
HAL Id: hal-03039546
https://hal.science/hal-03039546

Submitted on 16 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LOCATER: Cleaning WiFi Connectivity Datasets for
Semantic Localization

Yiming Lin, Daokun Jiang, Roberto Yus, Georgios Bouloukakis, Andrew
Chio, Sharad Mehrotra, Nalini Venkatasubramanian

To cite this version:
Yiming Lin, Daokun Jiang, Roberto Yus, Georgios Bouloukakis, Andrew Chio, et al.. LOCATER:
Cleaning WiFi Connectivity Datasets for Semantic Localization. Proceedings of the VLDB Endow-
ment (PVLDB), 2020, 14 (3), �10.5555/3430915.3442432�. �hal-03039546�

https://hal.science/hal-03039546
https://hal.archives-ouvertes.fr


LOCATER: Cleaning WiFi Connectivity Datasets for Semantic
Localization

Yiming Lin, Daokun Jiang, Roberto Yus, Georgios Bouloukakis,

Andrew Chio, Sharad Mehrotra, Nalini Venkatasubramanian

University of California, Irvine, USA.

{yiminl18,daokunj,ryuspeir,achio,gboulouk}@uci.edu, {sharad,nalini}@ics.uci.edu

ABSTRACT
This paper explores the data cleaning challenges that arise in using

WiFi connectivity data to locate users to semantic indoor locations

such as buildings, regions, rooms. WiFi connectivity data consists

of sporadic connections between devices and nearby WiFi access

points (APs), each of which may cover a relatively large area within

a building. Our system, entitled semantic LOCATion cleanER (LO-

CATER), postulates semantic localization as a series of data cleaning

tasks - first, it treats the problem of determining the AP to which a

device is connected between any two of its connection events as a

missing value detection and repair problem. It then associates the

device with the semantic subregion (e.g., a conference room in the

region) by postulating it as a location disambiguation problem. LO-

CATER uses a bootstrapping semi-supervised learning method for

coarse localization and a probabilistic method to achieve finer local-

ization. The paper shows that LOCATER can achieve significantly

high accuracy at both the coarse and fine levels.
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1 INTRODUCTION
This paper studies the challenge of cleaning connectivity data col-

lected byWiFi infrastructures to support semantic localization inside
buildings. By semantic localization we refer to the problem of as-
sociating a person’s location to a semantically meaningful
spatial extent such as a floor, region, or a room.

Semantic localization differs from (and complements) the well-

studied problem of indoor positioning/localization [11, 40] that

aims to determine the exact physical position of people inside

buildings (e.g., coordinate (x,y) within radius r, with z% certainty). If

indoor positioning/physical localization could be solved accurately,

it would be simple to exploit knowledge about the building’s floor
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plan and layout to determine the semantic location of the device.

However, despite over two decades of work in the area [11, 33, 62],

and significant technological progress, accurate indoor positioning

remains an open problem [62]. Among others, the reasons for this

include technology limitations such as costs associated with the

required hardware/software [34, 42, 54, 60], the intrusive nature and

inconvenience of these solutions for users [11, 26, 40] (who require

specialized hardware/software), and algorithmic limitations to deal

with dynamic situations such as occlusions, signal attenuation,

interference [31, 38, 52]. As a result, applications that depend upon

accurate positioning and those that could benefit from semantic

localization have faced challenges in effectively utilizing indoor

localization technologies.

While indoor localization methods have targeted applications

such as indoor navigation and augmented reality that require highly

accurate positioning, semantic localization suffices for a broad

class of smart space applications such as determining occupancy

of rooms, thermal control based on occupancy [2], determining

density of people in a space and areas/regions of high traffic in

buildings —applications that have recently gained significance for

COVID-19 prevention and monitoring in workplaces [19, 50], or

locating individuals inside large buildings [22, 38]. Despite the util-

ity of semantic localization, to the best of our knowledge, semantic

localization has never before been studied as a problem in itself.
1

This paper proposes a location cleaning system, entitled LO-
CATER to address the problem of semantic localization. LOCATER

can be viewed as a system, the input to which is a log of coarse/

inaccurate/incomplete physical locations of people inside the build-

ing (that could be the result of any indoor positioning/localization

strategy or even the raw logs collected by WiFi APs) and the output

of which is a clean version of such a log with the semantically mean-

ingful geographical location of the device in the building – viz., a

floor, a region, or, at the fine-granularity, a room. Current solutions

determine the physical location of a device and use simple heuris-

tics (e.g., largest overlap with the predicted region) for room-level

localization. In contrast, LOCATER postulates associating a device

to a semantic location as a data cleaning challenge and exploits the

inherent semantics in the sensor data capturing the building usage

to make accurate assessments of device locations. LOCATER, we

believe, is the first such system to study semantic localization as a

problem in its own right.

1
Prior papers on indoor localization [23, 24] have evaluated their positioning tech-

niques by measuring the accuracy at which devices can be located physically in-

side/outside a room. Such work has neither formulated nor addressed the semantic

localization challenge explicitly. Instead, naive strategies such as degree of spatial

overlap/random selection of an overlapping room out of the several choices are used

for their experimental study.
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Figure 1: Motivating Example.

While LOCATER could be used alongside any indoor position-

ing/localization solutions
2
, we built LOCATER using a localiza-

tion scheme that uses connectivity events between devices and

the WiFi hardware (viz., access points –APs–) that constitute the

WiFi infrastructure of any organization. Such connectivity events,

generated in the network when devices connect to an AP, can be

collected in real-time using a widely used SNMP (Simple Network

Management Protocol), a more recent NETCONF [14], network

management protocol, or from network Syslog [16] containing AP

events. Connectivity events consist of observations in the form of

⟨mac address, time stamp, wap⟩ which correspond to the MAC

of the WiFi-enabled connected device, the timestamp when the

connection occurred and the WiFi AP (wap) to which the device is

connected. Since APs are at fixed locations, connectivity events can

be used to locate a device to be in the region covered by the AP. In

Figure 1(b) an event 𝑒1 can lead to the observation that the owner

of the the device with mac address 7bfh... was located in the region

covered by wap3 (which includes rooms 2059, 2061, 2065, 2066,
2068, 2069, 2072, 2074, 2076, and 2099, in Figure 1(a)) at 13:04:35.

Using WiFi infrastructure for coarse location, as we do in LO-

CATER, offers several distinct benefits. First, since it is ubiquitous in

modern buildings, using the infrastructure for semantic localization

does not incur any additional hardware costs either to users or to

the built infrastructure owner. Such would be the case if we were to

retrofit buildings with technologies such as RFID, ultra wideband

(UWB), bluetooth, camera, etc. [33]. Besides being (almost) zero

cost, another artifact of ubiquity of WiFi networks is that such a

solution has wide applicability to all types of buildings - airports,

residences, office spaces, university campuses, government build-

ings, etc. Another key advantage is that localization using WiFi

connectivity can be performed passively without requiring users to

either install new applications on their smartphones, or to actively

participate in the localization process.

Challenges in exploiting WiFi connectivity data. While WiFi

connectivity datasets offer several benefits, they offer coarse local-

ization – e.g., in a typical office building, a AP may cover a relatively

large region consisting of dozens of rooms, and as such, connec-

tivity information does not suffice to build applications that need

semantic localization. Using WiFi connectivity data for semantic

localization, raises the following technical challenges:

• Missing value detection and repair. Devices might get discon-

nected from the network even when the users carrying them are

still within the space. Depending on the specific device, connectiv-

ity events might occur only sporadically and at different periodicity,

2
See related work for strengths/weaknesses of such technologies.

making prediction more complex. These lead to a missing values
challenge. As an example, in Figure 1(c) we have raw connectiv-

ity data for device 7fbh at time 13:04:35 and 13:18:11. Location
information between these two consecutive time stamps is missing.

• Location disambiguation.APs cover large regions within a build-
ing that might involve multiple rooms and hence simply knowing

which AP a device is connected to may not offer room-level local-

ization. For example, in Figure 1, the device 3ndb connects to wap2,
which covers rooms: 2004, 2057, 2059,..., 2068. These values are dirty
for room-level localization. Such a challenge can be viewed as a

location disambiguation challenge.

•Scalability. The volume of WiFi data can be very large - for

instance, in our campus, with over 200 buildings and 2,000 plus

APs, we generate several million WiFi connectivity tuples in one

day on average. Thus, data cleaning technique needs to be able to

scale to large data sets.

To address the above challenges, LOCATER uses an iterative

classification method that leverages temporal features in the WiFi

connectivity data to repair the missing values. Then, spatial and

temporal relationships between entities are used in a probabilistic

model to disambiguate the possible rooms in which the device may

be. LOCATER cleans the WiFi connectivity data in a dynamic set-

ting where we clean objects on demand in the context of queries. In

addition, LOCATER caches cleaning results of past queries to speed

up the system. Specifically, we make the following contributions:

(1) We propose a novel approach to semantic indoor localization by

formalizing the challenge as a combination of missing value clean-

ing and disambiguation problems (Section 2) (2) We propose an

iterative classification method to resolve the missing value problem

(Section 3) and a novel probability-based approach to disambiguate

room locations without using labeled data (Section 4) (3) We de-

sign an efficient caching technique to enable LOCATER to answer

queries in near real-time (Section 5) (4) We validate our approach

in a real world testbed and deployment. Experimental results show

that LOCATER achieves high accuracy and good scalability on both

real and simulated data sets (Section 6).

2 SEMANTIC LOCALIZATION PROBLEM
The problem of semantic localization consists of associating for

each device its location at any instance of time at a given level of

spatial granularity.

2.1 Space Model
LOCATER models space at three levels of spatial granularity

3
:

3
The technique can be easily adapted to other spatial models conforming to the nature

of the underlying space.
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Table 1: Model variables and shorthand notation.
Variable(s) Definition/Description

𝐵 = {𝐵1, .., 𝐵𝑛 , 𝑏𝑜𝑢𝑡 }; 𝑔𝑗 ∈ 𝐺 ;

𝑟 𝑗 ∈ 𝑅
buildings; regions; rooms

𝑅 (𝑔𝑗 ) set of rooms in region 𝑔𝑗

𝑤𝑎𝑝 𝑗 ∈𝑊𝐴𝑃 ; 𝑑𝑖 ∈ 𝐷 WiFi APs; devices

𝛿 (𝑑𝑖 ) ; 𝑔𝑎𝑝𝑡𝑠 ,𝑡𝑒 (𝑑𝑖 ) time interval validity of 𝑑𝑖 ; gap associated to 𝑑𝑖 in

[𝑡𝑠 , 𝑡𝑒 ]
𝑙𝑖 ∈ 𝐿 semantic location relation

Building: The coarsest building granularity 𝐵 takes the values 𝐵 =

𝐵1, ..𝐵𝑛, 𝑏𝑜𝑢𝑡 , where 𝐵𝑖 = 1...𝑛 represents the set of buildings and

𝑏𝑜𝑢𝑡 represents the fact that the device is not in any of the buildings.

We call a device inside a building as online device and outside as

offline device.
Region: Each building 𝐵𝑖 contains a set of regions 𝐺 = {𝑔 𝑗 : 𝑗 ∈
[1...|𝐺 |]}4. We consider a region 𝑔 𝑗 to be the area covered by the

network connectivity of a specific WiFi AP [48] (represented with

dotted lines in Figure 1(a)). Let𝑊𝐴𝑃 = {𝑤𝑎𝑝 𝑗 : 𝑗 ∈ [1...|𝑊𝐴𝑃 |]}
be the set of APs within the building. Hence, |𝐺 | = |𝑊𝐴𝑃 | and each
𝑤𝑎𝑝 𝑗 is related to one and only one 𝑔 𝑗 . Interchangeably, we denote

by 𝐶𝑜𝑣 (𝑤𝑎𝑝 𝑗 ) as the region covered by𝑤𝑎𝑝 𝑗 . In Figure 1(a), there

exist four APs𝑤𝑎𝑝1, ...,𝑤𝑎𝑝4 and thus there exist four regions such

that 𝐺 = {𝑔1, 𝑔2, 𝑔3, 𝑔4}. Regions can/often do overlap.

Room: A building contains a set of rooms 𝑅 = {𝑟 𝑗 : [1...|𝑅 |]}
where 𝑟 𝑗 represents the ID of a room within the building – e.g.,

𝑟1 → 2065. Furthermore, a region 𝑔𝑖 contains a subset of 𝑅 . Let

𝑅 (𝑔𝑖 ) = {𝑟 𝑗 : [1...|𝑅 (𝑔𝑖 ) |]} be the set of rooms covered by region 𝑔𝑖 .

Since regions can overlap, a specific room can be part of different

regions if its extent intersects with multiple regions. For instance,

in Figure 1(a) room 2059 belongs to both regions 𝑔2 and 𝑔3.

We consider that rooms in a building have metadata associated.

In particular, we classify rooms into two types: (i) public: shared
facilities such as meeting rooms, lounges, kitchens, food courts,

etc., that are accessible to multiple users (denoted by 𝑅𝑝𝑏 ⊆ 𝑅);

and (ii) private: rooms typically restricted to or owned by certain

users such as a person’s office (denoted by 𝑅𝑝𝑟 ⊆ 𝑅 such that

𝑅 = 𝑅𝑝𝑏 ∪ 𝑅𝑝𝑟 ).

2.2 WiFi Connectivity Data
Let 𝐷 = {𝑑 𝑗 : 𝑗 ∈ [1...|𝐷 |]} be the set of devices and 𝑇𝑆 = {𝑡 𝑗 : 𝑗 ∈
[1...|𝑇𝑆 |]} the set of time stamps.

5
Let 𝐸 = {𝑒𝑖 : 𝑖 ∈ [1...|𝐸 |]} be the

WiFi connectivity events table with attributes {𝑒𝑖𝑑, 𝑑𝑒𝑣, 𝑡𝑖𝑚𝑒,𝑤}
corresponding to the event id, device id (𝑑𝑒𝑣 ∈ 𝐷), the time stamp

when it occurred (𝑡𝑖𝑚𝑒 ∈ 𝑇𝑆), and the WiFi AP that generated the

event (𝑤 ∈𝑊𝐴𝑃 ). (As shown in Figure 1(b)) For each tuple 𝑒𝑖 ∈ 𝐸,
we will refer to each attribute (e.g., 𝑑𝑒𝑣) as 𝑒𝑖 .𝑑𝑒𝑣 .

6

Connectivity events occur stochastically even when devices are

stationary and/or the signal strength is stable. Events are typically

generated when (i) a device connects to a WiFi AP for the first time,

(ii) the OS of the device decides to probe available WiFi APs around,

or (iii) when the device changes its status. Hence, connectivity

logs do not contain an event for every instance of time a device

is connected to the WiFi AP or located in a space. Because of the

4
We drop the parameter from𝐺 (𝐵𝑖 ) and simply refer to it as𝐺 since we are dealing

with inside a given building.

5
The granularity of 𝑡 𝑗 can be set on various scenarios.

6
We use the device’s unique MAC address to represent it.
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Figure 2: Connectivity events of device 𝑑𝑖 and their validity.

sporadic nature of connectivity events, we associate to each event a

validity period denoted by 𝛿 . The value of 𝛿 depends on the actual

device 𝑑𝑖 (in the extended version of the paper [32] we show how

to estimate 𝛿) and is denoted by 𝛿 (𝑑𝑖 ) (see Figure 2 for some sample

connectivity events of device 𝑑𝑖 ). Let the Valid Interval for an event

𝑒𝑖 be 𝑉 𝐼𝑖 = {𝑉 𝐼𝑖 .𝑠𝑡,𝑉 𝐼𝑖 .𝑒𝑡}, where 𝑉 𝐼𝑖 .𝑠𝑡 (𝑉 𝐼𝑖 .𝑒𝑡 ) is the start (end)
time stamp of this interval. Considering the connectivity events

of device 𝑑𝑖 , the valid interval for event 𝑒𝑖 can be considered in

three ways. 1) If the subsequent (previous) event 𝑒 𝑗 of the same

device happens after (before) 𝑒𝑖 .𝑡𝑖𝑚𝑒+𝛿 (𝑒𝑖 .𝑑𝑒𝑣) (𝑒𝑖 .𝑡𝑖𝑚𝑒−𝛿 (𝑒𝑖 .𝑑𝑒𝑣)),
then𝑉 𝐼𝑖 .𝑒𝑡 = 𝑒𝑖 .𝑡𝑖𝑚𝑒 +𝛿 (𝑒𝑖 .𝑑𝑒𝑣) (𝑉 𝐼𝑖 .𝑠𝑡 = 𝑒𝑖 .𝑡𝑖𝑚𝑒 −𝛿 (𝑒𝑖 .𝑑𝑒𝑣)); (e.g.,
event 𝑒0 in Figure 2) 2) Otherwise, if the subsequent (previous) event

𝑒 𝑗 happens close to 𝑒𝑖 (|𝑒𝑖 .𝑡𝑖𝑚𝑒 − 𝑒 𝑗 .𝑡𝑖𝑚𝑒 | < 𝛿 (𝑒𝑖 .𝑑𝑒𝑣)), 𝑉 𝐼𝑖 .𝑒𝑡 =

𝑒 𝑗 .𝑡𝑖𝑚𝑒 (𝑉 𝐼𝑖 .𝑠𝑡 = 𝑒𝑖 .𝑡𝑖𝑚𝑒). (e.g., 𝑒1 is valid in (𝑡1 − 𝛿 (𝑑𝑖 ), 𝑡2), and
𝑒2 is valid in (𝑡2, 𝑡2 + 𝛿 (𝑑𝑖 )) in Figure 2). While we assume that an

event is valid for 𝛿 period, there can be portions of time in which no

connectivity event is valid in the log for a specific device. We refer

to such time periods as gaps. Let 𝑔𝑎𝑝𝑡𝑠 ,𝑡𝑒 (𝑑𝑖 ) be the gap of device

𝑑𝑖 that starts at 𝑡𝑠 and ends at 𝑡𝑒 time stamp. In Fig 2, 𝑔𝑎𝑝𝑡0,𝑡1 (𝑑𝑖 )
represents a gap of 𝑑𝑖 whose time interval is [𝑡0, 𝑡1].

2.3 Semantic Location Table
The semantic localization challenge (i.e., determining the location

of device 𝑑𝑖 at any time 𝑡 𝑗 at a given spatial granularity) can be

viewed as equivalent to creating a Semantic Location Table, 𝐿 =

{𝑙𝑖 : 𝑖 ∈ [1...|𝐿 |]}, with the attributes {𝑙𝑖𝑑, 𝑑𝑒𝑣, 𝑙𝑜𝑐, 𝑠𝑡, 𝑒𝑡} such that

the device 𝑑𝑒𝑣 is in the location 𝑙𝑜𝑐 from time 𝑠𝑡 to 𝑒𝑡 . The table 𝐿

is such that for any device 𝑑𝑒𝑣 and any time 𝑡 , there exists a tuple

in 𝐿 such that 𝑠𝑡 ≤ 𝑡 ≤ 𝑒𝑡 , (i.e., the table covers the location of each

device at all times under consideration).

We can form the table 𝐿 from the event table 𝐸 as follows: for

each event 𝑒𝑖 ∈ 𝐸 we create a corresponding tuple 𝑙 𝑗 ∈ 𝐿, where
𝑙 𝑗 .𝑑𝑒𝑣 = 𝑒𝑖 .𝑑𝑒𝑣 , 𝑙 𝑗 .𝑙𝑜𝑐 = 𝐶𝑜𝑣 (𝑒𝑖 .𝑤), and its start and end times

correspond to the validity interval of the event 𝑒𝑖 , i.e., 𝑙 𝑗 .𝑠𝑡 = 𝑉 𝐼𝑖 .𝑠𝑡

and 𝑙 𝑗 .𝑒𝑡 = 𝑉 𝐼𝑖 .𝑒𝑡 . We further insert a tuple 𝑙 𝑗 corresponding to

each gap in the event table 𝐸. For each gap 𝑔𝑎𝑝𝑡𝑠 ,𝑡𝑒 (𝑑𝑖 ), we generate
a tuple 𝑙 𝑗 ∈ 𝐿 such that 𝑑𝑒𝑣 𝑗 = 𝑑𝑖 , 𝑠𝑡 𝑗 = 𝑡𝑠 , 𝑒𝑡 𝑗 = 𝑡𝑒 , 𝑙𝑜𝑐 𝑗 = NULL.
Furthermore, let 𝐿𝑐 = {𝑙𝑖 : 𝑙𝑜𝑐𝑖 ≠ NULL} be the set of tuples whose
location is not NULL, and 𝐿𝑑 = 𝐿 \ 𝐿𝑐 be the set of tuples whose
location is NULL. We further define 𝐿(𝑑 𝑗 ) = {𝑙𝑖 : 𝑑𝑒𝑣𝑖 = 𝑑 𝑗 } as the
set of tuples of device 𝑑 𝑗 and 𝐿𝑇 be the set of tuples of device 𝑑𝑖
happening in time period 𝑇 .

In Fig 1(c), we transform rawWiFi connectivity data to a semantic

location table. In this example, we assume 𝛿 = 1 minute for all

devices. 𝑒1 in Fig 1(b) corresponds to 𝑙1 in Fig 1(c), where time

stamp is expanded to a valid interval, and the gap between 𝑒1 and

𝑒5 in Fig 1(b) corresponds to the tuple 𝑙2 in Fig 1(c).

2.4 Data Cleaning Challenges
The table 𝐿, which captures semantic location of individuals, con-

tains two data cleaning challenges corresponding to coarse and

fine-grained localization.
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Coarse-Grained Localization:Given a tuple 𝑙𝑖 with 𝑙𝑖 .𝑙𝑜𝑐 = NULL,
consists of imputing the missing location value to a coarse-level

location by replacing it by either 𝑙𝑖 .𝑙𝑜𝑐 = 𝑏𝑜𝑢𝑡 or 𝑙𝑖 .𝑙𝑜𝑐 = 𝑔 𝑗 (for

some region 𝑔 𝑗 in building 𝐵𝑘 ). □
Fine-Grained Localization: Given a tuple 𝑙𝑖 with 𝑙𝑖 .𝑙𝑜𝑐 = 𝑔 𝑗 , con-

sists of determining the room 𝑟𝑘 ∈ 𝑅(𝑔 𝑗 ) the device 𝑙𝑖 .𝑑𝑒𝑣 is located
in and updating 𝑙𝑖 .𝑙𝑜𝑐 = 𝑟𝑘 . □

We can choose to clean the entire relation 𝐿 or clean it on demand

at query time. In practice applications do not require knowing the

fine-grained location of all the users at all times. Instead, they pose

point queries, denoted by Query = (𝑑𝑖 , 𝑡𝑞), requesting the location

of device 𝑑𝑖 at time 𝑡𝑞 . Hence, we will focus on cleaning the location

of the tuple of interest at query time.
7
Thus, given a query (𝑑𝑖 , 𝑡𝑞),

LOCATER first determines the tuple in 𝐿 for the device 𝑑𝑖 that

covers the time 𝑡𝑞 . If the location specified in the tuple is NULL, the
coarse-level localization algorithm is executed to determine first the

region in which the device is expected to be. If fine-grained location

is required, the fine-grained localization algorithm is executed to

disambiguate amongst the rooms in the region.

3 COARSE-GRAINED LOCALIZATION
LOCATER uses an iterative classification algorithm combined with

bootstrapping techniques to fill in the missing location of a tuple 𝑙𝑚
with 𝑙𝑚 .𝑙𝑜𝑐 = NULL for device 𝑙𝑚 .𝑑𝑒𝑣 (in the following wewill refer

to such tuple as a dirty tuple). For simplicity, we use 𝑑𝑒𝑣𝑖 , 𝑠𝑡𝑖 , 𝑒𝑡𝑖
and 𝑙𝑜𝑐𝑖 to denote 𝑙𝑖 .𝑑𝑒𝑣, 𝑙𝑖 .𝑠𝑡 , 𝑙𝑖 .𝑒𝑡 , 𝑙𝑖 .𝑙𝑜𝑐 , respectively.

The algorithm takes as input, 𝐿𝑇 (𝑑𝑒𝑣𝑚), a set of historical tuples
of device 𝑑𝑒𝑣𝑚 in time period 𝑇 consisting of 𝑁 past days before

query time, where 𝑁 is a parameter set experimentally (see Sec-

tion 6). For a tuple 𝑙𝑖 , let 𝑠𝑡𝑖 .𝑡𝑖𝑚𝑒 (𝑠𝑡𝑖 .𝑑𝑎𝑡𝑒) be the time (date) part of

the start timestamp, similarly for 𝑒𝑑𝑖 .𝑡𝑖𝑚𝑒 (𝑒𝑑𝑖 .𝑑𝑎𝑡𝑒). Likewise, let

𝑠𝑡𝑖 .𝑑𝑎𝑦 (and 𝑒𝑡𝑖 .𝑑𝑎𝑦) refer to the day of the week.
8
We define the

following features for each tuple 𝑙𝑖 ∈ 𝐿𝑇 (𝑑𝑒𝑣𝑖 ):
• 𝑠𝑡𝑖 .𝑡𝑖𝑚𝑒 , 𝑒𝑡𝑖 .𝑡𝑖𝑚𝑒: the start and end time of tuple 𝑙 𝑗 .

• duration 𝛿 (𝑙 𝑗 ): the duration of the tuple (i.e., 𝑒𝑡𝑖 .𝑡𝑖𝑚𝑒 −𝑠𝑡𝑖 .𝑡𝑖𝑚𝑒).

• 𝑠𝑡𝑖 .𝑑𝑎𝑦 (𝑒𝑡𝑖 .𝑑𝑎𝑦): the day of the week in which tuple 𝑙 𝑗 occurred

(ended).

• 𝑙𝑜𝑐𝑖−1, 𝑙𝑜𝑐𝑖+1: the associated region at the start and end time of

the tuple.

• connection density𝜔 : the average number of logged connectivity

events (clean tuples) for the device 𝑑𝑒𝑣𝑖 during the same time

period of 𝑙𝑖 for each day in 𝑇 .

The iterative classification method trains two logistic regression

classifiers based on such vectors to label gaps as: 1) Inside/outside

and 2) Within a specific region, if inside.

Bootstrapping. The bootstrapping process labels a dirty tuple as

inside or outside the building by using heuristics that take into

consideration the duration of the dirty tuple (short duration inside

and long duration outside). We set two thresholds, 𝜏𝑙 and 𝜏ℎ , such

that a tuple is labeled as 𝑏𝑖𝑛 if 𝛿 (𝑙 𝑗 ) ≤ 𝜏𝑙 and as 𝑏𝑜𝑢𝑡 if 𝛿 (𝑙 𝑗 ) ≥ 𝜏ℎ

7
Notice that we could use query-time cleaning to clean the entire relation 𝐿 by itera-

tively cleaning each tuple, though if the goal is to clean the entire table better/more

efficient approaches would be feasible. Such an approach, however, differs from our

focus on real-time queries over collected data. Similar query-time approaches have

been considered recently in the context of online data cleaning [3, 18].

8
We assume that gaps do not span multiple days.

Algorithm 1: Iterative classification algorithm.

Input: S𝑙𝑎𝑏𝑒𝑙𝑒𝑑 , S𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑
1 while S𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 is not empty do
2 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 ← TrainClassifier(S𝑙𝑎𝑏𝑒𝑙𝑒𝑑 );
3 𝑚𝑎𝑥_𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 ← −1, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑡𝑢𝑝𝑙𝑒 ← 𝑁𝑈𝐿𝐿;

4 for 𝑡𝑢𝑝𝑙𝑒 ∈ S𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 do
5 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑎𝑟𝑟𝑎𝑦, 𝑙𝑎𝑏𝑒𝑙 ← 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 (𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟, 𝑡𝑢𝑝𝑙𝑒) ;
6 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 ← 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑎𝑟𝑟𝑎𝑦) ;
7 if 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 >𝑚𝑎𝑥_𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 then
8 𝑚𝑎𝑥_𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 ← 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 ;

9 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑡𝑢𝑝𝑙𝑒 ← 𝑡𝑢𝑝𝑙𝑒 ;

10 S𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 ← S𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 − 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑡𝑢𝑝𝑙𝑒 ;

11 S𝑙𝑎𝑏𝑒𝑙𝑒𝑑 ← S𝑙𝑎𝑏𝑒𝑙𝑒𝑑 + (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑡𝑢𝑝𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙) ;
12 return 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 ;

(we show two methods to compute 𝜏𝑙 and 𝜏ℎ in Section 9). If the

duration of a tuple is between 𝜏𝑙 and 𝜏ℎ , then we cannot label it as

either inside/outside using the above heuristic. Such dirty tuples are

marked as unlabeled. We partition the set of dirty tuples of device

𝑑𝑖 , 𝐿
𝑑
𝑇
(𝑑𝑒𝑣𝑚), into two subsets – S𝑙𝑎𝑏𝑒𝑙𝑒𝑑 , S𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 . For tuples in

S𝑙𝑎𝑏𝑒𝑙𝑒𝑑 that are classified as inside of the building, to further label

them with a region at which the device is located, the heuristic

takes into account the start and end region of the gap as follows:

• If 𝑙𝑜𝑐 𝑗−1 = 𝑙𝑜𝑐 𝑗+1, then the assigned label is 𝑙𝑜𝑐 𝑗−1 (i.e., if the
regions at the start and end of the tuple are the same, the device

is considered to be in the region for the entire duration).

• Otherwise, we assign as label a region 𝑔𝑘 which corresponds

to the most visited region of 𝑑𝑒𝑣 𝑗 in connectivity events that

overlap with the dirty tuple (i.e., whose connection time is

between 𝑠𝑡 𝑗 .𝑡𝑖𝑚𝑒 and 𝑒𝑡 𝑗 .𝑡𝑖𝑚𝑒).

Iterative Classification.We use iterative classification to label the

remaining (unlabeled) dirty tuples S𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 , as described in Algo-

rithm 1. For each device 𝑑𝑖 , we learn logistic regression classifiers

on S𝑙𝑎𝑏𝑒𝑙𝑒𝑑 (function TrainClassifier(S𝑙𝑎𝑏𝑒𝑙𝑒𝑑 ) in Algorithm 1),

which are then used to classify the unlabeled dirty tuples associated

with the device.
9

Algorithm 1 is firstly executed at building level to learn a model

to classify if an unlabeled dirty tuple is inside/outside the build-

ing. To this end, let L be the set of possible training labels - i.e.,

inside/outside the building. The method Predict(𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟, 𝑔𝑎𝑝),
returns an array of numbers from 0 to 1, where each number repre-

sents the probability of the dirty tuple being assigned to a label in

L (all numbers in the array sum up to 1), and the label with highest

probability in the array. In the array returned by Predict, a larger
variance means that the probability of assigning a certain label to

this dirty tuple is higher than other dirty tuples. Thus, we use the

variance of the array as the confidence value of each prediction. In

each outer iteration of the loop (lines 1-11), as a first step, a logis-

tic regression classifier is trained on S𝑙𝑎𝑏𝑒𝑙𝑒𝑑 . Then, it is applied
to all tuples in S𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 . For each iteration, the dirty tuple with

the highest prediction confidence is removed from S𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 and

added to S𝑙𝑎𝑏𝑒𝑙𝑒𝑑 along with its predicted label. This algorithm

9
We assume that connectivity events exist for the device in the historical data con-

sidered, as is the case with our data set. If data for the device does not exist, e.g., if a

person enters the building for the first time, then, we can label such devices based on

aggregated location, e.g., most common label for other devices.
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terminates when S𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 is empty and the classifier trained in

the last round will be returned. The same process is followed to

learn a model at the region level for dirty tuples labeled as inside

the building. In this case, when executing the algorithm L contains

the set regions in the building (i.e., 𝐺). The output is a classifier

that labels a dirty tuple with the region where the device is located.

Given the two trained classifiers, for a dirty tuple 𝑙𝑚 , we first

use the inside/outside classifier to classify 𝑙𝑚 as inside or outside

of the building. If the tuple 𝑙𝑚 is classified as outside, then 𝑙𝑜𝑐𝑚 =

𝑏𝑜𝑢𝑡 . Otherwise, we further classify the tuple 𝑙𝑚 using the region

classifier to obtain its associated region. Then, the device will be

located in such region and LOCATER will perform the room-level

fine-grained localization as we will explain in the following section.

4 FINE-GRAINED LOCALIZATION
Given a query 𝑄 = (𝑑𝑖 , 𝑡𝑞) and the associated tuple 𝑙𝑚 whose lo-

cation has been cleaned by the coarse-level localization algorithm,

this step determines the specific room 𝑟 𝑗 ∈ 𝑅(𝑙𝑚 .𝑙𝑜𝑐) where 𝑑𝑖 is
located at time 𝑡𝑞 . As shown in Figure 1(c), tuples 𝑙1, 𝑙3, are logged

for two devices 𝑑1 and 𝑑2 with MAC addresses 7fbh and 3ndb, re-
spectively. Assume that we aim to identify the room in which device

𝑑1 was located at 2019-08-22 13:04. Given that 𝑑1 was connected to

wap3 at that time, the device should have been located in one of the

rooms in that region𝑔3 – i.e., 𝑅 (𝑔3) = {2059, 2061, 2065, 2069, 2099}.
These are called candidate rooms of 𝑑1 (we omit the remaining can-

didate rooms – 2066, 2068, 2072, and 2074 – for simplicity). The

main goal of the fine-grained location approach, is to identify in

which candidate room 𝑑1 was located.

Affinity. LOCATER’s location prediction is based on the concept of

affinity which models relationships between devices and rooms.

• Room affinity: 𝛼 (𝑑𝑖 , 𝑟 𝑗 , 𝑡𝑞) denotes the affinity between a device

𝑑𝑖 and a room 𝑟 𝑗 (i.e., the chance of 𝑑𝑖 being located in 𝑟 𝑗 at

time 𝑡𝑞 ), given the region 𝑔𝑘 in which 𝑑𝑖 is located at time 𝑡𝑞 .

• Group affinity: 𝛼 (𝐷, 𝑟 𝑗 , 𝑡𝑞) represents the affinity of a set of

devices 𝐷 to be in a room 𝑟 𝑗 at time 𝑡𝑞 (i.e., the chance of all

devices in 𝐷 being located in 𝑟 𝑗 at 𝑡𝑞 ), given that device 𝑑𝑖 ∈ 𝐷
is located in region 𝑔𝑘 at time 𝑡𝑞 .

Note that the concept of group affinity generalizes that of room

affinity. While room affinity is a device’s conditional probability

of being in a specific room, given the region it is located in, group

affinity of a set of devices represents the probability of the the set of

devices being co-located in a specific room 𝑟 𝑗 at 𝑡𝑞 . We differentiate

between these since the methods we use to learn these affinities

are different, as will be discussed in the following section. We

first illustrate how affinities affect localization prediction using the

example in Figure 3, which shows a hypergraph representing room

and group affinities at time 𝑡𝑞 . For instance, an edge between 𝑑1 and

the room 2065 shows the affinity 𝛼 (𝑑1, 2065, 𝑡𝑞) = 0.3. Likewise the

hyperedge ⟨𝑑1, 𝑑2, 2065⟩ with the label 0.12 represents the group

affinity, represented as 𝛼 ({𝑑1, 𝑑2}, 2065, 𝑡𝑞) = 0.12. If at time 𝑡𝑞
device 𝑑2 is not online (i.e., there are no events associated with 𝑑2
at 𝑡𝑞 in that region), we can predict that 𝑑1 is in room 2061 since
𝑑1’s affinity to 2061 is the highest. On the other hand, if 𝑑2 is online

at 𝑡𝑞 , the chance that 𝑑1 is in room 2065 increases due to the group

affinity 𝛼 ({𝑑1, 𝑑2}, 2065, 𝑡𝑞) = 0.12. The location prediction for a

device 𝑑𝑖 , thus, must account for both room and group affinity.

20652059 2061 2069 2099

d1

.06 .5 .3 . 06 . 06

(a)

d1: 7fbh
 d2: 3ndb

20652059 2069 2099

d1

. 06 .5 .3 . 06 . 06

d2

.5.4 .01

(b)

2061

.12

Figure 3: Graph view in fine-grained location cleaning.
Room Probability. Let 𝑃𝑟 (𝑑𝑖 , 𝑟 𝑗 , 𝑡𝑞) be the probability that a de-

vice 𝑑𝑖 is in room 𝑟 𝑗 at time 𝑡𝑞 . Given a query 𝑄 = (𝑑𝑖 , 𝑡𝑞) and its

associated tuple 𝑙𝑚 , the goal of the fine-grained location prediction

algorithm is to find the room 𝑟 𝑗 ∈ 𝑅(𝑙𝑚 .𝑙𝑜𝑐) of 𝑑𝑖 at time 𝑡𝑞 , such

that 𝑟 𝑗 has the maximum 𝑃𝑟 (𝑑𝑖 , 𝑟 𝑗 , 𝑡𝑞),∀𝑟 𝑗 ∈ 𝑟 𝑗 ∈ 𝑅(𝑙𝑚 .𝑙𝑜𝑐). We

develop such an algorithm based on estimating 𝑃𝑟 (𝑑𝑖 , 𝑟 𝑗 , 𝑡𝑞) based
on both room and group affinities in Section 9. Before we discuss

the algorithm, we first describe how affinities are estimated.

4.1 Affinity Learning
Learning Room Affinity. One of the challenges in estimating

room affinity is the potential lack of historical room-level location

data for devices - collecting such a data would be prohibitively

expensive, specially when we consider large spaces with tens of

thousands of people/devices. Our approach, thus, does not assume

availability of room-level localization data which could have been

used to train specific models.
10

Instead, we compute it based on the

available background knowledge and space metadata.

To compute 𝛼 (𝑑𝑖 , 𝑟 𝑗 , 𝑡𝑞), we associate for each device 𝑑𝑖 a set of

preferred rooms 𝑅𝑝𝑓 (𝑑𝑖 ) – e.g., the personal room of 𝑑𝑖 ’s owner

(space metadata), or the most frequent rooms 𝑑𝑖 ’s owner enters

(background knowledge). 𝑅𝑝𝑓 (𝑑𝑖 ) is an empty set if 𝑑𝑖 ’s owner does

not have any preferred rooms. If 𝑟 𝑗 is one the preferred rooms of 𝑑𝑖

(𝑟 𝑗 ∈ 𝑅𝑝𝑓 (𝑑𝑖 )), we assign to 𝑟 𝑗 the highest weight denoted by𝑤𝑝𝑓
.

Similarly, if 𝑟 𝑗 is a public room (𝑟 𝑗 ∈ (𝑅 (𝑔𝑥 ) ∩ 𝑅𝑝𝑏 )⧹𝑅𝑝𝑓 (𝑑𝑖 )), we
assign to 𝑟 𝑗 the second highest weight denoted by𝑤𝑝𝑏

. Finally, if

𝑟 𝑗 is a private room (𝑟 𝑗 ∈ (𝑅 (𝑔𝑥 ) ∩ 𝑅𝑝𝑟 )⧹𝑅𝑝𝑓 (𝑑𝑖 )), we assign to 𝑟 𝑗
the lowest weight denoted by 𝑤𝑝𝑟

. In general, these weights are

assigned based on the following conditions: (1)𝑤𝑝𝑓 > 𝑤𝑝𝑏 > 𝑤𝑝𝑟

and (2)𝑤𝑝𝑓 +𝑤𝑝𝑏+𝑤𝑝𝑟 = 1. The influence of different combinations

of𝑤𝑝𝑓 ,𝑤𝑝𝑏 ,𝑤𝑝𝑟
is evaluated in Section 6.

We illustrate the assignment of these weights by using the graph

of our running example. As already pointed out, 𝑑1 connects to

wap3 of region 𝑔3, where 𝑅 (𝑔3) = {2059, 2061, 2065, 2069, 2099}.
In addition, 𝑑1’s office, room 2061, is the only preferred room

(𝑅𝑝𝑓 (𝑑1) = {2061}) and 2065 is a public room (meeting room).

Hence, the remaining rooms in 𝑅𝑝𝑓 (𝑑1) are other personal offices

associated with other devices. Based on Figure 3, a possible assign-

ment of 𝑤𝑝𝑓 ,𝑤𝑝𝑏 ,𝑤𝑝𝑟
to the corresponding rooms is as follows:

𝛼 (𝑑1, 2061, 𝑡𝑞) = 𝑤𝑝𝑓

1
= 0.5, 𝛼 (𝑑1, 2065, 𝑡𝑞) = 𝑤𝑝𝑏

1
= 0.3, and any

room in 𝑅 (𝑔3) \ (𝑅𝑝𝑓 (𝑑1) ∪ 𝑅𝑝𝑏 ) – i.e., {2059, 2069, 2099} shares
the same room affinity, which is

𝑤𝑝𝑟

3
= 0.066.

Note that since room affinity is not data dependent, we can

pre-compute and store it to speed up computation. Furthermore,

10
Extending our approach to handle when such data is obtainable for at least a subset

of devices (e.g., through crowd-sourcing) is interesting and part of our future work.

333



preferred rooms could be time dependent (e.g., user is expected to be

in the break room during lunch, while being in office during other

times). Such a time dependent model would potentially result in

more accurate room level localization if such metadata is available.

Learning Group Affinity. Before describing how we compute

group affinity, we first define the concept of device affinity, denoted
by 𝛼 (𝐷), which intuitively captures the probability of devices/users

to be part of a group and be co-located (which serves as a basis to

compute group affinity). Consider all the tuples in 𝐿. Let 𝐿(𝑑𝑖 ) =
{𝑙 𝑗 : 𝑑𝑒𝑣 𝑗 = 𝑑𝑖 } be the set of tuples corresponding to device 𝑑𝑖 ∈ 𝐷 ,

and 𝐿(𝐷) be the tuples of devices in 𝐷 . Consider the set of semantic

location tuples such that for each tuple 𝑙𝑎 ∈ 𝐿(𝑑𝑖 ), belonging to

that set, and for every other device 𝑑 𝑗 ∈ 𝐷 \ 𝑑𝑖 , there exists a

tuple 𝑙𝑏 ∈ 𝐿(𝑑 𝑗 ) where devices 𝑙𝑎 .𝑑𝑒𝑣 and 𝑙𝑏 .𝑑𝑒𝑣 are in the same

region at (approximately) the same time, i.e., 𝑇𝑅𝑎 ∪𝑇𝑅𝑏 ≠ ∅ and

𝑙𝑎 .𝑙𝑜𝑐 = 𝑙𝑏 .𝑙𝑜𝑐 (not NULL). Intuitively, such a tuple set, referred

to as the intersecting tuple set, represents the times when all the

devices in 𝐷 are in the same area (since they are connected to the

same WiFi AP). We compute device affinity 𝛼 (𝐷) as a fraction of

such intersecting tuples among all tuples in 𝐿(𝐷).
Given device affinity 𝛼 (𝐷), we can now compute the group

affinity among devices 𝐷 in room 𝑟 𝑗 at time 𝑡𝑞 , i.e., 𝛼 (𝐷, 𝑟 𝑗 , 𝑡𝑞). Let
𝑅𝑖𝑠 be the set of intersecting rooms of connected regions for each

device in 𝐷 at time 𝑡𝑞 : 𝑅𝑖𝑠 =
⋂
𝑅(𝑙𝑖 .𝑙𝑜𝑐), 𝑙𝑖 ∈ 𝐿𝑡𝑞 (𝐷). If 𝑟 𝑗 is not one

of the intersecting rooms, 𝑟 𝑗 ∉ 𝑅𝑖𝑠 , then 𝛼 (𝐷, 𝑟 𝑗 , 𝑡𝑞) = 0. Otherwise,

to compute 𝛼 (𝐷, 𝑟 𝑗 , 𝑡𝑞), we first determine conditional probability

of a device 𝑑𝑖 ∈ 𝐷 to be in 𝑟 𝑗 given that 𝑟 𝑗 ∈ 𝑅𝑖𝑠 at time 𝑡𝑞 .

Let @(𝑑𝑖 , 𝑟 𝑗 , 𝑡𝑞) represent the fact that device 𝑑𝑖 is in room 𝑟 𝑗
at time 𝑡𝑞 , and likewise @(𝑑𝑖 , 𝑅𝑖𝑠 , 𝑡𝑞) represent the fact that 𝑑𝑖
is in one of the rooms in 𝑅𝑖𝑠 at 𝑡𝑞 . 𝑃 (@(𝑑𝑖 , 𝑟 𝑗 , 𝑡𝑞) |@(𝑑𝑖 , 𝑅𝑖𝑠 , 𝑡𝑞)) =
𝑃 (@(𝑑𝑖 ,𝑟 𝑗 ,𝑡𝑞 ) )
𝑃 (@(𝑑𝑖 ,𝑅𝑖𝑠 ,𝑡𝑞 ) ) , where 𝑃 (@(𝑑𝑖 , 𝑅𝑖𝑠 , 𝑡𝑞)) =

∑
𝑟𝑘 ∈𝑅𝑖𝑠 𝑃 (@(𝑑𝑖 , 𝑟𝑘 , 𝑡𝑞)) . We

now compute 𝛼 (𝐷, 𝑟 𝑗 , 𝑡𝑞), where 𝑟 𝑗 ∈ 𝑅𝑖𝑠 as follows:

𝛼 (𝐷, 𝑟 𝑗 , 𝑡𝑞) = 𝛼 (𝐷)
∏
𝑑𝑖 ∈𝐷

𝑃 (@(𝑑𝑖 , 𝑟 𝑗 , 𝑡𝑞) |@(𝑑𝑖 , 𝑅𝑖𝑠 , 𝑡𝑞)) (1)

Intuitively, group affinity captures the probability of the set of

devices to be in a given room (based on the room level affinity of

individual devices) given that the (individuals carrying the) devices

are co-located, which is captured using the device affinity.

We explain the notation using the example in Figure 3(b). Let us

assume that the device affinity between 𝑑1 and 𝑑2 (not shown in the

figure) is .4, i.e., 𝛼 ({𝑑1, 𝑑2}) = .4. The set 𝑅𝑖𝑠 = {2065, 2069, 2099}.
We compute𝛼 ({𝑑1, 𝑑2}, 2065, 𝑡𝑞) as 𝑃 (@(𝑑1, 2065, 𝑡𝑞) |@(𝑑1, 𝑅𝑖𝑠 , 𝑡𝑞)) =

.3
.3+.06+.06 = .69. Similarly, 𝑃 (@(𝑑2, 2065, 𝑡𝑞) |@(𝑑2, 𝑅𝑖𝑠 , 𝑡𝑞)) = .4

.4+.01+.5 =

.44. Finally, 𝛼 ( {𝑑1, 𝑑2 }, 2065, 𝑡𝑞) = .4 ∗ .69 ∗ .44 = .12.

4.2 Localization Algorithm
Given a query 𝑄 = (𝑑𝑖 , 𝑡𝑞), its associated tuple 𝑙𝑚 , and candidate

rooms 𝑅(𝑙𝑚 .𝑙𝑜𝑐), we compute the room probability 𝑃𝑟 (𝑑𝑖 , 𝑟 𝑗 , 𝑡𝑞)
for each 𝑟 𝑗 ∈ 𝑅(𝑙𝑚 .𝑙𝑜𝑐) and select the room with highest proba-

bility as an answer to 𝑄 . We first define the concept of the set of

neighbor devices of 𝑑𝑖 , denoted by 𝐷𝑛 (𝑑𝑖 ). A device 𝑑𝑘 ∈ 𝐷𝑛 (𝑑𝑖 ) is
a neighbor of 𝑑𝑖 if: (i) 𝑑𝑘 is online at time 𝑡𝑞 (inside the building);

(ii)𝛼 ({𝑑𝑖 , 𝑑𝑘 }, 𝑟 𝑗 , 𝑡𝑞) > 0 for each 𝑟 𝑗 ∈ 𝑅(𝑙𝑚 .𝑙𝑜𝑐); and (iii)𝑅(𝑙𝑚 .𝑙𝑜𝑐)∩
𝑅(𝑔𝑦) ≠ ∅, where 𝑅(𝑔𝑦 ) is the region in which 𝑑𝑘 is located. In

d1

d2 d3 d4 d5 d6

(a) Independent Neighbor Set
(a) Independent Neighbor Set.

(b) Dedependent Neighbor Set

d1

d2 d3 d4 d5 d6

(b) Dependent Neighbor Set.

Figure 4: Graph view in fine-grained location cleaning.

Figure 3(b), 𝑑2 is a neighbor of 𝑑1. Essentially, neighbors of a de-

vice 𝑑𝑖 could influence the location prediction of 𝑑𝑖 (since they will

contribute a non-zero group affinity for 𝑑𝑖 ).

Since we use the concept of neighbor always in the context of

a device 𝑑𝑖 , we will simplify the notation and refer to 𝐷𝑛 (𝑑𝑖 ) as
𝐷𝑛 . Since processing every device in 𝐷𝑛 can be computationally

expensive, the localization algorithm considers the neighbors it-

eratively until there is enough confidence that the unprocessed

devices will not change the current answer. Let 𝐷̄𝑛 ⊆ 𝐷𝑛 be the set

of devices that the algorithm has processed. We denote as 𝑃 (𝑟 𝑗 |𝐷̄𝑛)
the probability of 𝑟 𝑗 being the answer of 𝑄 given the devices and

their locations in 𝐷̄𝑛
11

that have been processed by the algorithm

so far. Using Bayes’s rule:

𝑃 (𝑟 𝑗 |𝐷̄𝑛) =
𝑃 (𝐷̄𝑛 |𝑟 𝑗 )𝑃 (𝑟 𝑗 )

𝑃 (𝐷̄𝑛 |𝑟 𝑗 )𝑃 (𝑟 𝑗 ) + 𝑃 (𝐷̄𝑛 |¬𝑟 𝑗 )𝑃 (¬𝑟 𝑗 )
(2)

where we estimate 𝑃 (𝑟 𝑗 ) using the room affinity 𝛼 (𝑑𝑖 , 𝑟 𝑗 , 𝑡𝑞).
We first compute 𝑃 (𝑟 𝑗 |𝐷̄𝑛) under the simplifying assumption

that probability of 𝑑𝑖 to be in room 𝑟 𝑗 given any two neighbors in

𝐷𝑛 is conditionally independent. Then, we consider that multiple

neighbor devices may together influence the probability of 𝑑𝑖 to be

in room 𝑟 𝑗 .

Independence Assumption. Since we have assumed conditional

independence: 𝑃 (𝐷̄𝑛 |𝑟 𝑗 ) =
∏

𝑑𝑘 ∈𝐷̄𝑛
𝑃 (@(𝑑𝑘 , 𝑟 𝑗 , 𝑡𝑞) |𝑟 𝑗 ) where

@(𝑑𝑘 , 𝑟 𝑗 , 𝑡𝑞) represents that 𝑑𝑘 is located in 𝑟 𝑗 at time 𝑡𝑞 . By defini-

tion, 𝑃 (@(𝑑𝑘 , 𝑟 𝑗 , 𝑡𝑞) |𝑟 𝑗 ) =
𝑃 (@(𝑑𝑘 ,𝑟 𝑗 ,𝑡𝑞 ),𝑟 𝑗 )

𝑃 (𝑟 𝑗 ) . The numerator repre-

sents the group affinity, i.e., 𝑃 (@(𝑑𝑘 , 𝑟 𝑗 , 𝑡𝑞), 𝑟 𝑗 ) = 𝛼 ({𝑑𝑘 , 𝑑𝑖 }, 𝑟 𝑗 , 𝑡𝑞).
Similarly, 𝑃 (@(𝑑𝑘 , 𝑟 𝑗 , 𝑡𝑞),¬𝑟 𝑗 ) = 1 − 𝛼 ({𝑑𝑘 , 𝑑𝑖 }, 𝑟 𝑗 , 𝑡𝑞).

𝑃 (𝑟 𝑗 |𝐷̄𝑛) = 1/
(
1 +

∏
𝑑𝑘 ∈𝐷̄𝑛

(1 − 𝛼 ( {𝑑𝑘 , 𝑑𝑖 }, 𝑟 𝑗 , 𝑡𝑞))∏
𝑑𝑘 ∈𝐷̄𝑛

𝛼 ( {𝑑𝑘 , 𝑑𝑖 }, 𝑟 𝑗 , 𝑡𝑞)

)
(3)

To guarantee that our algorithm determines the answer of 𝑄

by processing the minimum possible number of devices in 𝐷̄𝑛 , we

compute the expected/max/min probability of 𝑟 𝑗 being the answer

based on neighbor devices in𝐷𝑛 . We consider the processed devices

𝐷̄𝑛 as well as unprocessed devices𝐷𝑛 \𝐷̄𝑛 . Thus, we consider all the

possible room locations (given by coarse-location) for unprocessed

devices. We denote the set of all possibilities for locations of these

devices (i.e., the set of possible worlds [1]) byW(𝐷𝑛 \ 𝐷̄𝑛). For
each possible world𝑊 ∈ W(𝐷𝑛 \ 𝐷̄𝑛), let 𝑃 (𝑊 ) be the probability
of the world𝑊 and 𝑃 (𝑟 𝑗 |𝐷̄𝑛,𝑊 ) be the probability of 𝑟 𝑗 being the

answer of𝑄 given the observations of processed devices 𝐷̄𝑛 and the

possible world𝑊 . We now formally define the expected/max/min

probability of 𝑟 𝑗 given all the possible worlds.

11
We could express the above, as explained in Section 4.1, as 𝑃 (@(𝑑𝑖 , 𝑟 𝑗 , 𝑡𝑞 ) |𝐷̄𝑛) but

we simplify the notation for brevity of following formulas. 𝑟 𝑗 being the answer of

query𝑄 means 𝑑𝑖 is in 𝑟 𝑗 at time 𝑡𝑞 , and we write 𝑟 𝑗 here for simplicity.
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Algorithm 2: Fine-grained Localization

Input:𝑄 = (𝑑𝑖 , 𝑡𝑞), 𝐷𝑛, 𝐿, 𝑙𝑚

1 𝑆𝑡𝑜𝑝_𝑓 𝑙𝑎𝑔← false;

2 𝐷̄𝑛 ← ∅;
3 for 𝑑𝑘 ∈ 𝐷𝑛 do
4 𝐷̄𝑛 ← 𝑑𝑘 ;

5 for 𝑟 𝑗 ∈ 𝑅 (𝑙𝑚 .𝑙𝑜𝑐) do
6 Compute 𝑃 (𝑟 𝑗 |𝐷̄𝑛) ;
7 if 𝐷𝑛 independent then
8 Find top-2 probability 𝑃 (𝑟𝑎 |𝐷̄𝑛), 𝑃 (𝑟𝑏 |𝐷̄𝑛) ;
9 Compute𝑚𝑖𝑛𝑃 (𝑟𝑎 |𝐷̄𝑛),𝑚𝑎𝑥𝑃 (𝑟𝑎 |𝐷̄𝑛), 𝑒𝑥𝑝𝑃 (𝑟𝑎 |𝐷̄𝑛) ;

10 Compute𝑚𝑖𝑛𝑃 (𝑟𝑏 |𝐷̄𝑛),𝑚𝑎𝑥𝑃 (𝑟𝑏 |𝐷̄𝑛), 𝑒𝑥𝑝𝑃 (𝑟𝑏 |𝐷̄𝑛) ;
11 if𝑚𝑖𝑛𝑃 (𝑟𝑎 |𝐷̄𝑛) ≥ 𝑒𝑥𝑝𝑃 (𝑟𝑏 |𝐷̄𝑛) or

𝑒𝑥𝑝𝑃 (𝑟𝑎 |𝐷̄𝑛) ≥𝑚𝑎𝑥𝑃 (𝑟𝑏 |𝐷̄𝑛) then
12 𝑆𝑡𝑜𝑝_𝑓 𝑙𝑎𝑔← 𝑡𝑟𝑢𝑒 ;

13 if 𝐷𝑛 dependent then
14 if ∀𝐷̄𝑛𝑙 ⊆ 𝐷̄𝑛 , 𝛼 ( {𝐷̄𝑛𝑙 , 𝑑𝑖 }, 𝑟 𝑗 , 𝑡𝑞) = 0 then
15 𝑆𝑡𝑜𝑝_𝑓 𝑙𝑎𝑔← 𝑡𝑟𝑢𝑒 ;

16 if 𝑆𝑡𝑜𝑝_𝑓 𝑙𝑎𝑔 == true then
17 break;

18 return 𝑟𝑎 ;

Definition 1. Given a query 𝑄 = (𝑑𝑖 , 𝑡𝑞), a region 𝑅(𝑔𝑥 ), a set
of neighbor devices 𝐷𝑛 , a set of processed devices 𝐷̄𝑛 ⊆ 𝐷𝑛 , and the
candidate room 𝑟 𝑗 ∈ 𝑅(𝑔𝑥 ) of 𝑑𝑖 , the expected probability of 𝑟 𝑗 being
the answer of 𝑄 , denoted by 𝑒𝑥𝑝𝑃 (𝑟 𝑗 |𝐷̄𝑛), is defined as follows:

𝑒𝑥𝑝𝑃 (𝑟 𝑗 |𝐷̄𝑛) =
∑

𝑊 ∈W(𝐷𝑛\𝐷̄𝑛 )
𝑃 (𝑊 )𝑃 (𝑟 𝑗 |𝐷̄𝑛,𝑊 ) (4)

The maximum probability of 𝑟 𝑗 , denoted by𝑚𝑎𝑥𝑃 (𝑟 𝑗 |𝐷̄𝑛), is:
𝑚𝑎𝑥𝑃 (𝑟 𝑗 |𝐷̄𝑛) = max

𝑊 ∈W(𝐷𝑛\𝐷̄𝑛 )
𝑃 (𝑟 𝑗 |𝐷̄𝑛,𝑊 ) (5)

The minimum probability can be defined similarly.
The algorithm terminates the iteration only if there exists a

room 𝑟𝑖 ∈ 𝑅(𝑔𝑥 ), for any other room 𝑟 𝑗 ∈ 𝑅(𝑔𝑥 ), 𝑟𝑖 ≠ 𝑟 𝑗 , such

that 𝑚𝑖𝑛𝑃 (𝑟𝑖 |𝐷̄𝑛) > 𝑚𝑎𝑥𝑃 (𝑟 𝑗 |𝐷̄𝑛). However, it is often difficult

to satisfy such strict condition in practice. Thus, we relax this

condition using the following two conditions:

(1) 𝑚𝑖𝑛𝑃 (𝑟𝑖 |𝐷̄𝑛) > 𝑒𝑥𝑝𝑃 (𝑟 𝑗 |𝐷̄𝑛)(or 𝑃 (𝑟 𝑗 |𝐷̄𝑛))
(2) 𝑒𝑥𝑝𝑃 (𝑟𝑖 |𝐷̄𝑛)(or 𝑃 (𝑟𝑖 |𝐷̄𝑛)) >𝑚𝑎𝑥𝑃 (𝑟 𝑗 |𝐷̄𝑛 )

In Section 6 we show that these loosen conditions enable the algo-

rithm to terminate efficiently without sacrificing the quality of the

results.

A key question is, how do we compute these probabilities effi-
ciently? To compute the maximum probability of 𝑑𝑖 being in 𝑟 𝑗 , we

can assume that all unprocessed devices are in room 𝑟 𝑗 as described

in the theorem below. (See the proofs of theorems in Appendix 9) .

Theorem 1. Given a set of already processed devices 𝐷̄𝑛 , a candi-
date room 𝑟 𝑗 of 𝑑𝑖 ,and the possible world𝑊 where all devices𝐷𝑛 \𝐷̄𝑛

are in room 𝑟 𝑗 , then,𝑚𝑎𝑥𝑃 (𝑟 𝑗 |𝐷̄𝑛) = 𝑃𝑟 (𝑟 𝑗 |𝐷̄𝑛,𝑊 ).
Likewise, to compute the minimum probability, we can simply

assume that none of the unprocessed devices are in room 𝑟 𝑗 . The

following theorem states that we can compute the minimum by

placing all the unprocessed devices in the room (other than 𝑟 𝑗 ) in

which 𝑑𝑖 has the highest chance of being at time 𝑡𝑞 .

Theorem 2. Given a set of already processed devices 𝐷̄𝑛 , a can-
didate room 𝑟 𝑗 ∈ 𝑅(𝑔𝑥 ), 𝑟𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑟𝑖 ∈𝑅 (𝑔𝑥 )\𝑟 𝑗 𝑃 (𝑟𝑖 |𝐷̄𝑛), and a
possible world𝑊 where all devices in 𝐷𝑛 \ 𝐷̄𝑛 are in room 𝑟𝑚𝑎𝑥 , then,
𝑚𝑖𝑛𝑃 (𝑟 𝑗 |𝐷̄𝑛) = 𝑃 (𝑟 𝑗 |𝐷̄𝑛,𝑊 ).

For the expected probability of 𝑟 𝑗 being the answer of 𝑄 , we

prove that it equals to 𝑃 (𝑟 𝑗 |𝐷̄𝑛).
Theorem 3. Given a set of independent devices 𝐷𝑛 , the set of

already processed devices 𝐷̄𝑛 , and the candidate room 𝑟 𝑗 , then,
𝑒𝑥𝑝𝑃 (𝑟 𝑗 |𝐷̄𝑛) = 𝑃 (𝑟 𝑗 |𝐷̄𝑛).
Relaxing the Independence Assumption. We next relax the

conditional independence assumption we have made so far. In this

case, we cannot treat each neighbor device independently. Instead,

we divide 𝐷̄𝑛 into several clusters where every neighbor device in a

cluster have non-zero group affinity with the rest of the devices. Let

𝐷̄𝑛𝑙 ⊆ 𝐷̄𝑛 be a cluster where ∀𝑑𝑘 , 𝑑
′

𝑘
∈ 𝐷̄𝑛𝑙 , 𝛼 ({𝑑𝑘 , 𝑑

′

𝑘
}, 𝑟 𝑗 , 𝑡𝑞) >

0. In addition, group affinity of devices of any pair of devices in

different clusters equals zero, i.e., ∀𝑑𝑘 ∈ 𝐷̄𝑛𝑙 , 𝑑
′

𝑘
∈ 𝐷̄𝑛𝑙

′ , where

𝑙 ≠ 𝑙
′
, 𝛼 ({𝑑𝑘 , 𝑑

′

𝑘
}, 𝑟 𝑗 , 𝑡𝑞) = 0. In Figure 4(b), 𝐷̄𝑛1 = {𝑑2, 𝑑3, 𝑑4}

and 𝐷̄𝑛2 = {𝑑5, 𝑑6}. Naturally, we have 𝐷̄𝑛 =
⋃

𝑙 𝐷̄𝑛𝑙 . In this case,

we assume that each cluster affects the location prediction of 𝑑𝑖
independently.

Thus, probability 𝑃 (𝐷̄𝑛 |𝑟 𝑗 ) =
∏

𝑙 𝑃 (𝐷̄𝑛𝑙 |𝑟 𝑗 ). For each cluster, we

compute its conditional probability 𝑃 (𝐷̄𝑛𝑙 |𝑟 𝑗 ) =
𝑃 (𝐷̄𝑛𝑙 ,𝑟 𝑗 )
𝑃 (𝑟 𝑗 ) , where

𝑃 (𝐷̄𝑛𝑙 , 𝑟 𝑗 ) = 𝛼 ({𝐷̄𝑛𝑙 , 𝑑𝑖 }, 𝑟 𝑗 , 𝑡𝑞). The reason is that 𝑃 (𝐷̄𝑛𝑙 , 𝑟 𝑗 ) is the
probability that all devices in 𝐷̄𝑛𝑙 and 𝑑𝑖 are in room 𝑟 𝑗 , which

equals 𝛼 ({𝐷̄𝑛𝑙 , 𝑑𝑖 }, 𝑟 𝑗 , 𝑡𝑞) by definition. Thus,

𝑃 (𝑟 𝑗 |𝐷̄𝑛) = 1/(1 +
1 −∏𝑙 𝛼 ( {𝐷̄𝑛𝑙 , 𝑑𝑖 }, 𝑟 𝑗 , 𝑡𝑞)

1 − 𝛼 (𝑑𝑖 , 𝑟 𝑗 )
) (6)

the algorithm terminates when the group affinity for any cluster

turns zero.

Finally, we describe the complete fine-grained location cleaning

algorithm in Algorithm 2. Given 𝑄 = (𝑑𝑖 , 𝑡𝑞), we observe only the

neighbor devices at time 𝑡𝑞 (Line 4-5). Next, we compute the proba-

bility of 𝑃 (𝑟 𝑗 |𝐷̄𝑛) for every candidate room in 𝑅(𝑙𝑚 .𝑙𝑜𝑐) (Line 7-8).
If devices are independent, we select two rooms with top-2 prob-

ability and use loosen stop condition to check if the algorithm

converges (Line 10-14). Otherwise, we check if all clusters have

zero group affinity (Line 15-17). Finally, we output the room when

the stop condition is satisfied (Line 13-16).

5 LOCATER SYSTEM
We describe the prototype of LOCATER built based on the previous

coarse and fine-grained localization algorithms. Also, we describe

a caching engine to scale LOCATER to large connectivity data sets.

Architecture of LOCATER. Figure 5 shows the high-level archi-
tecture of the LOCATER prototype. LOCATER ingests a real-time

stream of WiFi connectivity events (as discussed in Section 2). Ad-

ditionally, LOCATER takes as inputmetadata about the spacewhich
includes the set of WiFi APs deployed in the building, the set of
rooms in the building (including whether each room is a public or

private space –see Section 2–), the coverage of WiFi APs in terms

of list of rooms covered by each AP, and the temporal validity of
connectivity events per type of device in the building.

12

12
Appendix 9 describes how to obtain this metadata in practice for a real deployment.
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Figure 5: Architecture of LOCATER.

LOCATER supports queries𝑄 = (𝑑𝑖 , 𝑡𝑞) that request the location
of device 𝑑𝑖 at time 𝑡𝑞 , where 𝑡𝑞 could be the current time (e.g.,

for real-time tracking/personalized services) or a past timestamp

(e.g., for historical analysis). Given 𝑄 , LOCATER’s cleaning engine
determines if 𝑡𝑞 falls in a gap. If so, it executes its coarse-grained

localization (Section 3). If at 𝑡𝑞 , 𝑑𝑖 was inside the building, the

cleaning engine performs the fine-grained localization (Section 4).

Given a query with associated time 𝑡𝑞 , LOCATER uses a subset

of historical data (e.g., X days prior to 𝑡𝑞) to learn both room and

group affinities. We explore the impact of the amount of historical

data used to the accuracy of the model learnt in Section 6.

Scaling LOCATER.The cleaning engine computes room and group

affinities which requires time-consuming processing of historic data.

Algorithm 2 iteratively performs such computation for each neigh-

bor device of the queried device. In deployments with large WiFi

infrastructure and number of users, this might involve processing

large sets of connectivity events which can be a challenge if appli-

cations expect real-time answers. LOCATER caches computations

performed to answer queries and leverages this information to

answer subsequent queries. Such cached information constitutes

what we will refer to as a global affinity graph G𝑔 = (V𝑔, E𝑔),
where nodes correspond to devices and edges correspond to pair-

wise device affinities. Given a query 𝑄 = (𝑑𝑖 , 𝑡𝑞), LOCATER uses

the global affinity graph G𝑔 to determine the appropriate order in

which neighbor devices to 𝑑𝑖 have to be processed. Intuitively, de-

vices with higher device affinity w.r.t. 𝑑𝑖 have higher impact on the

computation of the fine-grained location of 𝑑𝑖 (e.g., a device which

is usually collocated with 𝑑𝑖 will provide more information about

𝑑𝑖 ’s location than a device than a device that just appeared in the

dataset). We empirically show in our experiments that processing

neighbor devices in decreasing order of device affinity instead of a

random order makes the cleaning algorithm converge much faster.

(1) Building the local affinity graph. The affinities computed in Sec-

tion 4 can be viewed as a graph, which we refer to as local affinity
graph G𝑙 = (V𝑙 , E𝑙 ), whereV𝑙 = 𝐷̄𝑛 ∪ 𝑑𝑖 . In this time-dependent

local affinity graph, each device in 𝐷̄𝑛 , as well as the queried device

𝑑𝑖 , are nodes and the edges represent their affinity. Let 𝑒𝑙
𝑎𝑏
∈ E𝑙

be an edge between nodes 𝑑𝑎 and 𝑑𝑏 and𝑤 (𝑒𝑙
𝑎𝑏
, 𝑡𝑞) be its weight

measuring the probability that 𝑑𝑎 and 𝑑𝑏 are in the same room at

time 𝑡𝑞 . The value of𝑤 (𝑒𝑙𝑎𝑏 , 𝑡𝑞) is computed based on Algorithm 2

as𝑤 (𝑒𝑙
𝑎𝑏
, 𝑡𝑞) =

∑
𝑟 𝑗 ∈𝑅 (𝑔𝑥 ) 𝛼 ( {𝑑𝑎,𝑑𝑏 },𝑟 𝑗 ,𝑡𝑞 )

|𝑅 (𝑔𝑥 ) | .
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Figure 6: Generation of global affinity graph (d) from local affinity
graphs (a,b,c).

(2) Building the global affinity graph. After generating a local affin-

ity graph for 𝑑𝑖 at time 𝑡𝑞 , this information is used to update the

global affinity graph. We will illustrate the process using Figure 6.

Given the current global affinity graph G𝑔 = (V𝑔, E𝑔) and a local

affinity graph G𝑙 = (V𝑙 , E𝑙 ), the updated global affinity graph

G𝑔 = ( ˆV𝑔, ˆE𝑔) is such that
ˆV𝑔 = V𝑔 ∪ V𝑙

and
ˆE𝑔 = E𝑔 ∪ E𝑙 .

Note that, as affinity graphs are time-dependent, in the global

affinity graph we associate each edge included from an affinity

graph with its timestamp 𝑡𝑞 along with its weight. Hence, in the

global affinity graph, the edge in between two nodes is a vec-

tor which stores the weight-timestamp pairs associated with dif-

ferent local affinity graphs 𝑣
𝑔

𝑎𝑏
= {(𝑤 (𝑒𝑙

𝑎𝑏
), 𝑡1), ..., (𝑤 (𝑒𝑙𝑎𝑏 ), 𝑡𝑛)}.

When merging the edge set, we merge corresponding vectors –

i.e., 𝑣
𝑔

𝑎𝑏
= 𝑣

𝑔

𝑎𝑏
∪𝑤 (𝑒𝑙

𝑎𝑏
, 𝑡𝑞) for every 𝑒𝑔𝑎𝑏 ∈ E

𝑔
. For instance, in the

global affinity graph in Figure 6(d), which has been constructed

from three different local affinity graphs (Figure 6(a),(b),(c)), the

edge that connects nodes 𝑑1 and 𝑑2 has the weight-timestamp val-

ues extracted from each local affinity graph (.4, 𝑡1), (.3, 𝑡2), (.5, 𝑡3).
To control the size of the global affinity graph, we could delete past

affinities stored in the graph (𝑤 (𝑒𝑙
𝑎𝑏
), 𝑡𝑖 ) , 𝜏 − 𝑡𝑖 > 𝑇𝑠 , where 𝜏 is

current time and 𝑇𝑠 is a threshold defined by users, e.g., 3 months.

(3) Using the global affinity graph.When a new query 𝑄 = (𝑑𝑖 , 𝑡𝑞)
is posed, our goal is to identify the neighbor devices that share

high affinities with 𝑑𝑖 and use them to compute the location of 𝑑𝑖
using Algorithm 2. Given the set 𝐷𝑛 of devices that are neighbors

to 𝑑𝑖 at time 𝑡𝑞 , we compute the affinity between 𝑑𝑖 and each device

𝑑𝑘 ∈ 𝐷𝑛 , denoted by𝑤 (𝑒𝑔
𝑖𝑘
, 𝑡𝑞), using the global affinity graph. As

each edge in the global affinity graph contains a vector of affinities

with respect to time, we compute affinity by assigning a higher

value to those instances that are closer to the query time 𝑡𝑞 as

follows: 𝑤 (𝑒𝑔
𝑖𝑘
, 𝑡𝑞) =

∑𝑗=𝑛

𝑗=1
𝑙 𝑗𝑤 (𝑒𝑙𝑖𝑘 , 𝑡 𝑗 ), where 𝑙 𝑗 follows a normal

distribution, 𝜇 = 𝑡𝑞 and 𝜎2 = 1 that is normalized. Finally, we create

a new set of neighbor devicesN𝑔 (𝑑𝑖 ) and include each device 𝑑𝑘 ∈
𝐷𝑛 in descending order of the computed affinity 𝑤 (𝑒𝑔

𝑖𝑘
, 𝑡𝑞). This

new set replaces 𝐷𝑛 in Algorithm 2. Thus, the algorithm processes

devices in descending order of affinity in the global affinity graph.

6 EVALUATION
We implemented a prototype of LOCATER and performed exper-

iments to test its performance in terms of quality of the cleaned

data, efficiency, and scalability. The experiments were executed

in an 8 GB, 2 GHz Quad-Core Intel Core i7 machine with a real

dataset as well as a synthetic one. We refer to the implementation of
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LOCATER’s fine-grained algorithms based on independent and re-

laxed independent (dependent) assumptions as I-FINE and D-FINE.

Correspondingly, we will refer to the system using those algorithms

as I-LOCATER and D-LOCATER, respectively.

6.1 Experimental Setup
Dataset. We use connectivity data captured by the TIPPERS sys-

tem [36] in our DBH building at UC Irvine, with 64 WiFi APs, 300+

rooms (including classrooms, offices, conference rooms, etc.) and

an average daily occupancy of about 3,000. On average, each WiFi

AP covers 11 rooms. The dataset (in the following DBH-WIFI) con-
tains 10 months of data, from Sep. 3rd, 2018 to July 8th, comprising

38, 670, 714 connectivity events for 66, 717 different devices.

Ground truth. We collect fine-grained location of 28 distinct indi-

viduals as ground truth. We asked 9 participants to log their daily

activity within the building (the room where they were located and

how much time they spent in it) for a week. The participants filled

in comprehensive and precise logs of their activity amounting to

422 hours in total. We also selected three cameras in the building

that cover different types of spaces (i.e., faculty offices area, student

offices area, and lounge space). We manually reviewed the camera

footage to identify individuals in it (the area covered is in our por-

tion of the building so we identified 26 individuals – 7 of them were

also participants of the daily activity logging–) and their locations.

We requested the identified individuals for their MAC address. If a

person 𝑝 with MAC address𝑚 was observed to enter a room 𝑟 at

time 𝑡1 and leaving the room at time 𝑡2, we created an entry in our

ground truth locating𝑚 in room 𝑟 during the interval (𝑡1, 𝑡2).
Queries.We generated a set of 10, 028 queries, denoted by Q, re-
lated to individuals in the ground truth (3, 129 queries for partici-

pants that logged their activities and 6, 899 queries for individuals

detected in the camera images). The number of queries per individ-

ual are approximately the same, as far as differences in the labeled

elements per user allow it.

Baselines. Traditional indoors localization algorithms are either

based on active localization or passive localization using informa-

tion such as signal strength maps (as explained in Section 1). Hence,

we defined two baselines used in practice for the kind of semantic

localization described in this paper (i.e., coarse and fine-grained lo-

calization based on connectivity logs and background information).

The baselines are defined as follows: Baseline1 and Baseline2 use
Coarse-Baseline for coarse localization and for fine-grained local-

ization they use Fine-Baseline1 and Fine-Baseline2, respectively. In
Coarse-Baseline, the device is considered outside if the duration of a

gap is at least one hour, otherwise the device is inside and the pre-

dicted region is the same as the last known region. Fine-Baseline1
selects the predicted room randomly from the set of candidates in

the region whereas Fine-Baseline2 selects the room associated to

the user based on metadata (e.g., his/her office).

Quality metric. LOCATER can be viewed as a multi-class clas-

sifier whose classes correspond to all the rooms and a label for

outside the building. We use the commonly used accuracy met-

ric [49], defined next, as the measure of quality.
13

Let Q be the

13
Accuracy, as defined in the paper, is exactly the same as other micro-metrics such

as micro-precision, recall, and F-measure [44]. Micro-level metrics are, often, more

reflective of overall quality of the multi-level classifier (such as LOCATER) when the

query dataset used for testing is biased towards some classes.

10 15 20 25 30

l

82

84

86

A
c
(p
e
rc
e
n
t)

60 80 100 120 140 160 180

h

75

80

85

A
c
(p
e
rc
e
n
t)

Figure 7: Thresholds tuning.

0 20 40 60 80 100
Percent of maximum iterations

55

60

65

70

75

80

85

90

A
c
(p

e
rc

e
n

t)

(20,160)
(16,177)
(40,80)
(60,60)

Figure 8: Iteration.
set of queries, Q𝑜𝑢𝑡 ,Q𝑟𝑒𝑔𝑖𝑜𝑛,Q𝑟𝑜𝑜𝑚 be the subset of queries for

which LOCATER returns correctly the device’s location as being

outside, in a specific region, and a specific room, respectively. Ac-

curacy of the coarse-grained algorithm can then be measured as:

𝐴𝑐 = ( |Q𝑜𝑢𝑡 | + |Q𝑟𝑒𝑔𝑖𝑜𝑛 |)/|Q|. Likewise, for fine-grained and over-

all algorithm, accuracy corresponds to 𝐴𝑓 = |Q𝑟𝑜𝑜𝑚 |/|Q𝑟𝑒𝑔𝑖𝑜𝑛 |,
and 𝐴𝑜 = ( |Q𝑟𝑜𝑜𝑚 | + |Q𝑜𝑢𝑡 |)/|Q|, respectively.

6.2 Accuracy on DBH-WIFI Dataset
We first test the performance of LOCATER, in terms of accuracy,

for the DBH-WIFI dataset. As LOCATER exploits the notion of

recurring patterns of movement/usage of the space, we analyze

the performance w.r.t. the level of predictability of different user

profiles. We consider the fact that some people spend most of their

time in the building in the same room (e.g., their offices) as a sign

of predictable behaviour. We can consider this as their “preferred

room". We group individuals in the dataset into 4 classes based on

the percentage of time they spend in their preferred room: [40, 55),
[55, 70), [70, 85) and [85, 100), where [40, 55) means that the user

spent 40-55 percent of time in that room (no user in the ground

truth data spent less than 40% of his/her time in a specific room).

Impact of thresholds in coarse localization. The coarse-level
localization algorithm depends upon two thresholds: 𝜏𝑙 and 𝜏ℎ . We

use 𝑘-fold cross validation with 𝑘 = 10 to tune them. We vary

𝜏𝑙 ’s value from 10 to 30 minutes and 𝜏ℎ ’s value from 60 to 180

minutes. We fix 𝜏ℎ = 180 when running experiments for 𝜏𝑙 and

fix 𝜏𝑙 = 20 when running experiments for 𝜏ℎ . From Figure 7 we

observe that, with the increasing of 𝜏𝑙 , the accuracy increases first

and then slightly decreases after it peaks at 𝜏𝑙 = 20. For 𝜏ℎ , when

it increases, accuracy gradually increases and levels off when 𝜏ℎ is

beyond 170. We also test the parameters computed by confidence

interval in Section 9, which are 𝜏𝑙 = 16.4 and 𝜏ℎ = 177.3. The

accuracy achieved by this parameter setting is 84.7%, which is close

to the best accuracy (85.2%) achieved by parameters tuned based

on cross validation.

Iterative classification for coarse localization We test the ro-

bustness of the iterative classification method. We vary the quality

of the initial decisions of the heuristic strategy (without iterations)

by setting the parameters (𝜏𝑙 , 𝜏ℎ) to (20, 160), (16, 177), (40, 80),
and (60, 60). For each query we terminate the coarse localization

algorithm at different stages (as a percentage of the maximum it-

erations the algorithm would perform) and report 𝐴𝑐 in Figure 8.

We observe that for a high quality initial decision, the iterative

classification improves the accuracy significantly with increasing

number of iterations. Also, for those relatively bad initial decisions

(with initial accuracy 58% and 65%) the improvement achieved by

the iterative classification is small but it always increases. We also

show that for the parameters decided by the Gaussian confidence
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Figure 9: Impact of historical data used on accuracy. Figure 10: Caching accuracy.

interval method (i.e., (16, 177)), which does not rely on the ground

truth data, the iterative classification method works very well.

Impact of weights of room affinity.We examine the impact of

weights used in computing room affinity,𝑤𝑝𝑓 ,𝑤𝑝𝑏 ,𝑤𝑝𝑟
. We report

the fine accuracy of the four weight combinations satisfying the

rules defined in that section:𝐶1 = {0.7, 0.2, 0.1},𝐶2 = {0.6, 0.3, 0.1},
𝐶3 = {0.5, 0.3, 0.2}, and𝐶4 = {0.5, 0.4, 0.1}. For𝐶1,𝐶2,𝐶3,𝐶4, 𝐴𝑓 of

I-FINE is 81.8, 83.4, 82.3, 82.4, and 𝐴𝑓 of D-FINE is 86.1, 87.5, 86.6

and 86.4, respectively. We observe that all the combinations for both

I-FINE and D-FINE obtain a similar accuracy (with 𝐶2 achieving a

slightly higher accuracy). Hence, the algorithm is not too sensitive

to the weight distributions in this test. Also, D-FINE outperforms

I-FINE by 4.6% on average.

Impact of historical data.We use historical data to train the mod-

els in the coarse algorithm and to learn the affinities in the fine

algorithm. We explored how the amount of historical data used af-

fects the performance of LOCATER. We report the coarse, fine, and

overall accuracy for the [40,55)% and [55,70)% predictability groups,

in Figure 9(a), Figure 9(b), and Figure 9(c), respectively. The graphs

plot the accuracy of the algorithm with increasing amount of his-

torical data, from no data at all up to 9 weeks of data. The accuracy

of the coarse-grained algorithm increases with increasing amount

of historical data and it reaches a plateau when 8 weeks of data are

used. The reason is that the iterative classification algorithm used

to train the model becomes more generalized the more data is used

for the training. The performance of the fine-grained algorithm

is poor when no historical data is used (as this effectively means

selecting the room just based on its type). However, when just one

week of historical data is used the performance almost doubles. The

accuracy keeps increasing with increasing number of weeks of data

though the plateau is reached at 3 weeks. The results show that

the kind of affinities computed by the algorithm are temporally

localized. The overall performance of the system follows a similar

pattern. With no data, mistakes made by the fine-grained localiza-

tion algorithm penalize the overall performance. With increasing

amount of historical data, the performance increases due to the

coarse-grained algorithm labeling gaps more correctly. In all the

graphs, the performance of the overall system and its algorithms

increases with increasing level of predictability of users.

Robustness of LOCATER w.r.t. room affinity. LOCATER’s ap-
proach to disambiguating locations exploits prior probability of

individuals to be in specific rooms (room affinity). In this experi-

ment, we explore the robustness of LOCATER when we only know

the prior for a smaller percentage of people. We randomly select

users for whom we compute and associate a room affinity to each

candidate room (based on historical data and room metadata). For

Table 2: Probability distribution of rooms.
𝑃𝑟ℎ [0, .2) [.2, .4) [0.4,.6) [.6, .8) [.8, 1)

Percent of queries 0 19 69 12 0

Δ𝑃𝑟 [0, .1) [.1, .2) [.2,.3) [.3, .4) [.4, .5)
Percent of queries 4 17 43 20 16∑

𝑟 [0, .2) [.2,.4) [.4, .6) [.6, .8) [.8, 1)
Percent of queries 32 51 15 2 0

the rest, we consider an uniform room affinity for all the candidate

rooms. We repeat the experiment 5 times and report the average

fine accuracy:𝐴𝑓 . We set the percentage of users with refined room

affinities to 0%, 25%, 50%, 75%, and 100%, and the corresponding

𝐴𝑓 is: 6.2, 57.1, 71.3, 81.1, 87.1. We observe that the accuracy is

poor when equally distributed affinity is considered for all users.

When a refined room affinity is computed for a small portion of

users (25%), the accuracy increases significantly to 57.1. Increasing

the number of users with refined room affinity makes the accuracy

converge to 87.1. Thus, we expect LOCATER to work very well

in scenarios where the pattern of building usage and priors for a

significant portion of the occupants is predictable.

Impact of caching.We examine how the fine-grained algorithm’s

caching technique (see Section 4) affects the accuracy of the system.

We compute the accuracy of both I-LOCATER and D-LOCATER

compared to their counterparts using caching I-LOCATER+C and

D-LOCATER+C. Figure 10 plots the overall accuracy of the system

averaged for all the tested users. We observe that adding caching

incurs in a reduction of the accuracy from 5%-10%, which does not

significantly affect the performance. This means that the device

processing order generated by the caching technique maintains a

good accuracy while decreasing the cleaning time (see Section 6.3).

Probability distribution of results.We show the probability dis-

tribution computed by LOCATER for each of the rooms in the set

of candidate rooms for a given query. In particular, we plot the

highest probability value associated with any room (𝑃𝑟ℎ), the dif-

ference of the highest and second highest probability (Δ𝑃𝑟 ), and
the summation of the remaining probabilities (

∑
𝑟 ). We report the

statistics over all the queries in Table 2. We observe a long tail

distribution for the set of different rooms output by LOCATER. In

particular, there are 69% queries whose highest probability is in

[.4, .6), 43% queries whose difference of the highest and second

highest probability is [.2, .3) and 51% queries where the sum of

top-2 probabilities is greater than .6.

Comparison with baselines.We compare accuracy of LOCATER

vs. baselines for different predictability groups and overall (as the

average of accuracy for all people) as Q (see Table 3 where each cell

shows the rounded up values for 𝐴𝑐 , 𝐴𝑓 , 𝐴𝑜 ). We observe that both

I-LOCATER and D-LOCATER significantly outperform Baseline1
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Table 3: Accuracy for different predictability groups.
𝐴𝑐 |𝐴𝑓 |𝐴𝑜 [40, 55) [55, 70) [70, 85) [85, 100) Q
Baseline1 56 |10 |24 63 |8.0 |25 67 |10 |26 73 |12 |28 64 |10 |26
Baseline2 62 |45 |39 67 |63 |50 69 |75 |57 76 |93 |72 68 |67 |53

I-LOCATER 76 |72 |61 83 |78 |70 87 |84 |77 93 |87 |84 85 |83 |75
D-LOCATER 76 |77 |63 83 |82 |72 87 |87 |79 93 |92 |88 85 |87 |79

Table 4: Macro results of LOCATER for different methods.
Precision Recall F-1

Baseline1 21.8 33.5 26.4

Baseline2 58.7 46.2 51.7

I-LOCATER 78.2 73.7 76.7

D-LOCATER 81.3 76.4 78.8

regardless of the predictability level of people. This is due to the

criteria to select the room in which the user is located when per-

forming fine-grained localization. Deciding this at random works

sometimes in situations where the AP covers a small set of large

rooms but incurs in errors in situations where an AP covers a large

set of rooms (e.g., in our dataset up to 11 rooms are covered by the

same AP). Baseline2 uses an strategy where this decision is made

based on selecting the space where the user spends most of his/her

time, if that space is in the region where the user has been localized.

This strategy only works well with very predictable people. Hence,

LOCATER outperforms Baseline2 in every situation except for the

highest predictable group where Baseline2 obtains a slightly better

accuracy. The accuracy of D-LOCATER is consistently higher than

I-LOCATER. Both of them perform significantly better than the

baselines except for the situation highlighted before.

Macro results. We report macro precision, recall, and F-1 mea-

sure for Baseline1, Baseline2, I-LOCATER, and D-LOCATER, respec-
tively. Macro precision (recall) is defined as the average of precision

(recall) of all classes. As shown in Table 4, LOCATER achieved

a significantly better precision and recall than baselines and the

performance of D-LOCATER is slightly better than I-LOCATER’s.

6.3 Efficiency and Scalability
We first examine the efficiency of LOCATER on the DBH-WIFI
dataset. We report average time per query when the system uses

or not the stopping conditions described in Section 4. With stop

condition, LOCATER takes 563ms while it takes 2,103ms without it.

Without stop conditions, I-LOCATER has to process all neighbor

devices, whereas with the stop conditions the early stop brings a

considerable improvement in the execution time.

We conduct scalability experiments both on real and synthetic

data. We randomly select a subspace of a building by controlling

its size using as parameters the number of WiFi APs, rooms, and

devices. For the real dataset, DBH-WIFI, we extract four datasets,
𝑅𝑒𝑎𝑙1, ..., 𝑅𝑒𝑎𝑙4. The number of WiFi APs for these four datasets

are 10, 30, 50, 64, and the number of rooms are 46, 152, 253 and

303, and the number of devices are 41,343, 60,885, 63,343, 64,717,

respectively. To test the scalability of LOCATER on various scenar-

ios, we generated four synthetic datasets simulating the following

environments, which we list in order of increasing predictability:

airport, mall, university, and office. For each of them we used a real

blueprint (e.g., Santa Ana’s airport for the first scenario) and created

types of people (e.g., TSA staff, passengers, etc) and events they

attend (e.g., security checks, boarding flights, etc.) based on our

observations. Due to space limitation, we only report the running

Figure 11: Scalability testing

time of LOCATER on Mall scenario. In particular, we generated

four synthetic datasets,𝑀𝑎𝑙𝑙1, ...,𝑀𝑎𝑙𝑙4.
14

We plot the average time cost per query on DBH-WIFI and Mall
in Fig 11. The main observations from the results on both datasets

are: 1) The caching strategy decreases the computation time of D-

LOCATER significantly, and D-LOCATER performs slightly bettern

than I-LOCATER; 2) With the caching technique LOCATER has

a great scalability when the size of space increases to large scale

to support a near-real time query response. (Around 1 second for

D-LOCATER and half a second for I-LOCATER).

7 RELATEDWORK
LOCATER’s semantic localization technique is related to prior data

cleaning work on missing value imputation, imputing missing time

series data [5, 27–29, 37, 53, 59, 61], and reference disambiguation.

Broadly, missing value repair can be classified as rule-based [15, 45,

46] - that fills missing values based on the corresponding values in

neighboring tuples based on rules; external source-based [8, 15, 43,

56] - that exploits external data sources such as knowledge bases;

and statistics-based [10, 35, 57] - that exploits statistical correlations

amongst attributes to repair data. External data source and rule

based techniques are unsuitable in our setting since we would like

our method to work with minimal assumptions about the space

and its usage. For a similar reason, existing statistical approaches,

which learn a model based on part of the data known to be clean

(using a variety of ML techniques such as relational dependencies)

and use it to iterate and fill in missing values, do not apply to the

setting of our problem. We do not have access to clean data and,

moreover, our approach is based on exploiting temporal features in

the data to predict a person’s missing location.

Prior work on reference disambiguation [6, 13, 25, 30] has ex-

plored resolving ambiguous references to real-world entities in

tuples exploiting tuple context, external knowledge, and relation-

ships implicit in data. If we consider the region in the location field

in our context to be a reference to a room in the region, fine-grained

location disambiguation can be viewed as an instance of reference

disambiguation. Of the prior work, [25], that exploits strength of re-

lationships between entities for disambiguation, is the most related

to our approach. In contrast to [6, 13, 25, 30], that focus on clean-

ing a complete static collection of data, we clean only the tuples

needed to answer the location query for an individual. Cleaning the

entire semantic location table will be prohibitively expensive since

sensor data arrives continuously. Also, our approach exploits two

14
The synthetic data sets have also been used to evaluate the generality of LOCATER

to different settings. We showed detailed information about the specific simulated

scenarios (including how were they generated) and the complete results (including

accuracy for baselines and LOCATER) in the extended version of the paper [32].
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specific relationships – people’s affinity to rooms, and possibility

of people to be collocated over time – that can be relatively easily

determined from building metadata and lifted from prior sensor

data. Our algorithm is based on a probabilistic model which also

differs from prior work that has taken a more heuristic approach

to measuring relationship strengths. Finally, in our setting, tempo-

ral properties of data (such as recency) play an important role for

disambiguation which has not been considered in prior work on

exploiting relationships for disambiguation – e.g., [25].

Cleaning of sensor data has previously been studied in the con-

text of applications such as object-tracking [4, 9, 12, 20, 47, 51, 55,

63] that have considered statistical methods to detect and repair

cross readings and missing readings in RFID signals [4, 21, 55]

and techniques to detect outliers in sensor readings [12, 47]. These

techniques are specific to RFID data and, as such, do not apply to

cleaning WiFi connectivity data.

Indoor localization techniques are broadly based on (a) exploit-

ing (one or more) technologies, such asWiFi APs, RFID, video based

localization, bluetooth, and ultra-wide band, and (b) features such

as time and angle of arrival of a signal, signal strength, and trilatera-

tion [31, 34, 38, 54, 58]. Such techniques can broadly be classified as

either active or passive. Active approaches [11, 40] require individ-

uals to download specialized software/apps and send information

to a localization system [11] which significantly limits technology

adoption. Non-participation and resistance to adoption renders

applications that perform aggregate level analysis (e.g., analysis

of space utilization and crowd flow patterns) difficult to realize.

Passive localization mechanisms, e.g., [31, 34, 38, 41, 42, 52, 54, 60]

address some of these concerns, but typically require expensive ex-
ternal hardware, significant parameter tuning that in turn requires

ground truth data, and/or use APs in a monitor mode (in which case

the AP cannot be used for data transmission and becomes a dedi-

cated hardware for location determination). Tradeoffs to deal with

such issues can cause limited precision, and are often not robust to

dynamic situations such as movement of people, congestion, signal

interference, and occlusion [41]. Furthermore, techniques that of-

fer high precision (e.g., ultra wide band) have significant cost and

are not widely deployed. The semantic localization studied in this

paper complements such indoor localization techniques with the

goal of supporting smart space applications that require associating

individuals with semantically meaningful geographical spaces.

8 CONCLUSIONS
In this paper, we propose LOCATER that cleans existing WiFi con-

nectivity datasets to perform semantic localization of individuals.

The key benefit of LOCATER is that it: 1) Leverages existing WiFi

infrastructure without requiring deployment of any additional hard-

ware (such as monitors typically used in passive localization); 2)

Does not require explicit cooperation of people (like active indoor

localization approaches). Instead, LOCATER leverages historical

connectivity data to resolve coarse and fine locations of devices

by cleaning connectivity data. Our experiments on both real and

synthetic data show the effectiveness and scalability of LOCATER.

Optimizations made LOCATER achieve near real-time response.

LOCATER’s usage of WiFi events, even though it does not cap-

ture any new data other than what WiFi networks already capture,

still raises privacy concerns since such data is used for a purpose

other than providing networking. Privacy concerns that arise and

mechanisms to mitigate them, are outside the scope of this work

and are discussed in [7, 17, 39]. For deployments of LOCATER, we

advocate to perform data collection based on informed consent

allowing people to opt-out of location services if they choose to.

9 APPENDIX
Parameters Computation in Coarse Localization. If ground
truth data is available, we can use cross-validation to tune 𝜏𝑙 and

𝜏ℎ . Alternatively, we can estimate these parameters using the WiFi

connectivity data as follows. For each device 𝑑𝑖 , we count its av-

erage connection time to a WiFi AP (time difference between two

consecutive connectivity events of 𝑑𝑖 ) based on a large sample of

its connectivity data. Then, we plot a histogram where x-axis rep-

resents the duration and y-axis is the percentage of devices with

a given duration between consecutive connections. The given fre-

quency distribution can be approximated as a normal distribution

N . We compute the confidence interval (𝐶𝐼𝑙 ,𝐶𝐼𝑟 ) of the mean of

N with 95% confidence level, and set 𝜏𝑙 = 𝐶𝐼𝑙 , 𝜏ℎ = 𝐶𝐼𝑟 . Intuitively,

there is a 95% probability that the mean of average duration of de-

vices will fall in (𝐶𝐼𝑙 ,𝐶𝐼𝑟 ), and the duration on the left side (<= 𝐶𝐼𝑙 )

indicates that the device is inside the building while duration in the

right side (>= 𝐶𝐼𝑟 ) is outside.

Proofs for Section 4.2. Proof of Theorem 1 Consider another

possible world𝑊0 where some unseen devices are not in 𝑟 𝑗 . We de-

note by𝑊0 (𝑑) the room where 𝑑 is located in𝑊0. We can transform

𝑊 to𝑊0 step by step, where in each step for a device that is not

in 𝑟 𝑗 in𝑊0, we change its room location from 𝑟 𝑗 to𝑊0 (𝑑). Assum-

ing the transformation steps are𝑊,𝑊𝑛, ..., 𝑊1,𝑊0, we can prove

easily: 𝑃𝑟 (𝑟 𝑗 |𝐷̄𝑛,𝑊 ) > 𝑃𝑟 (𝑟 𝑗 |𝐷̄𝑛,𝑊𝑛) > ... > 𝑃𝑟 (𝑟 𝑗 |𝐷̄𝑛,𝑊1) >

𝑃𝑟 (𝑟 𝑗 |𝐷̄𝑛,𝑊0).
Theorem 2 can be proven using a similar approach. The proof is

included in the extended version of the paper [32].

Proof of Theorem 3We compute each possible world’s probability

based on the probabilities of the rooms being the answer, which

are computed based on observations on 𝐷̄𝑛 .

𝑒𝑥𝑝𝑃𝑟 (𝑟 𝑗 |𝐷̄𝑛 ) =
∑

𝑊 ∈W(𝐷𝑛\𝐷̄𝑛 )
𝑃𝑟 (𝑊 )𝑃𝑟 (𝑟 𝑗 |𝐷̄𝑛 ,𝑊 ) (7)

=
∑

𝑊 ∈W(𝐷𝑛\𝐷̄𝑛 )
𝑃𝑟 (𝑊 |𝐷̄𝑛 )

𝑃𝑟 (𝑟 𝑗 , 𝐷̄𝑛 ,𝑊 )
𝑃𝑟 (𝐷̄𝑛 ,𝑊 )

=
∑

𝑊 ∈W(𝐷𝑛\𝐷̄𝑛 )
𝑃𝑟 (𝑊 |𝐷̄𝑛 )

𝑃𝑟 (𝐷̄𝑛 )𝑃𝑟 (𝑟 𝑗 ,𝑊 |𝐷̄𝑛 )
𝑃𝑟 (𝐷̄𝑛 )𝑃𝑟 (𝑊 |𝐷̄𝑛 )

=
∑

𝑊 ∈W(𝐷𝑛\𝐷̄𝑛 )
𝑃𝑟 (𝑊 |𝐷̄𝑛 )

𝑃𝑟 (𝐷̄𝑛 )𝑃𝑟 (𝑟 𝑗 |𝐷̄𝑛 )𝑃𝑟 (𝑊 |𝐷̄𝑛 )
𝑃𝑟 (𝐷̄𝑛 )𝑃𝑟 (𝑊 |𝐷̄𝑛 )

=
∑

𝑊 ∈W(𝐷𝑛\𝐷̄𝑛 )
𝑃𝑟 (𝑊 |𝐷̄𝑛 )𝑃𝑟 (𝑟 𝑗 |𝐷̄𝑛 )

= 𝑃𝑟 (𝑟 𝑗 |𝐷̄𝑛 )
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