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A B S T R A C T   

This article studies the influence of the number of satellite remote sensing acquisition dates and their sampling on 
the performance of a time series reconstruction method developed in Granero-Belinchon et al. 2020. This method 
initially aimed at monitoring urban London plane (Platanus x acerifolia) trees, and was tested with Sentinel-2 
imagery at spatial resolutions of 10 and 20 m and a temporal revisit of 5 days. Due to its higher revisit fre-
quency of 2 days while having a similar spatial resolution of 10 m, Venμs imagery was consequently used in the 
present article to fulfill with the purpose of this study. The strategy relies on the building of different acquisition 
date configurations based on the Venμs time series by considering uniform and non-uniform samplings and with 
a total number of acquisitions ranging from 45 to 14. Thus, the aim of the article is to examine the number of 
annual acquisitions needed to describe properly a vegetation phenological cycle and the impact of the annual 
sampling of these acquisitions on the final reconstructed time series. To this end, this study was carried out by 
using the widely used Normalized Difference Vegetation Index (NDVI). Results showed that on one hand, applied 
on an acquisition configuration composed of at least 18 uniformly sampled dates throughout the year, this 
reconstruction methodology is able to describe correctly the annual NDVI dynamics but leads to inaccuracies in 
the description of intra-annual ones. Nevertheless, these intra-annual descriptions are improved with the increase 
of the number of acquisitions. On the other hand, strongly non-uniform acquisition date samplings lead to 
inaccurate descriptions of the undersampled time periods but correct descriptions of the rest of the time series 
curve. The study case is London planes located in Toulouse (France) with 45 cloud-free Venμs images during the 
year 2019. Finally, this work emphasizes the main limitations of the studied reconstruction methodology when 
few acquisitions or very non-uniform acquisition date samplings are available and thus the identification of 
borderline cases in future applications and other study cases.   

1. Introduction 

Urban trees are beneficial for urban ecosystems (Alexandre, 2013; 
Hassan and Lee, 2015; Manning, 2008) since they provide shadows (in 
the case of Paris 3% of the city surface is shaded by urban trees (Rol- 
Tanguy et al., 2010)), influence urban temperatures (urban cool islands) 
and increase the air quality of the city (Vos et al., 2013; Alavipanah 
et al., 2015), refix CO2 from fossil fuel consumption (Chaturvedi et al., 
2013) and contribute to biodiversity conservation (Chaturvedi et al., 
2013). In particular, London planes (Platanus x acerifolia) are frequently 
used in European cities such as Madrid, London, Toulouse or Brussels, 
where they are planted in rows along avenues, rivers and canals. How-
ever, urban environments are unfavourable for trees development 

because of restricted root space availability, air pollution, soil nutrient 
deficiency and a insufficient water drainage (Krizek and Dubik, 1987). 
Furthermore, since the middle of the 20th century, the canker stain 
disease of London plane spreads over Europe (Anselmi et al., 1994; 
Panconesi, 1999) leading to an increase of tree mortality for this species. 

Among the approaches to characterize vegetation greening dy-
namics, satellite remote sensing is a widely used candidate since it gives 
access to image acquisitions with high frequency and covering large 
areas such as the entire urban pattern from the downtown to the peri-
urban or rural environments. Thus, it has proved to be an adapted 
technique to study urban vegetation communities and to deliver a 
complete diagnostic over the entire city (Granero-Belinchon et al., 2020; 
Zipper et al., 2016; Zhou et al., 2016). Then, the vegetation phenology is 
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monitored from the use of Vegetation Indices (VI) time series derived 
from remote sensing imagery (Zhang et al., 2003; Vrieling et al., 2018). 
Actually, the annual phenology, which mainly depends on the climate 
seasonal variations and the specific vegetation species, controls the 
vegetation dynamics. Four main phenological phases can be distin-
guished in deciduous trees such as London planes: Greenup, Maturity, 
Senescence and Dormancy periods (Zhang et al., 2003; Seyednasrollah 
et al., 2019). 

However, the characterization of urban vegetation from remote 
sensing is still challenging due to: (1) the high manmade and natural 
material heterogeneity beneath tree vegetation, (2) the 3D structures 
inducing shadows on tree vegetation, (3) the small sizes of urban 
vegetated areas, (4) the large number of species composing each vege-
tated zone … All these characteristics have to be considered to study 
urban vegetation and require a high spatial resolution. 

Hence, new generation satellites such as Venμs and Sentinel-2 (S-2) 
reveal to be adapted to the study of vegetation dynamics since they are 
able to measure Normalized Difference Vegetation Index (NDVI) at 10 m 
and with revisit times of 2 and 5 days respectively. Presently, Venμs has 
the best temporal repetitivity at the desired spatial resolutions of 10 m if 
compared to the other existing satellites. In addition, London planes in 
rows, due to their large sizes (tree crown diamaters around tens of 
meters, tree heights exceedings 20 m, and rows of hundred of meters), 
reduce mixed pixel effects (due to shadows and background), and can be 
studied as a single species vegetation from satellite remote sensing. The 
limited Ground Sampling Distance (GSD) of Sentinel-2 and Venμs in 
regard to the London plane crown size is partially overcame by the row 
configuration. 

In order to correctly study vegetation dynamics from remote sensing, 
time series reconstruction methodologies are frequently used on NDVI 
time series to reduce noise induced by atmospheric, viewing angle or 
cloud cover variabilities between dates (Viovy et al., 1992; Beck et al., 
2006; Chen et al., 2004; Vrieling et al., 2018; Yang et al., 2019). In urban 
environments, the importance of co-registration variability between 
dates in the noise of the raw time series has been also shown (Granero- 
Belinchon et al., 2020). Consequently, reconstruction methodologies 
have been developed to obtain NDVI time series which can be used to 
study the vegetation greening and its dynamics (Granero-Belinchon 
et al., 2020; Wang et al., 2016; Menzel et al., 2006; Wielgolaski, 1999). 
However, NDVI time series reconstruction methods were initially 
designed for sensors with extremely high revisit frequencies (at least one 
acquisition per day) and moderate spatial resolutions (hundred of me-
ters), such as MODIS and AVHRR (Viovy et al., 1992; Beck et al., 2006; 
Chen et al., 2004). These methods were later extended to satellites such 
as Sentinel-2 with better spatial resolutions but lower revisit frequencies 
(Vrieling et al., 2018; Yang et al., 2019). But then some questions arise: 
how many annual acquisition dates are required to properly describe a 
phenological cycle? What is the impact of the annual sampling of these 
acquisitions on the final reconstructed time series? Do these lower 
revisit frequencies allow you to observe intra-annual events? Some of 
these questions have been already studied for reconstruction method-
ologies applied on MODIS (Zhang et al., 2009), but also on Sentinel-2 
over rural areas (Vrieling et al., 2018; Zhou et al., 2012). However, in 
the case of high spatial resolution satellites with lower temporal revisit 
frequencies, the impact of the number of acquisitions and their sampling 
on reconstruction methods should be examined in detail, and especially 
for urban environments where these studies are still non-existent. 

Recently a new time series reconstruction methodology to monitor 
urban trees was developed to be applied on high spatial resolution 
satellite imagery with high revisit frequency such as Sentinel-2 and 
Venμs (Granero-Belinchon et al., 2020). In addition, its performance to 
characterize different NDVI time series dynamics of London planes 
located at different environments in Toulouse, France, from 2018 
Sentinel-2 images (20 images) has been shown. As a continuation of 
this previous work (Granero-Belinchon et al., 2020), this article pro-
poses to study the robustness of this methodology on (1) the time 

sampling and (2) the decrease of the number of dates composing the 
raw time series, when reconstructing the NDVI curve of Toulouse 
London planes. To this end, a raw NDVI time series with a high 
number of acquisitions is needed. Thus, Venμs, with a revisit time of 2 
days, provided 45 cloud free images of Toulouse during 2019 (more 
than the double of the number of images used in the previous study 
with Sentinel-2 Granero-Belinchon et al., 2020), which reveals to be a 
good initial raw time series candidate to be undersampled through 
various ways. As such, different configurations of acquisition dates can 
be derived and their influences on the time series reconstruction final 
product can be analysed. 

This article is structured in 4 sections. Section 2 presents first, the 
study area and the Venμs image properties, and second, the methodol-
ogy used in this article (time series reconstruction, sampling strategies 
and evaluation criteria). In Section 3, the results are shown and dis-
cussed. Finally, Section 4 presents some conclusions and perspectives. 

2. Materials and methods 

2.1. Study area 

Toulouse is a French city located in the south-west, close to the 
Pyrenees mountains, between Atlantic ocean and Mediterranean sea. 
With around 500.000 inhabitants, it is the fourth largest city of France, 
see Fig. 1. Its weather is characterized by a humid temperate climate 
favouring vegetation development. Toulouse is crossed by the Garonne 
river and by “Canal de Midi” and “Canal de Brienne” artificial canals. 
London planes are found in large avenues in the city center, but also 
along the river and the canals. In this work, we focused on London 
planes growing along the “Canal de Brienne”, see Fig. 2. These old 
London planes are located near the city center and the orientation of 
their rows is north-west, with two rows of trees (one at each side of the 
canal) and crown diameters between 10 and 20 m (crown sizes are not 
homogeneous). In addition, these London planes are generally higher 
than the surrounding buildings. 

2.2. Satellite remote sensing data 

Venμs is a Visible Near-InfraRed (VNIR) multispectral Israeli-French 
mission with 12 spectral bands. It was launched in August 2017 and 
provides one image of Toulouse every 2 days with a spatial resolution of 
10 m (Ferrier et al., 2010). Its viewing angle is almost constant across the 
year with a viewing zenith angle of θv

z ≈ 31◦ and a viewing azimuth 
angle of ϕv

a ≈ 182◦. In Toulouse, the solar angles (zenith θi
z and azimuth 

ϕi
a angles) at Venμs aquisition time (≈11:00 local time) varies along the 

year from θi
z ≈ 165◦ and ϕi

a ≈ 65◦ during winter to θi
z ≈ 145◦ and ϕi

a ≈

25◦ during summer (Granero-Belinchon et al., 2020). 
THEIA platform (https:www.theia-land.fr) gives free access to Venμs 

Bottom Of Atmosphere reflectance (level 2A) processed images of Tou-
louse. Moreover, THEIA delivers co-registered images (maximum co- 
registration errors of 60% of the pixel size are allowed), with cloud 
masks, and both quality and atmospheric information. For 2019, which 
is the first year for which THEIA provides images covering the whole 
year, 45 Venμs images of Toulouse are available (images with strong 
cloud coverage, higher than 50% or without the study area, were not 
considered). 

2.3. Methods 

The procedure used to analyse the impact of the number of dates and 
their sampling on the Granero-Belinchon et al. 2020 time series recon-
struction methodology (Granero-Belinchon et al., 2020) was based on 
three main steps: (1) from a reference acquisition set composed of 45 
cloud free Venμs images, different samplings were performed to 
generate new sets with less acquisitions, (2) the studied reconstruction 
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methodology was applied on the reference set (where all cloud-free 
images were used) and on each new generated set, and (3) the similar-
ity between the reference reconstructed time series and the recon-
structed time series from the different sampling configurations was 
evaluated with assessment metrics, see Fig. 3. 

2.3.1. Time series reconstruction 
The time series reconstruction methodology used to analyse NDVI 

dynamics of urban trees, presents four steps:  

(1) A manual masking aims at delimiting the vegetation study area. 
This mask was visually delineated on Venμs images, see Fig. 2, 

Fig. 1. Top: Google Satellite image of Europe. The red dot indicates the location of Toulouse. Bottom:Venμs Red-Green-Blue (RGB) composite image of Toulouse 
(France). The delineated area corresponds to the London plane rows along the Canal de Brienne (red). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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(2) NDVI was calculated for each pixel of the masked area and for all 
the available dates of the year for a given acquisition dataset,  

(3) Then, an unsupervised classification based on a pixel by pixel 
weighted iterative fitting of raw NDVI time series was applied. 
Thus, pixels for which the error fit was small were considered as 

vegetation pixels. The double-logistic function was chosen to fit 
NDVI time series (Beck et al., 2006; Vrieling et al., 2018),  

(4) A weighted iterative Savitzky-Golay filtering (Chen et al., 2004) 
was applied on pixels classified as vegetation in order to obtain 
the final NDVI time series. Its mean over the vegetation pixels of 

Fig. 2. Toulouse (France) Canal de Brienne study area. Top: Venμs RGB composite image. The delineated area corresponds to the London plane rows along the Canal 
de Brienne (red). Bottom: Google-Earth image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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the masked area was then used to represent the greening behavior 
of the vegetation group. 

While the masks were manually built from QGIS software, the NDVI 
estimation, the double-logistic fit and the Savitzky-Golay filter come 
from our own implementation in python 3.6. For this purpose, three 
main python libraries were used: SciPy, NumPy and Gdal. A detailed 
description of the methodology can be found in Granero-Belinchon et al. 
2020 (Granero-Belinchon et al., 2020). 

2.3.2. Sampling strategies 
In order to study the impact of the number of available dates on the 

time series reconstruction methodology, 4 sampling strategies, with a 
total of 16 different time configurations, were considered and applied on 
the reference 45 cloud-free 2019 Venus time series. This process pro-
vides new acquisition datasets with a number of dates varying between 
14 and 45 and including uniform and non-uniform samplings. In addi-
tion, some of these configurations simulate the lost of a whole period of 
the year approximately corresponding to a phenological phase. The four 
sampling strategies were the following: 

(1) The complete set of Venμs images with 45 dates was under-
sampled by only retaining one over two dates by starting either 
on the first or the second date of the annual time series. This 
procedure provides two uniform undersampled time series with 
22 and 23 dates, which in this article were called “Odd” and 
“Even” respectively. This strategy allowed to study the impact of 
reducing the number of available dates to a half but maintaining 
an uniform sampling.  

(2) From the previous “Even” undersampled time series, five and 
nine dates were randomly eliminated following three different 
random combinations, thus providing three time series with 18 
dates and three time series with 14 dates respectively. These time 
series simulate cases with a very reduced number of available 
dates over the year.  

(3) The undersampling removed a complete phenological period. 
This step provided 4 strongly non-uniform undersampled time 
series where Greenup, Maturity, Senescence and Dormancy 
phenological periods were one by one absent, leading to acqui-
sition datasets composed of 38, 37, 39 and 37 dates respectively. 
Depending on the meteorological conditions and the satellite 
revisit times, phenological periods can be frequently lost or at 
least poorly sampled over a given study area. This strategy also 
allowed to study the impact of strongly non-uniform samplings.  

(4) The dates from Toulouse Venμs 2019 time series which are closer 
to the Toulouse Sentinel-2 cloud-free passing dates from 2017, 
2018 and 2019 (THEIA datasets), were used to create three new 
Venμs subsampled time series with respectively 15, 20 and 22 
dates (corresponding to the number of Sentinel-2 acquisitions for 

2017, 2018 and 2019). Actually, using the 2017–2018–2019 
Sentinel-2 passing dates over Toulouse allowed to study real 
configurations adapted to Toulouse meteorology (sampling could 
be non-uniform and in some cases a whole phenological period 
could be poorly sampled). 

2.3.3. Evaluation criteria 
To evaluate how the different time series configurations impact the 

time series reconstruction, three global indicators were selected: (1) the 
number of pixels classified as vegetation in the reconstruction method-
ology, (2) the Root Mean Square Error (RMSE) and (3) the Spectral 
Angle Mapper (SAM) (Kruse et al., 1993). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
̂NDVIi − NDVIi

)2

N

√
√
√
√
√

(1)  

SAM = cos− 1

∑N

i=1
̂NDVIi NDVIi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
̂NDVIi

2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1
NDVI2

i

√ (2)  

with N the number of acquisitions, N̂DVIi the estimated NDVI value for 
acquisition i on the newly undersampled time series and NDVIi the NDVI 
value of acquisition i estimated on the reference time series. Only ac-
quisitions appearing in both time series are used in the comparison. Both 
RMSE and SAM were estimated between the reconstructed time series 
with 45 dates used as the reference, and the other reconstructed time 
series from the studied configurations. Thus, they differently charac-
terized the annual similarity between the reference and the studied case. 
While RMSE measures a time average of the exact NDVI difference be-
tween curves, SAM does not take into account NDVI offsets. In addition, 
to complete those annual descriptions a fourth indicator, (4) the NDVI 
difference between the reference and the studied configurations, was 
considered to observe intra-annual deviations. 

The first evaluation criteria (the number of pixels classified as 
vegetation) will verify if a statistical analysis can be performed on the 
NDVI time series representing the vegetation group (to reduce size ef-
fects in the statistical study a large enough dataset is required). The two 
global evaluation criteria, RMSE and SAM, are classical statistical tests 
to characterize the similarity between time series (Lhermitte et al., 
2011). Finally, the NDVI difference is not a global criteria and so it 
emphasizes punctual differences between time series that can be of 
importance for short term phenological events. All these evaluation 
criteria were estimated using our own implementation in Python 3.6 and 
the Python package NumPy. 

Fig. 3. Proposed methodology to characterize the impact of time sampling on NDVI time series reconstruction. Red squares describe the time series reconstruction 
methodology, the green square the sampling strategies and the blue square the evaluation criteria. Black squares indicate the outcomes of the different steps. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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3. Results and discussion 

3.1. 2019 Venμs reference time series 

Fig. 4(a) shows the reference Venμs NDVI time series of Brienne 
London plane rows for 2019, which contains 45 dates. In this figure, four 
phenological periods can be distinguished: (1) Dormancy, characterised 
by an almost flat behavior with small NDVI values around 0.5 and 
covering mainly winter season, (2) Greenup, characterised by a sharp 
increase of NDVI from 0.5 to 0.85, and occurring during spring, (3) 
Maturity which presents the highest NDVI with values between 0.79 and 
0.91 and occurring in summer, and (4) Senescence which presents a 
sharp decrease of NDVI from Maturity values to Dormancy ones. In 
addition, two intra-annual events which are identified by sharp de-
creases of NDVI (Granero-Belinchon et al., 2020) can be observed on this 
reconstructed NDVI time series: the first between Day of Year (DoY) 160 
and 195, and the second between DoY 210 and 290 (dashed red vertical 
lines), with a total decrease in NDVI of 0.05 and 0.1 respectively. One 
can remind that classical reconstruction methodologies such as double- 
logistic or double-hyperbolic-tangent function fitting can not describe 
intra-annual events, oppositely to the method used in this study. Then, 
the temporal repartition of Venμs acquisitions is quite uniform along the 
year, except marginally in the Dormancy and Senescence periods. The 
mean sampling distance between 2019 Venμs images is 7.4 days. 
However, this averaged sampling distance depends on the phenological 
period corresponding to: 10 days during Dormancy, 6.8 days during 
Greenup, 5.7 days during Maturity and 11.6 during Senescence. 

3.2. Uniform sampling with more than 20 dates 

Fig. 4(b) shows on the one hand the reconstructed NDVI time series 
of “Even” (23 samples) and “Odd” (22 samples) undersamplings with the 
reference time series for visual comparison. While the annual behaviour 
is well described by both “Even” and “Odd” curves (see global evalua-
tion criteria results in Table 1), differences appear in the description of 
the intra-annual events. “Even” time series perfectly describes the intra- 
annual event starting at DoY 210 but seems to erase the intra-annual 
event starting at DoY 160. On the other hand, “Odd” time series 
slightly describes the intra-annual event starting at DoY 160 but 
smoothes the one starting at DoY 210. The differences between the 
reference and these undersampled time series are also shown in Fig. 4 
(b). They quantify the NDVI deviations due to a decreasing number of 

dates in the time series. Results showed that the largest deviations for 
both “Even” and “Odd” undersampled time series are smaller than 0.05 
NDVI. 

The first and second columns of Table 1 provide the sampling 
configuration and the number of dates of each studied case. In addition, 

Fig. 4. 2019 Venμs NDVI reconstructed time series with (a) all the 45 dates and (b) the 23 “Even” dates (blue) and the 22 “Odd” dates (green). The NDVI standard 
deviation is indicated with shaded areas. In (b) NDVI reference reconstructed time series is plotted in black for comparison, and the differences between this reference 
and the “Even” and “Odd” reconstructed NDVI time series are plotted in dashed blue and dashed green respectively. Dashed red vertical lines indicate the start and 
the end of the two intra-annual periods of NDVI dynamics. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.) 

Table 1 
Venμs time series analyzed configurations together with the number of dates of 
each configuration, the number of pixels classified as vegetation and the eval-
uation criteria used to evaluate the similarity between the reference time series 
and the other configurations over the whole year. For RMSE and SAM, mean 
values are shown with the corresponding standard deviations between brackets.  

Configuration # 
dates 

# vegetation pixels/ 
total # of pixels 

RMSE 
(NDVI) 

SAM 
(Radians) 

Reference 45 448/923 0 0  

Even 23 385/923 0.06 
(0.03) 

0.04 (0.02) 

Odd 22 567/923 0.05 
(0.02) 

0.03 (0.01)  

18 dates random 1 18 259/923 0.07 
(0.03) 

0.05 (0.02) 

18 dates random 2 18 426/923 0.06 
(0.03) 

0.04 (0.01) 

18 dates random 3 18 426/923 0.06 
(0.03) 

0.04 (0.01) 

14 dates random 1 14 193/923 0.09 
(0.05) 

0.06 (0.02) 

14 dates random 2 14 177/923 0.1 
(0.05) 

0.07 (0.02) 

14 dates random 3 14 557/923 0.06 
(0.02) 

0.05 (0.01)  

Greenup missing 38 390/923 0.06 
(0.03) 

0.04 (0.02) 

Maturity missing 37 549/923 0.05 
(0.02) 

0.03 (0.02) 

Senescence missing 39 415/923 0.05 
(0.03) 

0.04 (0.01) 

Dormancy missing 37 635/923 0.04 
(0.02) 

0.02 (0.01)  

Sentinel-2 2017 
configuration 

15 613/923 0.05 
(0.02) 

0.04 (0.01) 

Sentinel-2 2018 
configuration 

20 691/923 0.04 
(0.02) 

0.03 (0.01) 

Sentinel-2 2019 
configuration 

22 442/923 0.05 
(0.02) 

0.04 (0.01)  
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its third column provides the number of pixels classified as vegetation by 
the methodology. Finally, Table 1 also quantifies the annual similarity 
between the different studied cases and the reference with the RMSE and 
the SAM criteria. For these three cases, “Reference”, “Even” and “Odd”, 
the number of pixels classified as vegetation varies between 41% for 
“Even” and 61% for “Odd”, compared to 48% for the reference. In 
addition, “Odd” being closer to the reference during Greenup and 
Senescence, and better describing the first intra-annual event, presents 
slightly lower RMSE and SAM values (RMSE = 0.05 NDVI and SAM =
0.03 radians), compared to “Even” (RMSE = 0.06 NDVI and SAM = 0.04 
radians). 

From the above results, we can state that the annual NDVI behavior 
can be still well described with 22 and 23 dates uniformly sampled. 
However, this decrease in the number of dates, even with uniform 
samplings, leads to less performant descriptions of intra-annual events, 
resulting in the lost or hide of at least one of the observed intra-annual 
periods. These results also show the sensitivity of the reconstruction 
methodology to the specific acquisitions, since two raw NDVI time series 
with almost the same number of dates uniformly sampled lead to 
different reconstructed curves. The specific available acquisitions 
especially impact the curve fitting step (see Section 2.3). As explained in 
Granero-Belinchon et al. 2020, the classification is based on a double- 
logistic curve fitting with a threshold on the fitting error (Granero- 
Belinchon et al., 2020). Consequently, the number of samples of the time 
series influences the fit performance: undersampled time series will be 
worse fitted. However, another important factor to take into account in 
this classification procedure is the similarity of the fitted time series to a 
double-logistic curve. Importantly marked intra-annual events such as 
the one appearing at DoY 160 make time series be far from a double- 
logistic behavior and then they increase the fit error. Thus, the fitting 
error that determines the classification will depend on the specific ac-
quisitions defining the raw curve, and then, the pixels classified as 
vegetation will depend on these specific acquisitions, influencing the 
final reconstructed time series. 

3.3. Uniform sampling with less than 20 dates 

Fig. 5(a) shows three NDVI time series when 18 different random 
dates are used. In these cases the annual behavior is well described but 
deviations can be found in the start of the NDVI rise (corresponding to 
the start of the greenup) and the NDVI fall (corresponding to the start of 
the senescence). Moreover, the first intra-annual event is not described 
by these time series. This is not the case of Fig. 5(b) where three NDVI 
time series having 14 different random dates are shown. When only 14 

dates remain, the two intra-annual periods are lost. In addition, strong 
differences all along the year can also be noticed with high deviations 
reaching until 0.1 NDVI. 

Table 1 shows that the number of pixels classified as vegetation when 
the number of dates is strongly decreased dropped and achieved at 
minimum 19–20% (14 dates random 1 and 2). It also points out an in-
crease in annual dissimilarities with RMSE values reaching at maximum 
0.1 NDVI (14 dates random 2) and SAM values reaching at maximum 
0.07 radians (14 dates random 2). In addition, annual dissimilarity as 
measured by RMSE and SAM tends to be higher for 14 dates time series 
than for 18 dates ones, with a global increase around 0.03 NDVI for 
RMSE and 0.02 radians for SAM. 

NDVI time series with 18 dates and uniform sampling are still able to 
define the annual NDVI behavior and some important intra-annual 
events. On the other hand, NDVI time series with 14 dates and uni-
form sampling does not describe intra-annual events and can present 
strong deviations with respect to the reference. Then, we can state that 
18 dates are enough to characterize the annual NDVI behavior, while 
reconstructed time series with 14 dates can not be used to characterize 
NDVI dynamics with our methodology. 

3.4. Non-uniform sampling with the lost of a phenological period and 
more than 30 dates 

Fig. 6 shows the reconstructed time series when a whole phenolog-
ical period is lost (in any case more than 37 dates remain) with the 
reference for visual comparison. We can observe that loosing a pheno-
logical period mainly influences the NDVI time series description of the 
lost period, without influencing the description of the rest of the time 
series, where only small differences are found. In detail, when Greenup 
is lost the time series difference reaches 0.08 NDVI during Greenup, but 
only 0.01 NDVI on the other phenological periods. Similarly when 
Senescence is lost, NDVI difference reaches 0.11 during Senescence, 
with losses of less than 0.02 on the other periods. In addition, when 
Maturity and Dormancy are lost, a constant slight shift of the NDVI time 
series to upper values is observed on the rest of the reconstructed 
phenological periods: about 0.01 NDVI when Maturity is lost and be-
tween 0.01 and 0.03 NDVI when it is Dormancy. 

Table 1 shows a number of pixels classified as vegetation oscillating 
between 42% when Greenup is absent to 69% when Dormancy is absent, 
while RMSE values range between 0.06 NDVI (Greenup lack) and 0.04 
NDVI (Dormancy lack) and SAM values between 0.04 radians (Greenup 
and Senescence) and 0.02 radians (Dormancy). 

Loosing a whole phenological period still accurately preserves the 

Fig. 5. 2019 Venμs NDVI reconstructed time series with (a) 18 random dates and (b) 14 random dates. Blue, green and red lines represent three different random 
combinations of samples. The NDVI standard deviation is indicated with shaded areas. Reference NDVI reconstructed time series is plotted in black for comparison. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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whole behavior of the NDVI time series except for the lost period, where 
the description is non existent. In addition, RMSE and SAM seem to 
indicate that loosing Greenup or Senescence impacts more the annual 
description that loosing Maturity or Dormancy. 

3.5. Non-uniform sampling with less than 20 dates adapted to match 
2017–2018–2019 Sentinel-2 cloud-free acquisition DoYs 

In order to study the influence of having a few number of acquisitions 
(between 15 and 22) with non-uniform sampling on the NDVI time series 
reconstruction methodology, we decided to set a time configuration in 
agreement with the meteorological conditions of Toulouse. Hence, we 

kept the 2019 Venμs acquisitions at DoYs closer to those of Sentinel-2 
acquisitions for the years 2017, 2018 and 2019, which present 15, 20 
and 22 dates respectively. This leads to the reconstruction of hypo-
thetical NDVI time-series obtained by Venμs, if the 2019 Venμs data had 
been acquired at the Sentinel-2 intervals of 2017, 2018 and 2019. The 
mean difference between Sentinel-2 acquisition DoYs and the used 
Venμs ones is 2 days, with a maximal difference of − 13 days during the 
senescence period of 2017. In agreement with previous results, Fig. 7(a) 
shows that 15 samples does not allow to describe neither intra-annual 
events, nor maximal NDVI values. In addition, since the Greenup 
phase is lost, large deviations are also noticed in the Spring description. 
Fig. 7(b) and (c) illustrate better annual descriptions of the NDVI time 

Fig. 6. 2019 Venμs NDVI reconstructed time series without Greenup dates in blue, Maturity dates in green, Senescence dates in red and Dormancy dates in purple. 
The NDVI standard deviation is indicated with shaded areas. Reference NDVI reconstructed time series is plotted in black for comparison and the difference between 
this reference and the undersampled reconstructed NDVI time series is plotted in dashed colour line. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 7. 2019 Venμs NDVI reconstructed time series with (a) Sentinel-2 2017 time sampling configuration, (b) Sentinel-2 2018 time sampling configuration and (c) 
Sentinel-2 2019 time sampling configuration. The NDVI standard deviation is indicated with shaded areas. Reference NDVI reconstructed time series is plotted in 
black for comparison. 
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series, notably for Dormancy, Greenup and Senescence periods. In the 
Maturity period both figures characterize the intra-annual event starting 
at DoY 210 but they loose the one at DoY 160. Furthermore, the NDVI 
time series of Fig. 7(b) underestimates the maximal NDVI values, while 
that of Fig. 7(c) presents a good estimation. 

For these three cases, the number of pixels classified as vegetation 
varies between 50% for the 2019 configuration to 75% for the 2018 
configuration, see Table 1. RMSE values are between 0.04 and 0.05 
NDVI and SAM values around 0.03–0.04 radians. 

These results support the previous ones: (1) with 15 or less dates the 
description of the NDVI time series is not enough accurate since the 
intra-annual events are lost and the annual description introduces strong 
deviations. However with 20 and 22 time samples, reliable annual de-
scriptions seem to be better obtained. 

4. Conclusions 

The main goal of this article is to evaluate the impact of the number 
of available acquisitions and their sampling on the NDVI time series 
reconstruction methodology from (Granero-Belinchon et al., 2020). The 
case study is the Toulouse urban London planes in rows from Canal de 
Brienne. With this purpose and from a whole set of Venμs acquisitions 
(45 dates during 2019), four different undersampling strategies are 
used: (1) reducing the number of dates by a half keeping a uniform 
sampling (one over two acquisitions are retained), (2) some acquisitions 
are randomly (with uniform distribution) removed until fewer than 20 
dates are preserved, (3) loosing all the acquisitions from a whole 
phenological period (4 sets are generated where Greenup, Maturity, 
Senescence and Dormancy are respectively absent) and (4) Venμs ac-
quisitions closer in DoY to Sentinel-2 acquisitions from 2017, 2018 and 
2019 are used to build hypothetical Venμs time-series, with 15, 20 and 
22 non-uniformly sampled acquisitions respectively. This allows to 
study real time configurations in agreement with Toulouse meteorology. 
In any case, the Venμs NDVI time series with 45 dates is used as refer-
ence for comparison, since it is supposed to better describe the NDVI 
time series curve. 

It is shown that at least 18 acquisitions uniformly sampled are 
needed to describe the annual behavior of the NDVI time series. How-
ever, to do so for intra-annual periods more dates are required. Even 
with 22–23 acquisitions uniformly sampled, the methodology has shown 
limitations to characterize all the intra-annual periods appearing in the 
45 acquisitions time series. Furthermore, loosing a whole phenological 
period if the rest of the time series is well sampled mainly influences the 
time series description of the lost phenological period, while it correctly 
describes the rest of the time series. Finally, studying the three time 
series generated according to Sentinel-2 2017, 2018 and 2019 acquisi-
tions DoYs allows to corroborate previous results and to show the 
applicability of the time series reconstruction methodology on Sentinel- 
2 time series. Nevertheless, Sentinel-2 imagery has slightly higher co- 
registration errors (between 0.3 and 1.2 pixels) than Venμs (0.3 
pixels), and then reducing the number of acquisitions during the year 
can have a more important influence on the Sentinel-2 time series 
reconstruction. 

Thus, the main application of this work is the study and identifica-
tion of borderline cases on which the studied reconstruction method-
ology (Granero-Belinchon et al., 2020) can present drawbacks when 
monitoring urban London planes in rows with Venμs satellite. 

As a perspective to analyse these influences directly on Sentinel-2 
data, other cities should be studied where: (1) a large number of 
Sentinel-2 acquisitions are available (due to the low cloud cover rate of 
the city), and (2) where large rows of London planes (or similar size 
trees) can be found. In addition, a complete study on the influence of the 
number of processed pixels on the methodology robustness should be 
performed in order to be able to apply this methodology in smaller urban 
tree species such as lime trees or chinaberry trees, or in smaller groups of 
trees as they can be found in other cities. Finally, the robustness of the 

reconstruction methodology should be also characterized on tree species 
with different greening behaviors, or for the same tree species when 
trees are found in other climate zones (impacting NDVI time series 
evolution across the year). 
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