicitly solved. As it will be explained in the further sections, solving the 
source term in a semi-implicit fashion favors improved numerical stability and boundedness. The final form of the system 
describing the transport of the three phase fractions reads:
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6. Solution algorithm

The code resolves the governing equations by the Finite Volume (FV) Solution Method; a cell-centered formulation with 
co-located arrangement is used for the sequential solution of the governing equations on a polyhedral mesh. The segregated 
solution of the governing equations (mass and momentum) is achieved by a pressure-velocity coupling algorithm. The 
turbulent viscosity μt is modeled using the Wall-Adapting Local Eddy-viscosity model (WALE) [108], which has been proved 
to be suitable for wall-bounded flows and single-fluid approach [9].

7. Discretized form of the phase-fraction equations

The solver has been developed in order to model high-speed injection and primary atomization. This a very challenging 
task for interface tracking and capturing methods. In this regard, the most important factor that must be considered is the 
mutual effect of turbulence and cavitation. Breakup and cavitation processes are dominated by surface instabilities, which 
are affected by turbulence, by the boundary conditions and by the numerics. Turbulence in the liquid, and to a lesser extent 
in the gas phase, strongly influences the predictions in the injection breakup; the fact that surface structures being resolved 
are of a similar space and time-scale to small, but not the smallest, turbulent structures suggests that this interaction cannot 
be realistically represented by traditional RANS modeling and that LES turbulence is the most appropriate approach. The 
use of LES imposes tight constraints on the numerics in the case setup: high resolution schemes and accurate numerics are 
required for differentiation, in order to preserve the energy associated with the resolved turbulent structures and to avoid 
a numerical error working as artificial dissipation [102]. On the other hand, high-order methods applied to high-speed 
flows in complex geometries may lead to instabilities; for this reason, special care must be taken in the discretization of 
the convection of momentum and of the temporal derivatives. In particular, the numerical fluctuation created by the VOF 
approach, possibly coming from the compression and mostly from the cavitation/condensation source terms, are preserved 
by second-order time-differencing schemes; as a result, a wrong accumulation of energy may be found and, in turn, the 
simulation is destabilized. The stencil of the discretization for the phase-fraction equations of system (29) makes use of a 
first-order time differencing scheme, as it happens when first order hyperbolic PDE are used [109]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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where the subscript P in the equations indicates that quantities are defined at the center of the Control Volume (CV); ∑
f Fi,f is the sum of the convective fluxes for the i-th phase (see Sec. 8) and:
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=
[
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]n

(31)

p
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p

(32)

System of equations (30) is then solved explicitly as follows:
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Total Variation Diminishing (TVD) [110] is applied in the calculation of αn+1
lp

and αn+1
v p

, to ensure a stable solution and 
boundedness of the phase fraction with large density ratios. In this way, the oscillations in the solution near discontinuities 
in the phase-fraction equations (represented by the interface of the VOF) are smoothed and monotonicity is preserved. Phase 
transition leads to large values of the fluxes: this is particularly apparent in the calculation of the transport equation for 
the liquid phase. It has a direct effect on the stability of the solver and may put constraints in the time-step advancement. 
Similar considerations may be drawn for the transport equation of the vapor phase, but in this case the contribution on 
the fluxes deriving from the phase transition (condensation) is not so large as for the liquid and a bounded solution can be 
achieved. To stabilize the solution of the transport equation for the liquid fraction in (29), the term αl∇ · U is added and 
subtracted on its RHS. The equation is then written as:
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The discretized form of Eq. (34) reads:
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The final expression to calculate the liquid fraction αn+1
l in (29) is:
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Multiple calculations of the system of equations (33), with updated values of the phase fractions, are performed to 
favor a bounded and more accurate solution. This procedure is repeated iteratively until the global conservation of the void 
fractions is reached. It is important to note that, similarly to what is done in the calculation of the specie transport, the 
last phase (non-condensable gases in the present work) is usually solved as the complement to reach the unity. In the 
case of cavitating flows, as discussed in the previous paragraph, the solution of the phase fraction equations is required for 
closure; this means that, after the iterative procedure just described to calculate independently αl , αv and αnc is completed, 
the (small) residual error must be added to the non-condensable phase fraction before the pressure-velocity coupling is 
calculated.

8. Discretization of the convective fluxes in the phase fraction equations (MULES)

The implemented system of phase-fraction equations for the three-phase VOF, Eq. (12), have been discretized follow-
ing the Multidimensional Universal Limiter with Explicit Solution (MULES), to ensure boundedness and consistency even 
in presence of flow cavitation and condensation. The method to solve the phase fraction equations is fundamentally ex-
plicit and introduces a strict Courant number limit with a direct impact on time step advancement; time step sub-cycling, 
commonly used to enlarge time-steps in VOF solvers, is applied here to ensure consistency and boundedness of the solu-
tion with strong cavitation/condensation. One of the critical issues with the VOF method used is the discretization of the 
advective term in Eq. (37), that includes either the convective fluxes and the counter-gradient term (compressive fluxes):∑
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Numerical diffusivity of first order schemes might smear the interface; on the other hand, higher order schemes are 
unstable and may cause numerical oscillations. It is therefore needed to derive advection schemes able to keep the interface 
sharp and to produce monotonic profiles of the color function. In the modified system of phase fraction equations (33), 
the Flux Correct Transport (FCT) technique has been applied: flux limiters are computed by an iterative procedure which 
allows the use of high-order schemes preserving boundedness, mass conservation and sharp interface capturing. The theory 
originally formulated in [111] was further extended to multi-dimensional problems in [112]. The method involves several 
stages of calculation: first, the discretization of the advective term F n

α f
is provided by a higher F H

f ,i and a lower order 
F L

f ,i (obtained applying a monotonic and a diffusive advective scheme) flux approximation; Then, an anti-diffusive flux 
(F A ) is defined to attempt and reduce the numerical diffusion resulting from the lower order scheme. An estimate of the 
anti-diffusive fluxes F A for the i-th phase equation is given by:

F A
f ,i = F H

f ,i − F L
f ,i (39)

Anti-diffusive fluxes F A
f ,i are limited to F C

f ,i by a flux-limiting technique [112] based on the calculation of a TVD limiter 
λ to prevent undershoots and overshoots in the phase fraction in the control volume:

F C
f ,i = λ F A

f ,i with λ ∈ [0,1] (40)

being λ = f (F n
α f

) a function of the void fractions.

9. Definition of test cases and setup

Simulations have been performed on three different cases, in order to test the numerical properties of the newly imple-
mented solver (in the following referred as interPhaseChangeMixingFoam) in terms of ability to: a) capture the interfaces, 
while maintaining them sharp; b) preserve the conservativeness and the boundedness of the solution of the phase-fraction 
equations with phase-change. Finally, the robustness of the solver and its application to the description of real flow physics 
is tested on a large parallel simulation of an injector geometry. Validation test cases that will be discussed in the further 
sections are:



1) the evolution of a two-dimensional bubble rising in a liquid column [50], to test the ability of the solver to properly 
capture the interface between fluids of different densities;

2) the study of the evolution of a free-surface in a partially cavitating/condensing liquid column, to verify the conserva-
tiveness and boundedness while phase-fraction equations are solved with phase-change;

3) a cavitating flow evolving inside an injector nozzle [52,113].

10. Bubble rising in a liquid column

The two-dimensional bubble rising in a liquid column [50] has been proposed as a validation test-case to study the 
ability of the multiphase solvers to capture an interface. The first test case studied consists of a two-dimensional rising 
bubble problem, where a gas bubble immersed in a chamber filled with liquid moves until it breaks up. The case setup, 
the boundary conditions and the physical properties of the fluid are described in Fig. 2. Forces acting on the bubble are 
surface tension and gravity. The domain has an aspect ratio width/height = 0.5; no-slip boundary conditions on the velocity 
are set at the upper and lower boundaries, while free-slip is applied at the right and left bounds; gravity g is oriented 
towards the negative y direction. At time t = 0 s, the bubble center is located at (x, y) = (0.5, 0.5) and the bubble radius 
is rb,0 = 0.25 m. This test-case has been already used by the authors in [114] to validate a 2-phase VOF solver and it is 
now used again with some necessary modifications in the case setup: as shown in Fig. 2, the evolution of the bubble in the 
surrounding liquid (identified by the void fraction α1) is now captured by the transport of two identical phases (α2 = α3). 
In this test, phase change is disabled. It is expected that the solution of the three-phase solver tends to the solution of the 
two-phase solver of [114]. This is not trivial in the VOF framework, since global conservation of the phase fractions is more 
difficult as the number of phases increases and in a single-fluid solver it is strictly linked to the calculation of the fluid 
properties (see Eqs. (3) and (4)).

Parameter Value Unit

ρ1 1000 kg/m3

ρ2 = ρ3 1 kg/m3

μ1 10 kg m−1 s−1

μ2 = μ3 0.1 kg m−1 s−1

g −0.98 m/s2

σ 1.96 N/m

Re 35 –

Eo 125 –

Fig. 2. Bubble rising in a liquid column: case setup, boundary and initial conditions. Four different grid resolutions are tested: a) 40 × 80 cells; b) 80 ×
160 cells; c) 160 × 320 cells; d) 320 × 640 cells (reference solution).

The physical properties of interest of the fluid, listed in Fig. 2, are:

– the Eötvös number Eo, defined as the ratio between the buoyancy force and surface tension:

Eo = ρ1U 2
g L

σ
(41)

– the Reynolds number Re of the liquid, defined as:

Re = ρ1U g L

μ1
(42)

where L = 2 rb,0 is the characteristic length scale and U g = √
2grb,0 is the characteristic rising velocity. At high values of Eo, 

the bubble shape will be something in between the shape observed for the skirted and the dimpled ellipsoidal-cap regimes, 
implying that a breakup is likely to occur [115]. Simulations at high values of Eo are challenging for interface capturing 



algorithms and can yield to different predictions of the evolution and of the formation of newly created droplets. Following 
the work of [50], the evolution of the bubble has been investigated for a total time T = L/U g and a fixed time step with 
�t = 1/(2Nx) s has been used for time marching. In the surrounding region of the bubble initial conditions for the void 
fractions are α2 = α3 = 0 and α1 = 1; in the bubble region, α1 = 0, α2 = 1 and α3 = 0 (left half) and α2 = 0 and α3 = 1
(right half) are set. This leads to a stair-cased shaped interface, so a preliminary simulation without gravity (g = 0) is needed 
to obtain a smooth initial bubble shape. The results from the zero-gravity precursor simulation are then used as the initial 
condition for the actual simulation.

Quantitative validation of the described code extensions, based on geometrical metrics proposed in [50], is now pre-
sented. For a fair comparison with [50], the grid used is Cartesian with a resolution Nx × 2Nx cells, being Nx 40, 80, 160 
and 320 respectively (four grids were tested in total). The monitored quantities from the simulations were:

a) bubble center of mass:

xc =
˜

A(α2 + α3)xc dxdy˜
A(α2 + α3) dxdy

(43)

b) degree of circularity for a two-dimensional domain [116], being bubble Area defined as Ab = πr2
eq:

C = perimeter of equivalent circle

actual perimeter of the bubble
= 2πreq˜
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2π
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where req is the equivalent radius, defined as:

req =
√

Ab

π
=

√˜
A(α2 + α3)dxdy

π
(45)

The C parameter is equal to unity for a perfectly circular bubble and lower than unity for other cases;
c) mean rising velocity:

uc =
˜

A (α2 + α3)U dxdy˜
A (α2 + α3)dxdy

(46)

Results in this section are organized as follows: using the procedure of [50], simulations on the four grids (40 × 80, 
80 × 160, 160 × 320 and 320 × 640 cells respectively) are presented, to monitor the grid-dependency of the results. In a 
second step, the solution from the finest grid is taken as reference solution and it is compared with CFD simulations from 
three incompressible interfacial flow codes, namely: a) TP2D [117,118] and FreeLIFE [119], that are based on the level-set 
approach applied on a static grid; b) MooNMD [120] where the interface is tracked in a Lagrangian manner and inner mesh 
points are then projected onto the interface by solving a linear elasticity problem. The evolution in time of the quantities 
described above is studied on four grids of different resolution: results are reported in Fig. 3 and in Table 1, while in 
Figs. 4 and 5 the graphical evolution of the bubble with different grids is reported. Bubble circularity (Fig. 3b) shows a 
monotonic diminishing tendency, that does not seem very influenced by the mesh resolution, until the beginning of the 
bubble break-up. Conversely, mean bubble rising velocity (Fig. 3c) does not present a monotonic tendency and this can be 
justified by the local deformation of the bubble, that is increasing in time. Two local maxima are clearly visible: while the 
bubble is rising, its velocity reaches a first maximum ucmax,1 , whose position looks independent by the mesh resolution 

Fig. 3. Two-dimensional bubble rising in a liquid column, validation test case. Evolution in time of: (a) bubble centroid location C ; (b) bubble circularity 
C ∈ [0; 1] and (c) bubble rising velocity uc ; circularity is equal to unity if the bubble shape is a perfect circle. Tests have been performed by inter-
PhaseChangeMixingFoam using four different grids: .... 40 × 80 cells; – – – 80 × 160 cells; — 160 × 320 cells; — 320 × 640 cells.



Table 1
Minimum circularity, maximum rising velocities and final position of center of mass and their corresponding time 
occurrence for interPhaseChangeMixingFoam. ucmax,1 and ucmax,2 denote the first and the second local peak 
of the bubble rising velocity, see Fig. 3c.

Grid 40 × 80 80 × 160 160 × 320 320 × 640

Cmin 0.5579 0.5186 0.5002 0.50072
t(Cmin) 3.0 3.0 3.0 3.0
ucmax,1 0.2409 0.2461 0.2487 0.2488
t(ucmax,1 ) 0.725 0.725 0.725 0.7234
ucmax,2 0.2144 0.2244 0.2309 0.2345
t(ucmax,2 ) 1.725 1.88125 1.959375 2.009375
xc(t f inal) 1.094 1.1058 1.1164 1.1223

used; this allows to assume that all the grids have sufficient resolution to describe the main features of the bubble before 
break-up. The second maximum is instead occurring when the tail in the bottom region of the bubble becomes relevant; 
in this case, the mesh resolution influences the predictions, since the bubble tail and its ligaments are differently described 
from coarser to finer grid resolution. Thinner predicted tails favor a larger velocity in the second local peak and its shifting to 
later times. As the break-up of the tail occurs, the mean rising velocity decreases again. Finally, the evolution of the bubble 
centroid, Eq. (43), is mostly independent by mesh resolution until the size of the tails becomes relevant and influences the 
position of the bubble mass in the domain.

The evolution of the bubble shape is monitored at different times; the bubble interface is obtained by an iso-contour 
plot of the liquid void fraction using αl = 0.5 as threshold value. In Fig. 4, the temporal evolution of the bubble using four 
different meshes is reported to justify previous considerations. From 0 s to 1.8 s the capture of the bubble surface is almost 
independent by the mesh resolutions used. As soon as the onset of breakup occurs, the grid starts producing different 
deformations of the elongated filaments (2.2 s) leading to completely different flow configurations, as evidenced in Fig. 5. 
While coarse grids (40 × 80 and 80 × 160) do not capture any breakup, this starts to appear with the 160 × 320 mesh 
and it is reproduced with good detail by the finest mesh.

Similarly to [50], relative error of the norm of the temporal evolution of the bubble center of mass xc , of the bubble 
circularity C and of the mean rising velocity uc are calculated using a suitable reference solution, represented by the finer 
grid:

el1 =
∑N

t=1 |qt,ref − qt |∑N
t=1 |qt,ref |

(47)

el2 =
(∑N

t=1 |qt,ref − qt |2∑N
t=1 |qt,ref |2

)1/2

(48)

el∞ = maxt |qt,ref − qt |
maxt |qt,ref | (49)

where qt is the temporal evolution of quantity q, and N the number of samples in time of q. Standard linear interpolation 
has been used in order to account for different sampling rates between qt,ref and qt , that are calculated on different grids. 
For each relative error norm, the Rate Of Convergence (ROC) of q is:

ROC ≈ log10(‖ek+1‖/|ek|)
log10(hk+1/hk)

(50)

where k denotes the grid refinement level and h = 1/�x. Since the finest grid (320 × 640 cells) has been used as reference 
solution, the computed ROC will not indicate how well a method converges to the exact solution, but how it converges 
to an approximate solution. In Table 2 the relative error norms and the rates of convergence are reported: more than a 
linear convergence order is achieved in the l1, l2 and l∞ norms as the resolution of the grid increases. While the order of 
convergence for the bubble centroid and for mean rising velocity increases with the grid resolution, the same tendency is 
not noticed in l1 and l2 norms of the bubble circularity: this is probably due to the fact that the two coarser grids do not 
exhibit break-up of ligaments. The order of convergence of the l∞ norm of the bubble circularity increases with the mesh 
resolution, because its definition is based on the highest absolute deviation between the coarsest and finest mesh: in other 
words, moments in time characterized by the highest deviations (e.g. bubble break-up) are converging faster with respect 
to the moments where the bubble is only deformed and where the mesh resolution does not play a significant role.

Finally, a second investigation has been carried out to compare the results from the implemented solver against [50]. 
The time t = 3 s (Fig. 6) is chosen for comparison being the most representative of the bubble breakup. From Fig. 6 it is 
apparent that the upper part of the bubble is well described by the different solvers, that make use of different methods to 
transport the interface. Differences can be noticed in the tails produced in the bottom part of the bubble, where each solver 
differently describes the breakup process, by describing different filament lengths.



Fig. 4. Bubble evolution from 0.6 to 3 s calculated by interPhaseChangeMixingFoam on four different grids: .... 40 × 80 cells; – – – 80 × 160 cells; 
— 160 × 320 cells; — 320 × 640 cells.

Fig. 5. Bubble breakup at time t = 3 s. Comparison of interPhaseChangeMixingFoam behavior using four different discretizations: .... 40 × 80 cells; – 
– – 80 × 160 cells; — 160 × 320 cells; — 320 × 640 cells.



Table 2
Relative error norms and rates of convergence for different grid resolutions. Results for the grid 320 × 640 is taken as reference.

Grid el1 % ROC1 el2 % ROC2 ‖e‖l∞ % ROC∞
xc 40 × 80 5.31 – 0.66 – 10.87 –

80 × 160 2.85 0.8988 0.4 0.7384 6.3 0.7865
160 × 320 1.01 1.4986 0.17 1.2568 2.67 1.2430

C 40 × 80 2.16 – 0.09 – 5.74 –
80 × 160 0.57 1.9271 0.02 1.940 1.79 1.6779
160 × 320 0.2 1.5213 0.008 1.5179 0.55 1.7119

uc 40 × 80 1.15 – 0.043 – 2.54 –
80 × 160 0.54 1.1010 0.02 0.9669 1.47 0.7868
160 × 320 0.14 1.9202 0.007 1.6625 0.52 1.4966
Fig. 6. Bubble breakup at time t = 3 s; comparison between — interPhaseChangeMixingFoam and − − −: (a) TP2D, (b) FreeLife, (c) MooNMD.



Fig. 7. Two-dimensional rising bubble problem, validation test case. Evolution in time of: (a) bubble centroid location C ; (b) bubble circularity C ∈ [0; 1]
and (c) bubble rising velocity uc ; circularity is equal to unity if the bubble shape is a perfect circle. Legend: — interPhaseChangeMixingFoam, − − −
TP2D code, − ·− FreeLIFE code, ··· MooNMD [50].

Table 3
Comparison of: a) minimum bubble circularity, b) maximum rising velocity, c) position of the center of mass for 
the different codes compared. The grid resolution used for the tests was 320 × 640 cells. Subscripts 1 and 2 
denote the first and the second local maximum respectively.

interPhaseChangeMixingFoam TP2D FreeLife MoonNMD

Cmin 0.50072 0.5943 0.4647 0.5144
t(Cmin) 3.0 2.3439 3.0 3.0
ucmax,1 0.2488 0.2538 0.2514 0.2502
t(ucmax,1 ) 0.7234 0.7340 0.7281 0.7317
ucmax,2 0.2345 0.2467 0.2440 0.2393
t(ucmax,2 ) 2.009375 2.0553 1.9844 2.0600
xc(t f inal) 1.1223 1.1387 1.1249 1.1376

However, when analyzing monitoring quantities among different solvers using the same mesh resolution, it is possible 
to determine if their trends are well reproduced among different approaches (Fig. 7, Table 3).

11. Evolution of the free-surface in a partially cavitating/condensating liquid column

In the bubble rising problem, no phase-change is involved. At the time this paper is written, no simple numerical test 
cases are proposed to check if boundedness and conservativeness is ensured while phase-change occurs in a solver using 
a VOF method to capture the interface. Mass conservation is easier to achieve with the Homogeneous Equilibrium Model 
(HEM), the Homogeneous Relaxation Model (HRM) [121–123] and the Bubble Model, but it is critical in VOF methods where 
phase-change is implemented in the phase-fraction equations. Comparisons between the Bubble Model and the HRM for an 
injector test case [124] are reported in [125], where it is shown similar behavior in the prediction of the cavitation onset 
and similar limits in the description of condensation effects. With multiphase flows, the common way to validate models is 
through visual comparison of the flow evolution: this is still possible when cloud and wake cavitation occur in proximity 
of the blades, because pockets of vapor are in a large and well defined region near the trailing edge. On the other hand, 
visualization of bubbly flows inside a nozzle is very hard, because of its micrometric size and of the short lifetime of the 
vapor bubbles (the order of magnitude is 1 μs). Besides, in both types of cavitating flows it is hard to split the errors coming 
from the solution of the momentum equation and those coming from the resolution of the phase-fraction equations.

In this work, a simple benchmark configuration is proposed to check boundedness and conservativeness of the VOF 
solver. The test-case consists of a one-dimensional column, opened at its top, whose dimension is L in y-direction; half 
of the volume of the column is filled by 95% of liquid and 5% of fuel vapor, while the remaining half of the volume is 
filled by non-condensable gases (Fig. 8). The system is initially at rest; The pressure distribution over the vertical y-axis is 
hydrostatic. In a first stage of the test, which duration of 0.1 s, the condensation term is disabled and the saturation pressure 
of the liquid is set to psat = 100300 Pa; as a consequence, in the regions where the hydrostatic pressure is lower than the 
saturation pressure, the liquid cavitates, and non-condensable gases are pushed out of the outlet boundary. The final state 
of the system at t = 0.1 s is then used as initial condition for a second stage of the test (from t = 0.1 s to t = 0.2 s), where 
the vapor is forced to condensate, by setting the saturation pressure of the fluid to psat = 99700 Pa. The different values of 
the saturation pressure have been chosen to reproduce similar pressure gradients in the liquid and in the vapor and thus 
to have similar magnitude of the source terms (with different signs) during cavitation and condensation. In the simulations, 
no-slip boundary conditions are applied at the lower boundary, free-slip is imposed on the side walls while a Neumann 
condition is applied at the upper boundary. Tests on two different one-dimensional grid domains have been performed; 
discretization along the y-axis was respectively made of 1 × 640 cells (this grid will be referred in the following as grid 
A) and 1 × 1280 cells (grid B). Monitored benchmark quantities are the position of the interface, its sharpness and its 
velocity, together with the overall mass conservation and the instantaneous mass balance between the liquid fuel and the 
fuel vapor. The same test-case has been simulated in two dimensions; additional information about the setup together with 
the analysis of the results are included in Appendix C.



Initial condition

Parameter Cavitation case Condensation case

α1 α1(t0) = 1, y ∈ [0,0.95) α1(t0) = α1(t f )cav.

α2 α2(t0) = 1, y ∈ [0.95,1) α2(t0) = α2(t f )cav.

α3 α3(t0) = 1, y ∈ [1,2] α3(t0) = α3(t f )cav.

p Hydrostatic pressure Hydrostatic pressure

U 0 m s−1 0 m s−1

psat 100300 Pa 99700 Pa

Fluid properties

Parameter Value Unit

ρ1 1000 kg m−3

ρ2 = ρ3 1 kg m−3

μ1 10 kg (m s)−1

μ2 = μ3 0.1 kg (m s)−1

g −0.98 m s−2

σ12 = σ13 1.96 N m−1

Fig. 8. Domain, boundary conditions, initial condition and fluids properties of the cavitation/condensation test case.

The final purpose of the proposed benchmark is to establish a reference solution to quantify the conservation error of 
the solver and it can be interesting for comparison of the performance of different methodologies to model phase-change. 
The following quantities have been used:

1) evolution of the mass of each phase:

Mi =
ˆ

αiρidy (51)

2) liquid/vapor and vapor/air mean surface height:

Hlv =
´

ycαl(1 − αl)dy´
αl(1 − αl)dy

H va =
´

ycαnc(1 − αnc)dy´
αnc(1 − αnc)dy

(52)

Where yc represents the y component of cell centers
3) liquid/vapor and vapor/non-condensable gas (air) mean interface velocity:

ulv =
´

Uαl(1 − αl)dy´
αl(1 − αl)dy

uva =
´

Uαnc(1 − αnc)dy´
αnc(1 − αnc)dy

(53)

As in the computation of height, the surface region is identified by the coexistence of the pair of phases.
4) time evolution of the relative mass error, to verify if mass is conserved during phase-change:

Emarching = |(Ml(t + 1) − Ml(t)) − (Mv(t + 1) − Mv(t))|
Ml(t0)

(54)

This is a sufficient condition for global mass balance to be verified.
5) global mass relative error:

E global = |(Ml(t f ) − Ml(t0)) − (Mv(t f ) − Mv(t0))|
Ml(t0)

(55)

where the subscripts 0 and f denote respectively the start and the end of the simulation.

A variable time-step is used in the simulation, to preserve a maximum Courant number C F Lmax = 0.1. Second-order 
differencing schemes have been applied both for temporal and spatial derivatives.

11.1. Cavitation test: results

Starting from an hydrostatic distribution of pressure in the domain, the liquid starts cavitating (Fig. 9b). Being the vapor 
lighter than liquid, it moves towards the upper part of the domain and pushes the non-condensable gas (air) outside. In 
Fig. 9a the mass of air in the domain decreases, while the amount of vapor increases (Fig. 9c).



Fig. 9. One-dimensional cavitation problem, validation test case. Evolution in time of: (a) air mass; (b) liquid mass; (c) vapor mass. Tests were carried out 
on two different grids: .... grid A (640 cells); — grid B (1280 cells).

At the end of the simulation the surface height �y of the vapor/air interface is larger if compared to that of the 
liquid/vapor, as shown in Fig. 10. Being the ratio ρl/ρv  103, the volume of the vapor from the cavitation is larger than 
the liquid volume.

Fig. 10. One-dimensional cavitation problem, validation test case. Evolution in time of the surface heights: (a) liquid/vapor, (b) air/vapor on two different 
grids: .... grid A (640 cells); — grid B (1280 cells).

The evolution of the two surfaces fronts is shown in Fig. 11. In both cases, the interface between the fuel vapor and 
the non-condensable gas (air) is sharp, because the vapor and the non-condensable gas (air) in the calculation have the 
same physical properties; this particular condition avoids any instability at the interface that would produce mixing of the 
fluids and then lead to a diffusion of the interface. Conversely, the liquid/vapor interface is stretched towards the opposite 

Fig. 11. One-dimensional cavitation problem. Evolution of the void fractions from 0.025 to 0.1 s. Top) grid A, 1 × 640 cells; bottom) grid B, 1 × 1280 cells. 
Legend: αl —, αnc —, αv – – –.



direction: vapor moves towards the upper part of the column, while liquid tends to stay at the bottom of the domain 
because of its higher density.

The liquid/vapor and the air/vapor interface velocities calculated by Eq. (53), are reported in Fig. 12a. The mass of each 
phase-fraction has then been monitored to compute the time step continuity error and the global conservation error for 
each phase.

Fig. 12. One-dimensional cavitation problem, validation test case. Evolution in time of the mean interface velocity (Eq. (53)): (a) liquid/vapor; (b) vapor/non-
condensable gas for two different grids: .... 640 cells; — 1280 cells.

The evolution of the time step continuity error is shown in Fig. 13 on the left. Both for the coarse (grid A) and the fine 
mesh (grid B), the error is very small. At the beginning of the simulation and in the early time steps (until time = 0.02 
s), it shows an increase that is dependent on the initial conditions, but it is then stabilized to a small value. As expected, 
the continuity error is larger for the coarsest grid than the finest grid, but it is still very small and therefore acceptable. In 
Fig. 13 the evolution of volume-weighted average void fractions:

αi =
nc∑

j=1

αi j V j

V
(56)

and the global conservation of the volume-weighted void fractions

α =
3∑

i=1

αi (57)

are shown. In Eq. (56) and (57), nc is the number of computational cells, while V is the total volume of the mesh:

V =
nc∑

j=1

V j (58)

Fig. 13. One-dimensional cavitation test case, evolution in time of: left) mass relative error; center) volume-weighted void fractions; right) sum of the 
volume-weighted void fractions. Grid A: 1 × 640 cells. Grid B: 1 × 1280 cells.



As apparent from Fig. 13, the boundedness and conservativeness of the solution of the void fractions is satisfied. Also, 
the global mass error (Table 4) proves that mass is properly conserved during the simulation with very limited error peaks.

Table 4
Relative error on the global mass conservation for the 
cavitation test case.

No. cells 640 1280

E global% 0.11301 0.0811

11.2. Condensation test

The distribution of the phase-fractions derived from the calculation of the liquid column problem with cavitation is then 
used as the initial condition for the condensation problem. In Fig. 14b it is shown that as soon as the condensation is 
artificially triggered (by changing the threshold value of the liquid saturation pressure), the phase fractions of liquid and 
the vapor start changing: condensation induces negative velocity fluxes at the liquid/vapor interface, and the vapor changes 
direction of its motion, causing a suction of non-condensable gas (air) from the upper boundary.

Fig. 14. One-dimensional condensation problem, validation test case. Evolution in time of: (a) liquid mass; (b) vapor mass and (c) air mass for two different 
grids: .... grid A; — grid B.

At t = 0.075 s, the condensation is completed; this is confirmed either by the constant value of the surface height 
(Fig. 15) and by the evolution of the surface (Fig. 16). With condensation, the vapor/air interface is still quite sharp, despite 
fluctuations at the vapor/liquid interface are visible in Fig. 16 (t = 0.05 s); their nature is purely numerical and their 
existence can be justified by analyzing the implicit and the explicit part of the source term in the discretized form of the 
void fraction equations, Eq. (33):

Fig. 15. One-dimensional condensation problem, validation test case. Evolution in time of the surface heights: (a) liquid/vapor; (b) air/vapor on two different 
grids: .... grid A; — grid B.

– when air impacts the liquid surface, the implicit part of the source term in the second equation of (33) reads:

Bn
v

[(
Dαv

Dt

+)
−

(
Dαv

Dt

−)]
p

(59)

during condensation, ( Dαv
Dt

−
) = 0 while ( Dαv

Dt
+
) > 0; from Eq. (25), it follows:

Dαv

Dt

+
= f (p − psat) (60)

if fluctuations in pressure appears, then an error peak in Fig. 18 is observed;



Fig. 16. One-dimensional condensation problem. Evolution of the void fractions from 0.025 to 0.1 s. Top) grid A, 1 × 640 cells; bottom) grid B, 1 × 1280 
cells. Legend: αl —, αnc —, αv – – –.

– the explicit part of the source term in the first equation of (33) is:

Bn
l

(
Dαv

Dt

+)n

p
(1 − αnc)

n
p (61)

during condensation, ( Dαv
Dt

+
) > 0, p > psat . By Eqs. (60) and (61), pressure results linked to the evolution of the void 

fractions.

As shown in Fig. 18, non-conservation of mass is negligible but it is always present: this is a consequence of adding the 
source terms Sα for phase-change in the projection method as volume fluxes.

With condensation, the liquid/vapor and vapor/non-condensable gas (air) mean interface velocity (Eq. (53)) becomes 
negative in the y direction and reaches the zero velocity condition in a steep way (see Fig. 17).

Fig. 17. One-dimensional condensation problem, validation test case. Evolution in time of the mean interface velocity (Eq. (53)): (a) liquid/vapor; (b) 
vapor/non-condensable gas for two different grids: .... 640 cells; — 1280 cells.

Mean interface velocity in Fig. 17 is estimated by Eq. (53). In Fig. 17b, minor fluctuations in the vapor/non-condensable 
gas mean interface velocity appear. This is a consequence of the numerical algorithm adopted for the iterative solution of 
Eq. (12), because the residual error at the last iteration is added to αnc . The fluctuations in the solution of αnc have a very 
minor impact on mass conservation (see Fig. 18, t < 0.07 s). In Fig. 18, a peak in the error of the mass conservation is 



Fig. 18. One-dimensional condensation test case, evolution in time of: left) mass relative error; center) volume-weighted void fractions; right) sum of the 
volume-weighted void fractions. Grid A: 1 × 640 cells. Grid B: 1 × 1280 cells.

centered around t = 0.075 s. From the analysis of the variation of volume-weighted void fractions in time, this peak occurs 
when the vapor fully condenses (αv →0) and the number of phases that switches from three to two. As shown in the same 
figure, the magnitude of the error peaks is very limited (about 4 · 10−3%) and the mass relative error follows the same trend 
that has been noticed in the cavitation problem: after a time of about 0.02 s, during which the error grows because of 
the initialization, the error stabilizes to a value of the order of 10−4%. Also for condensation, it is then demonstrated that 
mass conservation is satisfied with a good level of accuracy. Boundedness and conservativeness of the solution of the void 
fractions (Eqs. (56) and (57)) in the domain is satisfied also here.

Moreover, Fig. 18 shows also that conservation of the void fraction with phase-change is preserved very well during the 
simulation: the global mass error (Table 5) is very limited with both the grids.

Table 5
Relative (percentage) error on global mass conservation 
for condensation test case.

No. cells 640 1280

E global% 0.1126 0.0707

12. Simulation of internal nozzle flows

The final problem used for the validation is based on the experiments from [52] and [113], that consist of water injection 
in an air reservoir. The thermodynamic conditions of the fluids are listed in Table 6.

Table 6
Thermodynamic properties for H2O(liq) , H2O(vap) , and non-condensable gas (air) at T = 20 ◦C.

Parameter Fluid Unit

H2O(liq) H2O(vap) Air

Density 998 0.73853 1.19 kg/m3

Dynamic viscosity 1.2 · 10−3 1.227 · 10−5 1.725 · 10−5 kg/(ms)
Surface tension 0.07 N/m
Saturation pressure 2300 Pa

The transparent injector presents an asymmetric nozzle with a squared-shaped cross-section. A sketch of the nozzle 
geometry and position of the Laser Doppler Velocimetry (LDV) beams is reported in Fig. 19, while a detailed description of 
the experimental apparatus is documented in [52] and [39].



Fig. 19. Sketch of injector geometry and locations of LDV measurements.

In the present work, the operating condition with an inlet pressure of 0.22 MPa was simulated and a validation with 
LDV measurements available from the literature is shown. Input parameters for the simulation are listed in Table 7; the 
cavitation number (Ca), the liquid Reynolds number (Rel), the Weber number (We) and Ohnesorge number (Oh) are defined 
as follows:

Ca = pamb − psat

0.5ρlU 2
l

(62)

Rel = plUl D

μl
(63)

W e = ρlU 2
l D

σ
(64)

Oh =
√

W e

Re
(65)

where pamb is the ambient pressure, psat is the saturation pressure of the liquid, ρl the density of the liquid water and Ul
is the mean liquid velocity computed from Measured volumetric flow rate and nozzle cross-section area.

Table 7
Experimental operation condition for 0.22 MPa operative point.

Parameter Value Unit

pinlet 0.22 MPa
pamb 0.1 MPa
Meas. volumetric flow rate Q 4.8 · 10−5 m3/s
Mean liquid velocity Ul 12.8 m/s
Re 20577 –
Ca 1.2 –
We 4496.3 –
Oh 3.26 · 10−3 –



According to [126], being ρl/ρair ∼ 103, the regime of the jet flow is in between second wind-induced breakup and the 
atomization regime; the jet is therefore wavy, as it has also been observed in [52]. The cavitation number suggests the 
existence of a developing cavitation regime as well, where a vapor cloud forms without reaching the spray domain. The 
grid used for the simulations is reported in Fig. 20; in order to limit the overall number of grid cells by ensuring a proper 
resolution for a LES simulation, several refinement regions were selected and a wide use of cell gradings was adopted.

Fig. 20. Injector geometry: domain discretization and refinement regions.

Overall information about mesh resolution, cell size and aspect ratio for each region is listed in Table 8.

Table 8
Grid resolution and refinement levels for each mesh region.

Mesh region Mesh size [μm] No. cells

x ratio y ratio z ratio

I 6.5/344 6.5/59.8 264/490 286120
II 6.5/344 6.5/59.8 26.5/264 1020377
III 6.5/59.8 6.5/59.8 26.5/106 1149840
Nozzle refinement block 3.25/29.9 3.25/29.9 13.25/53 9005544
IV 7.5/443 7.5/443 27.8/58.3 5138880
V 54.6/531 54.6/531 58.3/85.1 2560000
VI 74.1/620 74.1/620 85.1/117 2016000

Domain ∼ 2.1 · 106

In Fig. 20, the spray domain includes twelve refinement regions, four in the radial direction and three in the axial 
direction. Atmospheric pressure condition is applied on the lateral and bottom surfaces of the spray domain; no-slip wall 
boundary conditions on velocity are set at the walls. Both the fluids are assumed to be incompressible and isothermal; the 
numerical models and parameters are listed in Table 9.

Table 9
Numerical setup and models parameter.

Numerical setup

Bubble number density 1015 m−3

Bubble Nuclei Diameter 1.5 μm
Turbulence Model LES-WALE [108]
C F Lmax 0.25
Outer corrector 7
void fraction corrector 2
Precursor part 1.5 ms
Averaging part 0.5 ms



The averaging procedure on the benchmarked quantities to be compared with LDV measurements and analysis of spray 
pattern is calculated after 4 ms and it lasts 9 ms. The numerical setup is the same as discussed in Sec. 7 and Sec. 10. 
Non-dimensional parameters calculated from the simulation results are in line with the values reported in Table 7. In Fig. 21, 
a comparison between simulation and experiments is shown; cavitation starts at the left corner, where a recirculation zone 
makes pressure drops below P sat ; this is classified as geometry induced cavitation.

Fig. 21. Internal nozzle flow test case [52]. Left) interPhaseChangeMixingFoam; right) visualizations from experiments.

The cloud of vapor does not reach the outlet of the nozzle but condensates at about 5 mm from the nozzle inlet. This 
developing cavitation regime is justified by the small inlet pressure of the experiment and by the high L/D ratio (L/D ∼ 4); 
besides, it favors the detachment of fluid at the corner and the formation of a recirculation zone, where a consistent 
amount of turbulence is produced. In-nozzle turbulence is responsible of the primary breakup of the liquid jet at the nozzle 
tip, where the aerodynamic forces start triggering surface instabilities. In the specific operating point studied, vapor bubbles 
are not acting as promoters for the primary breakup since they collapse before reaching the spray domain; this usually 
happens at higher pressures at the inlet [32,46,52]. Comparisons with experimental profiles of average and rms values of 
the stream-wise velocity at three different positions inside nozzle from [52] are reported in Fig. 22. Probes were located in 
the channel center plane (x = 0 mm, y = 0 mm) at different positions along the nozzle axis: z = 1.5 mm, z = 3 mm and 
z = 6 mm downstream of the nozzle entrance. In Fig. 22, black filled circles are the experimental sampled points, while 
time-averaged CFD results are plotted as continuous black solid lines.

The agreement between experiments and predicted average velocity, also when both liquid and vapor are present, looks 
satisfying. This situation corresponds to negative velocity values (z = 1.5 mm, z = 3 mm) in the recirculation zone, where a 
certain amount of vapor is generated due to the pressure drop of the fluid at the nozzle entrance. At z = 6 mm, the vapor 
cloud has already collapsed and the stream-wise velocity assumes only positive values. Also rms values of the velocity are 
captured fairly well. The small over-prediction of the fluctuating velocity at the left-hand corner of the channel, when vapor 
and liquid are present at the same time, shows that the amount of predicted turbulent kinetic energy is too large in that 
region: this could be due to a slight overestimation of vapor production along the shear layer which causes enhancement 
of the velocity gradients and thus of the turbulence production, as it has already been noticed in [46].

13. Conclusions

The aim of the presented study was to illustrate the recently developed three-phase VOF pressure based solver, with the 
ability to capture the air/vapor interface and model phase-change phenomena as well. Two numerical tests cases and an 
injector geometry have been used for validation. The first case, the modified rising bubble problem, proved the ability of the 
implemented three-phase solver to capture the interface with very limited diffusion, providing similar results of high-order 
solvers. The second numerical problem, proposed for the first time by the authors, was thought to verify mass conservation 
properties of the VOF solver with phase-change. Both with cavitation and condensation, the solver proved to be able to limit 
the mass relative error to a very small value with some minor, almost negligible, error peaks of the order of 0.001% when 
bubbles collapse. Finally, a simulation of an injector geometry has been performed at one operating pressure condition for 
which LDV measurements inside the injector nozzle were available from the literature; the aim of the simulation was to 
prove the predictive capability on real internal nozzle-flow conditions. Comparisons with high-speed camera visualization 
have shown that the cavitation developing regime has been well-captured.



Fig. 22. Mean streamwise in-nozzle flow velocity and RMS turbulent velocity at different positions: z = 1.55 mm (top), z = 3 mm (middle), z = 6 mm 
(bottom); • experiments [52] — interPhaseChangeMixingFoam.
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Appendix A. Derivation of the source terms in a three-phase VOF solver with phase change

In this section, the derivation of the formulation of the term Sα of Eq. (6) is shown. From the definition of total deriva-
tive:

Dαi

Dt
= ∂αi

∂t
+ U · ∇αi (A.1)

it follows:

∂αi

∂t
+ ∇ · (Uαi) = Dαi

Dt
+ αi∇ · U (A.2)

so that system of equations (5) can be written in the equivalent form:



⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Dαl

Dt
= −αl∇ · U − Sα

ρl

Dαv

Dt
= −αv∇ · U + Sα

ρv

Dαnc

Dt
= −αnc∇ · U

(A.3)

where the subscripts l, v and nc are used for liquid, vapor and non-condensable gases respectively. To ensure the bounded-
ness of the solution of (A.3), the derived form of the compatibility condition αl + αv + αnc = 1 is used for closure:

Dαl

Dt
+ Dαv

Dt
+ Dαnc

Dt
= 0 (A.4)

Substituting the expressions for Dαl
Dt and Dαnc

Dt from (A.3) into Eq. (A.4), the cavitation source term Sα is written as a 
function of Dαv

Dt :

Sα = ρl(αl + αnc) ∇ · U − ρl
Dαv

Dt
(A.5)

Similarly, starting from Eq. (13) and considering each phase as incompressible, it holds:

∇ · U = − 1

ρ

Dρ

Dt

= − 1

ρ

[
D(ρlαl)

Dt
+ D(ρncαnc)

Dt
+ D(ρvαv)

Dt

]

= − 1

ρ

(
ρl

Dαl

Dt
+ ρnc

Dαnc

Dt
+ ρv

Dαv

Dt

)

= − 1

ρ

(
−ρlαl∇ · U − Sα − ρncαnc∇ · U + ρv

Dαv

Dt

)
(A.6)

so

Sα = ρv
Dαv

Dt
− (ρlαl + ρncαnc − ρ) ∇ · U (A.7)

From the combination of Eq. (A.5) and Eq. (A.7), the final form of the mass conservation for an incompressible flow, Eq. 
(13), takes the form:

∇ · U = ρl − ρv

ρ + αnc(ρl − ρnc)

Dαv

Dt
(A.8)

The formulation of the term Sα is obtained from the transport equation of αv of (A.3):

Dαv

Dt
= −αv∇ · U + Sα

ρv
(A.9)

which is rewritten as:

Sα = ρv
Dαv

Dt
+ ρvαv∇ · U (A.10)

and:

Sα = ρv
Dαv

Dt
+ ρvαv

ρl − ρv

ρ + αnc(ρl − ρnc)

Dαv

Dt

= ρv
Dαv

Dt

[
1 + αv(ρl − ρv)

ρ + αnc(ρl − ρnc)

]

= ρv
Dαv

Dt

[
ρ + αncρl − αncρnc + αvρl − αvρv

ρ + αnc(ρl − ρnc)

]

= ρv
Dαv

Dt

[
(ρ − αncρnc − αvρv) + αncρl + αvρl

ρ + αnc(ρl − ρnc)

]

= ρv
Dαv

Dt

[
αlρl + αncρl + αvρl

ρ + αnc(ρl − ρnc)

]

= ρv
Dαv

Dt

[
ρl (αl + αv + αnc)

ρ + αnc(ρl − ρnc)

]

(A.11)



leading to:

Sα = ρv
Dαv

Dt

[
ρl

ρ + αnc(ρl − ρnc)

]
(A.12)

and to the final form of the system (5)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂αl

∂t
+ ∇ · (Uαl) = − ρv

ρ + αnc(ρl − ρnc)

Dαv

Dt
∂αv

∂t
+ ∇ · (Uαv) = ρl

ρ + αnc(ρl − ρnc)

Dαv

Dt
∂αnc

∂t
+ ∇ · (Uαnc) = 0

(A.13)

Appendix B. Derivation of the cavitation term for a three-phase VOF solver

The rates of fuel vaporization and condensation are determined by a simplification of the Rayleigh-Plesset equation 
which assumes spherical bubbles of radius R subject to uniform pressure variations. Spherical bubbles are then represented 
by a fraction of the vapor phase in the computational cell; from [81] and considering that a in a cell liquid, vapor and air 
may coexist, it follows:

V v = Nb
4

3
π R3 = n0 Vl

4

3
π R3 (B.1)

where V v and Vl are respectively the volume of the vapor and the liquid in the computational cell of volume V, Nb is the 
number of spherical bubbles of radius R in the computational cell and n0 is defined as the bubble concentration per unit 
volume of pure liquid. From Eq. (B.1), it follows:

V v

Vl + V v
= n0 Vl

4
3π R3

Vl + n0 Vl
4
3π R3

= n0
4
3π R3

1 + n0
4
3π R3

(B.2)

From the definition of volume fraction, being Vl + V v + Vnc = V and dividing the LHS of the previous equation by V , it 
follows:

V v

Vl + V v
= V v/V

(Vl + V v)/V
= αv

αv + αl
(B.3)

so:

αv

αv + αl
= n0

4
3π R3

1 + n0
4
3π R3

(B.4)

Rearranging Eq. (B.4), the vapor volume fraction reads:

αv = αl n0
4

3
π R3 (B.5)

From Eq. (B.5) the rate of fuel vaporization is calculated as:

Dαv

Dt
=

D
(
αln0

4
3π R3

)
Dt

= n0
4

3
π R3 Dαl

Dt
+ αl n04π R2 D R

Dt
(B.6)

From system (A.3) and Eq. (6):

Dαl

Dt
= −αl∇ · U − ρv

ρ + αnc(ρl − ρnc)

Dαv

Dt
(B.7)

The substitution of Eq. (B.7) in Eq. (B.6) leads to:

Dαv

Dt
= αln04π R2 D R

Dt

1 + n0
4
3π R3

(
ρ+αnc(ρv−ρnc)
ρ+αnc(ρl−ρnc)

) (B.8)

The formulation of the bubble growth rate D R
Dt , has been the main topic of several studies in the past [27,25,26]; in this 

work, the formulation from Rayleigh [27] is used:

D R

Dt
= sign

(
p(R) − p∞

)√2

3

p(R) − p∞
ρ

(B.9)

l



where p(R) is the pressure in the liquid at the bubble boundary and p∞ is the pressure at a large distance from the 
bubble. To model either the bubble growth and its collapse in a single equation, p(R) is set in Eq. (B.9) to the vapor 
saturation pressure psat and p∞ to the pressure inside the computational cell, so it follows:

D R

Dt
= −(p − psat)

√
2

3

1

ρl|p − psat | =
⎧⎨
⎩−min(p − psat,0)

√
2
3

1
ρl|p−psat | if p < psat

−max(p − psat,0)
√

2
3

1
ρl|p−psat | if p > psat

(B.10)

which describes both the bubble grow and its collapse; as a consequence:

Dαv

Dt
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3αv
D R
Dt

R+R4 4
3 πn0

[
ρ+αnc (ρv −ρnc )
ρ+αnc (ρl−ρnc )

] = − 3αvmax(p−psat ,0)
√

2
3

1
ρl |p−psat |

R+R4 4
3 πn0

[
ρ+αnc (ρv −ρnc )
ρ+αnc (ρl−ρnc )

] = αv

(
Dαv
Dt

)+
if p > psat

αl4πn0 R2 D R
Dt

1+R3 4
3 πn0

[
ρ+αnc (ρv −ρnc )
ρ+αnc (ρl−ρnc )

] = −αl4πn0 R2min(p−psat ,0)
√

2
3

1
ρl |p−psat |

1+R3 4
3 πn0

[
ρ+αnc (ρv −ρnc )
ρ+αnc (ρl−ρnc )

] = αl

(
Dαv
Dt

)−
if p < psat

(B.11)

Appendix C. Two-dimensional simulation of the evolution of the free-surface in a partially cavitating/condensating liquid 
column

The same numerical problem presented in Sec. 11 and described in Fig. 8 is simulated here in two dimensions. The 
aspect ratio of the two-dimensional domain was width/height = 0.5: the height of the domain is �y and the width along 
the transverse direction is �y/2. Similarly to Sec. 11, simulations on two different grids have been performed, namely grid 
A (now 320×640 cells) and grid B (now 640 × 1280 cells); the two grids have the same cell aspect ratio equal to unity. 
The same benchmark quantities reported for the one-dimensional simulations has been selected to monitor the numerical 
properties of the solver: the position, sharpness and modeled velocity of the interface, the overall mass conservation and 
the instantaneous mass balance between the liquid fuel and the fuel vapor. The same boundary and initial conditions of the 
one-dimensional tests has been applied; for a fair comparison, also the results of this section are presented as in Sec. 11.

C.1. Cavitation test: results

Starting from an hydrostatic distribution of the pressure in the domain, the liquid starts cavitating. Being the vapor 
lighter than the liquid, it moves upwards and pushes the non-condensable gas (air) out of the domain. Results of Fig. C.23
and Fig. C.24 show similar trends to those reported in Fig. 9; for the two-dimensional case, absolute values of the mass are 
larger if compared to the one-dimensional case, because now the domain is extended over the x-direction and the amount 
of mass in the domain is larger.

Fig. C.23. Two-dimensional cavitation problem, validation test case. Evolution in time of: (a) air mass; (b) liquid mass; (c) vapor mass for two different 
grids: .... grid A (320 × 640 cells); — grid B (640 × 1280 cells).

Fig. C.24. Two-dimensional cavitation problem. Evolution in time of the surface heights: (a) liquid/vapor; (b) air/vapor for two different grids: .... grid A 
(320 × 640 cells); — grid B (640 × 1280 cells).

The evolution of the two surface fronts is shown in Fig. C.25. The black solid line is the contour line of αv = 0.5, that 
bounds the region of the vapor: the upper line in Fig. C.25 is then the vapor-air interface, while the lower line is the 
vapor-liquid interface.



Fig. C.25. Two-dimensional cavitation problem. Evolution in time of the void fraction profiles of the fuel-vapor, that bound the vapor region, from 0.025 to 
0.1 s. Top) grid A, 320 × 640 cells; bottom) grid B, 640 × 1280 cells. Legend: αv —.

The liquid/vapor and the air/vapor interface velocities, calculated by Eq. (53), are reported in Fig. C.26 for the two-
dimensional simulations. Again, they are very similar to the values achieved in Fig. 12; this is not surprising, because the 
free-surface in this specific test-case evolves mostly over a main direction.

Fig. C.26. Two-dimensional cavitation problem, validation test case. Evolution in time of the mean interface velocity: (a) liquid/vapor; (b) air/vapor on two 
different grids: .... grid A (320 × 640 cells); — grid B (640 × 1280 cells).

Finally, the mass of each phase fraction has been monitored to compute the time step continuity error and the mass con-
servation error in the domain (Fig. C.27 and Table C.10). They are still very limited, in accordance to what it has been shown 
for the one-dimensional test case. This proves that the numerical accuracy of the solver is maintained also in presence of 
cavitation and multi-dimensional domains.



Fig. C.27. Two-dimensional cavitation test case, evolution in time of: left) mass relative error; right) sum of the volume-weighted void fractions (see Eq. 
(57)). Grid A: 320 × 640 cells. Grid B: 640 × 1280 cells.

Table C.10
Relative error in the global mass conservation for the 
cavitation test case.

No. cells 320 × 640 640 × 1280

E global% 0.106 0.026

C.2. Condensation test: results

Similarly to what has been done in Sec. 11, the distribution of the phase-fractions derived from the calculation of the 
two-dimensional liquid column problem with cavitation is set as initial condition. Vapor condensation is artificially triggered 
by changing the threshold value of the liquid saturation pressure; as a result, the vapor changes direction of its motion and 
a suction of non-condensable gas (air) from the upper boundary is observed. Fig. C.28b shows the evolution of the global 
mass of the separate phases in the domain in time.

Fig. C.28. Two-dimensional condensation problem, validation test case. Evolution in time of: (a) air mass; (b) liquid mass; (c) vapor mass for two different 
grids: .... grid A (320 × 640 cells); — grid B (640 × 1280 cells).

Fig. C.29. Two-dimensional condensation problem, validation test case. Evolution in time of the surface heights: (a) liquid/vapor; (b) air/vapor for two 
different grids: .... grid A (320 × 640 cells); — grid B (640 × 1280 cells).



The evolution of the two surfaces fronts (liquid/vapor and air/vapor) is shown in Fig. C.30 for a duration of 0.5 s. 
The black solid line is the iso-contour line of the phase fraction of the vapor at 0.5. The upper-line locates the vapor-air 
interface, while the lower line is the vapor-liquid interface; the region of the fuel-vapor is therefore bounded by these two 
lines. Approximately at t = 0.6 s, the fuel-vapor is fully condensed (Fig. C.29) and the visualization of two interfaces is not 
possible anymore; for clarity, a black dotted line for the liquid-air interface is used at 0.75 s and 0.1 s.

Fig. C.30. Two-dimensional condensation problem. Evolution in time of the iso-contour line of the fuel-vapor αv = 0.5, that bounds the vapor region, from 
0.025 to 0.1 s. Top) grid A, 320 × 640 cells; bottom) grid B, 640 × 1280 cells. Legend: αv —.

The liquid/vapor and the air/vapor interface velocities, calculated by Eq. (53), are plotted in Fig. C.31. Again, they are 
very similar to the values achieved in Fig. 17 for the one-dimensional case; this is not surprising, because the free-surface 
in this specific test-case evolves mostly in one-direction and also the one-dimensional domain is sufficient to describe the 
evolution of the experiment.

Fig. C.31. Two-dimensional condensation problem, validation test case. Evolution in time of the mean interface velocity: (a) liquid/vapor surface velocity 
and (b) air/vapor surface velocity. interPhaseChangeMixingFoam behavior using two different discretizations: .... 320 × 640 cells; — 640 × 1280 
cells.



Fig. C.32. Two-dimensional condensation test case, evolution in time of: left) mass relative error; right) sum of the volume-weighted void fractions (see Eq. 
(57)). Grid A: 320 × 640 cells. Grid B: 640 × 1280 cells.

Table C.11
Relative (percentage) error on global mass conservation 
for condensation test case.

No. cells 320 × 640 640 × 1280

E global% 0.1496 0.1385

Finally, Fig. C.32 shows that also for the two-dimensional simulations, the global errors for the two grid resolutions 
tested are still very limited (Table C.11) and that the solver is very accurate in the handling of the phase change with 
multi-dimensional domains. It is important to remark that the error peak presents at 0.075 s is smaller than the one 
observed in the one-dimensional case (Fig. 18): in multi-dimensional problems, the influence of the boundary conditions on 
the solution is smaller, so the errors in the solution of the linear systems can be spread over the multiple directions. This is 
not possible in a one-dimensional test case.
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