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ABSTRACT 23 

 24 

We describe ASAP (Assemble Species by Automatic Partitioning), a new method to build 25 

species partitions from single locus sequence alignments (i.e. barcode datasets). ASAP is 26 

efficient enough to split datasets as large 104 sequences into putative species in several 27 

minutes. Although grounded in evolutionary theory, ASAP is the implementation of a 28 

hierarchical clustering algorithm that only uses pairwise genetic distances, avoiding the 29 

computational burden of phylogenetic reconstruction. Importantly, ASAP proposes species 30 

partitions ranked by a new scoring system that uses no biological prior insight of intra-31 

specific diversity. ASAP is a stand-alone program that can be used either through a graphical 32 

web-interface or that can be downloaded and compiled for local usage. We have assessed its 33 

power along with three others programs (ABGD, PTP and GMYC) on 10 real COI barcode 34 

datasets representing various degrees of challenge (from small and easy cases to large and 35 

complicated datasets). We also used Monte-Carlo simulations of a multi-species coalescent 36 

framework to assess the strengths and weaknesses of ASAP and the other programs. Through 37 

these analyses, we demonstrate that ASAP has the potential to become a major tool for 38 

taxonomists as it proposes rapidly in a full graphical exploratory interface relevant species 39 

hypothesis as a first step of the integrative taxonomy process. 40 

 41 
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INTRODUCTION 45 

 46 

During the last 15 years, following the success of the DNA-barcoding projects and the 47 

increase in sequencing capacities, many methods of species delimitation based on DNA 48 

sequences have been developed. They can be roughly classified into two main categories. A 49 

first one includes methods that compute the likelihood of competing partitions of species 50 

hypotheses (“models”) in the so-called “multi-species coalescent” framework. In this 51 

category, the most popular methods are SpedeSTEM (Ence & Carstens, 2011), BPP (Yang & 52 

Rannala, 2014) and BFD (Leaché, Fujita, Minin, & Bouckaert, 2014), reviewed (with other 53 

methods) in several articles (Camargo & Sites, 2013; Carstens, Pelletier, Reid, & Satler, 2013; 54 

Fujita, Leaché, Burbrink, McGuire, & Moritz, 2012; Leavitt, Moreau, & Lumbsch, 2015; 55 

Rannala, 2015). They were designed for multilocus data and are computationally (extremely) 56 

demanding. As a consequence, they have been mainly applied to datasets with limited number 57 

of sequences and species, and to well-studied groups, for which competing partitions of 58 

species have been proposed in the literature; they generally correspond to species complexes, 59 

typically in the grey zone (De Queiroz, 2005). 60 

A second category of methods corresponds to exploratory ones, i.e. methods that propose de 61 

novo species partitions, typically from a single-locus, DNA-barcoding-like, datasets. 62 

Although sometimes criticized because a single gene tree poorly represents the species tree 63 

(Degnan & Rosenberg, 2009; Nichols, 2001), these methods are widely used, as they are easy 64 

to apply on DNA-barcoding datasets, even large, and precisely because they do not 65 

necessitate pre-defined species hypotheses. The most popular ones are GMYC –General 66 

Mixed Yule-Coalescent model– (Pons et al., 2006), PTP –Poisson Tree Process– (Zhang, 67 

Kapli, Pavlidis, & Stamatakis, 2013), both first developed in a maximum likelihood 68 
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framework, and later extended to a Bayesian framework (Reid & Carstens, 2012), and ABGD 69 

–Automatic Barcode Gap Discovery– (Puillandre, Lambert, Brouillet, & Achaz, 2012). 70 

GMYC and PTP take as input a phylogenetic tree and estimate rates of branching events to 71 

infer which part of the tree more likely follows a speciation model (the deepest part) and 72 

which part follows a coalescent model (subtrees of the shallowest part). The species partition 73 

is found by maximizing the likelihood of the transition between these two branching rates, 74 

GMYC in absolute time (hence the need for an ultrametric tree), PTP in mutational time at 75 

different nodes of the tree. GMYC and PTP first inferred a single transition event between the 76 

two rates (speciation vs coalescent) and were later expanded to infer “multiple thresholds”, 77 

allowing several transitions to occur in different subtrees (Kapli et al., 2017; Monaghan et al., 78 

2009). 79 

Contrary to the two previous methods, ABGD uses only pairwise genetic distances (no tree is 80 

inferred) and automatically identifies in their distribution the so-called “barcode gap”. This 81 

gap marks the limit between the smaller intra-specific distances and the larger inter-specific 82 

distances. From the gap, a distance threshold is estimated and used to partition the samples 83 

into putative species. A coalescent model is used to identify the position of the most likely 84 

barcode gap, based on a maximal genetic intraspecific divergence P defined a priori by the 85 

user. Consequently, users must provide a range of P in which ABGD identifies one or several 86 

barcode gaps and the method outputs the corresponding species partitions. For a single 87 

dataset, ABGD thus eventually proposes several partitions that correspond to different prior 88 

values P. In its recursive version, ABGD is applied on each group of the initial partition, and 89 

eventually splits them when internal barcode gaps are detected.  90 

The relative performances of these three exploratory methods, GMYC, PTP and ABGD, 91 

sometimes together with less used methods (Flot, Couloux, & Tillier, 2010; Ratnasingham & 92 
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Hebert, 2013) have been compared in various taxa: mammals (Derouiche, Vercammen, 93 

Bouhadad, & Fernandes, 2017), amphibians (Vacher et al., 2017), squamates (Blair & 94 

Bryson, 2017), fishes (Ramirez et al., 2017), echinoderms (Boissin, Hoareau, Paulay, & 95 

Bruggemann, 2017), insects (Lin, Stur, & Ekrem, 2015), spiders (Ortiz & Francke, 2016), 96 

crustaceans (Larson, Castelin, Williams, Olden, & Abbott, 2016), pycnogonids (Dömel, 97 

Melzer, Harder, Mahon, & Leese, 2017), rotifers (Papakostas et al., 2016), annelids (Decaëns 98 

et al., 2016), molluscs (Fourdrilis et al., 2016), flatworms (Scarpa et al., 2017), nemerts (Leasi 99 

& Norenburg, 2014), cnidarians (Arrigoni et al., 2016), plants (Lithanatudom et al., 2017), 100 

algae (Zou et al., 2016), lichens (Pino-Bodas, Burgaz, Teuvo, & Stenroos, 2018), fungi 101 

(Alors, Lumbsch, Divakar, Leavitt, & Crespo, 2016) and foraminifera (André et al., 2014). 102 

Although the results obtained with the various methods often vary depending on dataset 103 

characteristics (e.g. Blair & Bryson, 2017), the main conclusions of these studies are:  104 

1. all methods generally perform well (but see e.g. Dellicour & Flot, 2018) being mostly 105 

congruent (i.e. providing similar species partitions) with each other and with the 106 

species partitions inferred from independent data (e.g. other molecular markers, 107 

morphological data, ecological data); 108 

2. all of them perform poorly when the number of sampled individuals per species is too 109 

low (Ahrens et al., 2016), or when the contrast of intra- vs. interspecific divergences is 110 

mild. This contrast varies with species ages, mutation rates, population sizes, strengths 111 

of the selection and degrees of within-species population structure (Pante et al., 2015; 112 

Pentinsaari, Vos, & Mutanen, 2016; Ritchie, Lo, & Ho, 2016); mPTP was in particular 113 

developed to overcome this issue (Kapli et al., 2017); 114 

3. partitions proposed by the three methods sometimes differ, each of them being able to 115 

infer the “correct” species when the two others fail. This led some authors to propose 116 
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that all three methods (among with eventually others) should be applied jointly and 117 

compared (Ducasse, Ung, Lecointre, & Miralles, 2020); 118 

4. Although there are several exceptions (e.g. Blair & Bryson, 2017), ABGD in 119 

particular, and PTP to a lesser extent, tend to lump species more than GMYC 120 

(Pentinsaari et al., 2016). Conversely, the multiple-threshold version of GMYC is 121 

particularly prone to oversplitting (Fujisawa & Barraclough, 2013; Kekkonen & 122 

Hebert, 2014). 123 

In comparison with GMYC and PTP, ABGD has the advantage of being very fast, mainly 124 

because it bypasses the phylogenetic reconstruction. Furthermore, because ABGD identifies a 125 

species partition for each value of P defined a priori, several partitions may be proposed, 126 

reflecting the uncertainty stemming from the data and encouraging the user to evaluate the 127 

relevance of the ABGD partitions in the light of other data, as it is recommended in an 128 

“integrative taxonomy” approach. However, ABGD does not provide a score for each 129 

partition that would help the user to identify the “best” partition(s), and this probably 130 

constitutes the main drawback of ABGD (judging from the numerous comments and 131 

questions the authors of ABGD have received from the users). 132 

In this article, we describe a new method of species delimitation, still based on pairwise 133 

genetic distances, but which implementation provides a score for each defined partition and 134 

overcomes the challenge of a priori defining P. Our new algorithm, ASAP (Assemble Species 135 

by Automatic Partitioning), still provides several partitions, more or less fine-grained, but 136 

ranked using a new scoring system. Importantly, we also develop a full graphical web-137 

interface to ease its usage. However, ASAP, like any other method, must not replace the 138 

taxonomist work, as any partition of species must be subsequently tested against other 139 
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evidences in an integrative taxonomy framework. This is especially crucial as ASAP uses 140 

single-locus data that are known to bear weaknesses. 141 

 142 

MATERIAL AND METHODS 143 

 144 

Overview of the ASAP software 145 

ASAP is a C self-contained program. Users can use ASAP either through a full graphical 146 

web-interface (https://bioinfo.mnhn.fr/abi/public/asap), or download and compile the sources 147 

for local usage (same url). 148 

Our algorithm is an ascending hierarchical clustering, merging sequences into groups that are 149 

successively further merged until all sequences form a single group. At each merging step, the 150 

assignment of all sequences into groups is named a partition. The first partition contains as 151 

many groups as sequences (no grouping was yet done) whereas the last partition is a single 152 

group with all sequences inside. Larger groups are created by merging groups of the previous 153 

partition together. We characterize all newly created partition in two complementary ways. 154 

First, we assign to it a probability that quantifies the chances that each of its new groups is a 155 

single species. Second, we compute the width of the barcode gap between the previous and 156 

this new partition. Both metrics (probability and barcode gap width) are combined into a 157 

single asap-score that is used to rank the partitions.  158 

 159 

ASAP in details 160 

i) Ranked distances 161 

We first start by computing, when not provided, all pairwise distances between the n 162 

sequences of the alignment. Distances are then ranked by increasing values. The efficiency of 163 
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the algorithm stems from the fact that each distance is only considered once in increasing 164 

order for clustering purposes. 165 

ii) Hierarchical clustering 166 

The clustering process starts with a first partition where each sequence belongs to a different 167 

group. ASAP then treats each of the ranked distances one by one in increasing order (equal 168 

distances are treated together) as a threshold value for delimiting groups: sequences separated 169 

by a distance equal to the current value dC are clustered into the same group. Consequently, 170 

when sequences that were in different groups are clustered together, the previous groups are 171 

merged into a new larger group, and is associated to the current clustering distance, dC. 172 

Importantly, a new partition can have a single new group or several new ones when several 173 

sequences from different groups are merged independently into different groups for the same 174 

distance dC. When a new partition is built, the clustering process pauses. ASAP then scores 175 

all new groups with a probability of panmixia. It also scores the new partition using an ad-hoc 176 

score computed from both the barcode gap width and probabilities of panmixia. After the 177 

group(s) and partition scoring, ASAP then continues the clustering by looking after the next 178 

distances until another partition is built. The algorithm stops when all sequences are merged 179 

into a single final group. 180 

iii) Computing p-values 181 

a. For each group: we aim at computing a p-value for a newly created group that is a 182 

merge of two or more subgroups. We compute Πintra the average pairwise distance between 183 

sequences within the subgroups and Πinter the average pairwise distance among sequences of 184 

different subgroups (Figure 1). We then compare Πintra to its theoretical distribution, 185 

computed by Monte-Carlo simulations of a neutral coalescent model assuming a single 186 

panmictic species with a sample size m and a coalescent mutation rate θ = Πinter / [2×(1-1/m)]. 187 
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The value of θ is set so that in the simulations the distance between sequences connected by 188 

the Most Recent Common Ancestor (MRCA) of the group (πinter) is equal, on average, to the 189 

observed one: E[πinter]=Πinter. This relates to the average time to the MRCA that is 2×(1-1/m), 190 

expressed in coalescent time (Wakeley, 2009). We compute the p-value as the fraction of 191 

replicates where the simulated πintra is equal or lower than the observed Πintra. The number of 192 

replicates is updated on the fly to have correct estimations of low p-values. Put differently, it 193 

quantifies under H0 (one single species) the probability of observing a diversity Πintra or less 194 

within the subgroups given that the divergence between the subgroups is on average Πinter. 195 

b. For partitions: we compute the probability to observe πintra or less diversity within 196 

all subgroups of the current partition (that are groups of previous partition before the merge) 197 

assuming that all new groups of the current partition are independent coalescent realizations 198 

with θ estimated for each group independently.  199 

iv) Recursive splits 200 

Once a new partition is built, ASAP tests for each of the groups of the partition whether its p-201 

value is lower than a given risk (by default 1%) and consequently should be split. When a 202 

group is split, ASAP recursively descends to all its subgroups and assesses whether they 203 

should be split as well.  204 

v) Relative barcode gap width 205 

ASAP also computes a relative barcode gap width associated to the current partition 206 

(Supplementary Material 1). The partition is associated to a threshold distance dT that is the 207 

mid-point between the current distance, dC (with rank rC), that triggered the merging and the 208 

previous distance in the list dC-1 (with rank rC-1). A barcode gap corresponds to a “jump” in 209 

the distance values in only few ranks. While increasing only few ranks in the list, the distance 210 

will “jump” from a value that is (much) less than dT to a value that is (much) higher than dT. 211 
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To quantify the barcode gap width, ASAP scans downward the distance list from dC-1 until it 212 

finds the first distance smaller than 0.9dC-1: this is dL which rank is rL in the list. It then scans 213 

from dC the distance list upward until it finds the first distance above 1.1dC: this is dH which 214 

rank is rH. The relative gap width W is defined as: 215 

W = [ (dH - dL) / (dH+dL+1) ] / (rH – rL). 216 

We normalized the difference of distance (dH - dL) by (dH+dL+1) to compute the “relative” 217 

width of the gap; the “+1” only prevents the ratio to be very high when distance values are 218 

very small. The higher the W, the larger the barcode gap. 219 

vi) Outputs 220 

At the end of the clustering, ASAP scores and sorts all the different partitions using two 221 

criteria: their p-value sorted (see iii.b) by increasing order (the smallest p-value has rank 1)  222 

and their rank of relative barcode gap width (see v) sorted by decreasing order (the largest gap 223 

has rank 1). The asap-score is the average of both ranks: the smaller, the better. Furthermore, 224 

ASAP produces a graphical output where each node of the hierarchical clustering is color-225 

coded depending on its probability of being a panmictic species (see iii.a). Thus, the color 226 

guides the user finding which nodes may be split into smaller groups. Several other graphical 227 

options are provided to help the user navigate among partitions and choose the “most 228 

relevant” partition, beyond a simple naive use of the asap-score (Supplementary Material 2). 229 

 230 

Tests on empirical data 231 

To compare the results obtained by four methods (ASAP, (m)PTP, (m)GMYC and ABGD), 232 

we selected 10 empirical COI datasets covering various taxa (birds, mammals, amphibians, 233 

insects, crustaceans and molluscs) and including 44 to 2,574 specimens that belong to 5 to 234 

643 species (Table 1) (Borisenko, Lim, Ivanova, Hanner, & Hebert, 2008; Elias-Gutierrez, 235 
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Jeronimo, Ivanova, Valdez-Moreno, & Hebert, 2008; Hajibabaei, Janzen, Burns, Hallwachs, 236 

& Hebert, 2006; Kerr et al., 2007; Puillandre, Cruaud, & Kantor, 2010; Puillandre, Baylac, 237 

Boisselier-Dubayle, Cruaud, & Samadi, 2009; Puillandre, Fedosov, Zaharias, Aznar-238 

Cormano, & Kantor, 2017; Puillandre et al., 2011, 2012; Smith, Poyarkov Jr., & Hebert, 239 

2008). Among them, five correspond to datasets published by one of the authors to facilitate 240 

the interpretations of the results. An eleventh dataset, including 9,396 sequences of moths 241 

(publicly available from BOLD), was used to estimate and compare the computation times of 242 

ABGD and ASAP. A dataset of this size could not be analyzed by (m)GMYC or (m)PTP as 243 

the phylogenetic reconstruction is too costly. 244 

For all empirical datasets, we used the web version of ABGD, with default parameters. Only 245 

the initial partitions were considered, and only the more stable partition(s) (i.e. the partition(s) 246 

found with several P in the vicinity of the barcode gap) was (were) reported. For ASAP, we 247 

used a recursive split probability of 0.01 (see iv), and report a) the partition with the best 248 

asap-score as well as b) the partition that is closest to the “correct” one among the two best 249 

partitions, according to their asap-scores. For GMYC and mGMYC, ultrametric trees were 250 

reconstructed using BEAST 2 (Bouckaert et al., 2014), with an independent GTR substitution 251 

model for each codon position. Relative divergence times were estimated using a relaxed log-252 

normal clock with a coalescent prior and a constant population size, following the 253 

recommendations of Monaghan et al. (2009). The number of MCMC steps were 20M 254 

(Gemmuloborsonia, Benthomangelia, Lophiotoma and Eumunida datasets), 100M 255 

(Amphibians, Cladocera, Mammals, Sphingidae and Turridae datasets) and 200M (Birds 256 

dataset), sampled every 2,000, 10,000 and 20,000 steps respectively. Convergence of the runs 257 

was assessed using TRACER 1.6 (Rambaut & Drummond, 2014) to check that all effective 258 
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sample size values exceeded 200. Consensus trees were calculated after discarding the first 259 

25% of the trees as burn-in, with the option “Common Ancestry” for node height. 260 

For PTP and mPTP, the web server at https://mptp.h-its.org/#/tree was used, with default 261 

parameters. The input tree was obtained with RAxML (Stamatakis, 2006), with an 262 

independent GTR substitution model for each codon position. All phylogenetic analyses were 263 

performed on the Cipres Science Gateway (http://www.phylo.org/portal2), using the BEAST2 264 

on XSEDE (2.1 - 2.4.8) and RAxML-HPC2 on XSEDE (8.2.10) tools. 265 

 266 

Simulations 267 

We measured the power of ABGD, GMYC, (m)PTP and ASAP to retrieve the correct species 268 

partition in various scenarios using Monte Carlo simulations. We used a “multispecies 269 

coalescent” framework (Rannala & Yang, 2003) with different options and parameters using 270 

Monte-Carlo simulations, as described previously (Puillandre et al., 2012). Note that 271 

contrarily to the standard multispecies coalescent, the species tree is here drawn from a 272 

probability distribution. The home-made C simulator is available upon request. 273 

Briefly, for each replicate, we generate a species tree using either a Yule model (all lineages 274 

have the same birth rate) or a radiation model (all species arose at the same time). Radiation 275 

(hard polytomy) models cases where all speciation events follow each other quickly and 276 

where no mutations have occurred between the first (the root) and the last speciation event. 277 

We used a backward coalescent version of these models that we have previously used for 278 

ABGD evaluation (Puillandre et al., 2012). For the radiation model a unique speciation event, 279 

exponentially distributed with rate r, is drawn. For the Yule model (nsp-1) speciation events 280 

are drawn with identical rate (Lambert & Stadler, 2013). 281 

https://mptp.h-its.org/#/tree
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Once the species tree is obtained, we assign sequences to species uniformly, with at least 1 282 

sequence per species. All species (current and ancestral) are assumed to be of equal effective 283 

size (i.e. N individuals). The genealogy of the sequences is then simulated in backward time 284 

using a standard Kingman coalescent process but forbidding coalescent events between 285 

lineages from different species. Once the genealogy is obtained, a Poisson random number of 286 

mutations – with mean Lθ/2, where L is the total tree length and θ the population mutation 287 

rate – are distributed uniformly on the tree and the resulting polymorphic sites are generated. 288 

The whole simulation process is tuned by 4 parameters:  289 

- a total number of sequences n, 290 

- a number of species nsp with one or more sequences, 291 

- a speciation rate r, expressed in coalescent time (i.e. in N generations), 292 

- a mutation rate θ, expressed in coalescent scale (θ = 2 N µ), set to θ=10 for 600bp 293 

of simulated sequence. Mutations are only substitutions following a Jukes-Cantor 294 

model. 295 

ABGD and ASAP use the pairwise distance matrix as input. For ABGD, we used a prior 296 

value of 0.083 (5x10/600) that is an excellent prior representing a situation where the user has 297 

near perfect knowledge on maximal diversity within species. For GMYC and (m)PTP, we 298 

used as input the ‘true’ gene genealogy (the one simulated for the replicates) not only to 299 

fasten the simulation (i.e. skipping the phylogenetic reconstruction) but also to assess their 300 

power when the phylogeny is perfectly reconstructed. We would like to emphasize that only 301 

ASAP used unprocessed data (polymorphic sites) without any biological insights (no prior, no 302 

phylogeny reconstruction nor calibration). 303 

 304 

RESULTS 305 
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 306 

Empirical datasets 307 

We first assessed the ability of ASAP through a proxy that is its ability to retrieve the 308 

“correct” number of species in 10 empirical datasets (Table 1). The datasets were selected to 309 

represent test cases of different sizes (from 44 sequences/5 species to 2,574 sequences/643 310 

species). We first report the number of species predicted in the partition with the best asap-311 

score (ASAP 1st): we found that in 4/10 of the datasets, the partition with the best asap-score 312 

is very close to the reference one (less than 5% difference in terms of species numbers) and 313 

that 8/10 is close (less than 10% difference). If we also consider the partition with the second 314 

best asap-score (ASAP 1st and 2nd), the degree of accuracy increases to 6/10 for the very close 315 

ones and 9/10 for the close ones. This is a good indication that ASAP users should consider 316 

not only the partition with the best asap-score but also few subsequent ones. It is important to 317 

report that here no extra biological knowledge was considered for ASAP predictions. One 318 

could for example use threshold distances (e.g. dT or dC) to prefer one partition over another 319 

despite a poorer asap-score (e.g. in most clades intra-specific diversity is typically on the 320 

order of 1%, not on the order of 10%). Obviously, other criteria and characters should also be 321 

used to choose a final species partition, in an integrative taxonomy context. 322 

One of the ASAP main qualities is that it is extremely fast compared to any method that relies 323 

on tree reconstruction. The online version takes 45 seconds for the largest dataset of Table 1 324 

(2,574 aligned sequences; 643 species) for all steps of the complete method: mainly creating 325 

the distance matrix, performing the clustering and computing probabilities by Monte Carlo at 326 

each node. We observed that the CPU time increases linearly with the number of species in 327 

the datasets (Figure 2) and only to a lesser extent with the number of sequences (data not 328 

shown). We estimate the CPU cost at 0.07 sec per species for the current web version. This 329 
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suggests that most of the CPU time is taken by probability estimations of significant nodes 330 

(see method, section iii) (non-significant ones are not as costly in our implementation as we 331 

increase the number of replicates only for nodes with low probabilities). The number of 332 

significant nodes likely increases approximately linearly with the number of species. The time 333 

for distance matrix computation and clustering both increase quadratically with the number of 334 

sequences and are independent from the number of species. 335 

On a curated unpublished moth dataset, it took 6 min 35 on the website to delimit 2,466 336 

species (best asap-score) or 2,067 (second best asap-score) from 9,396 sequences. 337 

Subsequent partitions with lower asap-scores are close to one or the other of these two first 338 

partitions. Because of its rapidity, ASAP web server accepts up to 104 sequences (unlike the 339 

ABGD server). 340 

We also took the opportunity of analyzing the 10 datasets to assess the performance of other 341 

methods: ABGD which is solely based on pairwise distances, PTP and mPTP that were run on 342 

an ML trees (i.e. RaxML) and GMYC and mGMYC on an ultrametric trees estimated by a 343 

Bayesian MCMC method (i.e. BEAST). Results (Table 1) show that ABGD performance is 344 

similar to ASAP 1st-2nd, that PTP and mPTP tend to not perform very well, that GMYC 345 

performs very well provided that the number of species is not too large and that, as previously 346 

reported in the literature, mGMYC generally oversplits (Fujisawa & Barraclough, 2013; 347 

Kekkonen & Hebert, 2014). Note that ABGD performances are somehow overestimated as 348 

we report the partition that is the closest to the reference one over the whole range of P. We 349 

could not use GMYC for the largest dataset as the Bayesian tree reconstruction did not 350 

converge after several weeks of computation. 351 

 352 

Simulated datasets 353 
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We then assess the theoretical performance of ASAP using Monte-Carlo simulations of a 354 

multispecies coalescent framework. In brief, a random species tree is generated using either a 355 

Radiation model, where all species arose in single event, or a Yule model, where the 356 

speciation events occur at constant rate independently in all branches. In both model, we tune 357 

the separation of time scales (speciation versus intra-specific coalescent events) using a 358 

speciation rate that is expressed in coalescent time (i.e. N generations per unit of time). The 359 

lower the speciation rate, the better the separation of time scales. For example, when the 360 

speciation rate is 0.1, speciation events are 10 times slower than pairwise coalescent events 361 

within species. 362 

 363 

The impact of speciation rate on ASAP 364 

We first examine the ability of ASAP to correctly retrieve four species in both speciation 365 

models as a function of the speciation rate (from 0.001 to 1). We report in Figure 3 the 366 

fraction of runs where ASAP was able to correctly retrieve the four species (top panel) and 367 

the average number of predicted species, regardless of their composition (bottom panel). We 368 

assess the quality of the partition with the best asap-score (ASAP 1st) as well as the quality of 369 

the partition that is the closest to the truth among the two best partitions (ASAP 1st-2nd).  370 

We observe that for low rates of speciation, the best partition proposed by ASAP correspond 371 

exactly to the four species. This is an “easy” case where the two time scales are well 372 

separated. As the speciation rate increases, both time scales overlap and it becomes harder to 373 

delineate species using pairwise genetic differences at a single locus. When the speciation rate 374 

is larger than 1, speciation events are more recent than intra-specific divergence so that 375 

individuals within species are no more different than individuals between species. 376 
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ASAP performs usually better with the Radiation than with the Yule model. This is especially 377 

striking for moderate speciation rate (e.g. 0.03). For radiations, most of the errors correspond 378 

to oversplit, as illustrated by the average number of predicted species that is larger than four. 379 

Under the Yule model with four species, there are three independent speciation events and 380 

consequently there is a higher chance to generate at least one very recent speciation event that 381 

would be invisible in regard of sequence divergence. Indeed, the most recent event is 382 

exponentially distributed with rate 3r. As a consequence, contrarily to the radiation model, 383 

ASAP failures correspond for this rate to cases where it lumps the two closest species into a 384 

single one.  385 

 386 

The impact of the number of species on ASAP 387 

Second, we explore the impact of the number of species for a fixed sample size of 200 388 

sequences, with r=0.01, a moderately challenging speciation rate. We report the average 389 

number of predicted species regardless of their composition for both the radiation and the 390 

Yule models. Results (Figure 4) show a) that ASAP very well predicts the species under a 391 

radiation model, regardless of the number of species and b) that it only finds a fraction of 392 

them for the Yule model. Under the Yule model, the problem of finding a threshold between 393 

intra- and inter-specific distance becomes harder as the most recent speciation event is 394 

exponentially distributed with rate r.(nsp-1); the more species, the more recent the last 395 

speciation event. Furthermore, the higher the number of species the higher the chance to have 396 

a very old coalescent MRCA (Most Recent Common Ancestor) within one of the species. 397 

This old MRCA translates into a high divergence among individuals of this species, which 398 

would also obscure the threshold between intra- and inter-specific genetic divergences. 399 

 400 
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The impact of the number of species on ABGD, PTP and GMYC 401 

We apply the same analysis to ABGD, (m)PTP and GMYC. We would like to emphasize 402 

again that we assessed their power under optimal conditions: a single “excellent” prior for 403 

ABGD representing a perfect knowledge of intraspecific diversity and the “true” simulated 404 

tree for (m)PTP and GMYC, bypassing their main limitations, that is having a correctly 405 

reconstructed phylogenetic tree. As a consequence, we here overestimate their power for 406 

realistic biological situations where only a set of sequences is available (neither the true tree 407 

nor prior knowledge of intraspecific diversity is known). ASAP, on the contrary, directly uses 408 

the sequences and needs no prior biological insight or phylogenetic reconstruction. 409 

The power assessments of the methods (Figure 4) show that ABGD retrieves well the correct 410 

partition when speciation occur as a single radiation but has a limited power when speciations 411 

follow a Yule model. On the contrary, we found that GMYC performs very well for the Yule 412 

model but is less efficient for a radiation model. Interestingly mPTP consistently split a 413 

constant small number of species. It thus performs poorly when the number of species is low 414 

but quite well when the number of species is 50 or more. 415 

 416 

DISCUSSION 417 

 418 

We introduced a new species delimitation program, ASAP, fully exploratory, in the sense that 419 

it does not require any a priori knowledge, neither on the number of species, the species 420 

composition, or any biological information, such as a phylogenetic tree or a priori-defined 421 

intraspecific genetic distances. Only pairwise genetic distances are used to build a list of 422 

partitions ranked by a score. This composite score is computed using the probabilities of 423 

groups to be panmictic species and the barcode gap widths. ASAP overcomes the two mains 424 
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limitations of ABGD, namely (i) the need for an a priori defined P and (ii) the lack of a 425 

scoring system. 426 

However, and contrary to some other methods, ASAP still outputs several partitions, ranked 427 

by their asap-scores. A list of the “best” partitions (10 by default) is provided in the output 428 

together with their gap-width score, their p-value, their threshold distance dT and the number 429 

of species they correspond to. 430 

The graphical output of ASAP has four main components (Supplementary Material 2): 431 

(1) a list of partitions ranked by their asap-score that putatively correspond to species 432 

hypothesis, 433 

(2) a plot of the asap-score as a function of dC. We report the asap-score of all partitions 434 

(not only the best ones) as a function of the clustering distance dC to appreciate 435 

whether all good partitions have similar dC or whether “potentially good” partitions 436 

can drastically differ in size. 437 

(3) an ultrametric clustering tree of all sequences, where the distance to the leaves lengths 438 

correspond to the distance dC at which these sequences were clustered in the same 439 

group. All nodes of this tree are color-coded depending on their p-value (the darker 440 

the more it differs from a panmictic species). 441 

(4) a “boxed-species” graph, where species hypotheses in the different partitions are 442 

represented as vertical boxes in front of the ultrametric tree. 443 

When a partition is selected by a click in any of the three panels, it is automatically 444 

highlighted in the two other components.  445 

We also propose a complementary representation, where we display the hierarchical tree with, 446 

at its leaves, the 10 best ASAP partitions where their groups are depicted as boxes (that are 447 

similar to the boxes of Figure 1). 448 
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We have evaluated ASAP strengths and weaknesses using both real and simulated data. Our 449 

benchmark shows that ASAP performs well delivering partitions in a matter of minutes even 450 

for datasets as large as 104 sequences. ASAP is thus meant to be applied on large single-locus 451 

datasets when no species hypothesis is available, as typically produced in DNA-barcoding 452 

projects. Although the web version limits the input to 104 sequences, more sequences can be 453 

analyzed using a local command-line version of ASAP (sources are available on the 454 

webserver). 455 

The comparison with the other programs shows that ASAP and ABGD both perform well for 456 

a Radiation model, because there are no “recent” invisible speciation events. Indeed, both 457 

methods use a phenetic approach were similar sequences are simply clustered in the same 458 

group/species. On the contrary, (m)GMYC and (m)PTP that are explicitly based on a 459 

phylogenetic approach behave differently, performing quite well under a Yule model. More 460 

generally, (m)GMYC and (m)PTP are both relying on a different property to propose species 461 

hypotheses, compared to ABGD and ASAP: specimens belonging to the same species, i.e. to 462 

the same diverging lineage, share a common evolutionary history, i.e. they form a clade. 463 

Indeed, phenetic differences are calculated by simply counting the differences among 464 

sequences, whereas the phylogenetic criterion requires the reconstruction of a proper 465 

phylogenetic tree. This additional step in the (m)GMYC and (m)PTP methods potentially 466 

introduces a bias, because a) phylogenetic trees reconstructed on a single locus may differ 467 

drastically from the species tree, and b) the limited number of sites in a single marker may 468 

lead to incorrectly reconstructed trees. Consequently, (m)GMYC and (m)PTP have been 469 

shown to be sensitive to the reconstruction method (Tang, Humphreys, Fontaneto, & 470 

Barraclough, 2014). On the contrary, it could be argued that relying only on genetic distances, 471 

i.e. without testing if these differences actually correspond to distinct evolutionary histories, 472 



21 
 

and not to homoplasy, must be used with caution. Indeed, the efficiency of each method in 473 

delimiting species probably depends on various characteristics of the species and datasets 474 

(number of samples, number of species, population sizes…), and applying several methods to 475 

a given dataset is a strategy commonly applied to maximize the probability to detect species 476 

complexes, identified as groups of species whose limits vary depending on the method. 477 

Importantly, several other methods can also be used to delimit species, such as BINs 478 

(Ratnasingham & Hebert, 2013), Jmotu (Jones, Ghoorah, & Blaxter, 2011) or VSEARCH 479 

(Rognes, Flouri, Nichols, Quince, & Mahé, 2016), among others (e.g. Rannala & Yang, 480 

2020). We are also aware that the number of predicted species is only a proxy to assess the 481 

performance of the different methods. Indeed, other metrics such as the F-measure (Larsen & 482 

Aone, 1999) or the number of splits or merges (Ratnasingham & Hebert, 2013) give also 483 

insightful information. Some of them are even implemented in meta-analysis software such as 484 

LIMES (Ducasse, Ung, Lecointre, & Miralles, 2020), which could be used to perform a more 485 

extensive benchmark of all existing methods using a wider spectrum of metrics.  486 

More generally, and as advocated by the proponents of the integrative approach in taxonomy, 487 

the use of a single marker with a single method of species delimitation should be avoided, 488 

precisely because each method has its own limitations. Some methods are based on a phenetic 489 

criteria (e.g. ASAP and ABGD) while others on phylogenetic criteria (e.g. (m)GMYC and 490 

(m)PTP). Furthermore a single locus may not follow the species history, because of 491 

introgression and incomplete lineage sorting. This is particularly true for species in the grey 492 

zone, in which the gene tree may differ from the species tree, and the coalescent events may 493 

be older than the speciation events (De Queiroz, 2005). For this reason, we recommend that 494 

single-locus methods are to be used as a first step of the species delimitation process that is to 495 

propose primary species hypotheses. This is for example useful in groups for which there is 496 
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no pre-existing hypotheses to test, or for which unknown/incorrectly delimited species 497 

represent the majority of the diversity (e.g. microbial communities or hyperdiverse groups of 498 

eukaryotes, such as insects, spiders, nematodes, mollusks…). Furthermore, DNA barcodes are 499 

now routinely produced using NGS approaches, providing large numbers of sequences often 500 

not assignable to known and sequenced species (Kennedy et al., 2020), and for which 501 

methods such as ASAP are welcome to e.g. compare species diversity among sites. 502 

In a second step it is then the responsibility of the taxonomist to evaluate with other methods 503 

(in particular, methods that will evaluate alternative partitions of species) and/or lines of 504 

evidence (such as other genetic markers, morphology or ecology) whether the proposed 505 

hypotheses are robust, or not. In this context, methods such as ASAP, ABGD, (m)PTP and 506 

(m)GMYC should thus be seen as a formalized and reproducible way to propose species 507 

hypotheses in groups where no such hypotheses exist, or, if they do exist, that are better to be 508 

ignored. 509 
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TABLES 715 
 716 
Table 1. Results of the analyses of the empirical datasets. 717 
 718 

Dataset Reference #seq #spec ASAP
1st 

ASAP
1st-2nd ABGD PTP mPTP GMYC mGM

YC 

Benthomangelia Puillandre et al. 2009 44 5 2/4/5 5 5 6 5 5 11 

Gemmuloborsonia Puillandre et al. 2010 80 5 5 5 5 5 5 5 8 

Lophiotoma Puillandre et al. 2017 276 10 9 10 9 17 13 10 12 

Eumunida Puillandre et al. 2011 127 16 16 16 16 18 16 16 24 

Amphibians Smith et al. 2008 339 39 20 37 38 44 33 38 49 

Cladocera 
Elias-Gutierrez et al. 
2008 355 58 54 54 53 60 54 67 89 

Mammals Borisenko et al. 2008 521 73 66 66 76 73 55 80 95 

Turridae Puillandre et al. 2012 1,000 87 81 88 87 103 69 95 115 

Sphingidae Hajibabaei et al. 2006 989 107 107 107 98 135 105 140 159 

Birds Kerr et al. 2007 2,574 643 527 529 601 634 475 n.a. n.a. 

 719 
Each line represents a dataset which numbers of sequences (#seq) and species (#spec) are 720 
reported in the provided reference. We compare the “true” number of species to the 721 
predictions made by the partition ranked first by ASAP (ASAP 1st), by the “best” partition 722 
among the two first predicted by ASAP (ASAP 1st-2nd), the “best” partition by ABGD and the 723 
unique partition predicted by PTP, mPTP, GMYC and mGMYC. There is no partition for 724 
Birds by GMYC and mGMYC as we were not able to obtain a Bayesian tree given the large 725 
number of sequences. Cells were colored in dark grey when predictions were very accurate (at 726 
most 5% different from the referenced number of species) and with light grey when accurate 727 
(between 5% and 10%). 728 
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FIGURE CAPTION 729 
 730 
Figure 1. An illustration of the clustering algorithm on a small dataset of nine sequences. 731 
On the lower part, we report how ASAP proceeds (downward in the figure) through the list of 732 
ranked distances (on the left), merging successively sequences into groups (highlighted in 733 
colored blocks). For each new group, ASAP computes a p-value that this new group is a 734 
panmictic species (values reported on the right part) based on pairwise differences within 735 
(intra) and between (inter) subgroups. Furthermore, each time a new group is created, a new 736 
partition is built (a sequence of blocks in the central part) that is associated to the current 737 
distance dC. The distances dC at which the partitions are instantiated are represented in a 738 
phenetic tree (top part). Each node is a group, each horizontal dashed line is a partition. For 739 
each newly created partition, ASAP also computes a probability of panmixia (p-val) and a 740 
relative gap width metrics (W). Then using their respective ranks (given in parenthesis), 741 
ASAP computes an ad-hoc ASAP-score: the lower the score, the better the partition. 742 
 743 
Figure 2. The computation time of ASAP as a function of the number of species. 744 
Illustrating the linear relationship, we estimate that on the current webserver, computation 745 
time is seconds 0.07 seconds per species. 746 
 747 
Figure 3. Performance of ASAP as a function of the speciation rate. For two alternative 748 
models of speciation (Radiation and Yule), we report the fraction of replicates where ASAP 749 
find the four correct species (top panels). We considered either only the partition with the best 750 
asap-score (ASAP-1) or the partitions ranked first and second (ASAP-1/2). Obviously, the 751 
later has better performance. We also report the average number of predicted species, 752 
regardless they are correct or not (bottom panels). Each point is evaluated on 500 replicates.  753 
 754 
Figure 4. Power of ASAP, ABGD, PTP and GMYC to predict the correct number of 755 
species among 200 sequences. We vary the number of true species from 4 to 60 in the 756 
Radiation and in the Yule model. Each point is an average of 500 replicates and vertical error 757 
bars mark the standard deviation. 758 
 759 
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Supplementary Material 1: Computation of the relative barcode gap width. 760 
 761 
 762 
Supplementary Material 2: Graphical output of ASAP. 763 
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0.0058 0.81 (4) 0.32 (5) 4.5
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1 2 3 4 5 6 7 8 9 10 ...ranks:

rH = 6

dH > 1.1 dT
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