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SUMMARY
Most natural odors are complex mixtures of volatile components, competing to bind odorant receptors
(ORs) expressed in olfactory sensory neurons (OSNs) of the nose. To date, surprisingly little is known about
how OR antagonism shapes neuronal representations in the detection layer of the olfactory system. Here,
we investigated its prevalence, the degree to which it disrupts OR ensemble activity, and its conservation
across phylogenetically related ORs. Calcium imaging microscopy of dissociated OSNs revealed signifi-
cant inhibition, often complete attenuation, of responses to indole—a commonly occurring volatile associ-
ated with both floral and fecal odors—by a set of 36 tested odorants. To confirm an OR mechanism for the
observed inhibition, we performed single-cell transcriptomics on OSNs exhibiting specific response pro-
files to a diagnostic panel of odorants and identified three paralogous receptors—Olfr740, Olfr741, and
Olfr743—which, when tested in vitro, recapitulated OSN responses. We screened ten ORs from the
Olfr740 gene family with �800 perfumery-related odorants spanning a range of chemical scaffolds and
functional groups. Over half of these compounds (430) antagonized at least one of the ten ORs. OR activity
fitted a mathematical model of competitive receptor binding and suggests normalization of OSN ensemble
responses to odorant mixtures is the rule rather than the exception. In summary, we observed OR antag-
onism occurred frequently and in a combinatorial manner. Thus, extensive receptor-mediated computation
of mixture information appears to occur in the olfactory epithelium prior to transmission of odor information
to the olfactory bulb.
INTRODUCTION

Odorants represent a rich source of information about an organ-

ism’s environment and are most frequently experienced as com-

plex mixtures. Yet, odorant mixture encoding by the mammalian

olfactory system remains poorly understood. Odorant detection

is initiated when odorants interact with seven transmembrane

domain G protein-coupled odorant receptors (ORs) expressed

in olfactory sensory neurons (OSNs) lying in the nasal cavity [1,

2]. Known, putatively functional mammalian OR genes number

between 58 and 2,514 depending on the species, with 390 in hu-

mans and 1,231 in mice [3]. Only one OR gene is expressed per

OSN [4–7], a major feature underlying combinatorial odor encod-

ing [1,2,8,9]. That is, a single OR can be activated by multiple

odorants and a single odorant can activate multiple ORs [10–

17], leading to many possible combinations of active ORs, and

thus the OSNs housing them. However, even with combinatorial

encoding and a large family of receptors, recent theoretical work

suggests substantial input normalization may be required to pre-

vent saturation of the detection layer of the olfactory system and
Current Biology 30, 1–
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retain discriminatory ability even for moderately complex odors

(>20 components) [18].

OR antagonism by odorants, a straightforward normalization

solution, has been observed experimentally for a relatively

small number of mammalian ORs [19–24] and likely plays an

important role in how odorant mixtures may be encoded [25,

26]. More recent experimental work explored this hypothesis

in the olfactory epithelium (OE) and olfactory bulb (OB) in vivo

and found evidence of mixture inhibition occurring in the pe-

ripheral olfactory system [27–29]. In particular, Xu et al. re-

ported extensive OSN inhibition in intact OE when presented

with complex odorant mixtures [27], while Inagaki et al.

excluded that presynaptic inhibition in the OB was because of

lateral inhibition from interneurons in double knockout mice

for the GABAB1 and D2R dopamine receptors [28]. Yet limita-

tions in probing ORs in heterologous expression systems and

in silico [30] have impeded systematic exploration of the full

range of possible receptor-ligand interactions. As such, it is

not fully understood to what extent classical G protein-coupled

receptors (GPCR) ligand types—like antagonists (ligands that
14, July 6, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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B Figure 1. Characterization of Indole-Sensi-

tive Dissociated OSNs

(A) A representative response of an individual OSN

to increasing indole concentrations (ranging 0.158–

500 mM). Saturation occurs at 158 mM and above.

Scale bar, x axis represents time in minutes; y axis

represents DF/F0 fluorescence ratio.

(B) Population histogram of the EC50 distribution for

indole-sensitive OSNs.

(C) Population heatmap of the concentration-

dependent responses of 441 indole-sensitive

OSNs (n = 3). Each column represents an indi-

vidual OSN response normalized to its highest

indole response.

(D) Response variability of two OSNs to 25 mM

indole (blue) repeated administration. Responses

to 0.3% DMSO solvent (negative control, gray)

and 40 mM Forskolin (positive control, black) are

also shown. Forskolin is an activator of Adenylyl

Cyclase 3 (AC3) [33] and is used as a measure of

maximal activation of the signal transduction

cascade (see also Figure S1 for an AC3 inhibition

experiment). Administration time points are indi-

cated by vertical tickmarks below the trace. Scale

bar, x axis represents time in minutes; y axis rep-

resents DF/F0 fluorescence ratio.

(E) Population histogram of response variability

shown in (D), measured as the mean percent dif-

ference between peak responses to even-

numbered (interposing) administrations and a line of

best fit across peak responses to odd-numbered

(flanking) administrations (86 OSNs, n = 3).

(F) Responses of two OSNs to 25 mM indole (blue) or

to a mixture of 25 mM indole and 125 mM Lilyflore

(orange). Scalebar, x axis represents time inminutes;

y axis represents DF/F0 fluorescence ratio.

(G) Population histogram of the mean percent differ-

ence between peak responses to the indole and Lily-

foremixture anda lineof best fit across flanking indole

administrations as described in F (157 OSNs; n = 4).
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bind but do not activate a receptor), partial agonists (ligands

that cannot fully activate a receptor even at saturating concen-

trations), and inverse agonists (ligands that reduce constitutive

receptor activity)—shape complex odor representations before

they are propagated to the OB.

Using Ca2+ imaging of dissociated neurons, we first investi-

gated inhibition of indole-sensitive OSNs by testing binary mix-

tures of indole and a diverse set of odorant compounds. We

found that inhibition varied in magnitude, and most compounds

inhibited many OSNs. The extent of inhibition was maintained

when we imaged the binary mixture responses of intact OE

that retained full connectivity to the OB, using SCAPE micro-

scopy [27, 31]. We then coupled Ca2+ imaging of dissociated

OSNs with single-cell RNA sequencing (RNA-seq) to identify a

subset of indole-sensitive paralogous ORs, which were then

systematically probed with a large odorant library using high-

throughput screening. Receptor-specific antagonism was, on

average, at least as common as receptor activation and dis-

played diverse relative affinities and efficacies. Our data

strongly support that antagonism is a typical outcome of OR-

ligand binding and thus a fundamental aspect of olfaction,

frequently leading to input normalization at the onset of odor

mixture detection.
2 Current Biology 30, 1–14, July 6, 2020
RESULTS

Prevalent Inhibition of Olfactory Sensory Neurons in
Two-Component Odorant Mixtures
To investigate the extent of OSN inhibition, a standard calcium

imaging method was developed, where thousands of dissoci-

ated mouse OSNs per experiment could be monitored with ac-

curate concentrations of either monomolecular odorants or mix-

tureswith specified odorant ratios [32] (STARMethods). First, we

characterized assay variability using the naturally occurring

molecule, indole. Because previous experiments had shown

indole activated a large proportion of OSNs (data not shown), it

provided a good choice for subsequently studying inhibition

breadth across an OSN population. The concentration of indole

used herein was derived from indole dose-response experi-

ments where 14,989 OSNs were challenged with increasing

indole concentrations. Robust dose-dependent responses

were observed, with 433 OSNs responding to indole with log-

normally distributed potencies spanning approximately 3.5 or-

ders of magnitude, with a mean EC50 of 36 mM (Figures 1A–

1C). Repeated administration of indole slightly below the mean

EC50 (25 mM) yielded peak height variation in indole-sensitive

OSNs of 0.79% ± 4.9% (mean ± SD) (Figures 1D and 1E), thus
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providing a robust yet sensitive condition to quantify the effects

of two-component odorant mixtures.

To systematically measure OSN inhibition, we employed an

experimental design in which 25 mM indole delivery was inter-

spersed with delivery of 25 mM indole mixed with a test odorant

at 125 mM. The peak Ca2+ signals evoked by the mixture were

compared with indole alone, allowing for the measurement of

relative response changes. The method was piloted with the

structurally related odorant Lilyflore (Figure 1F; compound 20

in Figure 2). Indole + Lilyflore reduced indole responses in 43%

of OSNs by R10%, two standard deviations away from the as-

say’s mean variability (Figures 1E and 1G). Such a large

response modulation indicated this odorant was an inhibitor of

indole-sensitive OSNs and therefore a putative indole OR

antagonist.

Previous work suggests OSN inhibitors and OR antagonists

can be structurally related to agonists [19, 22–24]. To examine

this relationship further, 36 structurally varied odorants were

tested for their inhibitory effects on indole-sensitive OSNs using

the experimental paradigm described above (Figure 2A). Chem-

ical distances between indole and the 36 odorants were deter-

mined by calculating the Tanimoto coefficient of four recently

developed molecular fingerprints commonly used in ligand-

based search approaches (Table S1) [34, 35]. Inhibition was

common and varied by OSN and odorant, with 32 compounds

completely inhibiting a subset of indole-sensitive OSNs (Fig-

ure 2B). Almost half of the odorants (17) displayed median inhibi-

tion values greater than 10%. Furthermore, several of the least

chemically similar odorants (lowest Tanimoto coefficients)

showed some of the strongest inhibition effects on the indole-

sensitive OSN population (e.g., compounds 1, 2, 3, 5, and 7 in

Figure 2). Other previous work suggests that OR-independent

mechanisms could result in comparable OSN response inhibition

[36–39]. However, when pharmacologically blocking the olfac-

tory transduction pathway [40, 41], we observed nearly complete

attenuation of the indole response in all indole-sensitive OSNs

recorded (Figure S1), in stark contrast to the highly specific inhi-

bition patterns observed with odorants. The high but specific

rate of odorant-mediated inhibition seen here across divergent

chemical structures suggests that structural similarity is not

necessarily a prerequisite for OSN inhibition.

The dose-dependence of odorant-mediated OSN inhibition

was characterized by testing three inhibitors at concentrations

between 2.5 and 500 mM inmixture with 25 mM indole (Figure 3A).

These odorants, Lilyflore, Hivernal Neo, and Z95, were chosen to

span a range of population effect sizes based on the screening

results at 125 mM (see Figure 2A). Lilyflore showed the smallest

effect of the three with a median inhibition of �5%, Hivernal

Neo had a median inhibition of �12%, and Z95 showed the

greatest effect with a median inhibition level of �45%. In all

cases, dose-dependent inhibition at the single OSN level could

be fitted with the Hill equation and generated varying IC50s and

Hill coefficients, such that increasing doses inhibited the re-

sponses of successively larger numbers of OSNswith increasing

strength (Figures 3B–3E).

Specificity of inhibition was further probed by functionally

characterizing OSNs with a panel of agonists and then chal-

lenging the same population of indole-sensitive OSNs with the

inhibitors Lilyflore, Hivernal Neo, and Z95 (Figures 3F and 3G).
The diagnostic panel of agonists consisted of indole and analogs

2-methylindole, 3-methylindole, 6-methylindole, and 2-methox-

ynaphthalene and segregated OSNs into ensembles with

differing agonist response profiles. Following stimulation with

the two-component mixtures, OSNs displayed further com-

pound-specific differences in their responses and extensive

input normalization.

To examine if the dissociation process could have impacted

the observed OSN responses, we used SCAPE microscopy to

monitor odor responses of mature OSNs via a genetically en-

coded calcium indicator, GCaMP6f, in a whole-mount prepara-

tion of the OE (Figure 3H) [27, 31]. In this preparation, the struc-

tural integrity of the OE was maintained, projections to the OB

were preserved, and odorants were delivered with the same de-

livery system used in dissociated preparations. Z95 was chosen

for these experiments because it was the most potent and

broadly acting inhibitor identified from our dissociated OSN ex-

periments. The results obtained in intact OE mirrored those ob-

tained in dissociatedOSNs.Widespread inhibition of indole-sen-

sitive OSNs was observed with Z95, ranging from no modulation

to full inhibition of OSNs (Figures 3I–3K). Interestingly, the distri-

bution of Z95 OSN inhibition in intact OE was shifted toward

significantly higher values compared with that of dissociated

OSNs (Figure 3K); the unpaired median difference between

dissociated and intact OSNs was 60% (95.0%CI 18.8, 81.2),

the p value of the two-sided permutation t test was 0.007 [42],

suggesting inhibition was significantly underestimated in the

dissociated method. Taken together, these results imply that

OSN inhibition can occur in vivo, shows sigmoidal dose-depen-

dence, and is combinatorial like activation.

Identification of Indole-Sensitive Odorant Receptors
To demonstrate that OSN inhibition was a result of OR antago-

nism by specific odorants, we employed single-cell RNA-seq

of indole-sensitive OSNs to identify indole-sensitive ORs for sub-

sequent in vitro study. Indole and five related odorants (2-meth-

ylindole, 3-methylindole, 6-methylindole, 2-methoxynaphtha-

lene, and Lilyflore) were sequentially delivered to dissociated

OSNs, and six OSNs with three different response profiles

were isolated for transcriptome analysis. RNA transcripts encod-

ing Olfr740, Olfr741, and Olfr743 were retrieved, with high level

expression of a single OR transcript in each OSN (Figures 4A–

4C), consistent with monogenic OR expression in OSNs 2,4–6

and coincident expression of mature OSN markers (Figure S3A)

[43]. OSNs with similar response profiles expressed the same

OR genes while OSNs with qualitatively distinct responses ex-

pressed different OR genes.

Olfr740, Olfr741, and Olfr743 belong to a closely related gene

family consisting of 12members (Figure S2), providing an oppor-

tunity to probe combinatorial agonism and antagonism and how

they relate to OR phylogenetic proximity. We characterized each

OR’s activation profile in a HEK293T-derived heterologous

expression system (STAR Methods) by performing dose-

response experiments with the same diagnostic compounds

used for identification. The compounds activated the ORs with

varying potencies (measured by EC50) and efficacies (measured

by maximum receptor activity) (Figures 4D–4G). Importantly, the

rank-order of in vitro OR potencies for the three identified ORs

were consistent with the rank-order of OSN sensitivities of the
Current Biology 30, 1–14, July 6, 2020 3
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Figure 2. Indole-Sensitive OSNs Are Inhibited by a Range of Odorants

(A) OSNs were presented with 25 mM indole alone, or two-component mixtures of indole and 125 mM of compounds 1–36 (see Table S1 for chemical similarity).

(B) Violin plots of indole response inhibition, wherein each gray dot represents modulation of a single OSN by that odorant, and the number to right indicates the

total number of OSNs represented in each violin. Experiments were repeated at least twice in each case. The black dot denotes the median level of inhibition for

the population sampled. The outer red line of the violin represents the probability density at a given inhibition value. 2-MN, 2-methoxynaphthalene. Asterisks (*)

denote compounds tested as a mixture of isomers (see Table S3).
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2-Methoxynaphthalene (50 µm)

Figure 3. Lilyflore, Hivernal Neo, and Z95 Inhibited Indole-Sensitive OSNs in a Dose-Dependent and Specific Manner

(A) Examples of dose-dependent inhibition of the indole response by Lilyflore (L), Hivernal Neo (H), and Z95 (Z) in OSNs challenged with 25 mM indole alone (I; in

triplicate) or in the presence of increasing concentrations of each inhibitor.

(B) Dose-response curves fitted to the Hill equation for OSNs in A to increasing concentrations of Lilyflore (circle, IC50 = 93 mM), Hivernal Neo (triangle, IC50 =

58 mM), or Z95 (diamond, IC50 = 28 mM). Responses were normalized to the indole response line of best fit. Scale bar, x axis represents time in minutes; y axis

represents DF/F0 fluorescence ratio.

(C–E) Violin plots of the inhibition distribution of indole-sensitive OSNs by increasing concentrations of Lilyflore (C), Hivernal Neo (D), and Z95 (E). Each gray dot

represents modulation of a single OSN by that odorant delivered at the specified concentration and the black dot denotes the median level of inhibition for the

(legend continued on next page)
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cells of origin. This suggests that Olfr740, Olfr741, and Olfr743

activity drove the OSN responses and that OSN and heterolo-

gous OR assays are comparable. Furthermore, all ORs in the

family showed robust responses to at least one member of the

odorant panel (Figures 4G and S3B), confirming they functioned

well in our assay system. The indole EC50s ranged widely across

the gene family, Olfr743 being the most sensitive receptor

(EC50 = 80 nM) andOlfr745 andOlfr747 the least sensitive recep-

tors (EC50 > 600 mM). Among paralogous ORs sharing almost

80% identity, indole’s EC50 could still vary by more than two or-

ders of magnitude (Olfr743 EC50 = 80 nM; Olfr739 EC50 = 32 mM).

Efficacy also varied widely, encompassing inverse, partial, and

full agonism (Figure S3). Thus, even across this small set of struc-

turally related ligands, phylogenetically related ORs displayed

diverse agonist specificity and receptor binding outcomes.
Widespread and Combinatorial Antagonism of Indole-
Sensitive Odorant Receptors
The rangeof functional responses for this familywas further exam-

inedwith an 800-compound library, selected to comprise organo-

leptically and chemically diverse perfumery-related odorants

including 5,6- and 6,6-bicyclic aromatics, macrocycles and poly-

cycles, aliphatic chains, and multiple functional groups including

alcohols, aldehydes, ketones, acids, lactones, andesters.Weper-

formed single-concentration agonist and antagonist screens

(STAR Methods) with this library on the 10 ORs displaying full

indole-dose response curves (Figure S3). We identified a total of

430 antagonists and 328 agonists that elicited a response in at

least one OR, or 583 ligands in total when ignoring binding

outcome. The number of antagonists and agonists varied widely

by OR; in many cases, it appeared to be inversely related (Fig-

ure 5A). We used an Upset plot, a multidimensional Venn diagram

[44], toexamine thenumber ofuniqueantagonists andagonists for

each OR aswell as the overlap amongORs (Figures 5B and S4B).

A total of 149 antagonists and 123 agonists only impacted a single

OR. However, most compounds were ligands for multiple ORs—

281antagonists and205agonists—again indicatingcombinatorial

ligand binding properties for both binding outcomes.
Functional Diversification of OR Paralogs
OR paralogs are observed to respond to diverse agonists, re-

flecting acquisition of new functions following OR gene
population sampled. The outer red line of the violin represents the probability den

OSNs, n = 9), and Z95 (122 OSNs, n = 3).

(F) Example of an OSN response to a series of singly administered odorants presen

3-methylindole (3-MI; teal), 6-methylindole (6-MI; red), 2-methoxynaphthalene (

activation profile, OSNs were challenged with indole alone (25 mM; light blue) o

represents time in minutes; y axis represents DF/F0 fluorescence ratio.

(G) Top, heatmap of the activation profiles observed in the indole-sensitive popul

Colors along the left side of panel correspond to the singly administered odoran

(H) 3D volumetric rendering of an OMP-Cre+/� GCaMP6f+/� OE using SCAPE mi

(I) Example of an OSN response (left; see arrow) in the intact OE before and afte

(right). Scale bar, 20 mm.

(J) An example of indole response inhibition by Z95 in SCAPE calcium imaging. Sc

ratio.

(K) The median difference between indole response inhibition by Z95 in Fura-2

Gardner-Altman estimation plot. The median difference is plotted on a floating a

values are depicted as a dot plot on the bottom axes; the 95% confidence interva

60%, the median inhibition in dissociated OSNs was 40%, the median inhibition

6 Current Biology 30, 1–14, July 6, 2020
duplication in order to have become fixed in the genome [45].

To investigate whether antagonism may be an additional driver

of neofunctionalization, responses among the 10 paralogous

ORs were compared in detail. Hierarchical clustering of pairwise

Pearson correlation matrices broadly reflected phylogenetic

proximity in both screens by segregating the two paralog OR

gene clades (Figures 5C and S4C). Individual pairwise correla-

tions ranged between 0.27 and 0.94 for antagonists and 0.23

and 0.94 for agonists. They were also similarly distributed for

both assay types (Figure 5D), indicating wide overall functional

variability. However, across all 40 pairwise comparisons for

both assays, sequence similarity did not consistently correlate

with similar screening results. For example, while Olfr741 and

Olfr742 (94% identity) were highly correlated (antagonist r =

0.74, agonist r = 0.71), Olfr739 and Olfr742 (90% identity) were

much less well correlated (antagonist r = 0.41, agonist r =

0.45). Conversely, an OR pair with relatively low identity,

Olfr738 and Olfr749 (60% identity), exhibited better correlation

(antagonist r = 0.64, agonist r = 0.71). The overall correlations be-

tween percent amino acid identity and functional similarity were

r = 0.50 (p < 0.001) for antagonism and r = 0.63 p < 0.0001 for

agonism (Figure S4D).

Ligand binding appeared to be slightly more conserved across

the family of ORs than the functional outcome of binding. In Fig-

ure S5, the Jaccard similarity coefficient (i.e., number of shared

ligands divided by the number of total ligands) was slightly higher

for binding (median = 0.35) than for agonism (median = 0.27) or

antagonism (median = 0.28). This implies that over evolutionary

time, ligands switch binding outcomes (agonism or antagonism)

slightly more frequently than switching between being able to

bind or not. Taken together, the data suggest that upon gene

duplication, OR paralogs diverge in functional outcome more

rapidly than in their ability to bind specific ligands and that

both dimensions can drive neofunctionalization.
Specificity and Chemical Diversity of Indole-Sensitive
OR Antagonists
To further examine cross-target specificity, agonist potency

(EC50), antagonist potency (relative IC50 in the presence of an

EC80 concentration of indole), and maximal efficacy were quan-

tified by dose-response experiments of indole and the top five

antagonists for each OR from the single-concentration screen
sity at a given inhibition value for Lilyflore (115 OSNs, n = 2), Hivernal Neo (311

ted in duplicate (50 mM), including indole (I; blue), 2-methylindole (2-MI; green),

2-MN; purple), and Lilyflore (L; orange). Following this series to establish the

r in combination with one of the three inhibitors (125 mM). Scale bar, x axis

ation. Bottom, heatmap of inhibition profiles for the same population of OSNs.

ts or binary mixtures shown in (F).

croscopy. Scale bar, 100 mm.

r 25 mM indole administration. The response to 40 mM Forskolin is also shown

ale bar, x axis represents time in minutes; y axis represents DF/F0 fluorescence

loaded OSNs (dissociated) and SCAPE-imaged OSNs (intact) is shown in a

xis on the top as a bootstrap sampling distribution, while the individual OSN

l is indicated by the ends of the horizontal error bar. The median difference was

in intact OSNs was 100% [42].
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Figure 4. OR Identification from Functionally Characterized OSNs

(A–C) OSN responses to the diagnostic panel of odorants used in Figure 3F and their corresponding OR mRNA levels. Cells with similar response profiles were

grouped OSN 1 and 2 (A), OSN 3 and 4 (B), and OSN 5 and 6 (C). Histograms of the most abundant OR mRNAs are shown to the right of each trace. One clearly

abundant OR mRNA transcript was retrieved from each cell. TPM, transcripts per million reads. Scale bars for the OSN responses, x axis represents time in

minutes; y axis represents DF/F0 fluorescence ratio.

(legend continued on next page)
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Figure 5. Large-Library Odorant Screens Revealed Combinatorial Antagonist Logic Among Closely Related Indole-Sensitive ORs

(A) A bar plot of the number of agonists and antagonists identified from single-concentration compound library screening against the Olfr740 family. 700

compounds were tested in agonist mode and an additional 100 were added (800 total) for antagonist mode.

(B) An Upset plot showing the number of antagonists (bar height) that were unique (single dots) or shared (linked dots) among Olfr740 family members.

(C) A cladogram representing the phylogenetic relationship between the ten indole-sensitive receptors screened (based on amino acid alignment) alignedwith the

pairwise Pearson correlation matrix obtained from antagonism screening results for each OR.

(D) Histograms of pairwise Pearson correlations between the single-concentration in vitro responses for all receptor pairs, for both agonist and antagonist

screens. Vertical lines indicate median correlation for each screen. See Figure S4A for ROC analyses used to determine true positive thresholds. See Figures

S4B–S4D for the agonist screening analyses. See Figure S5 for the Jaccard similarity coefficients of ligand binding.
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(Figure 6A). A composite heatmap summarizes the diversity of

outcomes we observed (Figure 6B). All 36 compounds inhibited

more than oneOR, eight compounds inhibited all 10 ORs despite

pairwise amino acid sequence identities as low as 56%, and 12

inhibited only a subset of ORs. 16 compounds (compounds 3, 5,

20, 23 and 50–61) showed inhibition of some ORs and activation

of others at the concentrations tested, consistent with their sin-

gle-concentration results. Five of the 36 compounds had also

been tested on dissociated OSNs and one had been further

tested on intact OE (see Figures 2 and 3). Consistent with the re-

sults from dissociated and intact OSNs, Z95 (compound 1) was a

strong antagonist on all in vitro ORs, while Lilyflore (compound

20) was a weaker and less frequent antagonist in OSNs and

only inhibited five in vitro ORs.

The diversity of inhibitory responses observed in OSN Ca2+

imaging was paralleled by a noticeable chemical diversity.

While some compounds had a clear structural relationship to

indole (compounds 4, 6, 8, and 9; Figure 2; Table S1), several

potent antagonists did not share obvious similarity (2, 3, 5,

and 7; Figure 2; Table S1). The results obtained by probing

ORs in vitro, through systematic screening of a chemically
(D–F) Dose-response profiles of Olfr740 (D), Olfr741 (E), and Olfr743 (F) expressed

OR responses closely matched that of OSN responses. Normalized Response, c

(G) 12 ORs (Olfr740, Olfr741, and Olfr743 and nine paralogs) were tested at a rang

shown in a heatmap with blue and red hues representing EC50s (mM) of agonists an

(maximum change in HTRF ratio between baseline and receptor saturation) is ind

activation or inverse agonism but does not exclude neutral antagonism. See Figure

the mature OSN control mRNA transcripts and the dose-response curves.
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diverse odorant library, provided further evidence that antago-

nists can be structurally distinct from agonists. We assessed

the chemical distance between indole and the 36 antagonists

in Figure 6 by again calculating the Tanimoto coefficient of

the four molecular fingerprints [34, 35]. Strong rank-order cor-

relation (mean r = 0.80 ± 0.13) between the four methods was

found, but none of the antagonists displayed high Tanimoto co-

efficients (i.e., above 0.85 [46]) in any method (Table S2). In

addition, 18 compounds had a low coefficient (below 0.1) yet

exhibited potent inhibition on multiple ORs.

Binding Affinity Is Weakly Correlated with Functional
Outcome
Mathematical models suggest the correlation between binding

affinity and activation efficacy (i.e., ability to induce OR down-

stream signaling once bound) plays an important role in odor

identification and discrimination, assuming mixture interactions

are primarily because of competitive binding at the receptor level

[18, 47–49]. If the binding affinity and activation efficacy are

largely uncorrelated, agonism and antagonism across the recep-

tor ensemble are balanced. This reduces the chances of
in heterologous cells to the same panel of odorants. The rank-order of in vitro

AMP HTRF ratio.

e of concentrations with the diagnostic ligand panel. Dose-response curves are

d inverse agonists, respectively, given in units of�log10(M). Activation efficacy

icated by the relative diameter of the circle. No circle indicates no detectable

S2 for the phylogenetic relationship between ORs identified. See Figure S3 for
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Figure 6. Combinatorial Inhibition and Activation of the Olfr740 Family

(A) The 35 strongest antagonists identified (top five non-redundant hits per OR), Lilyflore and indole were tested for dose-responses (see Table S2 for chemical

similarity). Asterisks (*) denote compounds tested as a mixture of isomers (see Table S3).

(B) Composite heatmap summarizing full dose-response curves obtained for both the inhibition (red hue IC50) and activation (blue hue EC50) of the Olfr740 family,

with EC50 and IC50 color scales given in units of �log10(M). Activation efficacy (maximum change in HTRF ratio between baseline and receptor saturation) is

represented by the relative diameter of the circle; no circle indicates the absence of significant ligand binding for that OR. When a dose-response curve could be

fitted in both inhibition and activation mode (i.e., partial agonists), the IC50 is shown.
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saturating the OR repertoire in the presence of complex odor

mixtures and may allow for greatly improved odor segmentation

and discrimination.

The dose-response data (Figure 6) allowed quantitatively

testing the above correlation on this family of ORs. We fit a

two-step competitive binding (CB) model to the data (Figure 7A;

STAR Methods). In this model, the activators and inhibitors

compete to bind the receptor with binding affinities k�1
act and

k�1
inh respectively. The bound compound then activates the re-

ceptor with an activation efficacy hact or hinh, depending on

whether the activator or inhibitor is bound (1 represents a perfect

agonist [hact], i.e., the compound fully activates the receptor,

whereas 0 represents no activation [hinh]). To allow for inverse
agonism, we added the possibility for spontaneous activation

of the receptor, hs (between 0 and 1), when no compound is

bound (observed for Olfr740, Olfr743, and Olfr744; Figure S3).

The key parameter that determines a compound’s functional

outcome is its activation efficacy. A compound is a partial

agonist if its activation efficacy h is less than 1 but greater than

hs and is an inverse agonist if h is less than hs. If hact > hinh

and cact/kact < cinh/kinh, then the inhibitor ‘‘antagonizes’’ the acti-

vator. The model yielded an excellent fit to the data for two inhib-

itors tested in a two-way dose response (Figure 7B), using three

parameters: the binding affinities of the activator and inhibitor,

k�1
act and k�1

inh and the ratio of the subtracted activation effi-

cacies (hinh � hs)/(hact � hs) (STAR Methods). For these two
Current Biology 30, 1–14, July 6, 2020 9
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Figure 7. The Competitive Binding Model of Odorant Mixture Interactions and the Relationship between Binding Affinity and Functional

Outcome

(A) A schematic of the competitive binding (CB) model with spontaneous activity.

(B) Data from a CB assay using Olfr740 with indole as the activator and compounds 10 and 1 as the inhibitors. Normalized data (solid circles) show the activation

profiles for different concentrations of the inhibitors. The solid lines show the best fit curves using the CB model. Values below 0 indicate suppression of the

constitutive activity by the inhibitor.

(C) Histogram of binding affinities obtained by fitting the model to activation and inhibition profiles for 37 compounds across the Olfr740 family.

(D) Box and scatterplots showing the binding affinities for activators and inhibitors. While the distributions are largely overlapping, activators have a slightly higher

binding affinity (median = 11.0) compared with inhibitors (median = 10.5) leading to a weak, but non-zero correlation between binding affinity and functional

outcome.

(E) Receptor activation probability (sparsity) increased slower with mixture complexity when the correlation between binding affinity and functional outcome is

weak compared to any additive model of mixture interactions (r = 1), and thus prevents saturation of the receptor ensemble.
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inhibitors, a Schild regression revealed a linear relationship be-

tween inhibition levels and increasing doses of antagonist (Schild

slope for compound 10 = 1.17 and compound 1 = 0.8) [50],

further supporting competitive binding.

To test the affinity-efficacy correlation directly, the competitive

binding model was fitted to the activation and inhibition (of EC80

indole) profiles of 37 unique compounds for each of the 10

indole-sensitive ORs. The distribution of ln k�1 (n = 165; STAR

Methods) was found to be close to a normal distribution

(mean = 10.76, SD = 1.37, i.e., k�20 mM)with a few sensitive out-

liers (Figure 7C). The two most potent agonist interactions were

compounds 37 (indole) on both Olfr743 and Olfr741 (EC50s =

65 nM and 127 nM, respectively), while the two most potent

antagonist interactions were compounds 59 and 55 on Olfr740

(IC50s = 104 nM and 146 nM, respectively). Overall, we observed

a weak Pearson correlation between the binding affinity of acti-

vators (h z 1, nact = 47) and inhibitors (h z 0, ninh = 118) of

r = 0.18 ± 0.03 (mean ± SD), where r is the Pearson correlation

coefficient between ln k1 and h (Figure 7D). To test whether the

measured statistics lead to the receptor activity normalization

predicted in theory [18], we computed the extent of saturation

of a receptor ensemble with increasing mixture complexity,

where mixture interactions were modeled using the CB model,

and the receptor-ligand binding and activation parameters
10 Current Biology 30, 1–14, July 6, 2020
were drawn from the experimentally measured distributions (Fig-

ure 7E). The fraction of activated receptors (sparsity) indeed

increased at a slower rate compared to any additive model of

mixture interactions (r = 1), reaching 90% saturation for >100 li-

gands compared withz25 for an additive model. Thus, compet-

itive binding could account for the widespread antagonism

observed, and binding affinity and activation efficacy appeared

largely decoupled (r�0.18). These statistics would result in a

meaningful expansion of the encoding capacity of the system

compared with one in which antagonism was rare (r/1)

(Figure 7E).

DISCUSSION

Natural odors in the environment are typically complex chemical

mixtures, but the precise mechanisms by which they are en-

coded by the OR repertoire are yet to be elucidated. In particular,

the role of OR-specific antagonism in this regard has lacked

extensive empirical characterization, which formed the primary

focus of the current study. We found evidence for the full spec-

trum of competitive and non-cooperative GPCR interactions

with no obvious bias toward agonism.

Indole was chosen as a target for antagonism, in part, as an

example of a highly interesting yet representative odorant. It
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occurs in nature, is present at substantial levels in some flowers,

and is used regularly in perfumes for its floral and animalic char-

acter [51]. It is also present in latrine headspaces [52] and is remi-

niscent of feces if delivered at high concentrations. Using a robust

Ca2+ imaging assay, we characterized the responses of dissoci-

ated OSNs to indole and other structurally related odorants and

observed combinatorial activation and inhibition. For many odor-

ants, complete OSN inhibition affected a large subset of the

OSN population—a result recapitulated in intact OE with full

connectivity to the OB. This result would impact how complex

mixtures are encoded at the detection layer of the olfactory

system and raised the question of how frequently OSN inhibition

may occur in general, and whether it is mediated by OR

antagonism.

High-throughput screening of�800 volatile compounds against

the 10ORs identified through single-cell transcriptomics and phy-

logenetics allowed us to probe the prevalence of both agonism

and antagonism for a much larger chemical space. While this li-

brary is small comparedwith those typically found in drug screens

(where compounds can number in the millions), it is large

compared with what has previously been shown in the olfactory

literature and is approximately 25% as large as all the odorants

reportedly described in public databases (�3,100) [53]. Over

half of the library was found to antagonize one or more ORs

with about one third of those showing specificity to single ORs

and the rest antagonizing multiple. These data thus supported

an agonist-like combinatorial binding logic for antagonists, as pro-

posed by others [25, 26]. It is possible the library used in this study

over-represents the frequency of antagonism for odorants in gen-

eral; however, they were selected to cover a wide range of quali-

ties (musky, fruity, floral, etc.) and chosen to be chemically diverse

within the realm of small organic molecules,making it unlikely. It is

also possible the OR family investigated here is unusual in its po-

tential to be antagonized. However, these ORs exhibited a typical

behavior with respect to agonist selectivity suggesting the antag-

onist selectivity observed is typical too. It is thus possible that

most ORs, like GPCRs in general, can be antagonized [25, 27–

29]. Furthermore, most antagonists were not structurally similar

to indole, suggesting, even more provocatively, that most odor-

ants may in fact antagonize ORs.

Liquid phase concentrations relevant in heterologous OR

expression systems do not necessarily match those delivered

by gas phase in vivo. Indeed, concentrations used in this study

were often above saturating vapor pressure (Table S3), calling

into question the relevance of the results. However, several

studies have shown that micromolar in vitroOR sensitivity corre-

sponded to nanomolar in vivo glomerular sensitivity [54] or pico-

molar in vivo behavioral sensitivity (compare [13] and [55]). This is

consistent with a growing body of evidence showing the in vivo

effects of fluid dynamics and absorption of odorants by the

mucus [56–59]. Taking these into account, odorant concentra-

tions in the nose in the vicinity of ORs are likely to increase sub-

stantially compared with their concentration in inhaled air (esti-

mated to be 10- to 1,000-fold, depending on odorant-specific

mucus absorption rates), which would reconcile the liquid-phase

sensitivities observed here with gas-phase in vivo sensitivities.

Furthermore, the similarity in antagonist and agonist binding af-

finity distributions (Figure 7D) imply that for any in vivo agonist,

there is likely to be an equally potent in vivo antagonist.
Measurement of OR paralogs provided additional insights into

OR repertoire evolution. With widespread antagonism, it ap-

pears ORs evolve along two important axes: binding affinity

and binding outcome. Even the closest paralogs exhibited highly

variable binding affinities while there were also shared ligands

between all OR pairs that exhibited opposite binding outcomes.

Indeed, changes in the sequence may affect not only the binding

pocket but can also induce conformational changes altering

transduction cascade efficiency (e.g., by modifying G protein af-

finity) [60–62]. In some cases, OR alleles with minimal sequence

alterations, often a single SNP, outside of presumptive OR bind-

ing pockets [63] are responsible for dramatic shifts in potency

and efficacy [10–12, 16, 17, 64]. As OR repertoires evolve along

with speciation [3], antagonism likely contributes to the acquisi-

tion of novel gene functions in parallel with agonism, which will

likely help both loci to bemaintained following a gene duplication

event. This remains consistent with current views that OR paral-

ogs acquire new receptive fields and provide improved odor

discrimination [45, 65].

All in vitro data with complete dose-response curves were

consistent with a mathematical model of competitive binding,

and for two odorants tested on one OR, antagonism was shown

to be competitive by a Schild regression analysis. However, we

cannot rule out that some antagonists may not bind competi-

tively (e.g., allosteric binding). Although non-competitive binding

of small volatile compounds to allosteric sites has not been

widely reported for Class A GPCRs, there is a growing body of

evidence that such interactions could occur for ORs [27, 47,

49, 66]. Even so, this would not affect the main implication of

this study; that extensive, non-linear, OR-mediated computation

of mixture information occurs prior to transmission of signal to

the OB. Widespread combinatorial OR antagonism leads to a

far richer mixture encoding logic for the system than one where

antagonism is rare and responses are largely additive. This is

convergent with insect olfactory systems, despite the differing

nature of their ORs (heteromeric ion channels as opposed tome-

tabotropic GPCRs) [26, 67, 68], suggesting that antagonismmay

be a requisite peripheral mechanism and a general feature of ol-

factory systems for encoding high dimensional natural odors.
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Systèmes: San Diego).

http://refhub.elsevier.com/S0960-9822(20)30634-5/sref69
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref69
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref69
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref70
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref70
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref70
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref70
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref71
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref71
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref71
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref72
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref72
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref72
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref72
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref73
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref73
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref73
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref73
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref74
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref74
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref75
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref75
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref75
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref76
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref76
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref77
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref77
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref78
http://refhub.elsevier.com/S0960-9822(20)30634-5/sref78


ll
OPEN ACCESS

Please cite this article in press as: Pfister et al., Odorant Receptor Inhibition Is Fundamental to Odor Encoding, Current Biology (2020), https://doi.org/
10.1016/j.cub.2020.04.086

Article
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

L15 medium ThermoFisher Cat# 21083-027

DMEM/F12 (GIBCO BRL) ThermoFisher Cat# 11039-021

Collagenase Worthington/Fisher Cat# NC9482366

Dispase Worthington/Fisher Cat# NC9199795

Forskolin Sigma Cat# F3917

Insulin-transferrin-selenium ThermoFisher Cat# 51500-056

Fura-2 AM ThermoFisher Cat# F-1221

Concanavalin A Sigma Cat#C2010

DMEM, 1X (Dulbecco’s Modification of

Eagle’s Medium)

Corning Cat# 10-013-CM

Fetal Bovine Serum Qualified One Shot Life Technologies Cat# A31606-01

Puromycin GIBCO Cat# A11138-03

HBSS (Hanks’ Balanced Salt Solution) Corning Cat# 20-023-CV

HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid)

Teknova Cat# H1030

Lipofectamine 2000 Life Technologies Cat# 11668

IBMX (3-Isobutyl-1-methylxanthine) Acros Cat# 28822-58-4

MDL-12,330A hydrochloride Sigma Cat# M182

DMSO (Dimethyl Sulfoxide) Sigma Cat# D2438

Critical Commercial Assays

SMART-Seq v3 Ultra Low Input RNA Kit Takara Cat# 634851

Agencourt AMPure XP Beckman Cat# 15026495

TruSeq RNA Sample Preparation v2 Illumina Cat# 15026495

HTRF cAMP Dynamic 2 Kit Cisbio Cat# 62AM4PEB

GeneArt CRISPR Nuclease Vector Kit Life Technologies Cat# A21175

Deposited Data

RNA-seq data This paper GEO: GSE149271

Experimental Models: Cell Lines

HEK293T ATCC Cat# CRL-3216�

Rtp1 expressing HEK293T This paper N/A

Experimental Models: Organisms/Strains

C57BL/6J The Jackson Laboratory Cat# JAX000664

OMP-Cre The Jackson Laboratory Cat# JAX006668

tetO-GCaMP6f The Jackson Laboratory Cat# JAX030328

Oligonucleotides

gRNA Top Strand

50-GCC CTG AAC TGA GAT TGC AGG

TTT T-30

This paper N/A

gRNA bottom Strand

50-CTG CAA TCT CAG TTC AGG GCC

GGT G-30

This paper N/A

50 Homology Arm primer 1

50-CAT CAT CGA TGG GGT TTT ATG

GAA GAG TCT TAC TTC TCT T-30

This paper N/A

(Continued on next page)
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50 Homology Arm primer 2

50- GCA GCG GCC GCG GGT CTA AAT

GAT CCA AGA CAG AGT GG-30

This paper N/A

30 Homology Arm primer 1

50-CTG TTT AAA CCT CTT CAG AGA CTC

CCT CCT CC-30

This paper N/A

30 Homology Arm primer 2

50- TTA ACT CGA GTT AAA TAG ATT TAA

ACC GGT CCC AGG ACC-30

This paper N/A

Recombinant DNA

pPUR Vector Clontech Cat# 631601

pGEM-T Easy Vector Promega Cat# A1360

Software and Algorithms

Metamorph Molecular Devices https://www.moleculardevices.com/

Prism 7.04 GraphPad https://www.graphpad.com/

scientific-software/prism/

RStudio Foundation for Open Access Statistics https://rstudio.com/

Inkscape 0.92.3 Inkscape Project https://inkscape.org/

BioEdit 7.2.6 BioEdit https://bioedit.software.informer.com/

EPISuite 4.11 US Environmental Protection Agency https://www.epa.gov/

tsca-screening-tools/

epi-suitetm-estimation-program-interface

MATLAB Mathworks https://www.mathworks.com/products/

matlab.html

Caiman Flatiron Institue https://github.com/flatironinstitute/CaImAn

Estimation Statistics beta Adam Claridge-Chang and Joses Ho [42] https://www.estimationstats.com/#/

ll
OPEN ACCESS

Please cite this article in press as: Pfister et al., Odorant Receptor Inhibition Is Fundamental to Odor Encoding, Current Biology (2020), https://doi.org/
10.1016/j.cub.2020.04.086

Article
RESOURCE AVAILABILTIY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Matthew

E. Rogers (matthew.rogers@firmenich.com).

Materials Availability
Mouse lines utilized in this study are available at Jackson Laboratory: C57BL/6J (JAX000664), OMP-Cre line (JAX006668) and

GCaMP6f reporter line (JAX030328).

A new Rtp1-expressing HEK293T cell line was generated, no other reagents. There are restrictions to the availability of this cell line

due to existing IP (WO2016201153A1).

All other reagents are commercially available (see Key Resources Table).

Data and Code Availability
Requests for raw data and instrumentation and analysis code should be directed to the Lead Contact.

Analysis code is not provided because it is tailored to highly customized instrumentation.

The RNA-seq data used to generate Figure 4 in this paper is available on Gene Expression Omnibus: https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE149271.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal Care & Sources
C57BL/6J male mice, aged 8 to 12 weeks, were obtained from the Jackson Laboratory. Two further mouse strains, OMP-Cre

(JAX006668) with Ai148 (TIGRE-Ins-TRE2-LSL-GCaMP6f-Ins-CAG-LSL-tTA2CAG-GCaMP6f, JAX030328) were also purchased

from the Jackson Laboratory and bred together to generate experimental animals that were used between 8 to 12 weeks of age.

All experimental procedures were in compliance with NIH guidelines and were approved by the Mispro Biotech Services Institutional

Animal Care and Use Committee.
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METHOD DETAILS

Calcium Imaging
Tissue was prepared as described in Poivet et al., 2018 [32]. In brief, olfactory epithelia were placed into 5 mL L15 medium supple-

mented with 10% fetal bovine serum, 100 U/mL penicillin and 100 mg/mL streptomycin (GIBCO BRL, Grand Island, NY, USA),

0.5 U ml�1 collagenase, 1 U ml�1 dispase (Worthington Biochem, Lakewood, NJ, USA), 3.75 mM CaCl2 (Sigma-Aldrich, St-Louis,

MO, USA), and 50 mg ml�1 deoxyribonuclease II (Worthington Biochem).

The tissue was incubated at 37�C for 75 min on a rocker, subsequently dissociated by trituration with a siliconized pipette, and

plated onto concanavalin-coated glass coverslips (Sigma-Aldrich, 10 mg/mL) placed in 35 mm Petri dishes. Following plating for

30 min to permit cell adhesion, 2 mL of culture medium was added to each dish and the dishes were held at 37�C for at least 1 h.

Culture medium consisted of DMEM/F12 (GIBCO BRL) supplemented with 10% fetal bovine serum, 1x insulin-transferrin-selenium

(GIBCO BRL), 100 U/mL penicillin and 100 mg/mL streptomycin (GIBCO BRL), and 100 mM ascorbic acid (Sigma-Aldrich).

Cells were loaded with Fura-2 AM (5 mM; ThermoFisher, Waltham, MA, USA) at 31�C for 45 min. After being washed with Hank’s

Balanced Salt Solution, the coverslips were mounted into a recording chamber. Imaging was carried out at room temperature on an

IX83 inverted fluorescence microscope (Olympus, Center Valley, PA, USA) equipped with an Orca-R2 camera (C10600, Hamamatsu

Photonics, Hamamatsu, Japan), Proscan III motorized stage (Prior Scientific, Rockland, MA, USA) a Lambda XL light source (Sutter

Instrument, Novato, CA, USA), and Lamba-10B optical filter changer (Sutter Instrument). Odorants from Firmenich Incorporated were

prepared as 1 mM stocks and diluted to a final working concentration in HBSS 10mMHEPES pH 7.3, and bath applied using an Agi-

lent 1100 series HPLC system (Agilent Technologies, Santa Clara, CA, USA). A final stimulation with 40 mMForskolin (Sigma-Aldrich;

prepared as 40 mM in DMSO and diluted in HBSS) was made to assess the viability of dissociated OSNs. Images were taken with

Metamorph Premier software (Molecular Devices LLC, San Jose, CA, USA) at 340 and 380 nm excitation and 510 nm emission,

approximately every 6 s, and there was a 3 min delay between odor stimulation.

SCAPE microscopy
Mice were generated by crossing OMP-Cre (JAX006668) with Ai148 (TIGRE-Ins-TRE2-LSL-GCaMP6f-Ins-CAG-LSL-tTA2,

JAX030328). Male 6 to 8-week old mice with a genotype of OMP-Cre+/� GCaMP6f+/� were used for Swept Confocally-Aligned

Planar Excitation (SCAPE) imaging. Tissue was prepared as described in Xu et al., 2020 [27]. In brief, intact epithelia were mounted

in a custom-designed chamber with an inlet from an Agilent 1100 series HPLC system and outlet to a vacuum flask to ensure consis-

tent flow of HBSS, 10mM HEPES pH 7.3. Images were acquired using a custom SCAPE microscope [31] equipped with a 488 nm

laser for GCaMP6f excitation. Each acquisition windowwas 75 s, during which the OEwas exposed to odorants from the HPLC using

the same conditions as above, including a three-minute interstimulus interval. Images were taken using custom MATLAB code, and

further processing carried out using the CaImAn computational toolbox [69], which implements NoRMCorre piecewise rigid motion

correction [70], followed by constrained non-negative matrix factorization for segmentation, denoising, and detrending of the ob-

tained data [71].

Single-Cell RNA-Seq
OSNs were dissociated from OMP-Cre+/� GCaMP6f+/� mice and plated on concanavillin-coated coverslips as above. OSNs with

ligand response profiles of interest were retrieved using disposable capillaries with a 10 mm tip diameter (Cat # DCU ID 10, NeuroInDx,

Torrance, CA, USA) controlled by a UniPick vacuum-assisted single-cell collection instrument (NeuroInDx).). Individual cells were

expelled into an RNase-free 200 ml tube containing poly-T primers that also bore cell-specific barcodes and unique molecular iden-

tifiers (UMI) to allow measurement of individual mRNA transcripts. Samples were then submitted to the Genome Technology Center

(NYU Langone Health), where they were further processed for sequencing according to the Cel-Seq2method [72]. Libraries were run

on the Illumina NovaSeq 6000 using a SP100 flow cell in paired-end mode (read 2 carries transcript sequence; read 1 provides bar-

code and UMI information). Reads were mapped against the mouse reference genome (mm10) using Bowtie2 [73], and deduplicated

UMIs per gene were counted. Gene counts were normalized by dividing gene-specific UMIs by the total number of UMIs from a cell,

and multiplied by a million, to provide transcripts-per-million (TPMs) for each gene in each cell.

Cell line generation
A modified HEK293T cell line expressing the endogenous Rtp1 gene was generated for functional OR expression. A targeted inser-

tion of the constitutively active CMV promoter (PCMV) was performed using CRISPR/Cas9 technologies followed by homologous

directed DNA repair (HDR). A guide RNA (gRNA) was designed to target positions 148 bp and 147 bp upstream of the Rtp1 gene

translation start site and induce a double-stranded DNA break, when combined with Cas9. Two oligo nucleotides (top and bottom

target sequence strand) with 30 overhangs were annealed and cloned into the vector the GeneArt� CRISPR Nuclease Vector Kit to

generate the gRNA/Cas9 nuclease plasmid. 50 and 30 homology arms (amplified directly from HEK293T genomic DNA, see reagents

for primer sequences) flanking the PCMV sequence attached to a puromycin resistance gene (from pPUR vector) were cloned into

pGEM�-T Easy Vector to generate the HDR plasmid. HEK293T cells were transfected with 1:1 mixture of gRNA/Cas9 and HDR plas-

mids using Lipofectamine 2000. After selection in puromycin containingmedia, single colonies were isolated and tested for functional

OR expression. A final clonal cell line was selected for use in this study.
Current Biology 30, 1–14.e1–e6, July 6, 2020 e3
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cAMP Functional Cell-Based Assay
All OR geneswere synthesized and cloned into themodified expression vector pME18S-FL containing an SV40 promoter followed by

a Flag-Rho tag at the N-terminal end of the OR. Expression vectors were co-transfected with the canonical olfactory G protein Golf

into themodified HEK293T cell line expressing the endogenousRtp1 gene using 5mg of DNA and 10ml Lipofectamine 2000 (Life Tech-

nologies, Cat. #11668) in 6 mL DMEM per 120 wells. Cells were seeded at a density of 7500 cells/well in a volume of 50 ml in 96-well

white, opaque bottom plates (Corning, Cat # 3688) in DMEM supplemented with 10% FBS without antibiotic. Plates were incubated

at 37�C in 5% CO2 overnight. Prior to the assay, cells were washed with 100 ml PBS and incubated with 40 ml of compound per well

diluted in DMSO to a final concentration of 0.3% DMSO in assay buffer (HBSS, 10 mM MgCl2, 20 mM HEPES, 2 mM CaCl2, 0.5 M

IBMX). For dose-response agonist experiments, compounds were diluted to 12 different concentrations between 10�8 and 10�3 M at

approximately half-log intervals as above. For antagonist experiments, the EC80 of indole was first determined in a duplicate dose-

response agonist experiment and then test compounds were prepared as before and mixed with a dilution of indole to achieve the

EC80. In dose-response experiments in which both agonist and antagonist were varied, compounds were prepared as for the antag-

onist dose-response experiment but with indole diluted to range between 10�8 and 10�3 M at half-log intervals as well. Cells were

incubated with compound at 37�C in 5% CO2 for 30 min. OR activity was monitored using the HTRF (Homogeneous Time-Resolved

Fluorescence) cAMP dynamic 2 kit (Cisbio, Cat # 62AM4PEB, a competitive immunoassay between native cAMP produced by cells

and the cAMP tracer molecule, labeled with proprietary CisBio fluorophore D2. cAMP-D2 bound to the cryptate-labeled anti-cAMP

mouse generates fluorescence via a FRET signal. HTRF values indicate the fluorescence ratio of the cryptate emission wavelength at

620 nm to D2 acceptor emission at 665 nm, values range between 0 and 10,000) following manufacturer protocols; HTRF assay

plates were read on Pherastar (BMG labtech). Dose-response data were graphed in GraphPad Prism 7.04 to calculate EC50, relative

IC50, Hill coefficient, maxima and minima of the response signals, and to graph dose-response curves. Agonist dose-response ex-

periments were carried out in duplicates. The standard errors of the mean were calculated and the data points and fitted to a four-

parameter non-linear regression following the Hill equation (unconstrained Hill coefficient). Due to the competition-based nature of

the HTRF assay, a decreasing HTRF ratio indicates cAMP accumulation and a corresponding activity increase. Here, dose-response

data was scaled by subtracting the HTRF ratio from 7000 arbitrary units (encompassing the full assay window) to plot the data as

agonism and antagonism by upward and downward curves respectively.

High-Throughput Screening
The same transfection and analysis conditions as abovewere applied to the library screening. A library of 800 odorants sourced inter-

nally was assembled in 100% solvent (DMSO) at a stock concentration of 300 mM and stored at �20�C. For the activation assay,

compounds were diluted to a final concentration of 300 mM (DMSO concentration 0.1% final) in a 96 well plate format and delivered

to the transfected cells. Agonism was assessed by stimulating each OR with 300 mM of each compound, while antagonism was as-

sessed by measuring the change in receptor activation elicited by 300 mM of each compound in the presence of an EC80 concen-

tration of indole. This concentration was chosen to provide a larger assaywindow and amore stringent screening condition, selecting

for stronger antagonists.

For the inhibition assay, an initial dose-response to indole was performed in triplicate for each receptor on the day of the assay to

determine the EC80 used in each subsequent single-concentration modulation screen. Compounds were blended in a 96 well plate

format to a final concentration of 300 mM with indole EC80 at 0.2% DMSO final (80 compounds per plate). Single-concentration ac-

tivity measures were performed for 800 non-redundant binary mixtures and compared to the activity elicited by indole EC80 alone.

Assay variability and reliability were evaluated by calculating the Z’, a measure of the assay window and the standard deviations of

minimum and maximum cAMP production per plate. The average Z’ value obtained across all experiments was 0.86 (SD = 0.03) and

0.70 (SD = 0.09) for agonism and antagonism respectively, and surpassed minimal requirement above the standard quality limit of Z’

> 0.5 [74].

Z
0
= 1� 3 � ðSDMax +SDMinÞ

jMeanMax �MeanMinj
Receiver Operating Characteristic (ROC) curves were used to assess the accuracy of the single-concentration screen to predict

modulation at the dose-response level. Determination of whether an ingredient was considered an antagonist or agonist was made

using cutoff values derived from ROC analyses (Figure S4A). All data points were considered for the Pearson correlation matrix

analyses.

Competitive binding model with spontaneous receptor activity
We propose a model of competitive binding that includes spontaneous activation of the receptor as shown in Figure 7A. The on and

off rates of the binding of ligand Xi are denoted by k+1,i and k-1,i respectively. Once bound, there is a rate of activation of the receptor,

which depends on the bound ligand. If Xi is the bound ligand, we denote its rate of activating the receptor as k2,i. The activated re-

ceptor reverts to its native, unbound state with a rate k-s, which can in turn spontaneously activate with a rate k+s. The output of the

experiment is assumed to be proportional to the total number of activated receptors. When the set of ligands X1, X2,., XK at con-

centrations C1, C2,., CK respectively are delivered, by writing down the set of coupled rate equations, we can calculate the total

number of activated receptors of a particular type at steady state as
e4 Current Biology 30, 1–14.e1–e6, July 6, 2020
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where the sums are from 1 to K, k-1i and hi are the binding affinity and activation efficacy respectively of ligand Xi, hs is the constitutive

activity of the receptor and a1 and a2 are constants. In terms of the rate constants introduced previously, we have

hs =
k +
s

k +
s + k�s

; k�1
i =

k+
1;i

k2;i + k�1;i

k2;i + k�s
k +
s + k�s

;hi =
k2;i

k2;i + k�s
:

Note that the definitions of hi and hs restrict their range between 0 and 1. If there were no ligands present, all Ci’s would be zero and

the activity is then proportional to hs. At large concentrations, all receptors are bound, and all activity is due to ligand-induced acti-

vation rather than spontaneous activity. The constants a1 and a2 are independent of receptor-ligand interactions, and depend on

cellular processes downstream of receptor activation, number of receptors, reporter properties and other factors.

Fitting activation and inhibition profiles to the competitive binding model
To obtain the plots in Figure 7B, we first normalized the data between zero and one, where zero corresponds to the HTRF ratio of the

lowest concentration of the activator (0.1mM) and no inhibitor and one corresponds to the saturation level of the activator dose-

response profile with no inhibitor. Performing this normalization is equivalent to subtracting a2 + a1hs and then dividing by a1(hact

- hs) from the equation for R from the previous STAR Methods section. Here hact is the unknown activation efficacy of the activator.

If hinh is the activation efficacy of the inhibitor, we can write the normalized response in terms of the concentrations of the activator

and inhibitor and their binding affinities as

Rnorm =

aCinh

kinh
+ Cact

kact

1+ Cinh

kinh
+ Cact

kact

where a is the ratio (hinh - hs)/(hact - hs). Note there are three free parameters: kinh, kact and a. We obtain the best fit curves in Figure 7B

by minimizing the RMSE between the CB model and the data from the competitive binding assay.

To obtain the values of the binding affinities in Figures 7C and 7D, we fit the CB model to the activation and inhibition profiles of 37

unique compounds delivered to the ten receptors from the Olfr740 family. For the activation assay, we first subtracted the HTRF ratio at

the lowest concentration of the activator, which is equivalent to subtracting a2 + a1hs from the equation for R. We fit the dose-response

curves to the Hill function with Hill coefficient 1 (as predicted by the CBmodel). We collected the best-fit binding affinities for the recep-

tor-ligand pair which show a significant positive activation of the receptor (std. dev of the HTRF ratio across the ten concentrations > 80

and positive best-fit saturation level) while excluding those which have a best-fit ln k-1 > 8.5, k�200mM (since the tested concentrations

do not exceed much beyond this value). The screening above yielded the binding affinities for 47 activators from a total of �400 acti-

vation profiles. For the inhibition assay, the activator was indole delivered at EC80, calibrated from an activation assay performed on the

same batch of cells. We normalized the data like the analysis from the competitive binding assay. The normalized inhibition profiles are

fit to the equation forRnorm given above, where kact is obtained from the activation assay for the activator andCact is the EC80. The best-

fit binding affinities which show significant inhibition (std. dev of the HTRF ratio across the ten concentrations > 80, best-fit a value < 0.5,

and best-fit ln k-1inh > 8.5) were collected, yielding the binding affinities for 118 inhibitors.

Note that the best-fit curves from the CBmodel yield the activation efficacy h in a continuum between 0 and 1. In practice, however,

most profiles do not saturate and the best-fit h value is imprecise. In our dataset, we observed few partial agonists and thus we simpli-

fied our analysis by effectively projecting the activation efficacies into two broad categories: activators (h z 1) and inhibitors (h z 0).

Correlation between binding affinity and functional outcome
We calculated the Pearson correlation coefficient between the logarithm of the binding affinity and the binary variable activator/in-

hibitor. Using the expression for the correlation coefficient between a continuous and binary variable, we have

r = Corr
�
ln k�1; act = inh

�
=
Cln k�1Dact � Cln k�1Dinh

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
factð1� factÞ

p
where S is the empirical standard deviation of ln k-1 ( = 1.37), and fact is the probability that a compound that binds to a receptor is an

activator. Using the data from the high-throughput screen of 800 odorants we estimated fact � 0.68 (444 total activators out of 653 total

binders), which gives r=0.18. To calculate the standarddeviation ofr, we repeat the entire analysis by first adding 6%noise to the data-

set, where 6% is the average noise to signal ratio estimated frommeasurements of the HTRF ratio at the lowest concentration of each

compound. The standard deviation of r is then computed to be the standard deviation of the re-calculated r values over 100 repetitions.

Note that the correlation coefficient calculated here corresponds to the correlation between log-binding affinity and activation efficacy

when the odorant and receptor are both independently drawn in each sample. One could instead calculate the correlation coefficient for

each receptor, where the receptor is fixed and the correlation is calculated for sampled odorants. The latter would indeed contain more

information about each receptor but requiresenoughdata tocomputer for each receptor,which isnot availablewithour current dataset.

Togenerate theplots inFigure7E,wecalculate theprobability that a receptor is activatedwhenanodorantmixtureconsistingof apartic-

ular number of ligands was delivered. We assume that the receptor-ligand interactions are independent across ligands, that if a ligand
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binds, it is either a perfect agonist (h = 1) or a perfect inhibitor (h = 0) and that each ligand is equiproportionate and delivered at saturating

concentrations (the normalization effect is even stronger at weaker, unequal concentrations, see ref. 28). First, we assume the fraction of

ligands that bind to a receptor (i.e., they either activateor inhibit the receptor) to be�30%, asestimated from thedata. Second, if the ligand

binds, it is an activator with probability fact = 0.68. The logarithm of the binding affinity of an activator (inhibitor) is drawn from a normal dis-

tributionwithmeanMact (Minh) and standarddeviation 1.37.Mact=11.2andMinh=10.62correspond to theexperimentally obtained values,

giving r = 0.18. From the CB model, the activity of the receptor in the presence of a saturating, equiproportionate mixture is

hmix =

P
ihik

�1
iP

jk
�1
j

where the sum is over the ligands in the mixture. If hmix > fact, the receptor is considered active. The sparsity for a fixed mixture

complexity K is defined as the probability that hmix > fact over many samples of mixtures with K ligands. To obtain the sparsity versus

K for other values of r as shown in Figure 7E, we tune the value of Mact accordingly.

QUANTIFICATION AND STATISTICAL ANALYSIS

Calcium Imaging Analysis
Images were analyzed by a custom protocol built in Pipeline Pilot (BioVia Dassault Systèmes, San Diego, CA). Each image was

tagged with a time point during acquisition, which could then be matched to the time of odorant administration. The frameset cor-

responding to the positive control (Forskolin) injection was isolated for image segmentation. A ratio was created of the 340 nm/

380 nm image pair for each time point, followed by the creation of a 3D stack of all the resulting images. This 3D image stack

was projected into a 2-dimensional image where each pixel is equal to the 85th percentile order statistic of that pixel location in

the original 3D stack. Cell regions were then determined using adaptive thresholding of 15% above the mean for a window size of

16x16 pixels. The center of intensity peak for each region fed into a watershed segmentation to split clusters into individual cells.

These individual cells were then filtered on contour eccentricity, creating a final segmentation image.

The ratios of the 340 nm/380 nm images for the full experiment were then calculated, and the mean region intensities at every time

point for each cell defined by the segmentation image was measured and scaled by a factor of 100. The background (defined by the

average intensity of the 5 frames prior to the subsequent injection) was then subtracted for each injection frame to give the delta

values. Peak characteristics (slopes of peak and post-peak, fluctuation, post-peak upward deflection, area under the curve, and

signal-to-noise ratio) of each cell for each injection window were fed into a trained Random Forests model to predict a PEAKTAG

(1, 0, �1) relating to good, flat, or bad peaks, respectively. All injection frames for a given cell were then merged to give each cell

a ‘good’ or ‘bad’ call based on PEAKTAGs, a delta value of at least 20 for the Positive control frame, and a PEAKTAG of 0 during

the Negative control frame. A figure of merit (FOM) was calculated by the accumulation of bad peaks over the total number of injec-

tions per cell. All cells with a FOM greater than 0.0 were validated by hand to ensure data fidelity. Any cells that responded incon-

sistently to the same odorant were rejected from further analysis (�2% of Forskolin-positive OSNs).

Cells that were validated as ‘‘good cells’’ were fed into a Modulation Analysis tool, custom built in Pipeline Pilot. Each cell that

passed had a linear regression calculated to compensate for the natural attrition seen over the course of an experiment. A best fit

line was drawn for the peaks corresponding to the agonist of interest. Cells with a slope that would cause an interception with the

baseline before the Forskolin injection were rejected. The modulation value was calculated as the percent difference from the

best fit line at that position. A negative modulation value indicates a reduction in the response when compared to the agonist of in-

terest, and a positive modulation value shows an increased response. Where Df is the maximum peak height of the agonist and po-

tential antagonist mixture, m is the slope of the best fit line, InjFr is the time point of the mixture injection, and b is the intercept as

determined by the best fit line, the modulation value can be determined as:

Modulation Value =
100 � Df

m � InjFr +b
� 100
Statistical Analyses
Figures were assembled with GraphPad Prism, Inkscape and RStudio software. Phylogenetic analyses were performed in BioEdit

with the Protdist v3.5c application. Violin plots were made with Vioplot [75] and Tidyverse [76] R packages. Rarefaction analyses

were carried out using iNEXT R package [77].

Molecular Fingerprints
Structural similarity between indole and 36 antagonist compounds was assessed by encoding compounds through circular

(extended connectivity) and pharmacophoric (functional connectivity) molecular fingerprints. Tanimoto indexwas then used to calcu-

late the similarity coefficient. The molecular similarity component of BIOVIA’s Pipeline Pilot software was used to derive the finger-

prints and compute the similarity [78].
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Figure S1. Pharmacological inhibition of the olfactory transduction cascade generated non-specific OSN inhibition as opposed 
to the specific inhibition observed in Figure 1. (A) Inhibition of Adenylyl Cyclase 3 (AC3), the enzyme responsible for cAMP production 
in the olfactory transduction pathway downstream of OR activation, using the AC3 specific inhibitor MDL12330A. A 5 min pretreatment with 
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Figure S2. Phylogenetic relationship between 12 OR paralogs characterized in Figure 4. Related to Figure 4. 
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Figure S3. Functional diversity of OR paralog responses to indole-derived compounds summarized in Figure 4. Related to Figure 
4.  (A) Relative expression levels of mature OSN housekeeping genes: Olfactory Marker Protein (Omp), Golf (GnaI), Cyclic Nucleotide-
Gated Channel A2 (Cnga2), Adenylyl Cyclase 3 (Adcy3) and Receptor Transport Protein 1 (Rtp1) for the six cells characterized in Figure 4. 
Expression levels in transcripts per million reads (TPM) were normalized to OMP. (B) Dose-responses of the 12 OR paralogs with indole 
(dark blue), 2-methylindole (green), 3-methylindole (light blue), 6-methylindole (red), 2-methoxynaphthalene (purple), Lilyflore® (orange). 
The empty vector control is shown. Both potencies and efficacies varied and revealed distinct activation levels among phylogenetically 
related ORs. 2-methoxynaphthalene partially activated Olfr738, Olfr739, Olfr740, and Olfr744 (71-75% of the maximum indole response), 
and fully activated Olfr741, Olfr742, and Olfr743. Similarly, Lilyflore® displayed partial agonism across several ORs, and elicited clear 
inverse agonism on Olfr740, Olfr743 and Olfr744, indicating that these three receptors were constitutively active in our assay. Lilyflore® also 
activated indole sensitive ORs only at high concentrations for receptors Olfr746 to Olfr749, consistent with the low OSN response overlap 
observed in Figure 3 between indole and Lilyflore® at several concentrations. Olfr745 and Olfr747 responded too weakly to indole to allow 
meaningful antagonism assays and so were omitted from subsequent screens.
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Figure S4. Large-library odorant screens revealed combinatorial agonist logic among closely related indole-sensitive ORs. Related 
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Figure S5. Analysis of function and binding conservation  between paralogous ORs for the single-concentration 
in vitro OR screens shown in Figure 5 and S4 indicated ligand binding was more conserved than binding 
outcome. Related to Figure 5.  The Jaccard similarity coefficients for (A) agonists and antagonists together (i.e. binders), 
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# Cmpd Name FCFC-4 ECFC-4 FCFP-4 ECFP-4

Fingerprint, Coefficient: Tanimoto Similarity Similarity Similarity Similarity
37 Indole Target Target Target Target

37 Indole 1.00 1.00 1.00 1.00

35 2-methoxynaphthalene 0.78 0.72 0.21 0.28

30 Phenethyl Alcohol 0.71 0.59 0.17 0.18

34 Benzyl formate 0.68 0.59 0.12 0.19

36 3-phenylpropanal 0.66 0.57 0.12 0.20

32 3-phenyl-1-propanol 0.66 0.55 0.12 0.17

29 Coumarin 0.62 0.63 0.09 0.19

18 Alpha-methylcinnamaldehyde 0.62 0.56 0.11 0.19

25 5-METHYL-2-INDANMETHANOL 0.43 0.32 0.07 0.11

28 Magnolan 0.42 0.38 0.09 0.12

6 (2-METHYL-2-INDANYL)METHYL ACETATE 0.41 0.41 0.06 0.15

20 Lilyflore 0.40 0.30 0.06 0.11

26 2,5-DIMETHYL-2-INDANECARBALDEHYDE 0.40 0.31 0.09 0.16

16 (+-)-1,2,5-TRIMETHYL-2-INDANMETHANOL 0.38 0.31 0.06 0.09

17 (+-)-1,2,6-TRIMETHYL-2-INDANMETHANOL 0.38 0.30 0.06 0.09

31 (+-)(2,7-dimethyl-1,2,3,4-tetrahydro-2-napththalenyl)methanol 0.37 0.29 0.06 0.10

19 (+-)-(2,6-dimethyl-1,2,3,4-tetrahydro-2-naphthalenyl)methanol 0.37 0.29 0.06 0.10

8 (+-)-1-(2,5-dimethyl-2,3-dihydro-1H-inden-2-yl)ethanone 0.36 0.29 0.10 0.13

22 1-(2,5-DIMETHYL-2-INDANYL)-1-ETHANOL 0.36 0.29 0.06 0.10

33 (+-)-2-METHOXYMETHYL-2,5-DIMETHYLINDAN 0.36 0.28 0.13 0.10

23 Lilial 0.34 0.34 0.07 0.10

10 Hivernal Neo 0.33 0.29 0.06 0.11

13 (+-)-5-ISOPROPYL-2-METHYL-2-INDANMETHANOL 0.32 0.27 0.06 0.10

27 (+-)-(2,5-dimethyl-2,3-dihydro-1H-inden-2-yl)methyl acetate 0.32 0.27 0.09 0.11

9 2-(2,5-DIMETHYL-2-INDANYL)-2-PROPANOL 0.32 0.26 0.06 0.10

4 (+-)-(2,4,5-trimethyl-2,3-dihydro-1H-inden-2-yl)methanol 0.32 0.24 0.06 0.10

12 (+-)-5-TERT-BUTYL-2-METHYL-2-INDANMETHANOL 0.29 0.25 0.06 0.10

11 Alpha-ionone 0.00 0.07 0.00 0.07

21 Methylionone Beta 0.00 0.03 0.00 0.04

1 Z95 0.00 0.01 0.00 0.07

2 Mayol 0.00 0.00 0.00 0.00

5 Orivone 0.00 0.02 0.00 0.09

24 Dorisyl 0.00 0.02 0.00 0.03

3 4-t-butylcyclohexanone 0.00 0.02 0.00 0.10

14 Cyclemone A 0.00 0.06 0.00 0.07

7 Neral & Geranial 0.00 0.00 0.00 0.03
15 Galione 0.00 0.00 0.00 0.04

Table S1. Molecular fingerprints of compounds identified in Figure 2. Related to Figure 2. The 36 antagonists 
tested in Figure 2 were analyzed with four molecular fingerprints: FCFC-4, ECFC-4, FCFP-4 and ECFP-4. The similarity 
Tanimoto coefficient to Indole is given for all compounds and rank-ordered according to the FCFC-4 similarity score. 
Darker shades indicate further structural distance from Indole. Approximately a quarter of the compounds exhibit a 
Tanimoto coefficient lower than 0.1 in all four molecular fingerprint models.



# Cmpd Name FCFC-4 ECFC-4 FCFP-4 ECFP-4

Fingerprint, Coefficient: Tanimoto Similarity Similarity Similarity Similarity
37 Indole Target Target Target Target

37 Indole 1.00 1.00 1.00 1.00
41 Isopropyl Quinoline 0.69 0.57 0.12 0.19
52 Trifernal 0.62 0.57 0.11 0.18
55 Phenylethyl salicylate 0.61 0.57 0.09 0.15
52 2-Phenylethyl acetate 0.60 0.54 0.10 0.17
42 tert-butylphenol, 2- 0.58 0.48 0.11 0.17
59 Rosinol Cryst 0.53 0.46 0.10 0.19
58 3-methyl-5-phenylpentanal 0.52 0.50 0.10 0.16
54 Rhubafuran 0.52 0.51 0.10 0.16
56 Methyl anisate 0.52 0.41 0.10 0.12
53 satinaldehyde 0.47 0.43 0.07 0.11
65 Amyl Phenylacetate 0.46 0.46 0.09 0.15
20 Lilyflore 0.40 0.30 0.06 0.11
49 Bourgeonal 0.38 0.36 0.07 0.11
64 Cascalone 0.37 0.27 0.06 0.16
23 Lilial 0.34 0.34 0.07 0.10
39 Transluzone 0.34 0.25 0.06 0.16
10 Hivernal Neo 0.33 0.29 0.06 0.11
45 Sclarene 0.07 0.03 0.04 0.09
38 Wolfwood 0.00 0.11 0.00 0.06
40 Cedroxyde 0.00 0.10 0.00 0.05
66 Alpha-Damascone 0.00 0.07 0.00 0.07
11 Alpha-ionone 0.00 0.07 0.00 0.07
47 Lyral 0.00 0.07 0.00 0.06
63 Neobutenone alpha 0.00 0.07 0.00 0.06
62 Cashmeran 0.00 0.04 0.00 0.05
43 Violet At 0.00 0.03 0.00 0.05
3 4-t-butylcyclohexanone 0.00 0.02 0.00 0.10
5 Orivone 0.00 0.02 0.00 0.09
57 Whiskey Lactone K 0.00 0.02 0.00 0.05
1 Z95 0.00 0.01 0.00 0.07
60 Plicatone 0.00 0.01 0.00 0.05
44 Caryophyllene oxide 0.00 0.01 0.00 0.02
48 Cachalox 0.00 0.00 0.03 0.00
50 Rose oxide 0.00 0.00 0.00 0.03
61 Decyl acetate 0.00 0.00 0.00 0.03
46 Z 11 Crude Dist 0.00 0.00 0.00 0.02

Table S2.Molecular fingerprint of compounds identified in Figure 6. Related to Figure 6. The 36 antagonists 
tested in Figure 6 against all 10 indole-sensitive ORs were analyzed with four molecular fingerprints: FCFC-4, ECFC-4, 
FCFP-4 and ECFP-4. The similarity Tanimoto coefficient to indole is given for all compounds and rank-ordered according to 
the FCFC-4 similarity score. Darker shades indicate further structural distance from Indole. Approximately half the 
compounds exhibit a Tanimoto coefficient lower than 0.1 in all molecular four molecular fingerprint models.



# Cmpd Name IUPAC Smiles (Incl. mixtures) Vapor Pressure 
[mmHg]

Saturation 
Conc. [uM]

1 Z95 (4~{a}~{S},8~{a}~{R})-5,5,8~{a}-
trimethyl-3,4,4~{a},6,7,8-hexahydro-
1~{H}-naphthalen-2-one

O=C(CC[C@@]12[H])C[C@@]1(CCCC
2(C)C)C

0.0106 0.570

2 Mayol (4-propan-2-ylcyclohexyl)methanol CC(C)[C@H]1CC[C@@H](CO)CC1 0.0113 0.608

3 4-t-butylcyclohexanone 4-~{tert}-butylcyclohexan-1-one CC(C)(C)C(CC1)CCC1=O 0.173 9.304

4 (+-)-(2,4,5-trimethyl-2,3-dihydro-
1H-inden-2-yl)methanol

(2,4,5-trimethyl-1,3-dihydroinden-2-
yl)methanol

CC1=C(C)C2=C(CC(C)(CO)C2)C=C1 3.12E-05 0.002

5 Orivone 4-(2-methylbutan-2-yl)cyclohexan-1-
one

CC(C(CC1)CCC1=O)(CC)C 0.121 6.508

6 (2-METHYL-2-
INDANYL)METHYL ACETATE

(2-methyl-1,3-dihydroinden-2-yl)methyl 
acetate

CC1(COC(C)=O)CC2=C(C1)C=CC=C2 0.00228 0.123

7 Citral 3,7-dimethylocta-2,6-dienal CC(C)=CCC/C(C)=C/C=O.CC(C)=CCC/
C(C)=C\C=O

0.0913 4.910

8 (+-)-1-(2,5-dimethyl-2,3-dihydro-
1H-inden-2-yl)ethanone

1-(2,5-dimethyl-1,3-dihydroinden-2-
yl)ethanone

CC1=CC(CC(C(C)=O)(C)C2)=C2C=C1 0.00303 0.163

9 2-(2,5-DIMETHYL-2-INDANYL)-2-
PROPANOL

2-(2,5-DIMETHYL-2-INDANYL)-2-
PROPANOL

Cc1ccc2c(c1)CC(C)(C2)C(C)(C)O 7.32E-05 0.004

10 Hivernal Neo 3-(1,1-dimethyl-2,3-dihydroinden-4-
yl)propanal;3-(1,1-dimethyl-2,3-
dihydroinden-5-yl)propanal;3-(3,3-
dimethyl-1,2-dihydroinden-5-
yl)propanal

O=CCCC1=CC2=C(CCC2(C)C)C=C1.C
C3(C)CCC4=C3C=CC=C4CCC=O.O=C
CCC5=CC(CCC6(C)C)=C6C=C5

0.000655 0.035

11 Alpha-ionone 4-(2,6,6-trimethylcyclohex-2-en-1-yl)but-
3-en-2-one

CC1(C)C(/C=C/C(C)=O)C(C)=CCC1 0.0272 1.463

12 (+-)-5-TERT-BUTYL-2-METHYL-
2-INDANMETHANOL

(+-)-5-TERT-BUTYL-2-METHYL-2-
INDANMETHANOL

CC(C)(C)c1ccc2c(c1)CC(C)(CO)C2 1.00E-05 0.001

13 (+-)-5-ISOPROPYL-2-METHYL-2-
INDANMETHANOL

(+-)-5-ISOPROPYL-2-METHYL-2-
INDANMETHANOL

CC(C)c1ccc2c(c1)CC(C)(CO)C2 2.33E-05 0.001

14 Cyclemone A 8,8-dimethyl-2,3,4,6,7,8~{a}-hexahydro-
1~{H}-naphthalene-2-carbaldehyde;8,8-
dimethyl-2,3,5,6,7,8~{a}-hexahydro-
1~{H}-naphthalene-2-carbaldehyde;8,8-
dimethyl-2,3,4,5,6,7-hexahydro-1~{H}-
naphthalene-2-carbaldehyde;2,2-
dimethyl-octahydro-1~{H}-2,4~{a}-
methanonapthalen-8-one

CC1(C)CCC=C2C1CC(C=O)CC2.O=C
C3CCC(CCC4)=C(C4(C)C)C3.O=CC5C
C=C(CCC6)C(C6(C)C)C5.O=C(C7CCC
C8(C)C)C9CCC78C9

0.00585 0.315

15 Galione 1-(2,2-dimethyl-6-
methylidenecyclohexyl)pent-1-en-3-
one;3-methyl-4-(2,6,6-trimethylcyclohex-
2-en-1-yl)but-3-en-2-one;1-(2,6,6-
trimethylcyclohexen-1-yl)pent-1-en-3-
one;1-(2,6,6-trimethylcyclohex-2-en-1-
yl)pent-1-en-3-one

CC1(C)C(/C=C/C(CC)=O)=C(C)CCC1.C
C2(C)C(/C=C(C(C)=O)\C)C(C)=CCC2.C
=C(CCCC3(C)C)C3/C=C/C(CC)=O.CC4
(C)CCC=C(C)C4/C=C/C(CC)=O

0.00449 0.241

16 (+-)-1,2,5-TRIMETHYL-2-
INDANMETHANOL

(+-)-1,2,5-TRIMETHYL-2-
INDANMETHANOL

CC1c2ccc(cc2CC1(C)CO)C 4.86E-05 0.003

17 (+-)-1,2,6-TRIMETHYL-2-
INDANMETHANOL

(+-)-1,2,6-TRIMETHYL-2-
INDANMETHANOL

CC1c2cc(ccc2CC1(C)CO)C 4.86E-05 0.003

18 Alpha-methylcinnamaldehyde 2-methyl-3-phenylprop-2-enal C/C(C=O)=C\C1=CC=CC=C1 0.025 1.345

19 (+-)-(2,6-dimethyl-1,2,3,4-
tetrahydro-2-
naphthalenyl)methanol

(2,6-dimethyl-3,4-dihydro-1~{H}-
naphthalen-2-yl)methanol

CC1=CC=C2CC(CO)(C)CCC2=C1 3.21E-05 0.002

20 Lilyflore (2,5-dimethyl-1,3-dihydroinden-2-
yl)methanol

CC1=CC(CC(C)(CO)C2)=C2C=C1 0.000112 0.006

21 Methylionone Beta 1-(2,6,6-trimethylcyclohexen-1-yl)pent-1-
en-3-one

CC1(C)C(/C=C/C(CC)=O)=C(C)CCC1 0.00449 0.241

22 1-(2,5-DIMETHYL-2-INDANYL)-1-
ETHANOL

1-(2,5-DIMETHYL-2-INDANYL)-1-
ETHANOL

CC(O)C1(C)Cc2ccc(cc2C1)C 0.000106 0.006

23 Lilial 3-(4-~{tert}-butylphenyl)-2-
methylpropanal

CC(C)(C)C1=CC=C(CC(C=O)C)C=C1 0.00358 0.193

24 Dorisyl (4-~{tert}-butylcyclohexyl) acetate CC(C)(C)[C@H]1CC[C@H](OC(C)=O)C
C1.CC(C)(C)[C@H]2CC[C@@H](OC(C
)=O)CC2

0.0685 3.684



25 5-METHYL-2-INDANMETHANOL (5-methyl-2,3-dihydro-1~{H}-inden-2-
yl)methanol

CC1=CC(CC(CO)C2)=C2C=C1 0.000231 0.012

26 2,5-DIMETHYL-2-
INDANECARBALDEHYDE

2,5-DIMETHYL-2-
INDANECARBALDEHYDE

Cc1ccc2c(c1)CC(C)(C2)C=O 0.0053 0.285

27 (+-)-(2,5-dimethyl-2,3-dihydro-1H-
inden-2-yl)methyl acetate

(+-)-(2,5-dimethyl-2,3-dihydro-1H-inden-
2-yl)methyl acetate

CC(=O)OCC1(C)Cc2ccc(cc2C1)C 0.000845 0.045

28 Magnolan 2,4-dimethyl-4,4~{a},5,9~{b}-
tetrahydroindeno[1,2-d][1,3]dioxine

CC1C2CC3=CC=CC=C3C2OC(C)O1.C
C4C5CC6=CC=CC=C6C5OC(C)O4

0.00156 0.084

29 Coumarin chromen-2-one O=C1OC2=CC=CC=C2C=C1 0.000657 0.035

30 Phenethyl Alcohol 2-phenylethanol OCCC1=CC=CC=C1 0.0243 1.307

31 (+-)(2,7-dimethyl-1,2,3,4-
tetrahydro-2-
napththalenyl)methanol

(2,7-dimethyl-3,4-dihydro-1~{H}-
naphthalen-2-yl)methanol

CC1=CC(C2)=C(CCC2(CO)C)C=C1 3.21E-05 0.002

32 3-phenyl-1-propanol 3-phenylpropan-1-ol OCCCC1=CC=CC=C1 0.00848 0.456

33 (+-)-2-METHOXYMETHYL-2,5-
DIMETHYLINDAN

2-(methoxymethyl)-2,5-dimethyl-1,3-
dihydroindene

CC1=CC(CC(C)(COC)C2)=C2C=C1 0.00934 0.502

34 Benzyl formate benzyl formate O=COCC1=CC=CC=C1 0.31 16.672

35 2-methoxynaphthalene 2-methoxynaphthalene COC1=CC2=C(C=C1)C=CC=C2 0.00267 0.144

36 3-phenylpropanal 3-phenylpropanal O=CCCC1=CC=CC=C1 0.0628 3.377

37 Indole 1~{H}-indole C1(C=CC=C2)=C2NC=C1 0.0121 0.651

38 Wolfwood (1~{S},2~{R},3~{R},5~{R})-2,6,6-
trimethylspiro[bicyclo[3.1.1]heptane-3,4'-
cyclohex-2-ene]-1'-one

CC1(C)[C@H]2C[C@@H]1C[C@](C=C
C3=O)(CC3)[C@H]2C

0.00129 0.069

39 Transluzone 7-~{tert}-butyl-1,5-benzodioxepin-3-one CC(C1=CC=C(OC2)C(OCC2=O)=C1)(C
)C

9.41E-05 0.005

40 Cedroxyde 1,4,8-trimethyl-13-
oxabicyclo[10.1.0]trideca-4,8-
diene;1,5,8-trimethyl-13-
oxabicyclo[10.1.0]trideca-4,8-diene

CC12C(O2)CC/C=C(C)/CC/C(C)=C\CC
1.CC34C(O4)CC/C=C(C)/CC/C=C(C)\C
C3

0.00254 0.137

41 Isopropyl Quinoline 6-propan-2-ylquinoline;8-propan-2-
ylquinoline

CC(C)C1=CC2=C(C=C1)N=CC=C2.CC(
C)C3=CC=CC4=C3N=CC=C4

0.00227 0.122

42 Tert-butylphenol, 2- 2-~{tert}-butylphenol OC1=CC=CC=C1C(C)(C)C 0.0531 2.856

43 Violet At 4-(2,6,6-trimethylcyclohexen-1-yl)but-3-
en-2-one;4-(2,6,6-trimethylcyclohex-2-
en-1-yl)but-3-en-2-one

CC1(C)C(/C=C/C(C)=O)=C(C)CCC1.CC
2(C)C(/C=C/C(C)=O)C(C)=CCC2

0.0227 1.221

44 Caryophyllene oxide (1~{R},4~{S},6~{R},10~{R})-4,12,12-
trimethyl-9-methylidene-5-
oxatricyclo[8.2.0.0 {̂4,6}]dodecane

[H][C@]1(CC2(C)C)[C@@]2([H])CC[C
@](O3)(C)[C@]3([H])CCC1=C

0.01 0.538

45 Sclarene 4,5,6,7,8,9,10,11,12,13-
decahydrocyclododeca[d][1,3]oxazole

C1(OC=N2)=C2CCCCCCCCCC1 0.000965 0.052

46 Z 11 Crude Dist (1~{S},4~{R},9~{S},10~{R},13~{S})-
5,5,9,13-tetramethyl-14,16-
dioxatetracyclo[11.2.1.0 {̂1,10}.0 {̂4,9}]
hexadecane;(1~{S},4~{S},9~{R},10~{R}
,13~{R})-5,5,9,13-tetramethyl-14,16-
dioxatetracyclo[11.2.1.0 {̂1,10}.0 {̂4,9}]
hexadecane

[H][C@]1(C(C)(C)CCC2)[C@@]2(C)[C
@@H](CC[C@@]3(C)O4)[C@]4(CO3)
CC1.CC5(C)CCC[C@@]6(C)[C@@]5([
H])CC[C@]7(CO8)[C@@H]6CC[C@]8(
C)O7

0.000196 0.011

47 Lyral 3-(4-hydroxy-4-methylpentyl)cyclohex-3-
ene-1-carbaldehyde;4-(4-hydroxy-4-
methylpentyl)cyclohex-3-ene-1-
carbaldehyde

O=CC1CC(CCCC(C)(C)O)=CCC1.OC(
C)(C)CCCC2=CCC(C=O)CC2

2.73E-05 0.001

48 Cachalox (3~{a}~{R},5~{a}~{R},9~{a}~{S},9~{b}~{
R})-3~{a},6,6,9~{a}-tetramethyl-
2,4,5,5~{a},7,8,9,9~{b}-octahydro-1~{H}-
benzo[e][1]benzofuran

C[C@@]1([C@H](CCO2)[C@@]2(C)C
C3)[C@]3([H])C(C)(C)CCC1

0.00393 0.211

49 Bourgeonal 3-(4-~{tert}-butylphenyl)propanal CC(C)(C)C1=CC=C(CCC=O)C=C1 0.00499 0.268

50 Rose oxide 4-methyl-2-(2-methylprop-1-enyl)oxane CC1CCOC(C=C(C)C)C1 0.657 35.334

51 2-Phenylethyl acetate 2-phenylethyl acetate O=C(C)OCCC1=CC=CC=C1 0.0683 3.673

52 Trifernal 3-phenylbutanal CC(CC=O)C1=CC=CC=C1 0.0852 4.582

53 Satinaldehyde 2-methyl-3-(4-methylphenyl)propanal CC1=CC=C(CC(C=O)C)C=C1 0.0329 1.769

54 Rhubafuran 2,4-dimethyl-4-phenyloxolane CC1(C2=CC=CC=C2)CC(C)OC1 0.0308 1.656

55 Phenylethyl salicylate 2-phenylethyl 2-hydroxybenzoate OC(C=CC=C1)=C1C(OCCC2=CC=CC=
C2)=O

1.39E-06 0.000



56 Methyl anisate methyl 4-methoxybenzoate COC1=CC=C(C(OC)=O)C=C1 0.0118 0.635

57 Whiskey Lactone K 5-butyl-4-methyloxolan-2-one CCCCC(O1)C(C)CC1=O 0.0154 0.828

58 3-methyl-5-phenylpentanal 3-methyl-5-phenylpentanal CC(CC=O)CCC1=CC=CC=C1 0.013 0.699

59 Rosinol Cryst (2,2,2-trichloro-1-phenylethyl) acetate ClC(Cl)(Cl)C(OC(C)=O)C1=CC=CC=C1 0.000976 0.052

60 Plicatone (1~{R},2~{R},5~{S},7~{S},8~{R})-5-
methyltricyclo[6.2.1.0 {̂2,7}]undecan-4-
one

O=C1C[C@@]([C@@H]2C[C@H]3CC2
)([H])[C@@]3([H])C[C@@H]1C.O=C4C
[C@@]([C@@H]5C[C@H]6CC5)([H])[C
@@]6([H])C[C@H]4C

0.0166 0.893

61 Decyl acetate decyl acetate CCCCCCCCCCOC(C)=O 0.0375 2.017

62 Cashmeran 1,1,2,3,3-pentamethyl-2,5,6,7-
tetrahydroinden-4-one

O=C1CCCC(C(C)(C)C2C)=C1C2(C)C 0.00403 0.217

63 Neobutenone alpha 1-(5,5-dimethylcyclohexen-1-yl)pent-4-
en-1-one

CC1(C)CC(C(CCC=C)=O)=CCC1 0.0187 1.006

64 Cascalone 7-propan-2-yl-1,5-benzodioxepin-3-one CC(C)C1=CC(OCC2=O)=C(OC2)C=C1 0.000197 0.011

65 Amyl Phenylacetate 2-methylbutyl 2-phenylacetate;3-
methylbutyl 2-phenylacetate

O=C(OCCC(C)C)CC1=CC=CC=C1.O=
C(OCC(C)CC)CC2=CC=CC=C2

0.0068 0.366

66 Alpha-Damascone 1-(2,6,6-trimethylcyclohex-2-en-1-yl)but-
2-en-1-one

CC1(C)C(C(/C=C/C)=O)C(C)=CCC1 0.0186 1.000

n.a. 2-Methylindole 2-methyl-1H-indole CC1=CC2=CC=CC=C2N1 - -

n.a. 3-Methylindole 3-methyl-1H-indole CC1=CNC2=CC=CC=C12 - -

n.a. 6-Methylindole 6-methyl-1H-indole CC1=CC2=C(C=C1)C=CN2 - -

Table S3. List of compounds shown in Figure 2 and 6 and used throughout this study. Related to Figures 2 and 
6.  Compounds are indexed according to appearance in Figure 2 and 6 and additional information is provided. Isomeric 
mixtures are described by the IUPAC name and the simplified molecular input line entry system (SMILES). Vapor pressure 
estimates for all compounds (calculated in EPISuite) and the gas phase concentration at saturation in air are also given 
(following Raoult’s law).
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