
HAL Id: hal-03040364
https://hal.science/hal-03040364v2

Submitted on 6 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lossless Differential Table Compression for Hardware
Function Evaluation

Maxime Christ, Luc Forget, Florent de Dinechin

To cite this version:
Maxime Christ, Luc Forget, Florent de Dinechin. Lossless Differential Table Compression for Hard-
ware Function Evaluation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021,
�10.1109/TCSII.2021.3131405�. �hal-03040364v2�

https://hal.science/hal-03040364v2
https://hal.archives-ouvertes.fr

1

Lossless Differential Table Compression
for Hardware Function Evaluation

Maxime Christ, Luc Forget, Florent de Dinechin

Abstract—Hsiao et al. recently introduced, in the context of
multipartite table methods, a lossless compression technique that
replaces a table of numerical values with two smaller tables and
one addition. The present work shows that this technique has
many more applications than originally published, and that in
many of these applications the addition is for free in practice.
It also improves this technique and the resulting architecture
by exposing a wider implementation space, and an exhaustive
but fast algorithm exploring this space. These contributions are
implemented in the open-source FloPoCo core generator and
evaluated on FPGA and ASIC, reducing area up to a factor 2.

Index Terms—Table of numerical values, hardware function
evaluation, compression, computer arithmetic, ASIC, FPGA.

I. INTRODUCTION

Tables of precomputed values are pervasive in the design
of application-specific hardware, especially in the field of
elementary function evaluation [1], [2]. For low precisions
(typically up to 12 bits), a look-up table may store the value
of a function for all the possible input values. For larger
precisions, many evaluation methods may be used [1], [2].
These methods often rely on tables of precomputed values
[3], [4], [5], [6], [7], [8]. Such table-based methods expose
a trade-off between storage and computation. This enables
FPGA designers to finely tune their architecture to the target
device, and ASIC designers to match the silicon budget or
performance requirements of an application.

Hsiao et al. introduced [6] then improved [7] a technique
for compressing one specific table appearing in multipartite
table methods [3]. This lossless differential table compression
(LDTC) replaces one table with two smaller tables and an
addition (Fig. 1). The present article extends this work in
several ways.

A first contribution is, in Section II, an improvement to the
compression method itself: the space of compression opportu-
nities is wider than previous works suggest. The optimal can
be found by a simple and fast exhaustive exploration.

A second contribution is to show in Section III that this
technique is not limited to multipartite table methods: it is
applicable as soon as the tabulated function presents small
local variations, which is a very common case. Although
LDTC was developed for low-precision function evaluation
(up to 24 bits), it actually improves most function evaluation

Maxime Christ is with Université Grenoble Alpes and CITI-Lab, Univ.
Lyon, INSA-Lyon, Inria.
Luc Forget and Florent de Dinechin are with CITI-Lab, Univ. Lyon, INSA-
Lyon, Inria.
{Maxime.Christ, Luc.Forget, Florent.de-Dinechin}@insa-lyon.fr.
This work was supported by the MIAI and the ANR Imprenum project.

TABLE I
NOTATIONS USED IN THIS ARTICLE

original table T : A 7→ R
input and output sizes wA, wR

subsampling table Tss : B 7→ H
input and output sizes wB = wA− s, wH

difference table Td : A 7→ L
input and output sizes wA, wL

number of overlap bits v = wH +wL−wR

methods, including those that scale to 64-bit precision and
beyond. It could even be used in some software contexts.
Besides, since this compression is errorless, it is very easy
to plug into existing table-based methods, as illustrated with
examples in the open-source core generator FloPoCo.

A last contribution in Section IV is the observation that
in many of these applications, LDTC is lossless in terms of
functionality, but also in terms of performance. Indeed, the
addition in LDTC adds two numbers with only a few bits of
overlap (Fig. 1, Fig. 4). When the table value is itself added
to a bit array [9] to be computed thanks to a compressor tree
[10], [11], then the area overhead will be very little, and there
will usually be no timing overhead.

Section V gathers experimental results that support all the
previous claims.

II. LOSSLESS DIFFERENTIAL TABLE COMPRESSION

Fig. 1(a) shows an uncompressed table T with wA = 8
address bits and wR = 19 output bits. Informally, a table T has
some potential for the compression studied here if the values
stored at neighbouring addresses present small variations with
respect to the full output range of the table1. For instance,
the TIV (Table of Initial Values) of the original article [6]
samples a continuous and differentiable function at regularly
spaced points. What is important, however, is not the possible
mathematical properties (here continuity) of the underlying
function, but the “small local variations” property of the
discrete table. For illustration, Fig. 3 plots the content of two
tables that are the result of a numerical optimization process
[12]. There is no closed-form real function of which such a
table is a sampling, the content of the C3 table is not even
monotonic, and still these tables are perfectly suitable for the
compression studied here.

1A more formal but less intuitive definition will come in Section II-C: a
table T can be compressed if Algorithm 1, presented there, succeeds.

2

A

wA

T

R
wR

(a) Without compression

A
s

Tss

B

H
wH

Td

L
wLv

+

R

(b) With compression

Fig. 1. Table compression example (here for the TIV of a multipartite
architecture for sin(π

4 x) on [0,1) with 16-bit inputs and outputs)

A. Previous work

The core idea [6] of LDTC is the following. The original
table T is sub-sampled by a factor 2s, which gives a sub-
sampling table Tss. Obviously, Tss is smaller than T since it
has fewer entries (2wA−s instead of 2wA). Each value of the
original table is then reconstructed by adding, to one entry of
Tss, the difference between this entry and the original value
of T . This difference is stored in a second table Td of 2wA

entries. Td has as many entries as the original table T , but
its output range wL is smaller than that of T thanks to the
“small local variations” property of T : indeed Td stores local
variations. Hence Td has fewer output bits than the original
table, and is therefore also smaller. There is a compression
as soon as the sum of the sizes of the two smaller tables is
smaller than the original size of T [6]. Reconstructing the
value of T requires an addition, whose architectural cost will
be discussed in Section IV.

In all the following, we call a slice of T the subset of 2s

consecutive values to be reconstructed from one value of Tss.
If built as exposed previously, Td systematically has 2s entries
equal to 0: one for each slice. These systematic zeroes suggest
that a further optimization is possible. Indeed, an improvement
in [7] is to add, to each entry of Td, the value of the wR−wL
least significant bits (LSB) of the corresponding Tss entry.
Thus, these bits can be removed from Tss, reducing its output
size by wR−wL bits. However, we now have larger values in
Td: in some cases this adds one bit (overflow bit) to the output
size of Td.

B. A wider implementation space

The possible overflow bit in Td is expensive, since it is added
to 2wA entries. In the present work, instead of removing the
maximum number of LSB output bits from Tss as in [7], we
consider leaving some of these bits when it allows to avoid the
overflow bit in Td. If k extra output bits in Tss allow for a Td
without overflow, the extra cost is k×2s bits and the benefit
is 2wA bits, so there is a potential net gain in storage.

Conversely, once we acknowledge that Td may overflow and
that its output size wL must be enlarged, it is worth attempting
to reduce wH at the LSB to benefit from the new freedom that
a wider wL provides.

To capture all these cases, for a given table T with its
input size wA and output size wR, a compression parameter
vector is defined as the triplet (s,wH ,wL) shown in Fig. 1.
A vector is valid if it is possible to achieve LDTC with
these parameters. A vector also has an implementation cost,
estimated thanks to a cost function c(wA,s,wH ,wL), further
discussed in Section II-D.

The implementation space thus defined is a strict superset
of the one explored in [7]. In particular, as Section V will
show, the optimal solution often shows v = 2 bits of overlap
between H and L (see Figures 1 and 4), and is therefore out
of the space explored by previous approaches [6], [7].

C. Improved LDTC optimization algorithm

A generic LDTC optimization is then provided by Algo-
rithm 1. It simply enumerates this parameter space, and selects
among the valid vectors the one with the smallest cost. This
space is fairly small since s, wH , and wL are numbers of bits.

Algorithm 1: Generic LDTC optimization

function optimizeLDTC(T,wA,wR)
bestVector← (0,wR,0) ; // no compression
bestCost← c(bestVector) ;
forall (s,wH ,wL) do

cost← c(wA,s,wH ,wL);
if cost < bestCost then

if isValid(T,wA,wR,s,wH ,wL) then
bestCost← cost;
bestVector← (s,wH ,wL);

end if
end if

end forall
return bestVector

Actually, Algorithm 1 first filters by cost, then by validity,
because cost (see Section II-D) is faster to evaluate than
validity. Algorithm 2 determines if a parameter vector is valid.

Algorithm 2: Is a parameter vector valid ?

function isValid(T,wA,wR,s,wH ,wL)
for B ∈ (0,1, . . . ,2wA−s−1) ; // loop on slices
do

S←{T [j]} j∈{B·2s...(B+1)·2s−1} ; // slice
M←max(S) ; // max on slice
m←min(S) ; // min on slice
mask← 2wR−wH −1 ;
H← m− (m & mask) ; // wH upper bits of m

Mlow←M−H ; // max diff value on this slice
if Mlow ≥ 2wL then

return false ; // one slice won’t fit: exit with false
end if

end for
return true

Note that Algorithm 2 is faster than attempting to fill the
tables: it only needs the max and min of T on each slice,
which can be computed only once for each value of s, and

3

memoized. Therefore one invocation of Algorithm 2 requires
time proportional to 2wA−s, not to 2wA .

Altogether, the exploration of this parameter space on
current computers is almost instantaneous for any size for
which tabulation is practical.

D. Cost functions

Table II gives possible ways of evaluating the hardware
cost ctable(m,n) of a table with m input bits and n output
bits. Most previous works [3], [6], [7] use ctable

bit (m,n), which
counts the total number of stored bits. On FPGAs, ctable

LUT(m,n)
estimates the number of FPGA architectural LUTs with `
inputs. This model is both pessimistic (it ignores the optimiza-
tions performed by synthesis tools) and optimistic (it doesn’t
count LUTs used as address decoding multiplexers for large
m), but it is accurate for small tables. The third function,
ctable

SC (m,n), defined empirically [13], estimates the cost of a
table implemented in ASIC as standard cells.

The cost function c(wA,s,wH ,wL) used in Algorithm 1 is
the sum of the cost of Tss, which is ctable(wA − s,wH), the
cost of Td, which is ctable(wA,wL), and the cost of the addition
cadd(wH ,wL) converted to the relevant unit from Table II. This
addition cost will be further discussed in Section IV.

TABLE II
POSSIBLE TABLE COST FUNCTIONS

number of bits ctable
bit (m,n) = 2m×n

number of FPGA LUTs ctable
LUT(m,n) = 2min(m−`,0)×n

ASIC standard cells [13] ctable
SC (m,n) = 20.65min(m,n)×20.19|m−n|

III. A REVIEW OF APPLICATIONS

This section gives a non-exhaustive list of applications of
the LDTC technique to function evaluation [1], [2] beyond
the original multipartite approximation. Applications probably
also exist beyond function evaluation.

First, LDTC works, and even works extremely well, for
plain function tables with wA = wR. Such tables are routinely
used for very low precisions (up to 12 bits). Table III shows
that the gain may in such cases exceed 50%.

For larger precisions, approximation techniques must be
used. Many generic function evaluation methods (including
the multipartite methods) are variations or refinements of
piecewise polynomial approximation. Fig. 2 shows a typical
uniform piecewise approximation architecture [14], [15], [8].
The input domain of the function is decomposed in 2wA

segments of identical size by a simple splitting of the input
word X in its wA leading bits (which become the segment
address A) and its remaining least significant bits (which
become the index Y within a segment). On each segment,
a good polynomial approximation is precomputed and its
coefficients Ci are stored in a table indexed by A. It is possible
to use more complex architectures where the segments of the
input domain may have have different sizes [5], [16], but there
is always a coefficient table.

For LDTC, instead of the wide table of Fig. 2, we consider
as many independent tables as there are coefficients. It turns

× + × + × +

Polynomial Coefficient Table

C0C1C2C3

X

A
wA

w

Y

w−wA Ỹ3 Ỹ2 Ỹ1 = Y

finalround
R

Fig. 2. A fixed-point polynomial evaluator, using uniform segmentation and
a Horner scheme with truncated multipliers – see [14] for more details.

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

·104

interval index A

co
ef

fic
ie

nt
va

lu
e

C2

0 5 10 15 20 25 30

20

40

60

80

interval index A

C3

Fig. 3. Plot of all the degree-2 and degree-3 coefficients (the values of
C2 and C3 in Fig. 2) of a 24-bit, degree 3 piecewise (wA = 5) polynomial
approximation to log(1+ x) when using machine-efficient polynomials [12].

out that each coefficient table has the property of small local
variations. This is an indirect consequence of a requirement
of all these approximation methods, namely that the function
must be differentiable up to a certain order. For instance, the
degree-one coefficient C1 is closely related to the derivative of
the function, taken somewhere in each segment. As long as the
derivative itself is continuous, C1(A) will present small local
variations. For illustration, Fig. 3 shows C2(A) and C3(A) for
a degree-3 approximation to log(1+ x), and Table III shows
the compression achieved in each of the coefficients of a
degree-2 approximation to the sine function (all obtained using
FloPoCo’s FixFunctionByPiecewisePoly generator).

Another large class of applications consists in function-
specific range reduction algorithms that rely on large tables
of precomputed values. It was pioneered in software by Tang
[17] then used in hardware to implement e.g. exponential [18,
Fig. 2], [19, Fig. 10], logarithm [19, Fig. 6] or trigonometric
functions [20, Fig. 2]. These tables all present small local
variations and are suitable for LDTC, as illustrated by Table III
on the eA table of [18] (obtained using FloPoCo’s FPExp).

Such range reduction techniques may be used iteratively,
as in most CORDIC variants [1], in which case the table
is addressed by the iteration index. It is unclear if there is
compression potential in this case, however there is in high-
radix iterative algorithms [1], [21, Fig. 1].

Finally, table-based methods have been also used to imple-
ment multiplication by constants [22], [23], [24] which are
themselves used in elementary function implementations [18,
Fig. 2], [19, Fig. 6], [20, Fig. 2]. Again the tables there are
perfectly suited to LDTC. However, it is less obvious here that
this potential can be exploited, as the tables are already finely
tailored to the LUT-based logic of the FPGAs [23], [24].

IV. WITH COMPRESSION TREES, LDTC IS FOR FREE

If an adder is used to compute the sum, it should be obvious
from Fig. 1(b) that the adder size is only wH bits (the wR−wH
lower bits of the sum are those of L).

4

uncompressed compressed with LDTC
table output:

complete bit heap:

Fig. 4. The dot-diagram overhead of lossless table compression, here for the
24-bit multipartite implementation of sin(π

4 x)

However, in many of the applications reviewed in Sec-
tion III, the table result is added to a value that is itself
computed by a compression tree. This is the case in the
original multipartite method (where it is added to multi-
operand addition) [3, Fig. 7]. It is also the case for all the
coefficients except C3 in Fig. 2: in the Horner evaluation
scheme [1] used there, each Ci is added to a product, and
the best way to implement this product is also a compression
tree [25], [11] (if a parallel evaluation scheme is used [8] only
C0 is added to a product). The table outputs are also summed
in table-based constant multiplication techniques [23], [24],
and in many other cases (e.g. [19, Fig. 6] where the tabulated
E× log(2) is added to another term).

In all these cases, thanks to merged arithmetic [9], the
addition adds only v = wH +wL −wR bits to the bit array.
This is illustrated in Fig. 4. The area cost of the addition
therefore becomes proportional to the overlap v, in other words
negligible. Furthermore, as long as the addition of these v bits
does not entail one more compression stage [11], the delay
overhead will be zero. It is the case in Fig. 4.

V. EVALUATION

LDTC has been integrated in FloPoCo (git master branch),
where it will benefit to all the table-based operators. Table III
reports the compression rate in terms of bit count for a repre-
sentative range of application (see section III). Compression
ratio up to 0.36 are possible, to be be compared to the best
ratio of 0.74 in the previous state of the art [7, Table VII].

A general observation on Table III is that the best com-
pression ratios are observed for functions with the smaller
difference between wR and wA. The intuition here is that the
larger table is always Td, and that Td has very few output bits
when wR ≈ wA. Note that LDTC even works when wR < wA.
For plain tables, the compression ratio improves with the size
of the initial table (see the pt lines in Table III).

Surprisingly, the optimal overlap is often v = 2 bits. How-
ever, this is not a strict rule, as the ptl:12 line shows.

Table IV compares the ctable
bit of the state of the art hierarchi-

cal multipartite methods including the best previous compres-
sion (hmp) [7, Tables 2 and 3] to that achieved by the (older,
non hierarchical) multipartite implementation of FloPoCo,
enhanced with LDTC (mpt+LDTC). The function used here
is sin(π

4 x), the only one on which we could reproduce the
results of [7]. There is one more addition in mpt+LDTC than in
hmp, however the total number of bits input to the compressor
tree is smaller for mpt+LDTC (on 16 bits, 20+12+10+8+6=56
bits for hmp, versus 7+14+10+8+6+4=49 bits for mpt+LDTC).
Both observations also hold in the 24-bit case, not detailed for
lack of space. This experiment suggests that integrating our

TABLE III
COMPRESSION RESULTS IN TERMS OF BIT STORAGE

pt, ptl plain tabulation of sin(π

4 x) (pt) or log(1+ x) (ptl) on [0,1)
mpt multipartite approximation [6] to sin(π

4 x) on [0,1)
mpti Table of Initial Values (TIV) of mpt

ea eA table of [18], for single (sp) or double (dp) precision
Ci coefficients of a degree-2 uniform piecewise approximation [14]

to sin(π

4 x) on [0,1) for 32-bit accuracy (wA = 9)
plain table LDTC (ratio) Tss Td v

pt:8 2,048 992 (0.48) 224 768
8 ·28 7 ·25 3 ·28 2

pt:9 4,608 2,048 (0.44) 512 1,536
9 ·29 8 ·26 3 ·29 2

pt:10 10,240 4,224 (0.41) 1,152 3,072
10 ·210 9 ·27 3 ·210 2

pt:12 49,152 17,920 (0.36) 5,632 12,288
12 ·212 11 ·29 3 ·212 2

ptl:12 49,152 18,432 (0.38) 6,144 12,288
12 ·212 12 ·29 3 ·212 3

mpti:12 960 800 (0.83) 96 704
15 ·26 6 ·24 11 ·26 2

mpti:14 2,048 1,632 (0.8) 224 1,408
16 ·27 7 ·25 11 ·27 2

mpti:16 4,864 3,808 (0.78) 224 3,584
19 ·28 7 ·25 14 ·28 2

mpti:20 24,576 18,560 (0.76) 1,152 17,408
24 ·210 9 ·27 17 ·210 2

mpti:24 114,688 83,456 (0.73) 5,632 77,824
28 ·212 11 ·29 19 ·212 2

ea:sp:10 28,672 22,656 (0.79) 1,152 21,504
28 ·210 9 ·27 21 ·210 2

ea:dp:10 58,368 52,352 (0.90) 1,152 51,200
57 ·210 9 ·27 50 ·210 2

ea:dp:12 233,472 202,240 (0.87) 5,632 196,608
57 ·212 11 ·29 48 ·212 2

ea:dp:14 933,888 780,288 (0.84) 26,624 753,664
57 ·214 13 ·211 46 ·214 2

C0 17,920 15,360 (0.86) 512 14,848
35 ·29 8 ·26 29 ·29 2

C1 12,800 9,792 (0.76) 576 9,216
25 ·29 9 ·26 18 ·29 2

C2 6,656 4,160 (0.62) 576 3,584
13 ·29 9 ·26 7 ·29 2

all Ci 73 ·29 29,312 (0.78) 26 ·26 54 ·29

TABLE IV
COMPARISON WITH THE STATE OF THE ART IN MULTIPARTITE METHODS

16 bits 24 bits

hmp [7] 6,272 = 20 ·27 +12 ·27 +10 ·27 +8 ·26 +6 ·26 166,528
mpt+LDTC 6,752 = 7 ·25 +14 ·28 + 10 ·27 +8 ·27 +6 ·26 +4 ·26 158,208

improved LDTC to the hierarchical multipartite method will
improve the state of the art of multipartite methods.

Results for FPGA and ASIC synthesis are reported in Tables
V and VI respectively. All the LDTC were optimized using
the ctable

bit cost function, the other cost functions of Table II
failing to provide any significant improvement so far.

The pt architectures include an adder which costs area
and adds to the delay. Conversely, the mpt evaluators use a
compressor tree, in which case Section IV claimed that the
compression is for free, both in terms of area (see Figure 4)
and delay. The ratios reported in Tables V and VI support this

5

TABLE V
FPGA IMPLEMENTATION RESULTS FOR sin(π

4 x) (ADDITION INCLUDED)

case without LDTC with LDTC (ratio)
pt:8 27 LUT 5.5 ns 26 LUT (0.96) 6.4 ns (1.17)
pt:9 61 LUT 6.3 ns 46 LUT (0.75) 6.7 ns (1.08)
pt:10 134 LUT 6.8 ns 83 LUT (0.62) 7.5 ns (1.1)
pt:12 536 LUT 9.8 ns 287 LUT (0.54) 8.7 ns (0.89)

mpt:12 76 LUT 7.6 ns 73 LUT (0.96) 7.7 ns (1.02)
mpt:14 102 LUT 8.1 ns 98 LUT (0.96) 8.1 ns (1.0)
mpt:16 184 LUT 8.9 ns 190 LUT (1.03) 9.3 ns (1.04)
mpt:20 676 LUT 12.8 ns 637 LUT (0.94) 12.5 ns (0.98)
mpt:24 2489 LUT 18.1 ns 2322 LUT (0.93) 16.1 ns (0.89)

Results after implementation on Kintex7 using Vivado 2020.2. The
compressor tree used for mpt is FloPoCo’s default.

TABLE VI
ASIC IMPLEMENTATION RESULTS FOR sin(π

4 x) (ADDITION INCLUDED)

case LDTC results (ratio WRT uncompressed table)

pt:8 130 µm2 (0.82) 0.3 ns (1.44) 0.12 mW (0.91)
pt:9 184 µm2 (0.56) 0.3 ns (1.12) 0.16 mW (0.62)
pt:10 298 µm2 (0.54) 0.4 ns (0.82) 0.26 mW (0.58)
pt:12 1,190 µm2 (0.63) 0.6 ns (0.94) 1.06 mW (0.66)

mpt:12 269 µm2 (0.98) 0.6 ns (1.00) 0.34 mW (0.96)
mpt:14 424 µm2 (0.98) 0.7 ns (1.00) 0.50 mW (0.96)
mpt:16 793 µm2 (0.92) 0.8 ns (1.00) 0.88 mW (0.88)
mpt:20 2,888 µm2 (0.84) 1.2 ns (1.12) 2.76 mW (0.67)
mpt:24 11,801 µm2 (0.87) 1.8 ns (1.01) 11.13 mW (0.72)

Synthesis results obtained through Synopsys design compiler using a 28nm
FDSOI standard cell library from STMicroelectronics. Timing includes an

estimation of interconnect delays. The compressor tree used for mpt is
FloPoCo’s default. Uncompressed synthesis results are not shown due to

lack of space, only the ratio is given.

claim2. The power consumption is essentially proportional to
the area, and is therefore improved by LDTC.

In both Tables V and VI, the area compression ratios
are not as good as those of Table III: this shows that the
logic optimization of synthesis tools discover some of the
compression opportunity exploited by LDTC [13].

We do not report results targetting FPGAs with block
RAM, since actual savings will depend on the block RAM
capabilities of the target, which are very discrete (e.g. M20k
blocks on Altera/Intel devices can be configured as 29× 40,
210×20, or 211×10 bits, while the Xilinx/AMD 36kbit blocks
can do from 29×72 to 215×1). The larger the table, the higher
the chances that LDTC is useful in this case.

VI. CONCLUSION

This work adds one optimization technique to the bag of
tricks of arithmetic designers: lossless differential table com-
pression can reduce up to a factor two the storage requirement
of most tables used in function evaluation, at the cost of one
small integer addition that can be hidden for free in an existing
compressor tree. The optimal compression can be found by
exhaustive enumeration. This technique is available in the
open-source FloPoCo core generator.

Acknowledgement: Many thanks to Frédéric Pétrot for
his comments and his help with ASIC synthesis.

2The mpt timing variations in Table V are routing artifacts – even the
improvement for mpt:24 is actually due to variations in input buffer net delay.

REFERENCES

[1] J.-M. Muller, Elementary functions, algorithms and implementation, 3rd
Edition. Birkhaüser Boston, 2016.

[2] A. Omondi, Computer-Hardware Evaluation of Mathematical Functions.
Imperial College Press, 2016.

[3] F. de Dinechin and A. Tisserand, “Multipartite table methods,” IEEE
Transactions on Computers, vol. 54, no. 3, pp. 319–330, 2005.

[4] J. Detrey and F. de Dinechin, “Table-based polynomials for fast hardware
function evaluation,” in Application-specific Systems, Architectures and
Processors. IEEE, 2005, pp. 328–333.

[5] D.-U. Lee, P. Cheung, W. Luk, and J. Villasenor, “Hierarchical segmen-
tation schemes for function evaluation,” IEEE Transactions on VLSI
Systems, vol. 17, no. 1, 2009.

[6] S.-F. Hsiao, P.-H. Wu, C.-S. Wen, and P. K. Meher, “Table size reduction
methods for faithfully rounded lookup-table-based multiplierless func-
tion evaluation,” Transactions on Circuits and Systems II, vol. 62, no. 5,
pp. 466–470, 2015.

[7] S.-F. Hsiao, C.-S. Wen, Y.-H. Chen, and K.-C. Huang, “Hierarchical
multipartite function evaluation,” Transactions on Computers, vol. 66,
no. 1, pp. 89–99, 2017.

[8] D. De Caro, E. Napoli, D. Esposito, G. Castellano, N. Petra, and A. G.
Strollo, “Minimizing coefficients wordlength for piecewise-polynomial
hardware function evaluation with exact or faithful rounding,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 5,
pp. 1187–1200, 2017.

[9] E. E. Swartzlander, “Merged arithmetic,” IEEE Transactions on Com-
puters, vol. C-29, no. 10, pp. 946 –950, 1980.

[10] H. Parendeh-Afshar, A. Neogy, P. Brisk, and P. Ienne, “Compressor tree
synthesis on commercial high-performance FPGAs,” ACM Transactions
on Reconfigurable Technology and Systems, vol. 4, no. 4, 2011.

[11] M. Kumm and J. Kappauf, “Advanced compressor tree synthesis for
FPGAs,” IEEE Transactions on Computers, vol. 67, no. 8, pp. 1078–
1091, 2018.

[12] N. Brisebarre and S. Chevillard, “Efficient polynomial L∞- approxima-
tions,” in 18th Symposium on Computer Arithmetic. IEEE, 2007, pp.
169–176.

[13] O. Gustafsson and K. Johansson, “An empirical study on standard cell
synthesis of elementary function lookup tables,” Asilomar Conference
on Signals, Systems and Computers, pp. 1810–1813, 2008.

[14] F. de Dinechin, M. Joldes, and B. Pasca, “Automatic generation of
polynomial-based hardware architectures for function evaluation,” in
Application-specific Systems, Architectures and Processors. IEEE,
2010.

[15] S.-F. Hsiao, H.-J. Ko, and C.-S. Wen, “Two-level hardware function
evaluation based on correction of normalized piecewise difference func-
tions,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 59, no. 5, pp. 292–296, 2012.

[16] D. Chen and S.-B. Ko, “A dynamic non-uniform segmentation method
for first-order polynomial function evaluation,” Microprocessors and
Microsystems, vol. 36, pp. 324–332, 2012.

[17] P. T. P. Tang, “Table-driven implementation of the exponential function
in IEEE floating-point arithmetic,” ACM Transactions on Mathematical
Software, vol. 15, no. 2, pp. 144–157, 1989.

[18] F. de Dinechin and B. Pasca, “Floating-point exponential functions for
DSP-enabled FPGAs,” in Field Programmable Technologies, Dec. 2010,
pp. 110–117.

[19] M. Langhammer and B. Pasca, “Single precision logarithm and ex-
ponential architectures for hard floating-point enabled FPGAs,” IEEE
Transactions on Computers, vol. 66, no. 12, pp. 2031–2043, 2017.

[20] F. de Dinechin, M. Istoan, and G. Sergent, “Fixed-point trigonometric
functions on FPGAs,” SIGARCH Computer Architecture News, vol. 41,
no. 5, pp. 83–88, 2013.

[21] J.-A. Piñeiro, M. Ercegovac, and J. Bruguera, “High-radix logarithm
with selection by rounding: Algorithm and implementation,” Journal of
VLSI signal processing systems for signal, image and video technology,
vol. 40, no. 1, pp. 109–123, 2005.

[22] K. Chapman, “Fast integer multipliers fit in FPGAs (EDN 1993 design
idea winner),” EDN magazine, no. 10, p. 80, May 1993.

[23] M. Wirthlin, “Constant coefficient multiplication using look-up tables,”
Journal of VLSI Signal Processing, vol. 36, no. 1, pp. 7–15, 2004.

[24] F. de Dinechin, S.-I. Filip, L. Forget, and M. Kumm, “Table-based versus
shift-and-add constant multipliers for FPGAs,” in 26th IEEE Symposium
of Computer Arithmetic (ARITH-26), Jun. 2019.

[25] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2004.

