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Abstract

Model order reduction (MOR) has demonstrated its robustness and wide ap-
plicability in simulating large-scale mathematical models in the engineering
research domain. In this paper, MOR techniques are applied to quantify
relevant reliability metrics of power distribution systems and the impact as-
sociated with the integration of different smart grid technologies. To the
best of the authors’ knowledge, this is the first application of MOR tech-
niques of balanced truncation to derive reliability models of electricity net-
works, which exhibit a reduced number of equivalent components and thus
simplify the complexity for network analysis. The extensive case studies
presented, based on both radial and meshed systems, demonstrate that the
proposed technique allows for a faster reliability assessment through Monte
Carlo simulation while preserving high accuracy. The proposed methodology
can also be applied to systems endowed with photovoltaic and energy storage
technologies, emphasising that this approach represents a promising starting
point for reliability analysis of more complex systems, which are normally
characterised by a large penetration of these distributed energy resources.
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Acronyms

AEM Alternative Existing Method

BT Balanced Truncation

CAIDI Customer Average Interruption Duration Index

CAIFI Customer Average Interruption Frequency Index

CoV Coefficient of Variation

CTMC Continuous Time Markov Chain

DNO Distribution Network Operator

ENS Energy Not Supplied

ES Energy Storage

HPC High Performance Computing

HSV Hankel Singular Value

LP Load Point

MCS Monte Carlo Simulation

MESS Matrix Equation Sparse Solver

MOR Model Order Reduction

OR Order Reduction

pPC Power Component

PNS Power Not Supplied

PSS®E Power System Simulator for Engineering

PV Photovoltaic

RBTS Roy Billinton Test System

SAIDI System Average Interruption Duration Index

SAIFI System Average Interruption Frequency Index

TNR Traditional Network Reduction
Nomenclature

H(s) transfer function of the reduced system

(-) output of the reduced system
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component failure rate

| [[co Hoo-norm of a rational transfer function



component repair rate
HSV of a system
system matrix or state transition matrix

control /input matrix
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output matrix

transfer function of the original system

= =

number of samples
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observability Gramian
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unavailability
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1. Introduction

Power systems are inherently complex and can often be accurately described
only by using models with several variables, depending on the intended ap-
plication. Since complex models are computationally expensive to simulate,
it is common practice to use simplified representations of the power system
for analysis and design purposes. Reduced models might also be necessary
due to other practical reasons, for example when only a limited number of
measurements are available for system monitoring, or in the case of inter-
connected power systems whose single areas (owned by different utilities) are
reluctant to share complete and detailed system information [1]. Even with
systematic problem decomposition, the pragmatic choice is often to use re-
duced versions of the original network to run system simulations, where the



computational complexity depends at least polynomially on the size of the
network [2].

The employment of simplified network models has always been very common
in reliability analyses of distribution networks [3, 4| and it is becoming even
more relevant as the level of complexity in power systems rapidly increases
[5], following the integration of photovoltaic renewable generation (PV) and
technologies such as energy storage (ES), electric vehicles and demand re-
sponse actuators. In a context of growing complexity, it will be necessary to
use simplified benchmark models to accurately assess network reliability and
determine efficient future investments for a flexible and secure power grid
with appropriate reliability standards [6].

This paper proposes the utilisation of model order reduction (MOR) tools
to develop accurate reduced models of distribution networks for reliability
purposes. A rigorous analytical method is used to obtain simplified grid rep-
resentations that minimise the estimation error of relevant reliability indexes
while ensuring significantly shorter computational times. Furthermore, the
proposed methodology can easily accommodate the inclusion of PV and ES
technologies and quantify their impact in terms of reliability. The rest of
the paper is organised as follows: the state of the art is reviewed in the next
section, and the background theory of MOR is explored in Section 3. Sec-
tion 4 details the development of the methodology using MOR for reliability
assessment. Section 5 evaluates the performance of the proposed approach
on different case studies and conclusive remarks are presented in Section 6.

2. Network Reduction in Power System Analysis - Related Works

It is common in network studies to simplify the utilised models to obtain a
system description with the best trade-off between accuracy and complexity.
In these cases, the size of the network models is generally reduced by substi-
tuting sets of connected elements (buses, lines, transformers, etc.) and trans-
forming them into smaller and numerically equivalent systems [7]. Typical
applications of this approach include symmetrical or asymmetrical short cir-
cuit calculations and load flow calculations. In these cases, the performance
of the reduced networks representations is evaluated in terms of accuracy of
the power flow results with respect to the (more complex) initial model [8].

The typical approach for network reduction in a reliability context is to sim-
plify the system representation by systematically replacing certain connected
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elements of the chosen reliability model (e.g., series and parallel configura-
tions in reliability block diagrams) with fewer equivalent components exhibit-
ing the same reliability properties. The main drawbacks of this method of
network reduction are a) its limited applicability, i.e. only to networks with
relatively simple topology [9]; b) it cannot be used to calculate customer-
based reliability indices such as customer average interruption duration and
frequency indices (CAIDI and CAIFI) [10] because it does not allow for an
accurate aggregation of demand at different network nodes; ¢) the impact of
critical or unreliable areas and components on the system reliability metrics
becomes increasingly harder to distinguish; d) it is difficult to accommodate
some relevant reliability features such as different modes of failure, mainte-
nance and weather effects. Despite those drawbacks, this method is useful
in practice, particularly for simple analyses where analytical refinements are
not desired [4]. Given these limitations, alternative approaches have been de-
veloped, such as the decomposition method, which is based on conditioning
a complex system on the state of a key power component (PC) [9]. However,
this method is not suitable for large systems because, as the number of key
PCs increase, the model quickly becomes unmanageable. There also exist
analysis algorithms based on testing minimal paths (or using the minimal
cut set approach) 9] but their main drawback is that, for large systems, the
increased number of paths and cut sets leads to a combinatorial explosion.

This research explores a new approach to network reduction for reliability
assessment purposes based on MOR. The chosen method relies on singular
value decomposition and balanced truncation. The dynamical system de-
scribing the reliability of the network is simplified by first calculating its
Hankel singular values (HSVs) [11], which indicate the relevance of each sys-
tem state in terms of reliability, and then the dynamics which have a smaller
impact on the considered reliability indexes are neglected. Model Reduction
has already been applied in various power system analyses: MOR using bal-
anced empirical Gramians was investigated for linear systems in [12, 13, 14|
and nonlinear systems in [15, 16, 17, 18, 19]. Given the need to reduce large
power systems, [20] used a linear system reduction method and the work
was successful for small-signal stability while [21] performed a parametric
MOR aimed at preserving parameters related to decentralised power system
devices such as stabilisers. Additionally, MOR has been used to obtain re-
duced models of PV systems [22, 23|, battery energy storage systems [24]
and of microgrids [25], using the singular perturbation technique. Albeit not



explored in this paper, another important class of MOR methods is based
on Krylov subspaces (moment matching). It was used for reduction of a
large-scale multiport piezo energy harvester in [26] while in [27] and [28], the
technique was extended to reduce large scale power systems and intercon-
nected systems, respectively.

2.1. Article Contributions

This work proposes a novel approach for the creation of simplified network
models for reliability assessment purposes. To the best of our knowledge, this
is the first attempt to apply model order reduction (MOR) in this context
and analytically derive simplified grid representations that contain the most
important system dynamics and, at the same time, minimise the error of the
considered grid reliability metrics. Time-sequential Monte Carlo simulations
(MCSs) are carried out on systems of varying complexity to verify that the
resulting reduced models provide a reasonably accurate reliability assessment
while being faster to simulate. It is also shown that the proposed technique
is able to effectively quantify the impact of PV and ES on network reliability.
The proposed methodology is presented in Fig. 1.

Oil-fired
Coal-fired kv power station 15kV
power station
} 400 kV ’7

Combined
cycle gas
power station

[P’

Markov Chain Representation

Nuclear
power station

35kV
Singular Value Decomposition

I Model Truncation |

Offshore wind

power station . I
1w |9 S

e Small set of equivalent components

415V ® Minimum approximation etror

l: Large interconnected system

Slow to simulate

l® Faster simulation time

Figure 1: Representation of the proposed methodology.

3. MOR Theory

This section details the general theoretical framework of MOR and balanced
truncation (BT) while the application of this technique to the specific prob-
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lem of deriving simplified reliability models for distribution networks is pre-
sented in Section 4.

Let us consider the following linear time-invariant system with input u and
output y:

y(t) = Ca(t), o

The internal dynamics of the system are represented by the state vector
x(t) € R™, whose evolution over time is determined by the system matrix A €
R"™™ and by the input matrix B € R"™. In the present formulation, there is
no direct input/output relationship and the system output y(¢) corresponds
to a linear combination of the state x(t), according to the output matrix
C € R#™,

Model order reduction (MOR) aims at reducing the order n of the system
while preserving the fundamental relationships between its inputs and out-
puts. To this end, the state vector x(t) is projected onto a low-dimensional
subspace, neglecting the less relevant system dynamics. The MOR is per-
formed to minimise, for any input u(+), the error between the output response
of the reduced model g(-) and the one of the original model y(-) [29].

We restrict our attention to stable systems, i.e. system which has a matrix
A with all its eigenvalues in the open left half of the complex plane C~. We
are interested in constructing a reduced-order system as in (2):

Ai(t) + Bu(t), 2
Cia(t),

2R
=

(t)

y(t)

where A € R™", B e Rr®m C e R and r < n. In the present context of
linear systems, BT is one of the preferred methods for model order reduction
since it preserves stability and provides a global computable error bound
between the transfer functions of the original and the reduced-order system.
This notion is expressed through the transfer functions H(s), H(s) € C¥™ of
the original and reduced system, respectively, which denote the relationships
between the input signal and the resulting output response in the frequency

domain. An expression for the error between the original and the reduced



system output, given by (3), is obtained by driving both systems with the
same input u(-):

ly = 9llz < I1H = Hlloo]lull: (3)

where || - ||2 is the Euclidean norm and || - ||o is the H,-norm of a rational
transfer function [29].

3.1. Balanced Truncation

The fundamental principle of BT for MOR relies on the notions of control-
lability and observability matrices P and @, as defined in (4) [30]:

P:/ eAtBBteATtdt, Q:/ eATtC’TC’eAtdt, (4)
0 0

In broad terms, the controllability Gramian P determines how much the
inputs u affect each component in the state z. Similarly, the observability
Gramian () quantifies the impact of each state component in x on the system
outputs y. The first step of the BT technique is a change of coordinates in
the original system (1), according to the transformation matrix 7" € R"™*":

Z(t) = TAT'&(t) + TBu(t), %)

y(t) = CT1i(t),
It is possible to demonstrate that the matrix 7' can always be chosen to
obtain new Gramians P and ) which are equal and diagonal:

P=TPT"=Q=T""QT"' =) =diag(o1,05, ...,03), (6)

In equation (6), the terms oy,...,0, denote (in non-increasing order) the
Hankel Singular Values (HSVs) of system (1), which broadly speaking provide
a measure of energy for each system state. The state vector & in (5) can now
{5:1(15)
Za(t)
components associated to the highest HSVs of the system and indicates the
dimension of the reduced system. The equations in (5) can be rewritten as:

be partitioned as Z(t) = ], where ;(t) € R” contains the r state



(7)

The reduced-order system (2) can then be obtained by simple truncation
[29, 31] from the balanced realisation (7) in partitioned form, with:

A _ All e Rrw’r’ E _ Bl e Rmxm’ Cf — Cfl c qu‘, (8)

A key fundamental result of BT is that the global error between H(-) and
H(-), i.e. between the transfer functions of the original and reduced system,
fulfils the following condition:

HH_I:IHOO <2(041 02+ o+ 00) 9)

where 0,1, ..., 0, are the neglected HSVs. This means that the dimension r
of the reduced system can be selected to achieve the desired trade-off between
system size and model accuracy.

3.2. Model Order Reduction of Systems without Inputs

As shown later on, the dynamical system considered in this work for grid re-
liability assessment does not have any input. This means that some minimal
adjustments are required in the MOR technique presented in the previous
subsection. In particular, the controllability Gramian P is not well defined
and the matrix T for the change of coordinates in the original system is
calculated to only diagonalize the observability Gramian Q:

Q=T7'QT = Z = diag(01,09,...,00), (10)

The reduced-order system is then determined according to (5)-(8). In this
specific case, the error bound of the model order reduction can be derived
on the quadratic norm of the output. Recalling that the natural response of
a linear system with initial state z, is equal to y = Ce“*zy, in the changed
coordinates we have:



[ i = [ st e et
0 0

= i{@jo =3t - diag(oy, 09, ...,0,) - T.  (11)

It follows that, if the reduced-order model is obtained according to the trun-
cation presented in (8), we have the following error bound on the outputs 7
and g of the original and reduced-order system:

/0 1FON5 = l9@®l3dt < > o Vi : [[Folh = 1. (12)

i=r+1

4. MOR for Reliability Assessment

The main aim of the proposed methodology is to develop a tool capable of
creating simplified grid models that preserve the key features of the original
network and allow for accurate and faster reliability analyses. This section
presents the methodology for developing the system model, performing the
model order reduction, and finally carrying out time-sequential MCS analyses
to quantify the reliability metrics of interest.

4.1. Modelling System Descriptor Matrices

This section describes how the MOR techniques discussed in Section 3 can
be applied to the specific case of reliability assessment of distribution net-
works. As a first step, the working state of a generic grid is described as
a continuous-time Markov chain (CTMC), under the common assumption
of Poisson distributions for the fail /repair times of the system PCs. Each
discrete state of the CTMC corresponds to a specific reliability state of the
system components and the transitions between these states are associated
with the failure or the repairing of a certain component. The discrete states
and transitions of the CTMC, for the simple case of a system with two re-
pairable components [3, 32|, are shown in Fig. 2. In this example, each PC
has two modes (UP/DOWN), and the failure and repair rates are denoted
by lambda and mu, respectively. Since we are considering 2 components, the
resulting Markov chain will have 22 discrete states. The passage from state
1 (with both components UP) to state 2 (with component 1 DOWN and
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component 2 UP) will occur with rate Ay, i.e. the failure rate of component
1. Conversely, the passage from state 2 to 1 will occur with rate pu,, i.e. the
repair rate of component 1.

1Up A 1Up
2 Up > 2 Down
€)) < (3)
A H A
M 4 M i
Ay
Y Y
1 Down > 1 Down
2 Up < 2 Down
@ W @

Figure 2: Markov chain representing a system with two repairable components [3].

On this basis, the proposed modelling approach uses a probabilistic descrip-
tion to characterise the state vector in the system (1): the dynamic state
x(t) will represent the probability of a specific reliability state of the system
PCs (i.e. a specific discrete state of the CTMC) to occur at time t. The
evolution of z(t) follows the equations in (1) and the associated state matrix
A is given by (13).

—(A1+A2) f1 2 0
A — (Ao + p1) 0 42
A= 13
A2 0 — (A1 + p2) 1 (13)
0 Ao A1 — (1 + p2)

In the present case, the nondiagonal element a;; of A equals to the transition
rate from state ¢ to j, whereas the diagonal elements a;; are chosen to obtain
zero-sum columns since the sums of the rates of all transitions leaving and
entering the reliability state must be 0:

Ay — — Z aij (14>

J#
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Note that the state matrix A corresponds to the transpose of the stochastic
transitional probability matrix in [3] and, given its specific properties (zero-
sum columns and non-negative off-diagonal elements), it is also a Metzler
matrix [33].

We wish to emphasise that the proposed modelling approach can also accom-
modate common mode failures of system components, considering transitions
to reliability states that have more than one additional component in DOWN
mode. For example, in Fig. 2, a common mode failure of the two system
components would be modelled by a transition from state (1) to state (4),
specifying its non-negative transition rate as the value of a4y in (13). Alter-
natively, cascaded failures can be modelled as events where the failure of a
certain component leads to an increased failure rate of another component.
For example, consider the possibility that a failure of PC1 increases the fail-
ure rate of PC2. This would imply that the transition rate from state (2) to
state (4) in Fig. 2 (i.e. the element a4e in (13)) would be higher than the
transition rate Ay from state (1) to state (3), i.e. the element as; in (13).

In the present case, we are not considering the terms Bu(t) in (1), since the
chosen reliability modelling approach does not entail any external input. As
previously stated, the network reliability performance is based on uncontrol-
lable fault occurrences and corresponding repairs to faulty PCs that allow
for supply restoration and are performed with fixed rates.

The output y(t) of system (1) has dimension 1 and corresponds to the ex-
pected value of the Power Not Supplied (PNS) at time ¢. This implies that
each term ¢; in the matrix C corresponds to the PNS associated to the k™
reliability state of the system. For example, considering again that x; de-
notes the probability that all the system PCs are in the UP mode, we will
have ¢; = 0. With this approach, the Energy Not Supplied (ENS) in the
system can be calculated by taking the integral of y(t).

4.2. MOR Implementation

This subsection details the actual implementation of the proposed approach
for network reliability assessment. The analysis will consider the ENS index
as the reliability metric of interest. This is mostly used at transmission
level and is usually less reported by distribution network operators (DNOs)
but it is gradually being considered by regulators for an optimal system
performance due to its value in the quantification of customer satisfaction.
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This can be seen in a few European countries where ENS is currently assessed
at distribution level such as Norway and Romania [6]. ENS is also widely
used in the literature for network reliability assessment e.g. [22, 32]. As
the power grid becomes more complex, this index will have to inevitably be
considered as a benchmark for the performance assessment of DNOs.

4.2.1. Calculation of the Network Reliability Model

The first step in the implementation of the MOR procedure is the definition
of x and y and the calculation of the matrices A and C' in the dynamical
system (1) describing the reliability of the network. From Section 4.1, z(t)
denotes the probability of each possible combination of reliability states of
the system components at time t. The matrix A describes the evolution of
x over time and is obtained from (13), where A and p denote respectively
the failure and repair rates of the PCs and can be obtained from available
published reliability data. The output y(t) is assumed to be equal to the
PNS of the system at time ¢, so that its integral over time returns the chosen
reliability index, ENS. Since a single output is considered, the matrix C' has
dimensions 1 xn and its k™ component corresponds to the power not supplied
in the k' reliability state of the system components considered in the state
x. For example, £ = 1 denotes the scenario with all system components
in the UP state and therefore the associated value ¢; will be equal to 0.
Conversely, since k = n corresponds to the case with all components in the
DOWN mode, the associated value ¢, will be equal to the total power not
supplied in this scenario. The calculation of C' in networks with complex
topology requires the use of power simulation software PSS®E (automated
using Python), as power flow assessments must be used to determine the
amount of power not supplied at each load point (LP), for each reliability
state. Algorithm 1 summarises the steps used to construct matrix C' in all
the analyses presented.

4.2.2. Calculation of the Reduced-order Model

The MOR methodology is summarised as follows: develop a complete state-
space representation (1) of a network reliability model; use system Gramians
to determine which states contain the most useful ‘information content’ with
respect to the selected reliability index (ENS); neglect the states with lower
impact; finally, calculate a state-space representation of the reduced-order
model that can adequately approximate the original system. The first step
to perform the MOR on the original network model is to list the /N repairable
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Algorithm 1: Compute output matrix C
Input: Determine N power components of the test network
1: Assign 2 reliability states to each component — Up and Down
2: Create a list of all possible permutations of component states, indexed
by k=1,2,...,n where n = 2V
3: Initialise: k =1
4: while £ <n
5 Run power flow algorithm for system state k
6: Determine the total power not supplied ¢, in system state k,
7
8
9

k=k+1
: end while
: Compute C
Output: Matrix C = {c1,ca,...,¢,}

PCs that comprise the network and calculate the resulting failure and repair
rates (A and pu, respectively) from available reliability statistics. For simula-
tion purposes, system (1) and all the associated systems are converted from
continuous to discrete time, adequately rescaling the transition rates A and
1 according to the chosen simulation time-step, for example, At = 1 hour.
Furthermore, matrix C' is obtained using Algorithm 1.

It is important to appreciate that A in (13) has a rank of n — 1, where n
is the number of system states [3|. This follows from the chosen probabilis-
tic description of the system, as the sum of probabilities for all the possible
reliability states must always be equal to 1 i.e. the sum of columns in ma-
trix A (i.e. the derivative of the total probability) must be equal to zero.
This means that each column of A has zero sum (i.e. the sum over all the
elements of each column is zero) and therefore one row can be written as
the total sum (with changed sign) of the others. It follows that, a single
state x,, can be neglected in the analysis and simply calculated ex-post as
the sum of 1 minus the probability of the other states, modifying the A and
C matrices accordingly. For this study, the removed system state is the one
representing the probability of all PCs being in the UP state. The next step
is to determine the transformation matrix 7" using (10) and then truncating
(7) according to (8). This allows for a model reduction of the reduced form
of the matrix A (which is full rank) from order n — 1 to r — 1. Finally, the
initially removed state is added back to the reduced model exploiting the
aforementioned property of the sum of the derivatives #(¢) and obtaining
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the new linear system as represented in (2). Notably, studies in [29] show
that the calculation of the system observability Gramian @ in (4) using the
new full rank state matrix A ensures that system stability is preserved when
MOR is done using truncation.

4.8. Method Limitations

The proposed methodology represents a significant step towards a simplified
and accurate analysis of complex networks. As demonstrated in the case stud-
ies of Section 5, the presented MOR approach allows for a faster reliability
assessment with a minimum impact on accuracy. Nevertheless, the proposed
approach still exhibits some limitations that will be tackled in future work.
In particular, with the current formulation, the number of PCs of the orig-
inal system that can be modelled is limited by hardware constraints. The
two main computational-memory bottlenecks arise from building the state
transition matrix A (13) and obtaining the system Gramians (4) by solving
computationally expensive Lyapunov equations [29, 31|. These issues were
tackled by developing ad-hoc programming solutions and adopting the ma-
trix equation sparse solver (MESS) toolbox [34] for a more efficient resolution
of high-order Lyapunov equations. In future work, different techniques will
be explored to obtain a faster computation of the relevant Gramian matrices,
allowing for the simulation of larger systems. These techniques will exploit
the low-rank property for solutions of large-scale, sparse Lyapunov equations
[29] e.g. methods based on the Arnoldi process [35, 36] and Krylov subspace
methods [36, 37]. A distributed system reduction will also be investigated,
deriving the simplified grid model as a collection of interconnected smaller
systems, each obtained with the MOR approach presented in this work.

Furthermore, peak demand profiles are utilised at network LPs in addition to
the use of constant PC failure and repair rates used to calculate matrix A in
(13). However, further work will integrate time-varying demand profiles as
well as time-variant failure rates that account for the PC’s lifecycle |38, 39.
These model extensions will be implemented by utilising alternative MOR
techniques presented in the literature for time-variant dynamical systems,
such as the ones in [40, 41|. These improvements will be accompanied by the
incorporation of different load sectors (residential, industrial and commercial)
into the network models to allow for a more accurate quantification of the
impact of each system state based on the nature of the load supplied and the
time during which network interruptions (leading to ENS) occur.
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Also, for MCS analyses, the current methodology only returns models of or-
der r = 2. Higher values of r result in system matrices A in (13) that are not
in Metzler form. Therefore, the associated system lacks the Markov property
and cannot be simulated with MCS methods. Future research will test new
methods for the approximation of Metzler matrices. Work in [42, 43| inves-
tigated this aspect but the proposed methods were not directly applicable
to reliability studies because they focused on the stability of the resultant
Metzler matrix rather than its Markovian properties.

Finally, the frequency and duration of interruptions are not explicitly in-
cluded in the chosen state-space representation (1) of the grid reliability.
This means that reliability metrics - SAIFI and SAIDI can be calculated
ex-post with MCSs but cannot be used as relevant metrics over which the
approximation error of the proposed MOR procedure is minimised. How-
ever, SAIFI and SAIDI represent two fundamental indices in the evaluation
of network reliability and therefore, in order to explicitly consider them in
the MOR procedure, the current model will be expanded in future works,
for example including additional states in (13) that keep track of the failure
times of the different power components. Nonetheless, the analysis is still
capable of demonstrating the effectiveness of the proposed MOR methodol-
ogy, as the key aspect of its validation lies in comparing system outputs of
the original vs. reduced-order system [29].

5. Results and Discussions

Relevant case studies are considered to evaluate the performance of the pro-
posed MOR technique and its capability to generate accurate reduced mod-
els of system reliability. This work assumes an ideal operation of conven-
tional generators in its network reliability assessment and focuses on the fail-
ure/repair behaviour of PCs at a transmission and distribution level. These
include underground cables, overhead lines, transformers, protection devices,
capacitor banks and busbars. Also, all analyses were carried out by using the
high-performance computing (HPC) facilities at the University of Bath, UK.
The particular hardware used has the following specifications: dual socket
Intel Ivybridge nodes with E5-2650v2 processors, 2.6GHz with 8 cores, and
512GB of memory [44].

16



5.1. Illustration of MOR Functionality

An example of the proposed modelling approach and the associated MOR
methodology is presented for the simple network in Fig. 3. This network
model is converted to state-space representation (1) by first defining the
state vector x and output y. State x denotes the probability of each possible
combination of reliability states of the system PCs (i.e. buses and lines)
at time ¢t. The associated state matrix A in (13) is calculated by using
failure and repair rates of all system PCs and has a dimension of n x n where
n = 2/PCl is the order of the system. The output y denotes the system output
in terms of the total PNS to the two load points. It is a linear combination
of entries in Matrix C' that correspond to the PNS associated to each system
reliability state. For example, x; denotes the probability that all PCs are in
the UP state and all the required power is being supplied, implying c;= 0.
Conversely, since xy represents the probability that all PCs are in the UP
state except bus B2, then the associated entry ¢, in matrix C will be equal
to the power demand that is not being supplied in this case at bus B2, i.e.
Co = 10.

Bl B2

L1

~— e

Yy Ty

7.5 MW 10 MW

Figure 3: Test system with 4 components (system order n = 2% = 16).

Having asserted the meaning of x(-) and y(+) in the context of network relia-
bility, as well as having calculated all system descriptor matrices, the system
in Fig. 3 is reduced using the MOR procedure presented. Recalling that
this system has no input, the transformation matrix 7" for the change of co-
ordinates in the original system is obtained using (10) instead of (6). The
reduced-order system (2) is then determined by truncating system (5) accord-
ing to (7)-(8). For a certain order r of the reduced model, the corresponding
error bound on the output (i.e. on the chosen reliability index) is given
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by (12). As expected, larger values of r allow to include more information
content and therefore achieve higher accuracy.

In Fig. 4, we plot the output of the dynamical system, i.e. the power
not supplied which, integrated over time, will equal the system energy not
supplied. We recall that this is expressed as Cz(t) in (1), where the single
component x;(t) of the vector z(t) indicates the probability of being in state
i at time ¢. Note that the initial conditions of the system, denoted by z(0) =
xo, do not affect the steady-state behaviour of the system but only determine
the starting point y(0) = Cz(0) of the output response. For example, if it
is known with probability 1 that all components are UP (working), then the
initial PNS will be 0 MW and it will then increase to a steady state value
Yss = Crgs over time. Zoomed-in values in Fig. 4 show that the steady
state value obtained for PNS (yss) is non-zero because the network contains
uncontrollable PC failures that result in a small amount of unsupplied power
in steady state conditions. Fig. 4 also compares the output (i.e. the PNS
index) of the original system with the output of a selection of reduced-order
models with » = 2 and 4. As expected, the evolution of the PNS of the
reduced-order models follows more closely the one of the original system
when r is larger and more states are kept in the model. Indeed, the system
behaviour for the reduced-order system with only 4 states (MOR-4 states)
indicates no appreciable difference in the output of the reduced-order models
and that of the original system.

The analysis on this simple example is extended further by considering each
possible order r for the MOR and quantifying the resulting reliability error
as follows:

Error, = 19- = vl x 100 (15)
1yl
where 7 is the order of the reduced system and g, is the resulting output, ||-||2

is the L2 norm, and the error value is in per cent. In this case, y and g, are
vectors representing the outputs of the original and reduced-order system,
evaluated at discretised time instants. Fig. 5 compares the accuracy of the
reduced model (i.e. percentage error in the evolution of the system’s PNS)
in Fig. 5(a) with the system HSVs o; in Fig. 5(b). Recall that the HSVs
associated to the system states that are not included in the new reduced
model quantify the upper bound on the approximation error of the analysis,
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Figure 4: Evolution over time of PNS for the original system and reduced models with
r =2 and 4.

according to (12). Using Fig. 5(a) for comparison, there is a clear correlation
between the system error attained with a reduced system of a certain order
r and the HSVs associated to the number of system states considered in the
reduced model.

5.2. MOR Reliability Performance FEvaluation

To assess the performance of the proposed MOR technique, time-sequential
MCSs are carried out on the original and reduced models to compare the
required simulation time and quantify the accuracy of the reliability assess-
ment. The MCS evaluates the annual ENS of the test systems by using a
time step of 1 hour [45]. Moreover, to obtain acceptable index accuracy in
all considered MCSs, and accurately compare the computational burden of
both the original and reduced models, the total simulation period (or number
of MCS samples) is based on achieving set thresholds for the coefficient of
variation (CoV) [45, 46]. The threshold value for the CoV is set to 0.2%,
which is well below the typical tolerance level for ENS as given for example
in [47] for different reliability indices.
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Figure 5: Comparison between the accuracy of the reduced model and the HSVs of the
original system.

5.2.1. Test System with 4 PCs

The test system in Fig. 3 is composed of 4 PCs, each with only 2 possible
reliability states (UP/DOWN), and its dimension is equal to 2*. Following
from the discussion in Section 4.2, this original system is reduced to 2 states
using MOR and the ENS is evaluated in the two cases. Results are presented
in Table 1 where the performance evaluation of MOR is compared with two
other methods. As described in Section 2, using traditional network reduction
(TNR) techniques, the original system is simplified to a single equivalent
element by systematically combining appropriate series and parallel branches
of the reliability network. Then, the reliability of the remaining equivalent
element equals the reliability of the original network [3] and will exhibit
the same unavailability U (i.e. probability of being in DOWN mode). The
relevant equations for reducing a network with 2 repairable PCs in series
and parallel configurations are presented in [3]. The other existing method
termed AEM [48] calculates the equivalent PC failure rate as the sum of
all PC failure rates, while the equivalent PC repair rate is the reciprocal of
the average of all PC repair rates. It is important to note that in order to
fairly compare the performance of the proposed MOR technique with the two
other techniques (TNR and AEM), all 3 reduction methods are used to reduce
the original system of 16 states to 2 states (or one equivalent component).
The ENS is then calculated in each case to determine the associated error.
Moreover, given the fact that the original system is of a relatively small
size, computational time reduction results are not presented as the reduction
to 2 states in all cases does not offer any significant time saving from the
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original case. Instead, Table 1 focuses on the error obtained when assessing
ENS for reduced order networks. Further analyses presented in the next
subsections demonstrate the computational time saving achieved using the
reduction methodology when applied to larger networks.

Table 1: Reliability performance for the 4PC test system.

System Average ENS ENS

Network ot - tes (MWh/year) Error (%)
Original 16 307.88 _
MOR 2 335.09 8.84 %
TNR 2 391.76 27.25%
AEM 2 004.32 63.81%

Table 1 illustrates the advantages of the MOR technique in terms of accu-
racy of network reliability assessment. The ENS value of the reduced network
calculated with the new proposed approach exhibits the lowest error with re-
spect to the original system (8.84%) when compared to both TNR and AEM
techniques. It is important to note that this demonstrates the capability of
the proposed MOR method in accounting for dispersed loads during network
reduction unlike the case in both TNR and AEM techniques. This results in
higher accuracy when using MOR for networks often characterised by highly
dispersed loads as shown in the next subsection.

5.2.2. Roy Billinton Test System

The MOR approach for reliability analysis is applied to a relevant test case
- the Roy Billinton Test System (RBTS) in Fig. 6. This is a composite
power system with 11 generator units, 2 generation buses, 4 load buses and
9 transmission lines. The transmission system voltage level is 230 kV and
the bus voltage limits are 1.05 p.u. and 0.97 p.u. The total generation
capacity is 240 MW while the peak load is 185 MW. Bus 1 is assumed to
be the slack bus under normal circumstances and the power factor at each
bus is unity. The basic bus and transmission line reliability data i.e. failure
rates and repair times are obtained from [49]. Based on the aforementioned
assumptions, the original RBTS ‘offers’ a total of 15 PCs (6 buses + 9 lines)
for this analysis each with only 2 possible reliability states, and its dimension
is equal to 215. This original system is reduced to 2 states using MOR and
the ENS is evaluated in the two cases. The complexity of this network
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configuration (meshed topology) means that TNR cannot be used to effect
model reduction. Therefore, MOR is only compared with the AEM approach

in the results presented in Table 2.
1x40 MW
4x20 MW
2x5 MW
BUS 2

!

D1-20 MW

2x40 MW
1x20 MW
1x10 MW

BUS 1

L1 L6

BUS 3 '
D2-85 MW D3 - 40 MW
BUS 5

D4 -20 MW

BUS 6

D5-20 MW

Figure 6: Single line diagram of the original RBTS with 15PCs [49].

Table 2 results illustrate that the reduced-order model obtained with the
proposed MOR methodology estimates the ENS index of the RBTS with
good accuracy while also providing a significant saving in the total computa-
tional time required to complete the reliability assessment. This shows that
by constructing a reduced reliability model that only retains the most repre-
sentative states with the highest ‘information content’, it is possible to trade
much faster resolution times with a minimum impact on the accuracy of the
reliability analysis. Table 2 also proves that the performance improvement
of the proposed MOR method with respect to the AEM approach is even
more significant in meshed networks, which are often endowed with redun-
dant components to facilitate provision of backup supply in case a PC with
a parallel operation fails. In the AEM approach, these ‘additional’ PCs only
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serve to increase the total number of failures and thus result in a 6082.15%
error in ENS calculation compared to only 6.28% in the MOR case. How-
ever, it is evident in Table 2 that there exists a slightly better time saving
in computational time with AEM (96%) as compared to MOR (92.12%).
This is because the time required to perform the order reduction (OR) of
the original system to 2 states using MOR is significantly higher than with
the AEM approach. Additionally, Table 2 also reveals that the relatively low
CoV threshold (0.2%) accounts for the relatively large times required before
MCS converges for each simulated network model.

Table 2: Reliability performance for the RBTS with 15PCs.

Network Average ENS ENS Computational Time (s)  Total Time
(MWh/year) Error (%) OR MCS OR+MCS Saving (%)
Original 651.30 B ~ 137080.0  137089.0 B
MOR 692.20 6.28% 9359.6  5443.4 10803.0 92.12%
AEM 40264.56 6082.15% 0.0 5484.2 5484.2 96.00%

Furthermore, to demonstrate the varying accuracy of the proposed MOR
technique when applied to similar models of different size, a sensitivity anal-
ysis is performed by varying the size of the original system rather than the
order of the reduced model. The original RBTS is simplified by applying
standard techniques of reliability block diagrams [3|. This approach is used
to obtain three different representations of the RBTS with 15, 12 and 9 PCs,
respectively. As an example of the transformations that have been consid-
ered, lines 1 and 6 of the network, which connect bus 1 to bus 3 in Fig. 6,
are replaced by a unique equivalent line, whose fail /repair parameters have
been obtained using the relevant equations in [3]. Each of the original RBT'S
models is reduced to r = 2 states using the proposed MOR technique, fol-
lowed by time-sequential MCS analyses as described previously. The error
in the estimation of the ENS and the computational time saving in the three
representations of the RBTS are reported in Fig. 7 as a function of the
original system size. As expected, Fig. 7(a) shows that a higher accuracy is
achieved when the starting original system is less complex and has a lower
number of PCs. Conversely, Fig. 7(b) shows that there is a more consistent
reduction of the computational time of the MCS when the 15PCs network is
reduced to 2 states, as compared to an identical operation performed on the
9PC network.

Notably, the time saving (92.12%) achieved when the 15PCs network is re-
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Figure 7: Trends of MOR accuracy and MCS computational time with respect to network
size.

duced is only marginally higher than the saving (88.11%) when the 12PCs
network is reduced. This is because while the reduced order systems in both
cases have similar times for MCS convergence, the time required to perform
MOR in the 15PC case is 5359.6s compared to only 35.8s in the 12PC case
(and 0.5s in the 9PC case). Nonetheless, the use of the proposed MOR tech-
nique results in a significant time saving in all cases and a validation of the
expected trends for the sensitivity analysis.

5.2.3. Generic Medium Voltage Substation

To further demonstrate the performance of the proposed MOR methodology,
it is tested on a generic medium voltage (MV) substation presented in Fig. 8.
With respect to the RBTS, which is a meshed network, this network exhibits
a radial configuration. Moreover, it only has one aggregate load (and LP) as
compared to 5 different LPs in the RBTS. This network, adapted from work
in [50, 51|, consists of two 15 MVA 33/11 kV transformers supplying a mainly
residential load of 9120 customers. The total average load is measured at 20.7
MW. Downstream the main 11kV bus, only one equivalent feeder is used to
represent the rest of the network, as well as the total aggregate load. The
sensitivity analysis for this test case is also performed using the aggregation
methods summarised in [3|, resulting in 4 ‘versions’ of this network (10, 9,
7 and 4 PCs respectively). Table 3 shows the varying number of types of
components for each network. The reliability data used for these PCs are
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obtained from [51].

11kV
TOTAL: 9120 customers 33KV
(Pmax av=2.27kW/customer)
Total Load MAX AV.™— 20.7 MW ISMVA
¢ T D —
Grid F Total
| CB2 CB4 —>
Supply | Ay Load
System Zsys | CBI ISMVA
| I p—
CB3 AY, CBS

Figure 8: Generic MV substation model — 10PCs.

Table 3: Generic MV substation configurations.

Type of Original Network No. of PCs
Component 4 v 9 10
Buses 2 2 2 2
Transformers 2 2 2 2
Circuit breakers 0 3 5 5
Feeders 0 0 0 1

Fig. 9 compares the results obtained when each of the networks (4PC-10PC)
is reduced to r = 2 states. As shown in Fig. 9(a), the ENS error increases
when larger networks (i.e. more PCs) are considered. This represents an
anticipated result since a reduction to only 2 states will be unable to capture
the most relevant dynamics if the original system is too large and complex.
Conversely, Fig. 9(b) proves that the saving in the total computational
time required for analyses is much larger when MOR is applied to a larger
network (10PCs) as compared to a smaller one (4PCs). Notably, in all cases
the computational time is mostly taken up by MCS, as the times required to
perform MOR are only 0.05, 0.15, 0.39 and 1.44 seconds for the 4, 7, 9 and
10 PC systems respectively. This results in a negligible impact of MOR-time
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on the total computational time required to perform a reliability assessment
for this network configuration.

450 M Original System 45%
400 Reduced order system 40%
e 350 5 35%
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Figure 9: Trends of reliability accuracy and computational time of the MOR methodology
with respect to the original size, for the generic MV substation presented in Fig. 8.

5.2.4. Medium Voltage Distribution Network

The substation model presented in Fig. 8 is expanded into a small-scale
distribution network as shown in Fig. 10 to further demonstrate the appli-
cability of the proposed method. This network is adapted from a typical
underground MV network for urban areas as presented in [51]. Accord-
ingly, it presents a meshed configuration where normal network operation is
supported with another supply point e.g., another primary substation or a
“reflection centre”. The reflection centre guarantees the supply of all feeders
connected from both ends of the network.

It is important to note that Fig. 10 is a scaled down version of the actual
representation of an urban MV network due to the aforementioned hard-
ware constraints in the implementation of MOR for large systems. The full
network is typically designed for a maximum of six 11kV feeders and ten
11/0.4kV distribution transformers from each 11kV feeder. This is in ad-
dition to the use of necessary protection devices such as fuses and circuit
breakers. For this analysis, the distribution network in Fig. 10 presents
a total of 14 components (2 buses, 6 transformers, 4 underground cables
and 2 switches). Furthermore, the network is modelled to have 4 LPs each
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Figure 10: Small-scale distribution network model - 14PCs.

supplying a total of 190 customers through a 500kVA 11/0.4kV distribution
transformer. The basic reliability data used are obtained from [51|. For the
results presented in Table 4, the original distribution network with 2! states
is reduced to 2 states using the proposed MOR approach. As seen with the
RBTS network, it is not possible to reduce this distribution network using the
TNR approach because of the network topology. Table 4 demonstrates that
the reduced order model obtained using the proposed MOR approach results
in a good accuracy for the estimated ENS-index (4.15%) while providing a
significant saving in the required computational time.

Table 4: Reliability performance for the distribution network.

Network Average ENS ENS Computational Time (s) Total Time
(kWh/year) Error (%) OR MCS OR+MCS Saving (%)

Original 263.68 - 762390 76239.0 -

MOR 274.62 4.15% 1611.6  4922.9 6534.5 91.43%

5.3. Integration of PV and Storage Technologies

The capability of the proposed MOR methodology to accommodate PV and
ES in the simplified reliability models is now demonstrated. For this purpose,
four distinct scenarios (presented in Table 5) are considered for the RBTS
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12PC network. The SC1 (base case) scenario considers no PV or ES; while
SC2A and SC2B scenarios represent the addition of PV to the network with
different penetration levels. In this case, the PV generation is modelled as a
constantly available power source whose power output is equal to the average
of a typical PV generation profile. This is considered a good approximation
of a realistic scenario if one assumes that the faults of PCs are uniformly
distributed over time. Further work will ensure that the intermittent nature
of the supply from PV, as well as the daily and seasonal cycles, can be added
into the analysis.

Finally, SC3 includes ES resources, which are assumed to be locally available
only to LPs D4 and D5 (combined 40MW load). Given that these loads
are the furthest from the main supply, it is expected that the use of ES will
greatly enhance not only the ENS of the customers at LPs D4 and D5 but also
the average system ENS. This ES configuration is designed to supply energy
in the event of a fault occurrence that causes outage to either D4 or D5, and
to completely alleviate the effect of faults at these loads. Based on previous
work from the authors, further analyses will integrate other parameters such
as energy price signals, state of battery charge, solar irradiance, or time-
variant demand to the state and capacity of the ES system [50].

Table 5: Reliability performance with PV and ES.

Average ENS (MWh/year) ENS

ID Scenario
Original system Reduced-order Error
(12PCs) system
SC1  Base case 651.87 681.33 4.52%
SC2A PV 25% 488.90 511.11 4.54%
SC2B PV 50% 325.93 340.74 4.54%
SC3  ES 319.85 335.43 4.87%

As expected, results in Table 5 show that as PV penetration increases, the
ENS to customers is progressively reduced. Furthermore, ES implementa-
tion almost halves the system ENS with respect to the base case, where the
LPs D4 and D5 present poor reliability. Overall, the reduction of the system
to 2 states in each scenario using MOR resulted in an error of only about
4.5% (Table 5). This demonstrates the capability of the MOR methodol-
ogy to reduce the computational time of reliability analyses while accurately
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representing the impact of PV and ES on network reliability.

6. Conclusions and Further Work

This paper presents a novel application of MOR techniques for reliability
analysis of distribution networks. The proposed analytical methodology,
based on balanced truncation, allows to determine reduced network mod-
els with lower complexity and faster simulation times while minimising the
resulting error on reliability metrics. The practical implementation of the
algorithm has been described in detail and relevant case studies have been
presented to demonstrate the capability of the proposed approach to capture
the most important reliability dynamics of the original networks and pro-
vide simplified models that describe with good approximation the reliability
of the original system. As expected, these simplified models guarantee an
appreciable saving in the computational time required to perform reliability
analyses. The case studies also demonstrate the capability of the proposed
approach to assess the impact of PV and ES on the considered reliability
metrics. The methodology developed in this paper is the first step towards a
utilisation of MOR techniques for reliability assessment of power networks.
The improvements suggested in the further work will allow for use of the
proposed MOR technique in networks characterised by higher complexity
and the substantial penetration of new technologies e.g. demand response,
storage, electric vehicles.

Further work will enhance the proposed methodology by including dynamic
PC failure rates and time-varying demand profiles. This will be in addition
to the use of a minimum load curtailment model in the computation of the
output matrix C' to ensure that network control actions for minimising the
impact of outages to customers are included in the analysis. This inclusion
will also be useful to further demonstrate the capability of PV and storage
technologies to relieve network constraints and provide ancillary services.
Moreover, the effect of cloud transients on PV generation and the evolution
of the state of charge of the ES devices will be incorporated in future analyses
for a more realistic modelling and analysis of the impact of these technologies
on the network reliability. The dependence on computational requirements
will also be addressed to enable the modelling of larger and more complex
systems. This will include investigating new methods for the approximation
of Metzler matrices that preserve their Markovian properties to allow for
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larger orders () of the reduced system. An alternative will also be to compare
the proposed approach with other MOR approaches e.g. moment-matching.
Finally, the methodology will be expanded to accommodate more reliability
indices, such as those measuring frequency and duration of interruptions,
as well as providing probability density functions to further describe the
variation of these indices for given systems as these are key advantages in
using MCS analysis for reliability analysis that the reduced system should be
able to accurately illustrate. This will represent an important further step
towards the application of this methodology in a practical context.
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