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Abstract. The modular squaring operation has attracted significant attention due
to its potential in constructing cryptographic time-lock puzzles and verifiable delay
functions. In such applications, it is important to understand precisely how quickly a
modular squaring operation can be computed, even in parallel on dedicated hardware.
We use tools from circuit complexity and number theory to prove concrete numerical
lower bounds for squaring on a parallel machine, yielding nontrivial results for practical
input bitlengths. For example, for n = 2048, we prove that every logic circuit (over
AND, OR, NAND, NOR gates of fan-in two) computing modular squaring on all
n-bit inputs (and any modulus that is at least 2n−1) requires depth (critical path
length) at least 12. By a careful analysis of certain exponential Gauss sums related
to the low-order bit of modular squaring, we also extend our results to the average
case. For example, our results imply that every logic circuit (over any fan-in two
basis) computing modular squaring on at least 76% of all 2048-bit inputs (for any
RSA modulus that is at least 2n−1) requires depth at least 9.
Keywords: Verifiable delay function · circuit · modular squaring · RSA

1 Introduction
Which computational problems are inherently sequential, and cannot be efficiently paral-
lelized? This is the intuitive question behind the P versus NC problem, one of the major
open problems in computational complexity theory and computer science. It is widely
conjectured that P 6= NC, which would show that there are (natural) problems solvable in
nO(1) time in a sequential computational model that cannot be solved in (logn)O(1) parallel
time (a.k.a. (logn)O(1) depth) in a parallel computational model with nO(1) processors.
Very little is known about the depth complexity of functions in P: the best known depth
lower bounds for any function in P (or NP for that matter) only show that depth must be
at least c logn where c ≤ 3.

In cryptography, certain problems have been proposed as candidates for being inherently
sequential. In this paper, we focus on the problem of integer modular squaring, which was
first proposed by Rivest, Shamir, and Wagner [RSW96] in the context of time-lock puzzles.
It has recently received renewed attention, when it was shown in [Wes19, Pie19] that it
allows to build verifiable delay functions [BBBF18] (or VDF), a cryptographic primitive
key to a wide variety of exciting applications, notably for secure decentralised systems.

Repeated Modular Squaring (RMS): Given an n-bit x, a parameter T , and an
n-bit modulus m ∈ [2n−1, 2n − 1], calculate x2T mod m.
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Typically, we think of T as “large”. If m is prime, one can calculate x2T mod m very
efficiently by first reducing the exponent k = 2T mod m− 1, then computing xk mod m
for k < m. More generaly, knowing φ(m) (or equivalently, the factorisation of m) allows
to compute x2T mod m in about log2(T ) multiplications in Z/mZ. However, if the
factorisation of m is unknown, one cannot reduce the exponent, and there is no known
method to compute x2T mod m faster than squaring T times sequentially. In this situation,
Rivest, Shamir and Wagner suggest that the depth of computing x2T mod m is roughly T
times the depth of squaring modulo m, when T ≤ 2no(1) (when T is sufficiently large, it
becomes advantageous to factor m first).

The parallel setting is critical here: for applications of VDFs, it is important to have a
good estimate of the wall-clock time required for computing RMS: what is the depth of
the shallowest circuit an adversary can build? Naively, one might conjecture that every
(reasonably defined) parallel machine computing RMS requires at least Ω̃(T + logn) depth,
where the Ω̃ omits division by polylogarithmic factors. However, noting that the input
length to RMS is only m ≤ O(log T + logn), such a conjecture would imply a 2Ω(m)

circuit depth lower bound, but it is well-known that every function on m-bit input has
a (non-uniform) circuit of 2m size and O(m) depth. So for such a conjecture to make
sense, we also need to bound the size/work of the parallel computation as well, to be (for
example) polynomial in T and logn.

Other constructions with lower depth are known, such as [BS07], but require models
whose practicality has been called into question [MOS20], with high fan-in and fan-out. To
this day, the most successful attempts at building fast hardware for RMS still boil down
to efficient modular squaring [Özt20, MOS20].

In this article, we focus on modular squaring, and ask the relaxed question: what
unconditional lower bounds can be proved for modular integer squaring? Can it be
rigorously proved that even computing certain bits of x2 already requires an interesting
level of depth complexity?

1.1 Our Results
In this paper, we focus on the following problem.

Modular Squaring (MS): Given an n-bit x and an n-bit modulus m ∈ [2n−1, 2n],
calculate x2 mod m.

Our goal is to prove unconditional, concrete depth lower bounds for MS. That is, we
want to be able to plug in values of n arising in practice, and obtain unconditionally true
facts about the required time delays of any logic circuit computing MS on n-bit numbers.
To this end, we prove interesting worst-case lower bounds and average-case lower bounds
on the depth complexity of MS. We state our results in terms of Boolean logic circuits
over OR, AND, NAND, and NOR, each of fan-in two, with “free” NOT gates having cost
0. (We believe this choice of gates is reasonable for practice, because the other possible
two-bit gates XOR and EQUALS1 in modern hardware are, to the best of our knowledge,
always implemented in terms of the other gates.) In circuit complexity terminology, this
corresponds to proving circuit lower bounds over the basis U2 (all unate functions on two
bits [Weg87, Juk12]).

Worst-Case Lower Bounds. Our primary worst-case lower bound is the following.
1An EQUALS gate takes two bits x and y and outputs 1 if and only if x = y. EQUALS is simply the

complement of XOR.
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Theorem 1 (Worst-Case Lower Bound). For every n, every logic circuit (over the basis U2)
computing MS on n-bit integers requires depth at least 2 log2(n−1)−2 log2(log2(n−1)−1)−4.

In particular, we show that “middle bits” of the output of MS require such depth
complexity. The depth complexity of Theorem 1 is stated rather precisely, so that it is
possible to plug in concrete numbers and yield interesting results. For example, when
n = 1024 and n = 2048, in which case Theorem 1 yields a depth lower bounds of at least
10 and 12, respectively (note that the depth must be an integer). Thus, Theorem 1 allows
us to make concrete statements about the delays of logic circuits computing MS, such as
the following:

Every logic circuit with a 10 picosecond delay per gate must take at least 1200
picoseconds to compute a modular squaring operation on 2048-bit integers.

The lower bound of Theorem 1 proceeds by an efficient reduction from the SUM problem
from n bits to O(logn) bits, defined as:

SUM(x1, . . . , xn) :=
∑
i

xi.

That is, SUM simply outputs a binary representation of the sum of the 1s in its input. It
is known that SUM has circuits of depth at most 4.14 log2(n) [Ser16] and every circuit for
SUM must have depth at least 2 log2(n) [Kra70]. Our reduction can be stated as follows.

Theorem 2. If SUM requires depth at least c log2(n) for constant c ≥ 2, then MS on n-bit
integers requires depth at least c log2(n− 1)− c log2(log2(n− 1)− 1)− 2c.

As a corollary, under the reasonable hypothesis that SUM requires depth 4 log2(n), MS
on 2048-bit integers has depth complexity at least 23.

Average-Case Lower Bounds. For cryptographic reasons, it is interesting to ask if the
above lower bounds hold for circuits that are only required to compute MS on a decent
fraction of n-bit inputs. In this case we can also prove non-trivial depth lower bounds for
squaring with an RSA modulus, but they are weaker than what we can prove in the worst
case.

Theorem 3. Let n ≥ 38, and let m be the product of two primes in [2n/2−1, 2n/2). Every
logic circuit computing (x2 mod m) correctly on at least 76% of all n-bit integers x (over
the basis U2 or B2) requires depth at least log2(n/4− 7.2).

Corollary 1. Every logic circuit (even with XOR and EQUALS gates) computing (x2 mod
m) correctly on at least 76% of all n-bit integers x requires depth at least 9, when m is the
product of two 1024-bit primes, both of which are at least 21023.

An interesting aspect of Theorem 3 is that the depth lower bound holds even over
circuits from B2, the full binary basis: our gates may be any possible function that takes
two bits as input and outputs a bit. (This point is not necessarily relevant to practice; it
just turns out that the proof works in that case.)

We believe that the depth complexity of MS in the average case should be roughly
as hard as the worst case. However, our worst-case proofs reasoning about the “middle
bit” of MS do not extend to the average case (they modify the input too much to yield
“typical” inputs), so we take a different approach. We show that computing the low-order
bit of MS is difficult on average. This is interesting, because the low-order bit of normal
integer squaring, without modular reduction, is trivial (the low-order bit of the output
only depends on the low-order bit of the input). Thus modular reduction plays a crucial
role in the average-case lower bound of Theorem 3.
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In order to establish Theorem 3, we prove a result regarding the sensitivity of modular
squaring on random inputs, and show how such sensitivity results yield size and depth
lower bounds. (Here in the introduction, we will keep the discussion at an informal level.)
The sensitivity of a function f at a binary input x measures how many distinct input bits
could be “flipped” such that the value of f changes. When f is the low-order bit of the MS
function on n-bit integers, we use bounds on exponential sums to show (in Theorems 10
and 11) that there are at least n/4 input bits xi such that, when an n-bit x is chosen
uniformly at random, the probability that the value of f(x) flips is at least 1/2− o(1). We
show how such sensitivity results can be applied to prove lower bounds on the depths of
all circuits computing MS even on a decent fraction of inputs, culminating in Theorem 3.

2 Preliminaries
Notation and Definitions. Let n ≥ 1 be an integer, and let [n] := {1, . . . , n}. We define
the function IS : {0, 1}? → {0, 1}? (Integer Squaring) to map n-bit integers x to 2n-bit
integers x2.

Let m ≤ 2n − 1 be an odd integer, and let Z/mZ = {0, 1, . . . ,m − 1}. We view
(x mod m) as a function from Z to the set Z/mZ. Define

MS-MOD2n,m : {0, 1}n → {0, 1}

as the function which construes its n-bit input x as an integer in [0, 2n − 1], and outputs
((x2 mod m) mod 2). This is the least significant bit of the function MS(x) = (x2 mod m)
as defined in the introduction.

We use basic notions from circuit complexity [Weg87, Juk12]. Let B be a set of functions
of the form f : {0, 1}k → {0, 1} where k ∈ {1, 2}. Typical choices are B2, the set of all
functions on at most two inputs, and U2, the set of all unate functions on at most two
inputs (a unate function g is a monotone function with signs on some of its inputs, so for
example g(x, y, z) = f(¬x, y,¬z) is unate when f is monotone). It is easy to verify that
B2 = U2 ∪ {XOR,EQUALS}.

As is standard, an n-input, m-output, s-size circuit over the basis B is represented as a
directed acyclic graph with n sources and s other nodes which include m sinks. Each node
is called a gate, has indegree at most two (a.k.a. fan-in at most two), and is labelled with
some f ∈ B.

More background on circuit complexity will be covered in Section 3.

Prior Work. As far as we can tell, there is scant literature on proving numerical and
unconditional lower bounds for circuit depth. Meyer and Stockmeyer [SM02] proved such
results for circuit size: concretely, they showed that deciding the truth of formulas of
length at most 610 from the language WS1S (a problem known to require extremely high
asymptotic time complexity) requires circuits containing at least 10125 gates.

On a technical level, the work most related to ours concerns depth lower bounds for
PRAMs (parallel random access machines). It has long been known that sensitivity is tied
to running time for parallel machines (a.k.a. circuit depth) [Weg87]. For example, the
work of Cook, Dwork, and Reishuk [CDR86] implies that for so-called CREW (Concurrent
Read Exclusive Write) PRAMs, the minimal running time for computing a function f is
at least Ω(logS(f)) where S(f) is the sensitivity of f , and the recently celebrated proof of
the Sensitivity Conjecture by Huang [Hua19] implies (among other results) that CREW
PRAM running time is bounded from above by O(logS(f)). Among this literature, the
reference most related to our work is that of Shlarpinski and von zur Gathen [vzGS00],
who used bounds on exponential sums and sensitivity to show that modular inversion
requires depth Ω(log2(n)) on n-bit integers in the worst case, with a leading constant at
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most 1/2 in the Ω(·). To contrast, our results for modular squaring are worst-case with a
leading constant of (at least) 2, and average-case with a leading constant 1 in front of the
log2(n) term, allowing us to conclude interesting numerical lower bounds.

3 Useful Notions from Circuit Complexity
In this section, we generalize some known concepts and theorems from circuit complexity
which will be useful in our average-case depth lower bounds. Two good general references
on the subject are [Weg87, Juk12]. In the following, let f : {0, 1}n → {0, 1} be a Boolean
function. For a point x ∈ {0, 1}n and index i ∈ [n], we define x(i) to be x with the i-th bit
flipped to the opposite value. All of the following results hold over any basis of fan-in two
Boolean functions, including B2.

3.1 Non-Degeneracy
Roughly speaking, a function f is non-degenerate if it depends on all of its inputs.

Definition 1. A function f is non-degenerate if for all i ∈ [n], there is an a ∈ {0, 1}n such
that f(a) 6= f(a(i)).

That is, f is non-degenerate if, for all i, there is at least one input a such that flipping
the i-th bit of a changes the value of f . A function f is degenerate if it is not non-degenerate.
Intuitively, a degenerate function has at least one variable that does not affect the output:
there is an i ∈ [n] such that for all assignments a, f(a) = f(a(i)). Therefore the i-th bit of
input does not affect the output.

It is not difficult to prove the following relation between non-degeneracy and circuit
size. (We omit the proof, as we will prove a stronger result in a moment.)

Proposition 1 (Folklore, [Weg87]). Every non-degenerate f has circuit complexity at
least n− 1, over the basis of all Boolean functions on two inputs.

Corollary 2. The AND, OR, and PARITY functions on n-bit inputs require circuits of
size at least n− 1.

Proposition 2 (Folklore). Every non-degenerate f has depth complexity at least log2(n),
over the basis of all Boolean functions on two inputs.

Proof. The proof is by contrapositive. Consider any circuit C of depth d < log2(n). Since
C has fan-in two and depth d, the circuit C can be converted into an equivalent formula F ,
with at most 2d ≤ n− 1 leaves. This equivalent formula F can read at most n− 1 distinct
inputs, so the function computed by F is degenerate (the missing input cannot affect the
output of f).

Corollary 3. The AND, OR, and PARITY functions on n-bit inputs require circuits of
depth at least log2(n).

In the proofs of average-case lower bounds, we will require a natural generalization of
the classic non-degeneracy concept, and its application to circuit complexity.

Definition 2. Let k ∈ {0, 1, . . . , n}. A function f is degenerate in k variables if there are
k distinct i1, . . . , ik ∈ [n] such that for all a ∈ {0, 1}n and j ∈ [k], f(a) = f(a(ij)).

That is, f is degenerate in k variables if there are k different input indices i such that
flipping the i-th bit of a does not change the value of f , for all inputs a. The following
generalizes Proposition 1.
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Proposition 3. Let k ∈ {0, 1, . . . , n}. Every minimal fan-in two circuit with at most
(n− 1)− k gates is degenerate in (at least) k variables.

Proof. We prove the contrapositive. Let s be the number of gates in a minimal circuit for
an f that is not degenerate in k variables. First, there must be at least n− k inputs in the
circuit that have at least one outgoing wire. Otherwise, f would trivially be degenerate
in (at least) k variables: k of the inputs have no outgoing wire, so flipping any of their
values cannot change the circuit’s output on any input. Note that each of the s gates have
at least one outgoing wire: otherwise, that gate could be removed without changing the
circuit’s functionality, contradicting minimality.

Therefore the number of wires in a minimum circuit for f is at least n − k + s − 1:
there are at least n− k wires coming out of the inputs, and s− 1 wires coming out of the
interior gates (subtracting one for the output gate, which has no outgoing wire). Since
each gate also has fan-in two (two edges coming into it), the number of wires in the circuit
is at most 2s. Therefore 2s ≥ n− k + s− 1, implying s ≥ (n− 1)− k.

The following is analogous to the proof of Proposition 2.

Corollary 4. Every f that is degenerate in at most k variables has depth complexity at
least log2(n− k), over the basis of all Boolean functions on two inputs.

3.2 Sensitivity
We also use the classical concept of the sensitivity of a function.

Definition 3 ([Weg87]). The sensitivity of f at x ∈ {0, 1}n is the number of indices
i ∈ [n] such that f(x(i)) 6= f(x).

For concrete examples, note the PARITY function on n-bit inputs has sensitivity n at
every point (flipping any bit changes the parity), and the AND function has sensitivity n at
the all-ones input but sensitivity 0 at the all-zeroes input. A basic result about sensitivity
is the following proposition:

Proposition 4 ([CDR86, Weg87]). Suppose a function f : {0, 1}n → {0, 1} has sensitivity
at least k at some point x. Then f requires at least k − 1 gates and log2(k) depth, even
over B2.

Proof. We prove the contrapositive. Suppose f has a minimal-size circuit C with at most
k − 2 gates. By the same argument as in Proposition 3, there must be at least v input
nodes in C that do not have an outgoing wire, where k − 2 = (n − 1) − v. Noting that
v = n−k+1, this means that circuit C’s output only ever depends on at most n−v = k−1
of the inputs. Therefore f has sensitivity at most k at every point. The depth lower
bound of at least log2(k) follows analogously to the proof of Proposition 2.

4 Worst-Case Lower Bounds for Modular Squaring
In this section, we present worst-case depth lower bounds for squaring n-bit integers.
We study the “middle bits” of the output, show they can efficiently compute symmetric
Boolean functions, and use this information to prove an overall depth lower bound. Our
approach proceeds by adapting a reduction of Furst-Saxe-Sipser [FSS81], who showed how
to reduce the PARITY function to MULTIPLICATION in constant depth. Recall that IS
maps n-bit integers x to 2n-bit integers x2. We will show that low-depth circuits for IS can
be used to obtain somewhat-low-depth circuits for the function SUM(x1, . . . , x`) 7→

∑
i xi

for ` ≥ Ω(n/ logn).
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Let m ∈ Z>0 be our modulus. If we only consider integers x ∈ [0, b
√
m− 1c], then

clearly (x2 mod m) = IS(x), and our problem reduces to proving a depth lower bound for
IS on integers x which are b bits long, where b = blog(m− 1)/2c. Let us record this simple
observation.

Proposition 5. Let m ≥ 2 be an integer. If IS requires depth-d circuits on b-bit input,
where b = blog(m− 1)/2c, then computing (x2 mod m) on b-bit input requires depth-d as
well.

Now we turn to the reduction. Let ` ∈ Z>0. Consider the bits xi ∈ {0, 1} defined by
x =

∑`−1
i=0 xi2i. Define the degree-(2`− 1) polynomial

p(x0, . . . , x`−1, y) :=
`−1∑
i=0

yi +
`−1∑
i=0

xi · y`+i.

In the following, we will construe p as a univariate polynomial in y, with coefficients which
are polynomials in the xi.

Claim. The degree-(2`− 1) coefficient of p(x0, . . . , x`−1, y)2 equals 2
∑`−1
i=0 xi.

Proof. For notational simplicity, let cm be the degree-m coefficient of p(x0, . . . , x`−1, y).
The degree-m coefficient is the sum of all products cicj over ordered pairs (i, j) ∈
{0, 1, . . . , k}2 such that i + j = m. Now let m = 2` − 1. WLOG, consider the case
where i < j. Then for each j there is exactly one i < j such that i + j = 2` − 1,
and i < ` < j. Thus cicj = xj−`, and the coefficient is 2

∑2`−1
j=` xj−` = 2

∑
i xi by

double-counting the pairs (i, j) and (j, i).

Set k := 2 + dlog2(`)e, and consider the polynomial

q(x0, . . . , x`−1) := p(x0, . . . , x`−1, 2k).

We claim that, for all a ∈ {0, 1}`, the binary representation of q(a)2 contains
∑
i ai as a

substring. By Claim 4, 2
∑
i xi is the coefficient of y2`−1 in p2. For j = 0, . . . , 2`− 1, note

that each coefficient of yj in p(a, y)2 is at most j + 1, since the coefficients of p(a, y) (in
the variable y) are in {0, 1}. Thus by setting y := 2k > 2`, each coefficient cj of yj in
p(a, y)2 is less than y, for j = 0, . . . , 2`− 1. It follows that each such coefficient cj appears
as a binary substring in the bit representation of q(a)2. In particular, the sum of all terms
of degree less than 2`− 1 in p(a, y)2 contributing to q(a)2 is

2`−2∑
j=0

cjy
j ≤

2`−2∑
j=0

(j + 1) · 2jk < 2(2`−1)k.

Moreover, all terms of degree greater than 2`−1 in p(a, y)2 appearing in q(a)2 are multiplied
by y2` = 22`k > 2` · 2(2`−1)k ≥ (2

∑
i xi)y2`−1. Therefore 2

∑
i ai appears as a substring in

the output, i.e., the substring representing
∑
i ai followed by a 0.

We have shown the output of IS(q(a)) contains the quantity
∑
i ai in binary. Given a

circuit C for integer squaring on b bits, we can “implement” q(a) by simply plugging in
appropriate zeroes into the inputs of C. We have proven the following.

Theorem 4. Let ` ∈ Z>0. Given a depth-d circuit for IS on integers of bitlength b :=
2` · k = 4`+ 2` log2(`), we can construct a depth-d circuit for SUM(a1, . . . , a`) =

∑
i ai on

`-bit inputs.

Thus, lower bounds for SUM imply lower bounds for IS. We will utilize the following
classical lower bound of Krapchenko [Weg87, p.258-262].
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Proposition 6 (Krapchenko 1972). Every circuit for SUM on `-bits requires depth at
least 2 log2(`).
Proof. The least significant bit of SUM is the PARITY function on ` bits, for which
Krapchenko showed a 2 log2(`) depth lower bound.

Applying Proposition 6 and Theorem 4 yields a worst-case lower bound for IS.
Theorem 5. For every circuit with AND and OR gates (and NOT gates for free), IS on
n-bit integers requires depth at least 2 log2(n)− 2 log2 log2(n)− 2.
Proof. Given any depth-d circuit for IS on integers of bitlength n := 4` + 2` log2(`),
Theorem 4 and its corollary show that we get a depth-d circuit for SUM on `-bit inputs.
But the least significant bit of SUM is precisely PARITY, so we also obtain a depth-d
circuit for PARITY. Observe that for all ` ≥ 1, we have ` ≥ n/(2 log2(n)). Therefore by
Proposition 6, we must have d ≥ 2 log2(`) ≥ 2(log2(n)− log2 log2(n)− 1).

Combining Theorem 5 and Proposition 5, we obtain the desired worst-case lower bounds
for MS.
Reminder of Theorem 1. For every n, every logic circuit over U2 computing MS on
n-bit integers requires depth at least 2 log2(n− 1)− 2 log2(log2(n− 1)− 1)− 4.

Corollary 5. For every circuit with AND and OR gates (and NOT gates for free), MS
on 2048-bit integers requires depth at least 12.

A Generalization. The above approach gives a reduction from IS to SUM, and appeals
to lower bounds on computing SUM. The best-known depth lower bound for SUM (in
fact, for any symmetric function) is only 2 logn (see [GTTN18]) and this has been the
state-of-the-art since the 1970s [Kra70].

We observe a generalization of the above reduction that strongly suggests the possibility
of larger depth lower bounds. Recall that a symmetric Boolean function f : {0, 1}n → {0, 1}
has the property that its output is determined solely by the number of 1’s in its input. In
other words, f is symmetric if there is a “spectrum” function g : {0, 1, . . . , n+ 1} → {0, 1}
such that for all a ∈ {0, 1}n, f(a) = g(

∑
i ai). Classic examples of symmetric functions

include OR, AND, MAJORITY, PARITY, and MODm (which outputs 1 if and only if
the sum of its inputs is divisible by m).
Theorem 6. Suppose there is a symmetric Boolean function f : {0, 1}n → {0, 1} with
depth complexity at least c log2(n), such that its spectrum function g has a depth-d(n)
circuit on input of length 1 + dlog2(n)e. Then, IS has depth complexity at least c(log2(n)−
log2 log2(n)− 2)− d(n/(2 logn)).

The depth d(n) of the spectrum function is typically very small, as the input to the
spectrum function is only about log(n) bits. For example, with the PARITY function, the
spectrum function g has a depth-zero circuit: we only have to output the least significant
bit of the input. For the MAJORITY function, when the number of input bits is a power
of two, we only have to output the most significant bit of the input. (When the number of
inputs is not a power of two, we have to check that the input number is at least a fixed
number, which can be done in O(log logn) depth, with small constant in the big-O.) In
general, we expect d(n) to be at most O(log logn) for natural symmetric functions.

Proof of Theorem 6. Given any circuit of depth D for IS on n-bit inputs, we first obtain
a depth D circuit for SUM on `-bit inputs, for ` ≥ n/(2 log2 n) as described above. The
output of SUM is 1 + dlog2(`)e bits, encoding an integer in {0, 1, . . . , `}. If the spectrum
function g has depth d(`), then we can compute f from the SUM in only d(`) additional
depth. Thus we get a circuit for f on `-bit inputs of depth D + d(`). Assuming f has
depth complexity at least c log2(`), we have D ≥ log2(`)− d(`).
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For SUM, the lowest-depth circuits over AND/OR/NOT known still have depth larger
than 4 log2(n); when XOR gates are included, the depth is still greater than 3 log2(n). In
particular, it is known how to construct circuits for SUM with depth 4.14 log2(n) (over
AND/OR/NOT) and 3.02 log2(n) (over AND/OR/NOT/XOR); the current best known
result seems to be by Sergeev [Ser16]. Thus there is still a fairly wide gap (2 logn versus
4.14 logn) between lower bounds and upper bounds on the depth complexity of SUM, and
we might expect to improve our concrete lower bound for MS by another factor of two, as
follows.

Corollary 6. If SUM on n bits requires depth 4 logn over AND/OR/NOT, then IS on n
bits requires depth 4 log2(n)− 4 log log(n)− 4. For n = 2048, the depth lower bound is at
least 26.

The following is immediate, using the reduction from IS to MS of Proposition 5.

Reminder of Theorem 2. Suppose SUM requires depth at least c log2(n) for a constant
c > 2. Then MS on n-bit integers requires depth at least c log2(n − 1) − c log2(log2(n −
1)− 1)− 2c.

4.1 Discussion
The above results show how to lower bound the depth of integer squaring (IS) using a
lower bound on SUM. One might think there could be significant “loss” in reducing IS to
a simple-looking problem like SUM, but surprisingly, this is not actually the case. It is
also known that the depth of multiplication can be upper bounded by low-depth circuits
for SUM, so the two problems are in fact tightly correlated in terms of depth complexity.

Theorem 7 ([Kra70] as cited in [Ser16]). Given a depth-d circuit for SUM on n-bit input,
there is a circuit for multiplication of two n-bit numbers of depth at most d+ log2(n).

Applying the results of [Ser16] to this theorem, the lowest-depth circuits known for
multiplication (and thus squaring) have depth 4.02 log2(n) over all fan-in two gates, and
depth 5.14 log2(n) over AND/OR/NOT gates.

The arguments of this section proving for worst-case depth lower bounds do not look
directly helpful for trying to prove an average case lower bound against IS or modular
squaring. In particular, when we reduce from SUM to IS, the resulting distribution of
inputs is far from nice and uniform: starting from an n-bit input to a symmetric Boolean
function, we insert many zeroes in specific places in the corresponding input to IS. We
will need a different sort of argument to prove average-case lower bounds.

5 Average-Case Lower Bounds
We now turn to proving average-case lower bounds for MS, where our discussion will
culminate in the proof of Theorem 3.

Reminder of Theorem 3. Let n ≥ 38, and let m be the product of two primes in
[2n/2−1, 2n/2). Every logic circuit computing (x2 mod m) correctly on at least 76% of all
n-bit integers x (over the basis U2 or B2) requires depth at least log2(n/4− 7.2).

Our proof will rely critically on sensitivity arguments, as defined and described in
Section 3. As a warm-up, let us begin with a short argument that the n-th output of IS
(integer squaring without modular reduction) requires about log(n) depth in the worst
case, via a sensitivity argument. Note that this bound is worse than that proved in the
previous section, but it will be motivating for the average case.
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Theorem 8. There is an n-bit x such that the n-th output bit of IS has sensitivity at least
n/2− 1 at the point x.

Proof. For simplicity assume n is even, and let x :=
∑n−1
j=n/2+1 2j . Observe x2 has a 0 in

the n-th output of IS, because x2 =
∑
j,k≥n/2+1 2j+k, and j + k > n for all j, k.

For every i = 0, . . . , n/2 − 2, there is exactly one j′ ∈ [n/2 + 1, n − 1] such that
i+ j′ = n− 1. Therefore

(x(i))2 = (x+ 2i)2 =
∑

j,k≥n/2+1

2j+k +
n−1∑

j=n/2+1

2i+j+1 + 22i

has a 1 in the n-th output (all i+ j + 1’s are distinct, larger than 2i, and smaller than the
j + k’s).

Applying Proposition 4 directly, we get a (weak) depth lower bound for IS.

Corollary 7. The n-th output bit of IS on n-bit integers requires depth at least log2(n/2−
1) ≥ log2(n)− 2.

We would like to extend such an argument to hold for the average case, showing that
any circuit that can approximately compute IS still requires an interesting level of depth.
The first obvious problem is that the “bad” input x being chosen in the proof of Theorem 8
is not at all “random”! What we would like to show is that sensitivity of IS on random
points is high. Given such a result, we could then use it to prove that all small circuits
cannot approximate IS well in the average case.

The Framework. Let δ ∈ (0, 1] and ε ∈ (0, 1/2) in the following.

Definition 4 ((δ, ε)-sensitivity). A function f : {0, 1}n → {0, 1} is (δ, ε)-sensitive if there
are at least δn distinct values i ∈ {0, 1, . . . , n− 1} such that

Pr
x∼{0,1}n

[
f(x) 6= f

(
x(i)
)]
≥ 1/2− ε.

For small ε > 0, (δ, ε)-sensitivity means that there are at least δn input indices such
that, for approximately half of the possible inputs x, f is sensitive at x on all of those
input indices. For our lower bounds, we will want ε to be as small (close to 0) as possible,
and we want δ to be as large (close to 1) as possible.2

The utility of (δ, ε)-sensitivity is captured by the following theorem.

Theorem 9. Let ε ∈ (0, 1/2) and δ ∈ (0, 1]. Assume f is (δ, ε)-sensitive. Then for all
n ≥ 1, every fan-in two circuit with at most δn− 2 gates fails to compute f on at least
a (1/4− ε/2)-fraction of all n-bit inputs. A similar statement hold for any (fan-in two)
circuit with depth at most log2(δn− 1).

Proof. Let C be any n-input circuit with δn− 2 gates. First of all, note if δn− 2 < 1 then
the theorem is trivial. Without loss of generality, C is minimal (otherwise, let us take a
minimum-size circuit equivalent to C). Recall that Proposition 3 (Section 3) shows that
every minimal fan-in two circuit with at most (n− 1)− k gates is degenerate in at least k
variables. Thus our circuit C is degenerate in at least n+ 1− δn variables (for example,
if δ = 1, then C is degenerate in at least one variable). Thus there are variable indices
i1, . . . , in+1−δn ∈ [n] such that

For every x ∈ {0, 1}n and j = 1, . . . , n+ 1− δn, C(x) = C(x(ij)). (1)
2Please note that the (δ, ε)-sensitivity of f is not at all the same as the concept in the literature of the

“average sensitivity of f”, which is the expected value of the sensitivity of f at uniform random input.
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We show that, under the hypotheses, that C fails to compute f correctly on at least a
1/4− ε/2 fraction of all n-bit inputs. The key observation is that, if f is (δ, ε)-sensitive,
then there are at least δn distinct i ∈ [n] such that

Pr
x∼{0,1}n

[f(x) 6= f(x(i))] ≥ 1/2− ε, (2)

but there are also at least n+1−δn values in [n] such that C(x) = C(x(ij)) is true for all x.
By the pigeonhole principle, there must be an index i ∈ [n] such that both C(x) = C(x(i))
holds for all x, and (2) is true.

Fix such an i, and pair up all inputs in {0, 1}n into the 2n−1 disjoint pairs (x, x(i)).
Define

S := {(x, x(i)) | f(x) 6= f(x(i))}.

Since f is (δ, ε)-sensitive, there are at least (1/2− ε) · 2n distinct x ∈ {0, 1}n such that the
pair (x, x(i)) has f(x) 6= f(x(i)). This implies |S| ≥ (1/2− ε) · 2n−1.

By our choice of i, we also have C(x) = C(x(i)) for all x. Because f(x) 6= f(x(i)) for
all (x, x(i)) ∈ S, it follows that C computes f correctly on exactly one string in each pair
(x, x(i)) ∈ S. Therefore there are at least (1/2− ε) · 2n−1 = (1/4− ε/2) · 2n inputs y such
that C(y) 6= f(y), so the circuit C errs on at least a 1/4− ε/2 fraction of all inputs.

The depth lower bound follows analogously to the proof of Proposition 2.

Applying the Framework. We would like to apply Theorem 9 to obtain Theorem 3. This
requires us to study the (δ, ε)-sensitivity of bits of modular squaring. On a number-theoretic
level, it is easier to work with the situation of picking x at random from Z/mZ, but for
the purposes of applying Theorem 3, we need to consider the case where x is a uniform
random n-bit string (viewed as an integer in {0, 1, . . . , 2n − 1}). To this end, consider the
experiment when we pick x ∈ {0, 1}n at random, and let x(i) be the i-th bit flipped. More
formally, if x = (xn−1, . . . , x0) ∈ {0, 1}n, we can define

x(i) := x+ (1− 2xi)2i.

Note that under this definition, x(i) = x+ 2i if the i-th bit of xi is 0, and otherwise equals
x− 2i. We observe an easy proposition.

Proposition 7. The distribution of outputs of (x mod m) over x ∼ Z/mZ and the
distribution of (x mod m) over x ∼ {0, 1, . . . , 2n − 1} are identical, up to additive 1/2n
factors in the probabilities.

Proof. Consider the distribution D which chooses a uniform random x ∈ {0, 1, . . . , 2n− 1},
and outputs (x mod m) ∈ {0, . . . ,m− 1}. This distribution D partitions {0, . . . , 2n − 1}
of cardinality 2n into m equivalence classes, where each class contains at least 2n/m− 1
elements and at most 2n/m+ 1 elements. Thus for all t ∈ Z/mZ, we have

Pr
x∼{0,1,...,2n−1}

[(x mod m) = t] ∈ [1/m− 1/2n, 1/m+ 1/2n].

Hence
∣∣Prx∼{0,1,...,2n−1}[(x mod m) = t]− Prx∼Z/mZ[(x mod m) = t]

∣∣ ≤ 1/2n.

Therefore, the two distributions of outputs of (x2 mod m) mod 2 (over x ∼ Z/mZ and
x ∼ {0, 1, . . . , 2n − 1}) are also identical up to 1/2n as well, so proving (δ, ε)-sensitivity
results for x chosen at random from Z/mZ imply analogous results for x chosen at random
from {0, 1}n (construed as a non-negative integer).

The following two results are proved in Section 6 and Section 6.1. Keeping in mind
Proposition 7, these results are immediate corollaries of Theorem 12 and Theorem 13,
respectively.
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Theorem 10 (Squaring Sensitivity Theorem 1). For all odd 2n−1 ≤ m ≤ 2n − 1, and all
ε > 0, the function MS-MOD2n,m is

(
1/4 + log2(ε)

n + o(1), ε
)
-sensitive, where o(1) does

not depend on ε and limn→∞ o(1) = 0.

To obtain concrete lower bounds, one should explicitly estimate the o(1) term appearing
in Theorem 10. When m is an RSA modulus (the case of interest in all modular squaring
applications we are aware of) we obtain the following explicit result.

Theorem 11 (Squaring Sensitivity Theorem 2). For all n ≥ 38, let p, q be primes in
[2n/2−1, 2n/2). For all ε > 0, the function MS-MOD2n,pq is

(
1/4 + log2(ε)−log2(5.8)

n , ε
)
-

sensitive.

Putting the pieces together, we can complete the proof of Theorem 3.

Proof of Theorem 3. Let C be a circuit computing MS correctly on at least 76% of all n-bit
integers, modulo an RSA modulus m as specified in the theorem. By Theorem 11, the least
significant output bit of C is

(
1/4 + log2(ε)−log2(5.8)

n , ε
)
-sensitive. By Theorem 9, every

fan-in two circuit with at most δn− 2 gates fails to compute f on at least a (1/4− ε/2)-
fraction of all n-bit input, where δ = 1/4 + log2(ε)−log2(5.8)

n . Setting ε = 1/50, the fraction
becomes 24%, and δn = n/4 + log2(1/50)− log2(5.8) > n/4− 8.2. Therefore the circuit
size lower bound is at least n/4 − 8.2, and the resulting depth lower bound is at least
log2(n/4− 7.2) (by an analogous argument as the proof of Proposition 2).

5.1 Discussion
Before we move to the proofs of the Squaring Sensitivity Theorems, it is worth noting
why we had to introduce a notion of (δ, ε)-sensitivity, to prove what we did. It would
be natural to conjecture (and we originally did) that for all indices i ∈ [n], the low-
order bit of (x2 mod m) differs from the low-order bit of ((x(i))2 mod m) with probability
approximately 1/2, over a uniform random choice of x ∼ Z/mZ.

Conjecture 1 (A Bad Squaring Sensitivity Conjecture). For all fixed constant ε > 0,
for all large enough n, for all odd (square-free) 2n−1 ≤ m ≤ 2n − 1, and for all i ∈
{0, 1, . . . , n− 1},

Pr
x∼Z/mZ

[(x2 mod m) mod 2 6= ((x(i))2 mod m) mod 2] ≥ 1/2− ε.

That is, Conjecture 1 posits that the parity of (x2 mod m) differs from the parity of
((x(i))2 mod m) with probability very close to 1/2, when x is chosen uniformly at random
from Z/mZ. It turns out that Conjecture 1 is false as stated (reference omitted here
to preserve anonymity) and we had to resort to weaker claims where a δ-fraction of the
variables are sensitive on random inputs for some δ < 1.

6 The Least Significant Bit of Modular Squaring
Let m be any odd, positive integer. Recall we identify Z/mZ with {0, . . . ,m− 1}, so that
x mod m denotes the least positive residue of x modulo m. For the rest of this section, let
f : Z/mZ→ C× be the function induced by MS-MOD2n,m, i.e.,

f(x) =
{

0 if x mod m is even,
1 if x mod m is odd,
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For any integer i, and any x ∈ Z/mZ, let x(i) be the class of x mod m with the i-th bit
flipped. The goal of this section to prove the following theorem, which states that for any
integer i ∈ [0, log2(m)(1/4+o(1))], the least significant bits of x2 and (x(i))2 are essentially
independent, when x ∈ Z/mZ is uniformly distributed.

Theorem 12. We have∣∣∣∣#{x ∈ Z/mZ | f(x2) 6= f((x(i))2)}
m

− 1
2

∣∣∣∣ = 22i

m1/2+o(1) .

Notation. For any x ∈ R, let e(x) = e2πix. For any integer a, define the character χa of
Z/mZ as χa(x) = e

(
ax
m

)
. For any integer x, let JxKm = min(x mod m, (−x) mod m) be

the distance of x to the closest multiple of m. The function log is the natural logarithm,
in base e.

We now prove Theorem 12, and in Section 6.1, we specialise it to the case of RSA
moduli and obtain explicit bounds. Let f (i)(x) be the i-th least significant bit of x mod m.
In particular, for our function f we have f = f (0).

These functions f (i) are useful to study how flipping the i-th bit affects the output of
any function g : Z/mZ→ C, since

g
(
x(i)
)

= f (i)(x)g(x− 2i) + (1− f (i)(x))g(x+ 2i). (3)

In particular, these bit functions can be used to compute the size of the set in Theorem 12.

Lemma 1. We have #{x ∈ Z/mZ | f(x2) 6= f((x(i))2)} = 2A− 4C + ε, where |ε| ≤ 2i+2,

A =
∑
x

f(x2), and C =
∑
x

f (i)(x)f(x2)f((x− 2i)2).

Proof. We have

#{x ∈ Z/mZ | f(x2) 6= f((x(i))2)} =
∑
x

f(x2) +
∑
x

f((x(i))2)− 2
∑
x

f(x2)f((x(i))2).

Applying Equation (3) to the function g : x 7→ f(x2), we have

f((x(i))2) = f (i)(x)f((x− 2i)2) + f((x+ 2i)2)− f (i)(x)f((x+ 2i)2).

Let

A =
∑
x

f(x2), Bα =
∑
x

f (i)(x)f((x+ α)2),

Cα =
∑
x

f (i)(x)f(x2)f((x+ α)2), Dα =
∑
x

f(x2)f((x+ α)2),

for α = ±2i. Then,

#{x ∈ Z/mZ | f(x2) = f((x(i))2)} = 2A− (B2i −B−2i) + 2(C2i − C−2i)− 2D2i .

Let us estimate |B2i −B−2i |. With S = {x | f (i)(x+ 2i+1) 6= f (i)(x)}, we have

B−2i =
∑
x

f (i)(x)f((x− 2i)2) =
∑
x

f (i)(x+ 2i+1)f((x+ 2i)2)

=
∑
x

f (i)(x)f((x+ 2i)2) +
∑
x∈S

(f (i)(x+ 2i+1)− f (i)(x))f((x+ 2i)2)

= B2i +
∑
x∈S

(1− 2f (i)(x))f((x+ 2i)2).
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Since #S ≤ 2i+1, we deduce |B2i − B−2i | ≤ 2i+1. Now, with T = {x | f (i)(x + 2i) 6=
1− f (i)(x)},

C−2i =
∑
x

f (i)(x)f(x2)f((x− 2i)2)

=
∑
x

f (i)(x+ 2i)f((x+ 2i)2)f(x2)

=
∑
x

(1− f (i)(x))f((x+ 2i)2)f(x2) +
∑
x∈T

(2f (i)(x)− 1)f((x+ 2i)2)f(x2)

= D2i − C2i +
∑
x∈T

(2f (i)(x)− 1)f((x+ 2i)2)f(x2).

Since #T ≤ 2i, we deduce that |C2i + C−2i −D2i | ≤ 2i.

2A+ (B−2i −B2i) + 2(C2i − C−2i)− 2D2i = 2A− 4C−2i + ε,

where ε = (B−2i −B2i) + 2(C2i + C−2i −D2i), so |ε| ≤ 2i+2.

Fourier decomposition of the bit functions. It remains to estimate the terms A and C
from Lemma 1. To do so, we decompose the bit functions f (i) as character sums.

Proposition 8. We have the Fourier decomposition

f(x) = 1
m

∑
χ∈Ẑ/mZ

cχχ(x),

with cχ0 = m−1
2 and cχ = −1

1+χ(1) for any χ 6= χ0.

Proof. We have f(x) = 1
m

∑
χ cχχ(x), where cχ =

∑
x∈Z/mZ f(x)χ(x). Let T = {x ∈

Z/mZ | f(x) = 1}. We have cχ0 = |T | = m−1
2 . Now,

cχ =
∑
x∈T

χ(x) =
∑
x∈T

χ(x+ 2) + χ(1)− χ(m) = cχχ(2) + χ(1)− 1.

We deduce that cχ = −(1− χ(1))/(1− χ(2)) = −1/(1 + χ(1)) for any χ 6= χ0.

The following lemma allows to bound the Fourier coefficients cχ, as well as the coeffi-
cients of the functions f (i), in Proposition 9.

Lemma 2. For any integers a and b, we have 1
|1+χa(b)| ≤

m
2(m−2JabKm) .

Proof. Observe that, for any x ∈ [0, 1], we have 1 + cos(2πx) ≥ 2(2x − 1)2. So for any
x ∈ [0, 1], we have 1

|1+e(x)| = 1√
2+2 cos(2πx)

≤ 1
2|2x−1| . Therefore, for any integers a and b,

1
|1+χa(b)| ≤

m
2|2(ab mod m)−m| = m

2(m−2JabKm) .

Proposition 9. For all i ∈ [n], we have the Fourier decomposition

f (i)(x) = 1
m

∑
χ∈Ẑ/mZ

c(i)χ χ(x),

with
∣∣∣c(i)χ0 − m

2

∣∣∣ ≤ 2i−1 and
∣∣∣c(i)χa ∣∣∣ ≤ m2i

2(m−2Ja2iKm) .
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Proof. Let T (i) = {x ∈ Z/mZ | f (i)(x) = 1}. First, we have c
(i)
χ0 = |T (i)|, and∣∣|T (i)| − m

2
∣∣ ≤ 2i−1. Now, for any character χ,

c(i)χ =
∑
x∈T (i)

χ(x) =
∑
x∈T (i)

χ(x+ 2i+1) +
2i+1−1∑
x=2i

χ(x)−
∑

x∈T (i)|x+2i+1≥m

χ(x+ 2i+1).

Let [z, z′] = [0, 2i − 1] ∩ {x+ 2i+1 −m | x ∈ T (i) and x+ 2i+1 ≥ m}. For any non-trivial
χ, we have χ(2i+1) 6= 1 (recall that m is odd), so

c(i)χ = 1
1− χ(2i+1)

 z′∑
x=z

(χ(x+ 2i)− χ(x))

 = −1
1 + χ(2i)

 z′∑
x=z

χ(x)

 .

It follows that
∣∣∣c(i)χa ∣∣∣ ≤ m2i

2(m−2Ja2iKm) .

Notation 1. In the rest of the paper, we use the notation cχ and c(i)χ for the Fourier
coefficients of f and f (i) given in Propositions 8 and 9 respectively.

Gauss sums. Observe that A =
∑
x f(x2) = 1

m

∑
χ cχ

∑
x χ(x2), and

∑
x χ(x2) is a

Gauss sum. Generalised Gauss sums also appear in C, and play an important role in our
estimates of these two quantities.

Definition 5. For any integers a, b,m, the generalised Gauss sum is

G(a, b,m) =
∑

x∈Z/mZ

e

(
ax2 + bx

m

)
.

Lemma 3. We have |G(a, b,m)| =
{√

(a,m)m if (a,m) | b,
0 otherwise.

.

Proof. This is a classical result; we include a proof for completeness. We have∣∣∣∣∣∑
x

e

(
ax2 + bx

m

)∣∣∣∣∣
2

=
∑
x,y

e

(
ax2 + bx

m

)
e

(
−ay

2 + by

m

)

=
∑
x,y

e

(
a(x+ y) + b

m

)x−y
=
∑
s

∑
t

e

(
as+ b

m

)t
Since

∑
t e
(
as+b
m

)t is m if as+ b ≡ 0 mod m and 0 otherwise. We conclude by counting
the number of solutions of as+ b ≡ 0 mod m.

Estimating A. Here we estimate the term A from Lemma 1.

Lemma 4. For any odd positive integer h,
∑h−1
k=0

1
h−2JkKh

≤ log(h) + 2.31.

Proof. The result is immediate if h = 1. For h > 1, we have

h−1∑
k=0

1
h− 2JkKh

=
(h−1)/2∑
k=1

2
2k − 1 + 1

h
≤

2 +
(h−1)/2∑
k=1

1
k

 ≤ log(h− 1) + 3− log(2)

≤ log(h) + 2.31,

where the penultimate inequality uses
∑n
k=1

1
k ≤ log(n) + 1.
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Proposition 10. We have∣∣∣∣A− m+ 1
2

∣∣∣∣ ≤ √m2 ∑
g|m,g 6=m

1
√
g

(log(m/g) + 2.31) .

Proof. For any integer a, define the character χa(x) = e(ax/m). We get

A =
∑
x

f(x2) = 1
m

∑
a

cχa
∑
x

χa(x2) = 1
m

∑
a

cχaG(a, 0,m) = m+ 1
2 + 1

m

∑
a 6=0

G(a, 0,m)
1 + χa(1) .

Applying Lemma 3, we get∣∣∣∣A− m+ 1
2

∣∣∣∣ =

∣∣∣∣∣∣ 1
m

∑
a 6=0

G(a, 0,m)
1 + χa(1)

∣∣∣∣∣∣ ≤ 1√
m

∑
a 6=0

√
(a,m)

|1 + χa(1)| (4)

= 1√
m

∑
g|m,g 6=m

√
g

∑
k∈(Z/(m/g)Z)×

1
|1 + χgk(1)| . (5)

With h = m/g, and applying Lemmata 2 and 4, we have

∑
k∈(Z/hZ)×

1
|1 + χgk(1)| ≤

h−1∑
k=0

h

2(h− 2JkKh) ≤
h

2 (log(h) + 2.31) ,

We conclude by applying the above inequality to Equation (5).

Estimating C. We turn to estimating the term C from Lemma 1. We have

C =
∑
x

f (i)(x)f((x− 2i)2)f(x2) = 1
m3

∑
a,b,c

c(i)χacχbcχc
∑
x

χa(x)χb((x− 2i)2)χc(x2).

With d = b+ c = kg where g = gcd(d,m), and f = a− b2i+1 = g`, we get

C = 1
m3

∑
a,b,c

c(i)χacχbcχce

(
b22i

m

)
G(b+ c, a− 2b2i,m)

= 1
m3

∑
b,d,e

c(i)χf+b2i+1 cχbcχd−be

(
b22i

m

)
G(d, f,m) =

∑
g|m

∑
b∈Z/gZ

E(g, b),

where

E(g, b) = 1
m3

∑
k∈(Z/(m/g)Z)×

∑
n,`∈Z/(m/g)Z

c(i)χ`g+b2i+1 cχng+bcχkg−be

(
b22i

m

)
G(kg, `g,m).

Applying Lemma 3, we get

|E(g, b)| ≤
√
m

m3

∑
k∈(Z/(m/g)Z)×

∑
n,`∈Z/(m/g)Z

|c(i)χ`g+b2i+1 cχng+bcχkg−b |
√
g

Fixing a divisor g of m, and a non-zero element b ∈ Z/gZ, the quantity |E(g, b)| is at most

√
mg2i

8

m/g−1∑
`=0

1
m− 2J(`g + b2i+1)2iKm

m/g−1∑
n=0

1
m− 2Jng + bKm

m/g−1∑
k=0

1
m− 2Jkg − bKm

 .
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Lemma 5. For any divisor g of m and any integer b, we have

m/g−1∑
k=0

1
m− 2Jkg + bKm

≤ 1
g − 2JbKg

+ log(m/g) + 2.31
g

.

Proof. Without loss of generality, b = JbKg ≤ (g − 1)/2. There is at most one k-value
such that m − 2Jkg − bKm < g. It is the value k = (m/g − 1)/2, for which we have
m− 2Jkg − bKm = g − 2JbKg. Splitting the sum around this value, we have

m/g−1∑
k=0

1
m− 2Jkg + bKm

= 1
g − 2JbKg

+
(m/g−1)/2−1∑

k=0

1
m− 2Jkg + bKm

+
m/g−1∑

k=(m/g−1)/2+1

1
m− 2Jkg + bKm

≤ 1
g − 2JbKg

+
(m/g−1)/2−1∑

k=0

1
m− 2J(k + 1)gKm

+
m/g−1∑

k=(m/g−1)/2+1

1
m− 2JkgKm

= 1
g − 2JbKg

+ 1
g

m/g−1∑
k=1

1
(m/g)− 2J(k + 1)Km/g

≤ 1
g − 2JbKg

+ log(m/g) + 2.31
g

,

where the last inequality comes from Lemma 4.

Let L(g) = log(m/g)+2.31
g for g 6= m and L(m) = 0.

Proposition 11. For any g | m, we have

g−1∑
b=1
|E(g, b)| ≤ √mg2i−3(L(g) + 2.83),

where L(g) = L(g)
(
3 log(g) + 6.93 + 3(g − 1)L(g) + (g − 1)L(g)2). If 22i < g/12, we have

g−1∑
b=1
|E(g, b)| ≤ √mg2i−3

(
L(g) + 5.66 + 22i+3

g

)
.

Proof. We have

|E(g, b)| ≤
√
mg2i

8

(
1

g − 2Jb22i+1Kg
+ L(g)

)(
1

g − 2JbKg
+ L(g)

)2
,

≤
√
mg2i

8

(
L(g)

(
3

g − 2JbKg
+ 3L(g) + L(g)2

)
+ 1
g − 2Jb22i+1Kg

1
(g − 2JbKg)2

)
.

Now let us sum these terms for all non-zero values of b ∈ Z/gZ. Applying Lemma 4,

g−1∑
b=1

(
3

g − 2JbKg
+ 3L(g) + L(g)2

)
≤
(
3(log(g) + 2.31) + 3(g − 1)L(g) + (g − 1)L(g)2)

It remains to estimate
g−1∑
b=1

1
g − 2Jb22i+1Kg

1
(g − 2JbKg)2 = 2

(g−1)/2∑
b=1

1
g − 2J(2b− 1)22iKg

1
(2b− 1)2 .



18 Lower bounds for the depth of modular squaring

First, we have

2
(g−1)/2∑
b=1

1
g − 2J(2b− 1)22iKg

1
(2b− 1)2 ≤ 2

(g−1)/2∑
b=1

1
(2b− 1)2 = 2

(g−1)/2−1∑
b=0

1
(2b+ 1)2

≤ 2
(

1 + 1
4

∞∑
b=1

1
b2

)
= 2 + π2

12 ≤ 2.83.

Finally, suppose that 22i < g/12. Let κ the largest integer such that b ≤ κ implies
(2b− 1)22i < g/4. On one hand,

κ∑
b=1

1
g − 2J(2b− 1)22iKg

1
(2b− 1)2 ≤

κ∑
b=1

2
g

1
(2b− 1)2 ≤

2.83
g
.

On the other hand,

(g−1)/2∑
b=κ+1

1
g − 2J(2b− 1)22iKg

1
(2b− 1)2 ≤

∞∑
b=κ+1

1
(2b− 1)2 ≤

1
4

1
κ− 1 ≤

22i+2

g
,

where the last two inequalities use the fact that 22i < g/12 (in particular, κ > 1).

Corollary 8. We have
∑
g|m
∑g−1
b=1 |E(g, b)| = m1/2+o(1)22i.

Proof. By Proposition 11, we have

∑
g|m

g−1∑
b=1
|E(g, b)| = O

((
σ̃0(m) + log(m)σ̃−1/2(m) + log(m)2σ̃−3/2(m)

)
m1/222i

)
,

where σx(m) =
∑
d|m d

x is the divisor function and σ̃x(m) = σx(m) − 1. The corollary
follows from σ̃0(m) + log(m)σ̃−1/2(m) + log(m)2σ̃−3/2(m) = mo(1).

It remains to deal with the terms where b = 0.

Proposition 12. We have
∣∣E(m, 0)− m

8
∣∣ ≤ 2i

8 , and for any g | m, g 6= m,

|E(g, 0)| ≤ g − 1
2√mgL(g)

(m
2 + 2i−1 +m2iL(g)

)
.

Proof. First, we have E(m, 0) = c(i)
χ0c

2
χ0

m2 . Since cχ0 = m−1
2 and

∣∣∣c(i)χ0 − m
2

∣∣∣ ≤ 2i−1, we get∣∣∣∣ c(i)
χ0c

2
χ0

m2 − m
8

∣∣∣∣ ≤ ∣∣∣ (m+2i)
8 − m

8

∣∣∣ ≤ 2i
8 , and we deduce the first part of the proposition. Now

suppose that g 6= m. We have

|E(g, 0)| ≤
√
mg

m3

 ∑
`∈Z/(m/g)Z

|c(i)χ`g |

∣∣∣∣∣∣
∑

n∈Z/(m/g)Z

cχng

∣∣∣∣∣∣
 ∑
k∈(Z/(m/g)Z)×

|cχkg |

 .

Using the fact that Re(cχ) = −1/2 and that cχ−a = cχa for any a, we get

∑
n∈Z/(m/g)Z

cχng = cχ0 −
(m/g−1)/2∑

n=1
(cχa + cχ−a) = m− 1

2 − m/g − 1
2 = m(g − 1)

2g .
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In particular, E(1, 0) = 0. From Lemma 4, we have

m/g−1∑
k=1

|cχkg | ≤ m
m/g−1∑
k=1

1
m− 2JkgKm

≤ m

g
(log(m/g) + 2.31) = mL(g).

Similarly,
∑m/g−1
`=0 |c(i)χ`g | ≤ |c

(i)
χ0 |+m2iL(g) ≤ m

2 + 2i−1 +m2iL(g), and the second part of
the proposition follows.

Proof of Theorem 12. By Proposition 12, we have
∑
g|m,g 6=m |E(g, 0)| = m1/2+o(1)2i.

Together with Corollary 8, we obtain
∣∣C − m

8
∣∣ = m1/2+o(1)22i. By Proposition 10, we have∣∣A− m

2
∣∣ = m1/2+o(1). Recall from Lemma 1 that

#{x ∈ Z/mZ | f(x2) 6= f((x(i))2)} = 2A− 4C + ε,

where and |ε| ≤ 2i+2. Theorem 12 follows.

6.1 Application to RSA moduli
Theorem 13. Let p, q ∈ [2b−1, 2b) be two prime numbers of b bits, and suppose that b ≥ 19.
Then, for any non-negative integer i ≤ b/2,∣∣∣∣#{x ∈ Z/mZ | f(x2) 6= f((x(i))2)}

m
− 1

2

∣∣∣∣ ≤ 5.8 · 2i

2b/2
.

Proof. Recall that∣∣∣∣#{x ∈ Z/mZ | f(x2) 6= f((x(i))2)}
m

− 1
2

∣∣∣∣ ≤ 2i+2

m
+ 2
m

∣∣∣A− m

2

∣∣∣+ 4
m

∣∣∣C − m

8

∣∣∣ .
Let us bound each of the three terms. First, 2i+2

m ≤ 2b/2+2

22b−2 ≤ 1
2b/2 · 1

215 . By Proposition 10,
we have∣∣∣A− m

2

∣∣∣ ≤ 1
2 +
√
m

2

(
log(m) + 2.31 + 1

√
p

(log(q) + 2.31) + 1
√
q

(log(p) + 2.31)
)
.

Since b ≥ 19, we have 1√
p (log(q) + 2.31) ≤ 0.05. It follows that for b ≥ 19,

2
m

∣∣∣A− m

2

∣∣∣ ≤ 1√
m

(log(m) + 2.41) ≤ 1
2b−1 (2b log(2) + 2.41) ≤ 1

2b/2
· 0.08.

Now, we have

4
m

∣∣∣C − m

8

∣∣∣ ≤ 4
m

(∣∣∣E(m, 0)− m

8

∣∣∣+
p−1∑
b=0
|E(p, b)|+

q−1∑
b=0
|E(q, b)|+

m−1∑
b=1
|E(m, b)|

)

≤ 2i−1

m
+ 4
m

(
p−1∑
b=0
|E(p, b)|+

q−1∑
b=0
|E(q, b)|+

m−1∑
b=1
|E(m, b)|

)
.

First, 2i−1

m ≤ 1
2b/2 · 1

218 . Then, by Proposition 11, for any g | m, we have
∑g−1
b=1 |E(g, b)| ≤

√
mg2i−3(L(g) + 2.83). Moreover, for any integer x of at least 19 bits, we have L(x) ≤ 0.01.

Therefore,

4
m

(
p−1∑
b=1
|E(p, b)|+

q−1∑
b=1
|E(q, b)|

)
≤ 4√

m
(√p+√q)2i−32.84 ≤ 2i · 5.68

2b/2
.
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We also have for g ∈ {p, q} that

4
m
|E(g, 0)| ≤ 2(g − 1)

m
√
mg

L(g)
(m

2 + 2i−1 +m2iL(g)
)

≤ log(m/g) + 2.31
√
mg

(
1 + 2i

m
+ 2i+1(log(m/g) + 2.31)

g

)
≤ 1

2b/2
b log(2) + 2.31

2b−1.5

(
1 + 1

23b/2−2 + 4(b log(2) + 2.31)
2b/2

)
≤ 1

2b/2
· 0.0001.

Since i ≤ b/2 and b ≥ 19, we have 22i < m/12, therefore

4
m

m−1∑
b=1
|E(m, b)| ≤ 2i−1

(
L(m) + 5.66 + 22i+3

m

)
≤ 2i−1

(
L(m)

(
3 log(m) + 6.93 + 3mL(m) +mL(m)2)+ 5.66 + 22i+3

m

)
≤ 2i−1

m

(
2.31

(
3 log(m) + 6.93 + 3 · 2.31 + 2.312/m

)
+ 5.66

)
+ 23i+2

m

≤ 1
2b/2

1
2b−1

(
2.31

(
6b log(2) + 13.86 + 2.312/236)+ 5.66

)
+ 1

2b/2
2i+4

2b/2

≤ 0.0009 + 2i · 0.03
2b/2

We deduce that 4
m

∣∣C − m
8
∣∣ ≤ 2−18+2i·5.68+0.0002+0.0009+2i·0.03

2b/2 ≤ 5.71·2i+0.0012
2b/2 . Finally,∣∣∣∣#{x ∈ Z/mZ | f(x2) 6= f((x(i))2)}

m
− 1

2

∣∣∣∣ ≤ 1
2b/2

(
1

215 + 0.08 + 5.71 · 2i + 0.0012
)
,

and the result follows.

7 Conclusion
We have proven concrete time-delay results for modular squaring computations. Of course,
one would like to prove more: that repeated squarings should also require higher depth. As
discussed in the introduction, this seems extremely difficult to prove without making some
unproven conjectures. Very recently, several papers [RS20, KLX20] have made significant
progress on conditional lower bound results for repeated modular squaring. Still, there
are several interesting open issues to consider, which do not seem too arduous to tackle.
Below, we discuss two in detail.

Extending the Average-Case Lower Bounds. Considering Theorems 1 and 3 together,
they suggest that for proving stronger average-case lower bounds, it may be fruitful to try
proving an average-case lower bound for the “middle bits” of modular squaring, rather
than a lower bound on the least significant bit of modular squaring, as is done in this paper.
Perhaps a different (more involved) case analysis than the above can yield a 2 log2(n)
depth lower bound for modular squaring in the average case, for all moduli m? It is known
that the PARITY function on n bits requires depth 2 log(n)−O(1) to compute, even in
the average case of uniform random input (see the discussion in [KR13]); this should be
useful.
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Modular Squaring in Other Representations. We have shown lower bounds for modular
and integer squaring in the binary representation. In practice, one can convert a given
integer into a different representation where repeated squaring is easier. Can similar lower
bounds be proved for modular squaring in other number representations, such as redundant
representations (as is used in some state-of-the-art modular multipliers [Özt20]) or the
Chinese Remainder Representation?

Let us consider the latter, and sketch the challenges involved. In CRR, inputs are
vectors x = (x1, . . . , xt) where each xi ∈ Z/piZ is written in binary for distinct co-prime
pi, t ≤ O(n/ logn), each pi is O(logn) bits (so that

∏
i pi = Ω(2n)). Letting int(x) be

the non-negative integer representation of x, we wish to know the depth complexity of
computing (int(x)2 mod m) in Chinese Remainder Representation (CRR). This output
would be a vector y = (y1, . . . , yt) where each yi ∈ Z/piZ is written in binary. Now,
x <

√∏
i pi can be squared, by squaring each component xi mod pi individually, which

can be done in O(log logn) depth because each pi is only O(logn) bits. Correspondingly,
the sensitivity of each output bit of integer squaring is only O(logn) for all integers in
{0, 1, . . . , b

√∏
i pic}. However, for large x, we believe the modular reduction back to

{0, 1, . . . ,m− 1} should be very sensitive to the CRR. For example, if some pi = 2, our
CRR must track the parity of f(x) := (int(x)2 mod m). It is natural to conjecture that f
is highly sensitive even for x written in CRR: for each component xi of x, there should be
many bits of xi such that flipping any of them changes the parity of some outputs, just as
it changes x itself. (This is in line with the results we have proven about the parity of
squaring modulo m.) If we can show that a random input has many sensitive indices (say,
n/4) with nonzero probability, we will obtain interesting average-case depth lower bounds.

7.1 Open Problem Bounties
The Ethereum Foundation is offering first-come-first-served bounties for four specific open
problems. If you believe you have a solution and wish to claim the bounty, contact
information can be found at https://rsa.cash, or through the authors.

1. $5,000 Prove that for all n ≥ 128, SUM on n-bit inputs requires depth at least
c log2(n) for some c > 2. (That is, improve upon Krapchenko’s lower bound for
SUM [Kra70].)

2. $5,000 Prove that for all n ≥ 128, SUM on n-bit inputs requires depth at least
4 log2(n). (That is, prove the “reasonable hypothesis" stated immediately after
Theorem 2. This $5,000 bounty is in addition to the $5,000 bounty above.)

3. $2,000 Prove that there is a c < 4 such that for all n ≥ 128, SUM has circuits of
depth at most c log2(n). (That is, refute the “reasonable hypothesis", and do so for
all large enough input lengths n.)

4. $3,000 Improve the average-case depth lower bound (Theorem 3) to c log2(n) for
some c > 1, for any algorithm computing MS-MOD2 on at least 51% of the inputs.

Acknowledgements. We are grateful to Justin Drake and Dankrad Feist for approaching
us, motivating us to work on this problem, and for useful discussions and references,
as well as Simon Peffers and Erdinc Ozturk. Benjamin Wesolowski was supported by
the Ethereum Foundation Grants program, through Grant FY19-0151. Ryan Williams
was supported by NSF CCF-1909429 “Average-Case Fine-Grained Complexity” and the
Ethereum Foundation.
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