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Incompressible Navier-Stokes-Fourier limit
from the Landau equation

Mohamad Rachid∗

Abstract

In this work, we provide a result on the derivation of the incompressible
Navier-Stokes-Fourier system from the Landau equation for hard, Maxwellian
and moderately soft potentials. To this end, we first investigate the Cauchy
theory associated to the rescaled Landau equation for small initial data. Our
approach is based on proving estimates of some adapted Sobolev norms of the
solution that are uniform in the Knudsen number. These uniform estimates also
allow us to obtain a result of weak convergence towards the fluid limit system.
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1 Introduction

1.1 The model.

We start by introducing the Landau equation. This equation is a kinetic model in
plasma physics that describes the evolution of the density function fε = fε(t, x, v) rep-
resenting at time t ∈ R+ the density of particles at position x ∈ T3 the 3-dimensional
unit periodic box and velocity v ∈ R3. This equation is given by{

∂tfε + v · ∇xfε = 1
ε
Q(fε, fε)

fε|t=0 = fε,0,
(1)

where ε > 0 is the Knudsen number which is the inverse of the average number
of collisions for each particle per unit time and Q is the so-called Landau collision
operator which acts on the variable v and which contains diffusion in velocity. More
precisely, the Landau operator is defined by

Q(G,F ) = ∂i

∫
R3
aij(v − v∗)[G∗∂jF − F∂jG∗] dv∗, (2)

and we use the convention of summation of repeated indices, and the usual derivatives
are in the velocity variable v i.e. ∂i = ∂vi . Hereafter we use the shorthand notations
G∗ = G(v∗), F = F (v), ∂jG∗ = ∂v∗jG(v∗), ∂jF = ∂vjF (v), etc. The matrix A(v) =
(aij(v))1≤i,j≤3 is symmetric, positive, definite, depends on the interaction between
particles and is given by

aij(v) = |v|γ+2
(
δij −

vivj
|v|2

)
, γ ∈ [−3, 1].

We recall the standard classification: we call hard potentials if γ ∈ (0, 1], Maxwellian
molecules if γ = 0, moderately soft potentials if γ ∈ [−2, 0), very soft potentials if
γ ∈ (−3,−2) and Coulombian potential if γ = −3. Hereafter we shall consider the
cases of hard potentials, Maxwellian molecules and moderately soft potentials, i.e.
γ ∈ [−2, 1]. We consider the fluctuation around the centered normalized Maxwellian
distribution

µ(v) = (2π)−3/2e−|v|
2/2

by setting fε(t, x, v) = µ+ εµ1/2gε(t, x, v), and

Γ(f, g) = µ−1/2Q(µ1/2f, µ1/2g)

= ∂i
[
(aij ∗ µ1/2f)∂jg

]
− (aij ∗

vi
2 µ

1/2f)∂jg

− ∂i
[
(aij ∗ µ1/2∂jf)g

]
+ (aij ∗

vi
2 µ

1/2∂jf)g,

the homogeneous linearized Landau operator L takes the form

L = −Γ(√µ, f)− Γ(f,√µ)
:= −L1 − L2.

The operator L acts only in variable v, is selfadjoint, and consists of a diffusion part
and a compact part. Using for example [15], [30], we show that the diffusion part L1
writes as follows

L1f = ∇v · [A(v)∇vf ]−
(

A(v)v2 ·
v

2

)
f +∇v ·

[
A(v)v2

]
f,
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where A(v) = (aij(v))1≤i,j≤3 is a symmetric matrix defined through

aij = aij ∗v µ,

and the compact part L2 is given by

L2f = −µ−1/2∂i

{
µ
[
aij ∗v

{
µ1/2

[
∂jf + vj

2 f
]}]}

.

Now the original problem (1 ) is reduced to the Cauchy problem for the fluctuation gε{
∂tgε + 1

ε
v · ∇xgε + 1

ε2Lgε = 1
ε
Γ(gε, gε)

gε|t=0 = gε,0,
(3)

where gε,0 is given by fε,0 = µ+ εµ1/2gε,0. From now on, we will always assume that

∫
T3×R3

fε,0(x, v)

 1
v
|v|2

 dxdv =
∫
T3×R3

µ(v)

 1
v
|v|2

 dxdv, (4)

which implies that

∫
T3×R3

gε(t, x, v)µ1/2(v)

 1
v
|v|2

 dxdv =

0
0
0

 for all t ≥ 0,

since our equation preserves the total mass, momentum and energy.

1.2 Notations and functional spaces.

Throughout the paper we shall adopt the following notations. For v ∈ R3 we denote
〈v〉 = (1 + |v|2)1/2, where we recall that |v| is the canonical Euclidian norm of v in R3.
The gradient in velocity (resp. space) will be denoted by ∂v (resp. ∂x). For simplicity
of notations, a ∼ b means that there exist constants c1, c2 > 0 depending only on fixed
number such that c1b ≤ a ≤ c2b; we abbreviate “≤ C ” to “.”, where C is a positive
constant depending only on fixed number that may change from line to line.
In what follows, we shall write for p ∈ [1,+∞]

Lpx = Lp(T3), Lpv = Lp(R3), LpxL
p
v = Lp(T3 × R3).

For p = 2, we use the notations (·, ·)L2
x
, (·, ·)L2

v
and (·, ·)L2

xL
2
v
to represent the inner

product on the Hilbert spaces L2
x, L2

v and L2
x,v respectively.

For m = m(v) a positive Borel weight function and 1 ≤ p, q ≤ ∞, we define the space
LqxL

p
v(m) as the Lebesgue space associated to the norm, for f = f(x, v)

‖f‖LqxLpv(m) = ‖‖f‖Lpv(m)‖Lqx = ‖‖mf‖Lpv‖Lqx .

We define for s ∈ N the spaces Hs
x to be the usual Sobolev space on T3 and Hs

xL
2
v by

the norm

‖f‖Hs
xL

2
v

=
( ∑
|k|≤s
‖∂kxf‖2

L2
x,v

) 1
2 .
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It is well known that the null space N of L is spanned by the set of collision invariants:

N (L) = Span
{√

µ, v1
√
µ, v2
√
µ, v3
√
µ, |v|2√µ

}
. (5)

We also let N⊥ denote the orthogonal space of N with respect to the standard inner
product (·, ·)L2

v
. Following [15], we introduce the H1

v,∗-norm defined by

‖f‖2
H1
v,∗

:= ‖〈v〉
γ
2 +1f‖2

L2
v

+ ‖〈v〉
γ
2Pv∇vf‖2

L2
v

+ ‖〈v〉
γ
2 +1(I − Pv)∇vf‖2

L2
v
, (6)

this norm naturally arises in the study of the Landau equation. Pv is the projection
on v, i.e. Pvw =

(
w · v|v|

)
v
|v| . We define the space Hs

xH
1
v,∗ for s ∈ N associated to the

norm

‖f‖2
χs(T3

x×R3
v) =

∑
|α|≤s

∫
T3
‖∂αx f‖2

H1
v,∗

dx. (7)

We also define the space Hs
x(H1

v,∗)′ (is the dual of Hs
xH

1
v,∗ w.r.t. Hs

xL
2
v) in the following

way

‖f‖Hs
x(H1

v,∗)′ := sup
‖φ‖

HsxH
1
v,∗
≤1

(f, φ)Hs
xL

2
v

:= sup
‖φ‖

HsxH
1
v,∗
≤1

∑
|β|≤s

(
∂βxf, ∂

β
xφ
)
L2
xL

2
v

.
(8)

Let us recall the so called macro-micro decomposition of solutions

g = Π0g + (I − Π0)g := g1 + g2, (9)

où Π0 est appelée la projection macroscopique deN , g1 = Π0g is called the macroscopic
projection of g and g2 = (I − Π0)g is called the kinetic or microscopic part of g.
Furthermore, we often use the following notation:

Π0g(t, x, v) = {a(t, x) + v · b(t, x) + |v|2c(t, x)}√µ, A(g) = (a, b, c), (10)

where

a :=
∫
R3
g
(5

2 −
|v|2

2

)
µ1/2 dv, b :=

∫
R3
gvµ1/2 dv, c :=

∫
R3
g
( |v|2

6 −
1
2

)
µ1/2 dv.

We introduce the following instant energy functional and dissipation rate functional
respectively

E2(g) = ‖g‖2
H3
xL

2
v

= ‖g1‖2
H3
xL

2
v

+ ‖g2‖2
H3
xL

2
v

∼ ‖A(g)‖2
H3
x

+ ‖g2‖2
H3
xL

2
v
,

D(g) = ‖g2‖χ3(T3
x×R3

v),

C(g) = ‖∇xΠ0g‖H2
xL

2
v
∼ ‖∇xA(g)‖H2

x
.

(11)

These quantities will be in the heart of the coming study and the main results we
present below.
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1.3 Main results.

The first result is about the existence and uniqueness of the solution of the Landau
equation. Notice that in the subsequent analysis, the Knudsen number ε is always
supposed to be less than 1 and in our Cauchy theory, we have a smallness condition
on our initial data, which is independent of ε.

Theorem 1.1. There exists M0 > 0 such that for ε ∈ (0, 1) and ‖gε,0‖H3
xL

2
v
≤M0, the

Cauchy problem (3 ) admits a unique global solution

gε ∈ L∞([0,∞);H3
xL

2
v)

with the global energy estimate

sup
t≥0
E2(t) + C0

∫ ∞
0

1
ε2D

2(t)dt+ C0

∫ ∞
0
C2(t)dt ≤ C ′0 E2(0), (12)

where C0, C
′
0 > 0 are independent of ε.

In the second part of this work, we study the limit to the incompressible Navier-Stokes-
Fourier system associated with the Boussinesq equation which writes

∂tu+ u · ∇xu+∇xp = ν∆xu,
∂tθ + u · ∇xθ = κ∆xθ,
∇x · u = 0,
ρ+ θ = 0.

(13)

In this system θ (the temperature), ρ (the density) and p (the pressure) are scalar
unknowns and u (the velocity) is a 3-component unknown vector field. The pressure
can actually be eliminated from the equations by applying to the momentum equation
the Leray projector P onto the space of divergence free vector field (precisely which
is defined in ( 96 )). This projector is bounded over HN

x for all N , and in Lpx for all
1 < p < ∞. The viscosity coefficients are fully determined by the linearized Landau
operator L (see Section 4).
The derivation theorem from (3 ) to ( 13 ) is the following.

Theorem 1.2. Let M0 be as in Theorem 1.1 . For any ε ∈ (0, 1), assume that the
initial data gε,0 in ( 3 ) satisfy

1) gε,0 ∈ H3
xL

2
v,

2) ‖gε,0‖H3
xL

2
v
≤M0,

3) there exist scalar functions ρ0, θ0 ∈ H3
x and vector-valued function u0 ∈ H3

x such
that

gε,0 −→ g0, strongly inH3
xL

2
v (14)

as ε −→ 0, where g0(x, v) is of the form

g0(x, v) = ρ0(x)√µ(v) + u0(x) · v√µ(v) + θ0(x)
( |v|2

2 −
3
2

)√
µ(v). (15)
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Let now gε be the family of solutions to the Landau equation ( 3 ) constructed in The-
orem 1.1 . Then, as ε −→ 0,

gε −→ ρ
√
µ+ u · v√µ+ θ

( |v|2
2 −

3
2

)√
µ (16)

weakly-? in L∞([0,∞);H3
xL

2
v). Here

(ρ, u, θ) ∈ C(R+;H2
x) ∩ L∞(R+;H3

x) (17)

is a solution of the incompressible Navier-Stokes-Fourier equation ( 13 ) with initial
data:

u|t=0 = Pu0(x), θ|t=0 = 3
5θ0(x)− 2

5ρ0(x), (18)

where P is the Leray projection. Moreover, the following convergence of the moments
holds:

P (gε, v
√
µ)L2

v
−→ u, (19)(

gε,
( |v|2

5 − 1
)√

µ

)
L2
v

−→ θ, (20)

strongly in C(R+;H2
x), weakly-? in L∞(R+;H3

x) as ε −→ 0.

The history of derivation of Navier-Stokes equation from kinetic equations is very
rich. This has been an active research field since the 70’s with some major break-
through. In particular Bardos, Golse and Levermore [4] initiated this program in the
80’s, and the first convergence result without compactness assumption was given by
Golse and Saint-Raymond in [13], following a series of hard works by Bardos, Golse,
Levermore, Lions, Masmoudi and Saint-Raymond [3, 12, 23, 24] the list given here is
not exhaustive. More recently this program was tackled in various geometries (with
bondary in [18, 19, 26]). All these results are obtained in a framework of weak solu-
tions: the renormalized solutions for the Boltzmann equation (from DiPerna-Lions [10]
or Mischler [27] for bounded domains) and the Leray solutions for the Navier-Stokes
equations. Let us also mention [2] and [29] in which the theory of derivation of macro-
scopic fluid equations from kinetic equations has been treated exhaustively (although
the Landau equation is not studied there). In what follows, we present previous results
obtained in a framework of strong solutions and also comment the results obtained in
the present paper.
In this framework of strong solutions, we first refer to [1, 6, 7] for Boltzmann equa-
tion with cutoff (with inelastic collisions for [1]) and to [20] for Boltzmann equation
without cutoff in which a result of weak convergence to the fluid model is obtained.
Briant in [6] justified the convergence from the Boltzmann equation with cutoff in the
case of hard or Maxwellian potential to the incompressible Navier-Stokes equations
on the torus. He used hypocoercivity to obtain a proof of existence and exponential
decay (uniformly in the Knudsen number) for solutions around a global equilibrium
in Sobolev spaces HN

x,v for N ≥ 3. These results allow him to obtain a derivation
of the incompressible Navier-Stokes equations as the Knudsen number tends to 0. In
addition, he obtained strong convergence by adding additional conditions on the initial
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data and using a decomposition of the semigroup associated to the linearized equa-
tion coming from [11]. Roughly speaking, this analysis is based on the study of the
spectrum of the Fourier transform in the space variable of the linearized operator.
Let us also mention that all the hypocoercivity theory assumptions hold for several
different kinetic models which include the Landau equation with hard, Maxwellian
and moderately soft potentials. Briant, Merino-Aceituno and Mouhot in [7] obtained
similar results in larger Sobolev spaces with polynomial weights using an “enlargement
method” coming from [14] that takes into account the dependencies on the Knudsen
number (which allowed them to weaken the assumptions on the data down to Sobolev
spaces with polynomial weights). Notice that in the present paper, since our lineariza-
tion is based on the following decomposition: fε = µ + εµ1/2gε, our original data fε,0
are supposed to enjoy an exponential decay.
We also mention that there is another type of results about the connection to fluid
equations that are also obtained in the context of classical solutions. The general
idea is to obtain first the solutions for the limiting fluid equations, then construct-
ing a sequence of solutions (around the Maxwellian) of the scaled Kinetic equations
(Boltzmann or Landau) for small Knudsen number ε. These solutions are of the form
fε = µ+εµ1/2(g1 +εg2 + · · ·+εngnε ), where g1, g2, · · · can be determined by the Hilbert
expansion, and gnε is the error term. There is a large literature in this context, let
us point out the work [17] in which Guo verified the diffusive expansion (around the
Maxwellian) for the Boltzmann equation with angular cutoff (hard and soft potential)
and for Landau equation in the Coulombian case on the torus using a nonlinear en-
ergy method. This expansion is beyond the Navier–Stokes limit in the following sense:
the coefficient g1 is determined by the incompressible Navier–Stokes–Fourier equations
and g2 · · · gn−1 are determined by the linearized incompressible Navier–Stokes–Fourier
equations with source term from the known kinetic part. In addition, he studied the
decay in time uniformly in ε for the error term by nonlinear energy method, such a
result is obtained in HN

x,v for N ≥ 8.
Our aim in this article is to study the weak convergence process for the Landau equa-
tion in the cases of hard potentials, Maxwellian molecules and moderately soft poten-
tials and verify its limit to the incompressible Navier-Stokes-Fourier equation with the
Boussinesq relation on the torus. This equation has strong diffusion properties, which
implies difficulties linked to the functional spaces. The convergence proof is based on
a nonlinear energy method which is similar to [15,17]. The idea is to establish micro-
scopic and macroscopic estimates (thanks to the study of the classical 13-moments)
uniformly in ε for our equation. These estimates allow us to obtain a global energy esti-
mate (uniformly in ε) in H3

xL
2
v. Notice that in [15,17], this type of results was obtained

in HN
x,v with N ≥ 8, we have thus enlarge the space in which such a result is available.

In terms of functional spaces, our result is comparable to the one in [20] in which the
authors used this method to derive the incompressible Navier-Stokes-Fourier equation
but from Boltzmann without cutoff on the whole space. Hence the difference with our
case concerns the choice of the instant energy and the dissipation rate functional to
capture the structure of the rescaled equation, see ( 6 ), ( 7 ) and ( 11 ) for our case. We
shall sometimes follow the line of the proof of [20]. But we pay very much attention to
the construction of local solutions (uniformly with respect to the Knudsen number),
the linear problem being handled thanks to Lion’s theorem (see [21]). A special focus
is also given on the weak-? limit at the very end of this article using in particular the
Aubin-Lions-Simon theorem and some compensated compactness argument from [22]
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(see [1, 13] for similar approaches).
We finally emphasize that a great challenge in this field would be to get strong conver-
gence, that we hope to do in the future using the hypoelliptic properties of the Landau
operator.
Organization of the article. In Section 2, we study the construction of the local
solution. In Section 3, we show the global existence and we establish the uniform
energy estimate. Section 4 is devoted for the incompressible Navier-Stokes limit. In
Appendix A, we give a proof for the existence of a local solution for the linear Landau
equation.

2 Construction of Local Solutions

In this section, we show the existence of a local solution to equation ( 3 ). First, we
start with nonlinear estimates where we use the idea of the proof of Lemma 3.5 in [8].
Then, we are interested in the construction of local solutions for Landau equation
where we use the technique presented in section 2 in [20].

2.1 Nonlinear estimates.

We prove in this section some estimates on the nonlinear operator Γ.

Lemma 2.1. We have:

|(aij ∗ µ1/2f)(v)|+
∣∣∣∣(aij ∗ vi2 µ1/2f

)
(v)
∣∣∣∣+ |(aij ∗ µ1/2∂jf)(v)|+

∣∣∣∣(aij ∗ vi2 µ1/2∂jf
)

(v)
∣∣∣∣

+ |(aij ∗ µ1/2f)(v)vivj|+ |(aij ∗ µ1/2f)(v)vj| . 〈v〉γ+2‖f‖L2
v
.

Proof. For the first term, we have

|(aij∗µ1/2f)(v)| =
∣∣∣∣∫
v∗
aij(v − v∗)µ1/2(v∗)f∗

∣∣∣∣ . ∫
v∗
〈v〉γ+2〈v∗〉γ+2µ1/2

∗ |f∗| . 〈v〉
γ+2‖f‖L2

v
.

In a similar way we get

|(aij ∗
vi
2 µ

1/2f)(v)| . 〈v〉γ+2‖f‖L2
v
.

For the third term, we have

aij ∗ µ1/2∂jf = ∂jaij ∗ µ1/2f − aij ∗ ∂jµ1/2f,

then

|(aij ∗ µ1/2∂jf)(v)| . |∂jaij ∗ µ1/2f(v)|+ |aij ∗ ∂jµ1/2f(v)|

.
∫
v∗
〈v〉γ+1〈v∗〉γ+1µ1/2

∗ |f∗|+
∫
v∗
〈v〉γ+2〈v∗〉γ+3µ1/2

∗ |f∗|

. 〈v〉γ+2‖f‖L2
v
.
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In a similar way we get ∣∣∣∣(aij ∗ vi2 µ1/2∂jf
)

(v)
∣∣∣∣ . 〈v〉γ+2‖f‖L2

v
.

Recall that 0 is an eigenvalue of the matrix A(v) = (aij(v))1≤i,j≤3 with corresponding
eigenvector v so that aij(v−v∗)vj = aij(v−v∗)v∗j and aij(v−v∗)vivj = aij(v−v∗)v∗iv∗j.
Using this we can easily obtain,

|(aij ∗ µ1/2f)(v)vivj| =
∣∣∣∣∫
v∗
aij(v − v∗)vivjµ1/2

∗ f∗

∣∣∣∣ =
∣∣∣∣∫
v∗
aij(v − v∗)v∗iv∗jµ1/2

∗ f∗

∣∣∣∣
.
∫
v∗
〈v〉γ+2〈v∗〉γ+4µ1/2

∗ |f∗|

. 〈v〉γ+2‖f‖L2
v
.

In a similar way we get

|(aij ∗ µ1/2f)(v)vj| . 〈v〉γ+2‖f‖L2
v
.

Lemma 2.2. The following estimate holds:

(Γ(f, g), h)L2
v
. ‖f‖L2

v
‖g‖H1

v,∗
‖h‖H1

v,∗
. (21)

Proof. We write

(Γ(f, g), h)L2
v

= −
∫

(aij ∗ µ1/2f)∂jg∂ih−
∫ (

aij ∗
vi
2 µ

1/2f
)
∂jgh

+
∫

(aij ∗ µ1/2∂jf)g∂ih+
∫ (

aij ∗
vi
2 µ

1/2∂jf
)
gh

= −
∫

(A(v) ∗ µ1/2f)∇vg · ∇vh−
∫
X(v) · ∇vgh

+
∫
Y (v) · ∇vhg +

∫ (
aij ∗

vi
2 µ

1/2∂jf
)
gh

=: T1 + T2 + T3 + T4.

Here X(v) (resp. Y (v)) are vectors with coefficients Xj(v) (resp. Yi(v)) which are
written in the following form:

Xj(v) =
3∑
i=1

aij ∗
vi
2 µ

1/2f and Yi(v) =
3∑
j=1

aij ∗ µ1/2∂jf.

Step 1. For the first term, since the estimate for |v| ≤ 1 is evident, we only consider
the case |v| ≥ 1. We decompose ∇vg = Pv∇vg + (I − Pv)∇vg, and similarly for ∇vh
where we recall that Pv∇vg = v|v|−2(v · ∇vg). We hence write

T1 =
∫

(A(v) ∗ µ1/2f)Pv∇vg · Pv∇vh+
∫

(A(v) ∗ µ1/2f)Pv∇vg · (I − Pv)∇vh

+
∫

(A(v) ∗ µ1/2f)(I − Pv)∇vg · Pv∇vh+
∫

(A(v) ∗ µ1/2f)(I − Pv)∇vg · (I − Pv)∇vh

:= T11 + T12 + T13 + T14.

10



Therefore we have

T11 =
∫

(A(v) ∗ µ1/2f)(v · ∇vg)
|v|2

v · (v · ∇vh)
|v|2

v,

thanks to Lemma 2.1 , we obtain

|T11| . ‖f‖L2
v

∫
〈v〉γ+2|v|−2 |∇vg| |∇vh|

. ‖f‖L2
v
‖〈v〉

γ
2∇vg‖L2

v
‖〈v〉

γ
2∇vh‖L2

v
.

Moreover

T12 =
∫

(A(v) ∗ µ1/2f)(v · ∇vg)
|v|2

v · (I − Pv)∇vh,

then

|T12| . ‖f‖L2
v

∫
〈v〉γ+2|v|−1 |∇vg| |(I − Pv)∇vh|

. ‖f‖L2
v
‖〈v〉

γ
2∇vg‖L2

v
‖〈v〉

γ
2 +1(I − Pv)∇vh‖L2

v
.

Similarly

|T13| . ‖f‖L2
v
‖〈v〉

γ
2∇vg‖L2

v
‖〈v〉

γ
2 +1(I − Pv)∇vh‖L2

v
.

For the term T14 we obtain

T14 =
∫

(A(v) ∗ µ1/2f)(I − Pv)∇vg · (I − Pv)∇vh,

then

|T14| . ‖f‖L2
v

∫
〈v〉γ+2|(I − Pv)∇vg| |(I − Pv)∇vh|

. ‖f‖L2
v
‖〈v〉

γ
2 +1(I − Pv)∇vg‖L2

v
‖〈v〉

γ
2 +1(I − Pv)∇vh‖L2

v
.

Step 2. Let us investigate the second term T2, and again we only consider |v| > 1.
The same argument as for T1 gives us

T2 = −
∫
X(v) · {Pv∇vg + (I − Pv)∇vg}h

:= T21 + T22.

We have

T21 = −
∫
X(v) · v (v · ∇vg)

|v|2
h,

then

|T21| . ‖f‖L2
v

∫
〈v〉γ+2|v|−1 |∇vg| |h|

. ‖f‖L2
v
‖〈v〉

γ
2∇vg‖L2

v
‖〈v〉

γ
2 +1h‖L2

v
.

11



For the other term we get

T22 = −
∫
X(v) · (I − Pv)∇vg h

then

|T22| . ‖f‖L2
v

∫
〈v〉γ+2|(I − Pv)∇vg| |h|

. ‖f‖L2
v
‖〈v〉

γ
2 +1(I − Pv)∇vg‖L2

v
‖〈v〉

γ
2 +1h‖L2

v
.

Step 3. For the term T3,

T3 = −
∫
Y (v) · {Pv∇vh+ (I − Pv)∇vh}g

:= T31 + T32.

Using the same proof in step 2, we have

T31 . ‖f‖L2
v
‖〈v〉

γ
2 +1g‖L2

v
‖〈v〉

γ
2∇vh‖L2

v
,

and

|T32| . ‖f‖L2
v
‖〈v〉

γ
2 +1g‖L2

v
‖〈v〉

γ
2 +1(I − Pv)∇vh‖L2

v
.

Step 4. We finally investigate the term T4 and we have

T4 = −
∫ (

aij ∗
vi
2 µ

1/2∂jf
)
h g,

then

|T4| . ‖f‖L2
v
‖〈v〉

γ
2 +1g‖L2

v
‖〈v〉

γ
2 +1h‖L2

v
.

The next lemma gives an estimate on the nonlinear collision operator Γ in terms of
instant energy functional and dissipation rate.

Lemma 2.3. Consider f such that
∫
T3

Π0f dx = 0, we have

(Γ(f, f), h)H3
xL

2
v
. E(f){C(f) +D(f)}D(h), (22)

therefore

‖Γ(f, f)‖H3
x(H1

v,∗)′ . ‖f‖H3
xL

2
v
‖f‖H3

xH
1
v,∗
, (23)

where we recall that the space H3
x(H1

v,∗)′ is defined in ( 8 ) and E ,D, C are defined in
( 11 ).

12



Proof. We have that

(Γ(f, f), h)H3
xL

2
v

= (Γ(f, f), h2)L2
xL

2
v

+
∑

1≤|β|≤3

(
∂βxΓ(f, g), ∂βxh2

)
L2
xL

2
v

because
(Γ(f, f),φ)L2

v
= 0 for φ = √µ, vi

√
µ, |v|2√µ

and

∂βxΓ(f, f) =
∑

β1+β2=β
Cβ1,β2Γ(∂β1

x f, ∂
β2
x f).

The proof of the lemma is a consequence of Lemma 2.2 together with the following
inequalities, that we shall use in the sequel when integrating in x ∈ T3

‖u‖L∞(T3) . ‖u‖H2(T3), ‖u‖L6(T3) . ‖u‖H1(T3), ‖u‖L3(T3) . ‖u‖1/2
H1(T3)‖u‖

1/2
L2(T3).

Step 1. Using Lemma 2.2 we easily get,

(Γ(f, f), h2)L2
xL

2
v
.
∫
T3

(
‖f‖L2

v
‖f2‖H1

v,∗
‖h2‖H1

v,∗
+ ‖f‖L2

v
‖f1‖L2

v
‖h2‖H1

v,∗

)
. ‖f‖H2

xL
2
v
‖f2‖L2

xH
1
v,∗
‖h2‖L2

xH
1
v,∗

+ ‖f‖H2
xL

2
v
‖f1‖L2

xL
2
v
‖h2‖L2

xH
1
v,∗
,

furthermore, Π0f has zero mean on the torus, thus we can apply Poincaré inequality
on the torus and we obtain

(Γ(f, f), h2)L2
xL

2
v
. E(f){C(f) +D(f)}D(h).

Step 2. Case |β| = 1. Arguing as in the previous step, from Lemma 2.2 , it follows(
Γ(f, ∂βxf), ∂βxh2

)
L2
xL

2
v

.
∫
T3

(
‖f‖L2

v
‖∇xf2‖H1

v,∗
‖∇xh2‖H1

v,∗
+ ‖f‖L2

v
‖∇xf1‖L2

v
‖∇xh2‖H1

v,∗

)
. ‖f‖H2

xL
2
v
‖∇xf2‖L2

xH
1
v,∗
‖∇xh2‖L2

xH
1
v,∗

+ ‖f‖H2
xL

2
v
‖∇xf1‖L2

xL
2
v
‖∇xh2‖L2

xH
1
v,∗

. E(f){C(f) +D(f)}D(h).

Moreover, we have(
Γ(∂βxf, f), ∂βxh2

)
L2
xL

2
v

.
∫
T3

(
‖∇xf‖L2

v
‖f2‖H1

v,∗
‖∇xh2‖H1

v,∗
+ ‖∇xf‖L2

v
‖f1‖L2

v
‖∇xh2‖H1

v,∗

)
. ‖∇xf‖H2

xL
2
v
‖f2‖L2

xH
1
v,∗
‖∇xh2‖L2

xH
1
v,∗

+ ‖∇xf‖H2
xL

2
v
‖f1‖L2

xL
2
v
‖∇xh2‖L2

xH
1
v,∗
,

using Poincaré inequality on the torus, we get(
Γ(∂βxf, f), ∂βxh2

)
L2
xL

2
v

. E(f){C(f) +D(f)}D(h).

Step 3. Case |β| = 2. When β2 = β we have(
Γ(f, ∂βxf), ∂βxh2

)
L2
xL

2
v

.
∫
T3

(
‖f‖L2

v
‖∇2

xf2‖H1
v,∗
‖∇2

xh2‖H1
v,∗

+ ‖f‖L2
v
‖∇2

xf1‖L2
v
‖∇2

xh2‖H1
v,∗

)
. ‖f‖H2

xL
2
v
‖∇2

xf2‖L2
xH

1
v,∗
‖∇2

xh2‖L2
xH

1
v,∗

+ ‖f‖H2
xL

2
v
‖∇2

xf1‖L2
xL

2
v
‖∇2

xh2‖L2
xH

1
v,∗

. E(f){C(f) +D(f)}D(h).
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If |β1| = |β2| = 1 then we obtain(
Γ(∂β1

x f, ∂
β2
x f), ∂βxh2

)
L2
xL

2
v

.
∫
T3

(
‖∇xf‖L2

v
‖∇xf2‖H1

v,∗
‖∇2

xh2‖H1
v,∗

+ ‖∇xf‖L2
v
‖∇xf1‖L2

v
‖∇2

xh2‖H1
v,∗

)
. ‖∇xf‖H2

xL
2
v
‖∇xf2‖L2

xH
1
v,∗
‖∇2

xh2‖L2
xH

1
v,∗

+ ‖∇xf‖H2
xL

2
v
‖∇xf1‖L2

xL
2
v
‖∇2

xh2‖L2
xH

1
v,∗

. E(f){C(f) +D(f)}D(h).
Finally, when β1 = β we get(

Γ(∂βxf, f), ∂βxh2
)
L2
xL

2
v

.
∫
T3

(
‖∇2

xf‖L2
v
‖f2‖H1

v,∗
‖∇2

xh2‖H1
v,∗

+ ‖∇2
xf‖L2

v
‖f1‖L2

v
‖∇2

xh2‖H1
v,∗

)
. ‖∇2

xf‖L6
xL

2
v
‖f2‖L3

xH
1
v,∗
‖∇2

xh2‖L2
xH

1
v,∗

+ ‖∇2
xf‖L6

xL
2
v
‖f1‖L3

xL
2
v
‖∇2

xh2‖L2
xH

1
v,∗

. ‖∇2
xf‖H1

xL
2
v
‖f2‖1/2

L2
xH

1
v,∗
‖f2‖1/2

H1
xH

1
v,∗
‖∇2

xh2‖L2
xH

1
v,∗

+ ‖∇2
xf‖H1

xL
2
v
‖f1‖1/2

L2
xL

2
v
‖f1‖1/2

H1
xH

1
v,∗
‖∇2

xh2‖L2
xH

1
v,∗

. E(f){C(f) +D(f)}D(h).
Step 4. Case |β| = 3. When β2 = β we have obtained(

Γ(f, ∂βxf), ∂βxh2
)
L2
xL

2
v

. ‖f‖H2
xL

2
v
‖∇3

xf2‖L2
xH

1
v,∗
‖∇3

xh2‖L2
xH

1
v,∗

+ ‖f‖H2
xL

2
v
‖∇3

xf1‖L2
xL

2
v
‖∇3

xh2‖L2
xH

1
v,∗

. E(f){C(f) +D(f)}D(h).
If |β1| = 1 and |β2| = 2 then we obtain(

Γ(∂β1
x f, ∂

β2
x f), ∂βxh2

)
L2
xL

2
v

.
∫
T3

(
‖∇xf‖L2

v
‖∇2

xf2‖H1
v,∗
‖∇3

xh2‖H1
v,∗

+ ‖∇xf‖L2
v
‖∇2

xf1‖L2
v
‖∇3

xh2‖H1
v,∗

)
. ‖∇xf‖H2

xL
2
v
‖∇2

xf2‖L2
xH

1
v,∗
‖∇3

xh2‖L2
xH

1
v,∗

+ ‖∇xf‖H2
xL

2
v
‖∇2

xf1‖L2
xL

2
v
‖∇3

xh2‖L2
xH

1
v,∗

. E(f){C(f) +D(f)}D(h).
When |β1| = 2 and |β2| = 1 then we get(

Γ(∂β1
x f, ∂

β2
x f), ∂βxh2

)
L2
xL

2
v

.
∫
T3

(
‖∇2

xf‖L2
v
‖∇xf2‖H1

v,∗
‖∇3

xh2‖H1
v,∗

+ ‖∇2
xf‖L2

v
‖∇xf1‖L2

v
‖∇3

xh2‖H1
v,∗

)
. ‖∇2

xf‖H1
xL

2
v
‖∇xf2‖1/2

L2
xL

2
v
‖∇xf2‖1/2

H1
xH

1
v,∗
‖∇3

xh2‖L2
xH

1
v,∗

+ ‖∇xf‖H1
xL

2
v
‖∇xf1‖1/2

L2
xL

2
v
‖∇xf1‖1/2

H1
xL

2
v
‖∇3

xh2‖L2
xH

1
v,∗

. E(f){C(f) +D(f)}D(h).
Finally, when β1 = β, it follows(

Γ(∂βxf, f), ∂βxh2
)
L2
xL

2
v

.
∫
T3

(
‖∇3

xf‖L2
v
‖f2‖H1

v,∗
‖∇3

xh2‖H1
v,∗

+ ‖∇3
xf‖L2

v
‖f1‖L2

v
‖∇3

xh2‖H1
v,∗

)
. ‖∇3

xf‖L2
xL

2
v
‖f2‖H2

xH
1
v,∗
‖∇3

xh2‖L2
xH

1
v,∗

+ ‖∇3
xf‖L2

xL
2
v
‖f1‖H2

xL
2
v
‖∇3

xh2‖L2
xH

1
v,∗

. E(f){C(f) +D(f)}D(h).
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Regarding estimate ( 23 ): Using ( 22 ), we have

(Γ(f, f), h)H3
xL

2
v
. ‖f‖H3

xL
2
v
‖f‖H3

xH
1
v,∗
‖h‖H3

xH
1
v,∗
,

using now (8 ), we obtain for ‖h‖H3
xH

1
v,∗
≤ 1,

‖Γ(f, f)‖H3
x(H1

v,∗)′ . ‖f‖H3
xL

2
v
‖f‖H3

xH
1
v,∗
.

2.2 Linear problem

We consider now the linear Cauchy problem{
∂tg + 1

ε
v · ∇xg + 1

ε2Lg = 1
ε
Γ(f, f)

g|t=0 = g0 ∈ H3
xL

2
v

(24)

where f is a given function such that

sup
0≤t≤T

E2(f(t)) +
∫ T

0
D2(f(t))dt <∞ (25)

for some T > 0 and verifies ∫
T3

Π0f dx = 0. (26)

We study the existence of a solution to the equation ( 24 ) in the space L∞([0, T ];H3
xL

2
v)∩

L2([0, T ];H3
xH

1
v,∗).

Remark 2.4. We note that by using ( 23 ), ( 25 ) and ( 26 ), we obtain that Γ(f, f) ∈
L2([0, T ];H3

x(H1
v,∗)′).

Definition 2.5. We call weak solution of ( 24 ) any function g ∈ L2([0, T ];H3
xL

2
v)

satisfying∫ T

0
(g,Qφ)H3

xL
2
v

dt− (g0, φ(0))H3
xL

2
v

=
∫ T

0

〈1
ε

Γ(f, f), φ
〉
H3
x(H1

v,∗)′,H3
xH

1
v,∗

dt (27)

for all φ ∈ C∞c ([0, T [×T3
x × R3

v), where Q is defined in ( 142 ) in Appendix A.

Proposition 2.6. Let g0 ∈ H3
xL

2
v, and f satisfy ( 25 ) and (26 ). Then the Cauchy

problem (24 ) admits a weak solution

g ∈ L∞([0, T ];H3
xL

2
v) ∩ L2([0, T ];H3

xH
1
v,∗)

which satisfies

sup
0≤t≤T

E2(g(t)) + Cγ
ε2

∫ T

0
D2(g(t))dt ≤ 4C2

Cγ
sup

0≤t≤T
E2(f)

{
sup

0≤t≤T
E2(f) +

∫ T

0
D2(f)dt

}
+ 2E2(g0) (28)

for some T > 0, where C,Cγ are independent of 0 < ε ≤ 1.
15



Proof. We will show the existence of a solution to the Cauchy problem (24 ) by using
Proposition A.1 in Appendix A. By applying Proposition A.1 with Uε = 1

ε
Γ(f, f) (we

have from Remark 2.4 1
ε
Γ(f, f) ∈ L2([0, T ];H3

x(H1
v,∗)′) for ε a fixed parameter, then

there exists a solution g ∈ L2([0, T ];H3
xH

1
v,∗) such that for any φ ∈ C∞c ([0, T [×T3

x×R3
v)∫ T

0
(g,Qφ)H3

xL
2
v

dt =
∫ T

0

〈1
ε

Γ(f, f), φ
〉
H3
x(H1

v,∗)′,H3
xH

1
v,∗

dt+ (g0, φ(0))H3
xL

2
v
, (29)

where Q is defined in ( 142 ). Then, g ∈ L2([0, T ];H3
xH

1
v,∗) is a weak solution of the

Cauchy problem (24 ). Now, we will show that the weak solution g satisfies ( 28 ). We
only sketch the proof which could be done using mollifiers of g and supposing therefore
∂tg, v · ∇xg and Lg are in L2([0, T ];H3

xL
2
v) and that g and its derivatives in x have

traces in times. For elements of proof see [9, Appendix A], [16] and [20]. We define
the operator G by

Gg := ∂tg + 1
ε
v · ∇xg + 1

ε2Lg = 1
ε

Γ(f, f), (30)

we also suppose Gg ∈ L2([0, T ];H3
xL

2
v). We have g ∈ L2([0, T ];H3

xL
2
v), then

(Gg, g)L2([0,T ];H3
xL

2
v) = 1

ε
(Γ(f, f), g)L2([0,T ];H3

xL
2
v) .

Using ( 30 ) and the fact that v · ∇x is skew-adjoint, we have

(Gg, g)H3
xL

2
v

= (∂tg, g)H3
xL

2
v

+ 1
ε

(v · ∇xg, g)H3
xL

2
v

+ 1
ε2 (Lg, g)H3

xL
2
v

= 1
2

d
dt‖g(t)‖2

H3
xL

2
v

+ 1
ε2 (Lg, g)H3

xL
2
v
.

(31)

Returning to Theorem 1.2 in [28], we have the following estimate:

(Lf, f)L2
v
≥ Cγ‖f‖2

H1
v,∗
, ∀f ∈ N(L)⊥, (32)

where Cγ > 0. Then,

1
ε2 (Lg, g)H3

xL
2
v
≥ Cγ

ε2 D
2(g). (33)

From the above, we get for t ∈]0, T [,∫ t

0
(Gg, g)H3

xL
2
v

ds ≥ 1
2‖g(t)‖2

H3
xL

2
v
− 1

2‖g(0)‖2
H3
xL

2
v

+ Cγ
ε2

∫ t

0
D2(g)ds.

Using Lemma 2.3 and the fact that C(f) ≤ E(f), we have

1
2‖g(t)‖2

H3
xL

2
v

+ Cγ
ε2

∫ t

0
D2(g)ds

≤ C

ε

∫ t

0
E(f){E(f) +D(f)}D(g)ds+ 1

2E
2(g0)

≤ C

ε

∫ t

0
{E2(f) + E(f)D(f)}D(g)ds+ 1

2E
2(g0)

≤ C2

Cγ

∫ t

0
E2(f){E2(f) +D2(f)}ds+ Cγ

2ε2

∫ t

0
D2(g)ds+ 1

2E
2(g0).
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Thus, we get

E2(g(t)) + Cγ
ε2

∫ t

0
D2(g(t))ds ≤ 2C2

Cγ

∫ T

0
E2(f){E2(f) +D2(f)}ds+ E2(g0).

This implies that for T ≤ 1

sup
0≤t≤T

E2(g(t)) + Cγ
ε2

∫ T

0
D2(g(t))dt ≤ 4C2

Cγ
sup

0≤t≤T
E2(f)

{
sup

0≤t≤T
E2(f) +

∫ T

0
D2(f)dt

}
+ 2E2(g0).

Finally, ( 28 ) and ( 29 ) show that g ∈ L∞([0, T ];H3
xL

2
v) ∩ L2([0, T ];H3

xH
1
v,∗) is a weak

solution of the Cauchy problem (24 ).

2.3 Local existence for nonlinear problem.

We consider now the following iteration{
∂tg

n+1 + 1
ε
v · ∇xg

n+1 + 1
ε2Lgn+1 = 1

ε
Γ(gn, gn)

gn+1
|t=0 = g0,

(34)

with g0 = 0.

Proposition 2.7. There exists 0 < δ0 ≤ 1, 0 < T ≤ 1, such that for any 0 < ε ≤ 1,
g0 ∈ H3

xL
2
v with

‖g0‖H3
xL

2
v
≤ δ0

then the iteration problem (34 ) admits a sequence of solutions {gn}n≥1 satisfying

sup
0≤t≤T

E2(gn) + Cγ
ε2

∫ T

0
D2(gn)dt ≤ 4δ2

0. (35)

Proof. For the linear Cauchy problem (34 ), given gn satisfying ( 35 ), the existence
of gn+1 is obtained by the Proposition 2.6 . So that it is enough to prove ( 35 ) by
induction. Using estimate ( 28 ) with gn = f and gn+1 = g, we obtain

sup
0≤t≤T

E2(gn+1) + Cγ
ε2

∫ T

0
D2(gn+1)dt ≤ 4C2

Cγ
sup

0≤t≤T
E2(gn){ sup

0≤t≤T
E2(gn) +

∫ T

0
D2(gn)dt}

+ 2E2(g0).

Then, using ( 35 ), we obtain

sup
0≤t≤T

E2(gn+1) + Cγ
ε2

∫ T

0
D2(gn+1)dt ≤ δ2

0

(
2 + 64δ2

0
C2

Cγ

)
.

We complete the proof of the Proposition by choosing δ0 such that

2 + 64δ2
0
C2

Cγ
≤ 4.
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Theorem 2.8. For T > 0, such that for any 0 < ε < 1, gε,0 ∈ H3
xL

2
v with

‖gε,0‖H3
xL

2
v
≤ δ0,

then the Cauchy problem (3 ) admits a unique solution g ∈ L∞([0, T ];H3
xL

2
v) satisfying

sup
t∈[0,T ]

E2(gε) + Cγ
ε2

∫ T

0
D2(gε)dt ≤ 4δ2

0. (36)

Proof. We will show that {gn} defined in Proposition 2.7 is a Cauchy sequence in
L∞([0, T ];L2(T3

x × R3
v)). We set wn = gn+1 − gn and deduce from (34 ),{

∂tw
n + 1

ε
v · ∇xw

n + 1
ε2Lwn = 1

ε
[Γ(gn, gn)− Γ(gn−1, gn−1)]

wn|t=0 = 0. (37)

Using the fact that, for any h ∈ L2(
Γ(gn, gn)− Γ(gn−1, gn−1),Π0h

)
L2
v

= 0,

Γ(gn, gn)− Γ(gn−1, gn−1) = Γ(gn, gn − gn−1) + Γ(gn, gn−1)− Γ(gn−1, gn−1)
= Γ(gn, wn−1) + Γ(wn−1, gn−1),

we obtain(
Γ(gn, gn)− Γ(gn−1, gn−1), wn

)
L2
x,v

=
(
Γ(gn, wn−1) + Γ(wn−1, gn−1), wn2

)
L2
x,v

,

where wn2 = (I − Π0)wn. Using Lemma 2.2 , we have
1
ε

∣∣∣∣(Γ(gn, wn−1) + Γ(wn−1, gn−1), wn2
)
L2
x,v

∣∣∣∣ ≤ C

ε
E(gn)

(
‖wn−1

1 ‖L2
x,v

+ ‖wn−1
2 ‖χ0

)
‖wn2‖χ0

+ C

ε
‖wn−1‖L2

x,v

(
‖gn−1

1 ‖H3
xL

2
v

+D(gn−1)
)
‖wn2‖χ0

≤ CδE2(gn)
(
‖wn−1

1 ‖2
L2
x,v

+ ‖wn−1
2 ‖2

χ0

)
+ Cδ‖wn−1‖2

L2
x,v

(
‖gn−1

1 ‖2
H3
xL

2
v

+D2(gn−1)
)

+ δ

ε2‖w
n
2‖2

χ0 .

Thus, fix a small δ > 0, we get
1
2

d
dt‖w

n‖2
L2
x,v

+ Cγ
2ε2‖w

n
2‖2

χ0 ≤ CδE2(gn)
(
‖wn−1

1 ‖2
L2
x,v

+ ‖wn−1
2 ‖2

χ0

)
+ Cδ‖wn−1‖2

L2
x,v

(
‖gn−1

1 ‖2
H3
xL

2
v

+D2(gn−1)
)
.

Using the fact that

‖wn−1
1 ‖2

L2
x,v

= ‖Π0w
n−1‖2

L2
x,v
≤ C‖wn−1‖2

L2
x,v
, ‖gn−1

1 ‖2
H3
xL

2
v
≤ CE2(gn−1),

we obtain t ∈]0, T [,

‖wn‖2
L2
x,v

+ 1
ε2

∫ t

0
‖wn2‖2

χ0 ds

≤ C sup
t∈[0,T ]

E2(gn)
(
T‖wn−1‖2

L∞([0,T ];L2
x,v) +

∫ T

0
‖wn−1

2 ‖2
χ0 ds

)

+ C‖wn−1‖2
L∞([0,T ];L2

x,v)

(
T sup
t∈[0,T ]

E2(gn−1) +
∫ T

0
D2(gn−1) ds

)
.

18



Using now (35 ) with δ0 > 0 small enough, we get that for any 0 < ε ≤ 1

‖wn‖2
L∞([0,T ];L2

x,v) + 1
ε2

∫ T

0
‖wn2‖2

χ0 dt ≤ 1
2

(
‖wn−1‖2

L∞([0,T ];L2
x,v) + 1

ε2

∫ T

0
‖wn−1

2 ‖2
χ0 dt

)
.

(38)

Thus we have proved that gn is a Cauchy sequence in L∞([0, T ];L2
x,v). Combining with

the estimate ( 35 ), the limit g is in L∞([0, T ];H3
xL

2
v). If we note

F(gn) = sup
0≤t≤T

E2(gn) + Cγ
ε2

∫ T

0
D2(gn)dt,

then from weak lower semicontinuity, we have

F(g) ≤ lim inf
n→∞

F(gn) ≤ 4δ2
0.

Then we obtain the estimate ( 36 ). Now, we will show the uniqueness of the local
solution. Let g(1)

ε and g(2)
ε be two solutions to ( 3 ) with same initial data g(1)

ε,0 = g
(2)
ε,0

that satisfy ( 36 ). The difference hε = g(1)
ε − g(2)

ε satisfies{
∂thε + 1

ε
v · ∇xhε + 1

ε2Lhε = 1
ε
Γ(g(2)

ε ,hε) + 1
ε
Γ(hε, g(1)

ε )
hε|t=0 = 0, (39)

using the same argument in Theorem 3.10 in [8], we can show that hε = 0, hence the
uniqueness of the weak solution.

3 Uniform estimate and global solutions

In this section, we establish microscopic and macroscopic energy estimates for the
Landau equation. These estimates with Theorem 2.8 allow to prove the existence of
global solutions in the space L∞([0,∞);H3

xL
2
v).

3.1 Microscopic energy estimate.

Proposition 3.1. Let g ∈ L∞([0, T ];H3
xL

2
v) be a solution of the equation ( 3 ) con-

structed in Theorem 2.8 , then there exists a constant C independent of ε such that
the following estimate holds:

d
dtE

2 + Cγ
ε2 D

2 ≤ C
{1
ε
ED2 + (EC)2

}
, (40)

where for simplicity, we note E = E(g), D = D(g) and C = C(g).

Proof. We apply ∂αx to ( 3 ) and take the L2(T3 × R3) inner product with ∂αx g. Since
the innerproduct including v · ∇xg vanishes by integration by parts, we get

1
2

d
dtE

2 + 1
ε2

∑
|α|≤3

(L∂αx g, ∂αx g)L2
x,v

= 1
ε

∑
|α|≤3

(∂αxΓ(g, g), ∂αx g)L2
x,v
.
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Returning to Theorem 1.2 in [28], we have∑
|α|≤3

(L∂αx g, ∂αx g)L2
x,v
≥ Cγ‖g2‖2

χ3(T3
x×R3

v) = CγD2.

Since
∫
T3

Π0g dx = 0, Lemma 2.3 implies that,
∣∣∣∣∣∣1ε

∑
|α|≤3

(∂αxΓ(g, g), ∂αx g)L2
x,v

∣∣∣∣∣∣ ≤ C1

ε
E(CD +D2) ≤ C1

ε
ED2 + C1

2η (EC)2 + η

2
C1

ε2 D
2.

Taking η = Cγ
C1

, we have

1
2

d
dtE

2 + Cγ
2

1
ε2D

2 ≤ C1

ε
ED2 + C2

1
2Cγ

(EC)2,

then
d
dtE

2 + Cγ
ε2 D

2 ≤ C
{1
ε
ED2 + (EC)2

}
.

3.2 Macroscopic energy estimates

We study now the energy estimate for the macroscopic part Π0g where g is a solu-
tion of the equation ( 3 ). First we decompose the equation ( 3 ) into microscopic and
macroscopic parts, i.e. rewrite it into the following equation

∂t{a+ bv + c|v|2}µ1/2 + 1
ε
v · ∇x{a+ bv + c|v|2}µ1/2 = −∂tg2 −

1
ε
v · ∇xg2 −

1
ε2Lg2

+ 1
ε

Γ(g, g).
(41)

Lemma 3.2. Let ∂α = ∂αx , α ∈ N3, |α| ≤ 2. If g is a solution of the Landau equation
( 3 ), and A = (a, b, c) defined in ( 10 ), then

ε‖∂t∂αA‖L2
x
. C +D, (42)

where E = E(g) and D = D(g).

Proof. Let g be a solution to solution of the scaled Landau equation ( 3 ). The second
set of equations we consider are the local conservation laws satisfied by (a, b, c). To
derive these we multiply ( 41 ) by the collision invariants that are the elements of N (L)
in ( 5 ) and integrate only in the velocity variables to obtain

∂t(a+ 3c) + 1
ε
∇x · b = 0, (43)

∂tb+ 1
ε

(∇xa+ 5∇xc) = −1
ε

(v · ∇xg2, v
√
µ)L2

v
, (44)

∂t(3a+ 15c) + 5
ε
∇x · b = −1

ε

(
v · ∇xg2, |v|2

√
µ
)
L2
v

. (45)
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Taking linear combinations of the first and third local conservation laws results in

∂ta = 1
2ε
(
v · ∇xg2, |v|2

√
µ
)
L2
v

,

∂tb+ 1
ε

(∇xa+ 5∇xc) = −1
ε

(v · ∇xg2, v
√
µ)L2

v
,

∂tc+ 1
3ε∇x · b = − 1

6ε
(
v · ∇xg2, |v|2

√
µ
)
L2
v

.

These are the local conservation laws that we will study below. From the first equation,
we have

‖∂t∂αa‖L2
x
.

1
ε
‖∇x∂

αg2‖L2
xL

2
v
, (46)

the second equation gives that

‖∂t∂αb‖L2
x
.

1
ε
‖∇x∂

αa‖L2
x

+ 1
ε
‖∇x∂

αc‖L2
x

+ 1
ε
‖∇x∂

αg2‖L2
xL

2
v

.
1
ε
‖∇x∂

αA‖L2
x

+ 1
ε
‖∇x∂

αg2‖L2
xL

2
v

and the last equation implies that

‖∂t∂αc‖L2
x
.

1
ε
‖∇x∂

αb‖L2
x

+ 1
ε
‖∇x∂

αg2‖L2
xL

2
v

.
1
ε
‖∇x∂

αA‖L2
x

+ 1
ε
‖∇x∂

αg2‖L2
xL

2
v
.

Then, we obtain

ε‖∂t∂αA‖L2
x
. ‖∇x∂

αA‖L2
x

+ ‖∇x∂
αg2‖L2

xL
2
v

. C +D.

We start with the macroscopic energy estimate where we use the so-called 13-moments.
The set of 13-moments is 13-dimensional subspace of L2(R3

v) and given by

{ej}13
j=1 =

{√
µ, vi
√
µ, vivj

√
µ, vi|v|2

√
µ
}
.

It is well-known [16] that the macroscopic component g1 = Π0g ∼ A = (a, b, c),
satisfies the following set of equations

vi|v|2µ1/2 : 1
ε
∇xc = −∂trc + 1

ε
mc + 1

ε2 `c + 1
ε
hc,

v2
i µ

1/2 : ∂tc+ 1
ε
∂ibi = −∂tri + 1

ε
mi + 1

ε2 `i + 1
ε
hi,

vivjµ
1/2 : 1

ε
∂ibj + 1

ε
∂jbi = −∂trij + 1

ε
mij + 1

ε2 `ij + 1
ε
hij, i 6= j,

viµ
1/2 : ∂tbi + 1

ε
∂ia = −∂trbi + 1

ε
mbi + 1

ε2 `bi + 1
ε
hbi,

µ1/2 : ∂ta = −∂tra + 1
ε
ma + 1

ε2 `a + 1
ε
ha

(47)

where
r = (g2, e)L2

v
, m = (−v · ∇xg2, e)L2

v
, h = (Γ(g, g), e)L2

v
,

` = − (Lg2, e)L2
v

(48)

stand for rc, · · ·, ha, while

e ∈ Span{vi|v|2µ1/2, v2
i µ

1/2, vivjµ
1/2, viµ

1/2, µ1/2}, for i, j = 1, 2, 3.
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Lemma 3.3. Let r,m, `, h be the ones defined by ( 48 ), ∂α = ∂αx , ∂i = ∂xi α ∈ N3,
|α| ≤ 2. Then, one has

‖∂i∂αr‖L2
x
. min{‖g2‖H3

xL
2
v
,D}, (49)

‖∂αm‖L2
x
. min{‖g2‖H3

xL
2
v
,D}, (50)

‖∂α`‖L2
x
. min{‖g2‖H2

xL
2
v
, ‖g2‖χ2(T3

x×R3
v)}, (51)

‖∂αh‖L2
x
. ‖g‖H2

xL
2
v
(‖g2‖χ2(T3

x×R3
v) + ‖∇xΠ0g‖H1

xL
2
v
). (52)

Proof. We have

‖∂i∂αr‖L2
x

= ‖ (∂i∂αg2, e)L2
v
‖L2

x
. ‖∂i∂αg2‖L2

xL
2
v
‖e‖L2

v
. ‖g2‖H3

xL
2
v
,

‖∂α`‖L2
x

= ‖ (∂αg2,Le)L2
v
‖L2

x
. ‖∂αg2‖L2

xL
2
v
‖Le‖L2

v
. ‖g2‖H2

xL
2
v
,

‖∂αm‖L2
x

= ‖ (∇x∂
αg2, ve)L2

v
‖L2

x
. ‖∇x∂

αg2‖L2
xL

2
v
‖ve‖L2

v
. ‖g2‖H3

xL
2
v
.

The fact that for f ∈ H1
v,∗ and γ ∈ [−2, 1],

‖f‖L2
v(〈v〉1+γ/2) ≤ ‖f‖H1

v,∗
,

implies ( 49 ), ( 50 ) and ( 51 ). For the estimate ( 52 ), we have

∂αh = (∂αΓ(g, g), e)L2
v
,

then using the same method of proof of Lemma 2.3 , we get ( 52 ).

Lemma 3.4. Let |α| ≤ 2, and let g be a solution of the scaled Landau equation
( 3 ). Then there exists a positive constant C̃ independent of ε, such that the following
estimate holds:

ε
d
dt

∑
|α|≤2

(∂αr,∇x∂
α(a, b, c))L2

x
+ (∂αb,∇x∂

αa)L2
x

+ C2 ≤ C̃
{ 1
ε2D

2 + E(C2 +D2)
}
.

(53)

Proof. Recall that

C2 =
∑
|α|≤2
‖∇x∂

αA‖2
L2
x

=
∑
|α|≤2
‖∇x∂

αa‖2
L2
x

+ ‖∇x∂
αb‖2

L2
x

+ ‖∇x∂
αc‖2

L2
x
.

(a) Estimate of ∇x∂
αa. From the macroscopic equations ( 47 ),

‖∇x∂
αa‖2

L2
x

= (∇x∂
αa,∇x∂

αa)L2
x

=
(
∂α
(
− ε∂tb− ε∂tr +m+ 1

ε
`+ h

)
,∇x∂

αa
)
L2
x

. εR1 + | (∂αm,∇x∂
αa)L2

x
|+ 1

ε
| (∂α`,∇x∂

αa)L2
x
|+ | (∂αh,∇x∂

αa)L2
x
|.
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Here,

εR1 = −ε (∂α∂tb+ ∂α∂tr,∇x∂
αa)L2

x

= −ε d
dt (∂α(b+ r),∇x∂

αa)L2
x
− ε (∇x∂

α(b+ r), ∂t∂αa)L2
x
.

Note that, from (46 ) and ( 49 ) ε (∇x∂
αr, ∂t∂

αa)L2
x
. D2, and

ε (∇x∂
αb, ∂t∂

αa)L2
x
. η‖∇x∂

αb‖2
L2
x

+ 1
2ηD

2.

Furthermore, Lemma 3.3 implies that

| (∂αm,∇x∂
αa)L2

x
| . D‖∇x∂

αa‖L2
x
. D‖∇x∂

αA‖H2
x
. DC,

1
ε
| (∂α`,∇x∂

αa)L2
x
| . 1

ε
‖g2‖χ2(T3

x×R3
v)‖∇x∂

αA‖H2
x
.

1
ε
DC,

| (∂αh,∇x∂
αa)L2

x
| . E(C +D)C.

Hence, for some small 0 < η < 1

ε
d
dt (∂α(b+ r),∇x∂

αa)L2
x

+ ‖∇x∂
αa‖2

L2
x
. η‖∇x∂

αb‖2
L2
x

+ 1
2ηD

2 +DC

+ 1
ε
DC + E(C +D)C

. ηC2 + 1
η

{ 1
ε2D

2 + E(C2 +D2)
}
.

(54)

(b) Estimate of ∇x∂
αb. Recall b = (b1, b2, b3). From the macroscopic equations ( 47 ),

∆x∂
αb+ ∂2

i ∂
αbi = ∂α

[∑
j 6=i

∂j(∂jbi + ∂ibj) + ∂i(2∂ibi −
∑
j 6=i

∂jbj)
]

= ∂α
[∑
j 6=i

∂j

(
− ε∂trij +mij + 1

ε
`ij + hij

)

+ ∂i

(
− 2ε∂tri + 2mi + 2

ε
`i + 2hi +

∑
j 6=i

ε∂trj −mj −
1
ε
`j − hj

)]

= ∂α
[
∂i

(
− ε∂tr +m+ 1

ε
`+ h

)]
where r, `, h stand for linear combinations of ri, `i, hi and rij, `ij, hij for i, j = 1, 2, 3
respectively. Then

‖∇x∂
αbi‖2

L2
x

+ ‖∂i∂αbi‖2
L2
x

= −
(
∆x∂

αb+ ∂2
i ∂

αbi, ∂
αbi
)
L2
x

= εR2 +R3 +R4 +R5,

where

εR2 = ε (∂i∂α∂tr, ∂αbi)L2
x

= −ε d
dt (∂αr, ∂i∂αbi)L2

x
+ ε (∂αr, ∂t∂i∂αbi)L2

x
,
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moreover, we have from (42 ) and ( 49 ) that

ε| (∂i∂αr, ∂t∂αbi)L2
x
| . ηC2 + 1

η
D2.

Furthermore, Lemma 3.3 implies that

| (∂αm, ∂i∂αbi)L2
x
| . 1

η
‖∂αm‖2

L2
x

+ η‖∂i∂αbi‖2
L2
x

.
1
η
‖∂αm‖2

L2
x

+ η‖∇x∂
αbi‖2

L2
x

.
1
η
D2 + η‖∇x∂

αbi‖2
L2
x
,

1
ε
| (∂α`, ∂i∂αbi)L2

x
| . 1

ε
‖∂α`‖L2

x
‖∇x∂

αA‖H2
x
.

1
ε
DC,

| (∂αh, ∂i∂αbi)L2
x
| . E(C +D)C
. E(C2 +D2).

Hence, for some small 0 < η < 1

ε
d
dt (∂αr, ∂i∂αbi)L2

x
+ ‖∇x∂

αbi‖2
L2
x
. ηC2 + 1

η

{ 1
ε2D

2 + E(C2 +D2)
}
,

summing up for 1 ≤ i ≤ 3, we obtain that

ε
d
dt (∂αr,∇x∂

αb)L2
x

+ ‖∇x∂
αb‖2

L2
x
. ηC2 + 1

η

{ 1
ε2D

2 + E(C2 +D2)
}
. (55)

(c) Estimate of ∇x∂
αc. From the macroscopic equations ( 47 ),

‖∇x∂
αc‖2

L2
x

= (∇x∂
αc,∇x∂

αc)L2
x

=
(
∂α(−ε∂tr +m+ 1

ε
`+ h),∇x∂

αc
)
L2
x

. εR6 + ηC2 + 1
η
D2 + 1

η

1
ε2D

2 + E(C2 +D2),

where

εR6 = −ε (∂α∂tr,∇x∂
αc)L2

x

= −ε d
dt (∂αr,∇x∂

αc)L2
x
− ε (∇x∂

αr, ∂t∂
αc)L2

x

. −ε d
dt (∂αr,∇x∂

αc)L2
x

+ ηC2 + 2
η

1
ε2D

2.

Thus

ε
d
dt (∂αr,∇x∂

αc)L2
x

+ ‖∇x∂
αc‖2

L2
x
. ηC2 + 1

η

{ 1
ε2D

2 + E(C2 +D2)
}
. (56)

By combining the above estimates ( 54 ), ( 55 ), ( 56 ) and taking η > 0 sufficiently
small, then we get the estimate ( 53 ) uniformly for 0 < ε < 1 , thus complete the proof
of Lemma 3.4 .
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Let

E :=
E2 + η1ε

∑
|α|≤2

(∂αr,∇x∂
α(a, b, c))L2

x
+ (∂αb,∇x∂

αa)L2
x


1/2

, (57)

with η1 > 0 to be chosen later.

Theorem 3.5 (Global Energy Estimate). If g is a solution of the scaled Landau
equation ( 3 ), then there exist constants c0, c3 > 0 independents of ε such that if E ≤ 1,
then

d
dtE

2 + c3

( 1
ε2D

2 + C2
)
≤ c0E

{1
ε
D2 + C2

}
(58)

holds as far as g exists.

Proof. Based on the microscopic estimate ( 40 ) and the macroscopic estimate ( 53 ),
we can derive the uniform energy estimate. Indeed, estimates ( 40 ) and ( 53 ), imply
that

d
dt

E2 + η1ε

∑
|α|≤2

(∂αr,∇x∂
α(a, b, c))L2

x
+ (∂αb,∇x∂

αa)L2
x


+ Cγ

ε2 D
2 + η1C2

≤ C
(1
ε
ED2 + (EC)2

)
+ η1C̃

ε2 D
2 + η1C̃E(C2 +D2).

We first choose η1 small enough so that Cγ − η1C̃ > 0, it gives that for 0 < ε < 1

d
dt

E2 + η1ε
∑
|α|≤2

(∂αr,∇x∂
α(a, b, c))L2

x
+ (∂αb,∇x∂

αa)L2
x

+ (Cγ − η1C̃) 1
ε2D

2 + η1C2

≤ (C + η1C̃)1
ε
ED2 + (CE + η1C̃)EC2.

(59)

Using ( 49 ), we have∣∣∣ ∑
|α|≤2

(∂αr,∇x∂
α(a, b, c))L2

x
+ (∂αb,∇x∂

αa)L2
x

∣∣∣ . ‖∇x∂
αr‖2

L2
x

+ ‖A‖2
H3
x

. ‖g2‖2
H3
xL

2
v

+ ‖A‖2
H3
x
. E2.

Thus, we can choose η1 > 0 small such that, for any 0 < ε < 1

c1 E ≤ E ≤ c2 E , (60)

for some positive constants c1 and c2. Finally, using ( 59 ) and ( 60 ) we have

d
dtE

2 + (Cγ − η1C̃) 1
ε2D

2 + η1C2 ≤
(
C + η1C̃

c1

)1
ε
ED2 +

(
C

c2
1

+ η1C̃

c1

)
EC2,

then there exist constants c0, c3 > 0 independent of ε such that

d
dtE

2 + c3

( 1
ε2D

2 + C2
)
≤ c0E

{1
ε
D2 + C2

}
.
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We recall that δ0, c2, c0, c3 are defined respectively in Proposition 2.7 and Theorem
3.5 .
Lemma 3.6. If we choose the initial data gε,0 such that

E(0) = ‖gε,0‖H3
xL

2
v
≤M,

where M is defined as

M = min
{
δ0,

1
4c2

,
c3

4c0c2

}
, (61)

then,

E2(T ) + c3

2

∫ T

0

{ 1
ε2D

2 + C2
}

dt ≤ E2(0), (62)

for some T > 0.

Proof. Note that E(0) ≤ M ≤ δ0, then from Theorem 2.8 there exists a solution
gε ∈ L∞([0, T ];H3

xL
2
v) for some T > 0, and from the local estimate ( 36 ), we have

E(t) ≤ 2M for 0 < t < T . Note that on [0, T ], E(t) ≤ c2E(t) ≤ 2c2M < 1. Then the
global energy estimate ( 58 ) implies that

d
dtE

2 + (c3 − 2c0c2M)
{ 1
ε2D

2 + C2
}
≤ 0.

From the choice of M , c3 − 2c0c2M ≥
c3

2 . Thus

E2(T ) + c3

2

∫ T

0

{ 1
ε2D

2 + C2
}

dt ≤ E2(0).

Proof of Theorem 1.1 . Now, we are ready to prove Theorem 1.1 by the usual
continuation argument. We set M0 := c1

c2
M , where M defined in ( 61 ). Let

E(0) = ‖gε,0‖H3
xL

2
v
≤M0,

which implies that E(0) ≤ M ≤ δ0. Then from Theorem 2.8 there exists a solution
g on [0, T ] for some T > 0. Furthermore, using ( 63 ), we have E(T ) ≤ c2M0 then
E(T ) ≤ M ≤ δ0. Using again Theorem 2.8 with initial data E(T ), we obtain the
existence of the solution on [T, 2T ] and so on. Finally, the local solution constructed
in Theorem 2.8 can be extended globally. Now, we will show the estimate ( 12 ). Using
( 63 ) and the fact that we can iterate the process in [T, 2T ], [2T, 3T ] . . ., we get for all
t ∈ R+

E2(t) + c3

2

∫ t

0

{ 1
ε2D

2 + C2
}

ds ≤ E2(0). (63)

We get therefore

sup
t≥0

E2(t) + c3

2

∫ ∞
0

{ 1
ε2D

2 + C2
}

ds ≤ 2E2(0). (64)

Next, using ( 60 ) we get

sup
t≥0
E2(t) + c3

2c2
1

∫ ∞
0

{ 1
ε2D

2 + C2
}

ds ≤ 2c2
2

c2
1
E2(0). (65)

Finally, we can choose C0 = c3

2c2
1
and C ′0 = 2c2

2
c2

1
, hence the estimate ( 12 ) is true.
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4 Limit to fluid incompressible Navier-Stokes-Fourier

In this section, we study the convergence of the perturbed Landau equation ( 3 ) to the
fluid incompressible Navier-Stokes-Fourier system (13 ) as ε −→ 0. We will present
a well explained and detailed proof. The approach is reminiscent of the one in [20]
(see also [1] for a related problem) but here, we aim to provide a fully rigorous proof.
Note that most of the arguments have already been used in [13] but our framework of
strong solution allows us to develop a simpler proof than the one in [13].
In the rest of the paper, our convergences hold up to extracting subsequences. Note
that for a vector function w = w(x) ∈ R3, ∇xw is a matrix defined by (∂xjwi)1≤i,j≤3.
We also write (∇x·M)i = ∑

j ∂xjMij(x), ifM is a matrix defined byM = (Mij(x))1≤i,j≤3.

4.1 Local conservation laws

We first introduce the following fluid variables

ρε = (gε,
√
µ)L2

v
, uε = (gε, v

√
µ)L2

v
, θε =

(
gε,
( |v|2

3 − 1
)√

µ

)
L2
v

. (66)

Then we can derive the following local conservation laws from the solutions gε con-
structed in Theorem 1.1 .

Lemma 4.1. Assume that gε is the solutions to the perturbed Landau equation ( 3 )
constructed in Theorem 1.1 . Then the following local conservation laws hold

∂tρε + 1
ε
∇x · uε = 0,

∂tuε + 1
ε
∇x(ρε + θε) + 1

ε
∇x ·

(
Â(v)√µ,L(gε)

)
L2
v

= 0,
∂tθε + 2

3
1
ε
∇x · uε + 2

3
1
ε
∇x ·

(
B̂(v)√µ,L(gε)

)
L2
v

= 0.
(67)

Proof. Step 1. Conservation law of ρε. We multiply the first gε-equation of ( 3 ) by√
µ ∈ N (L) and integrate over v ∈ R3. Then we obtain

∂tρε + 1
ε

(v · ∇xgε,
√
µ)L2

v︸ ︷︷ ︸
I1

+ 1
ε2 (Lgε,

√
µ)L2

v︸ ︷︷ ︸
I2=0

= 1
ε2 (Γ(gε, gε),

√
µ)L2

v︸ ︷︷ ︸
I3=0

. (68)

For the term I1, we have

I1 = 1
ε
∇x · (gε, v

√
µ)L2

v
= 1
ε
∇x · uε. (69)

Collecting the above relations, we deduce that

∂tρε + 1
ε
∇x · uε = 0, (70)

hence the first equation of ( 67 ) holds.
Step 2. Conservation law of uε. We multiply the first gε-equation of ( 3 ) by v√µ ∈
N (L) and integrate over v ∈ R3, we have

∂tuε + 1
ε

(v · ∇xgε, v
√
µ)L2

v︸ ︷︷ ︸
II1

+ 1
ε2 (Lgε, v

√
µ)L2

v︸ ︷︷ ︸
II2=0

= 1
ε2 (Γ(gε, gε), v

√
µ)L2

v︸ ︷︷ ︸
II3=0

. (71)
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For the term II1, we introduce the matrix A(v) := v ⊗ v − |v|2
3 I3. We have that

A
√
µ ∈ N⊥(L) and there exists Â(v) such that L(√µÂ) = √µA with Â√µ ∈ N⊥(L)

and I3 is the 3× 3 unitary matrix (see for exemple [13]). Then we can write that

II1 = 1
ε
∇x · (gε, v ⊗ v

√
µ)L2

v

= 1
ε
∇x ·

(
gε,
(
v ⊗ v − |v|

2

3 I3

)√
µ

)
L2
v

+ 1
ε
∇x ·

(
gε,
|v|2

3 I3
√
µ

)
L2
v

= 1
ε
∇x · (gε, A(v)√µ)L2

v
+ 1
ε
∇x

(
(gε,
√
µ)L2

v
+
(
gε, (
|v|2

3 − 1)√µ
)
L2
v

)

= 1
ε
∇x · (gε, A(v)√µ)L2

v
+ 1
ε
∇xθε + 1

ε
∇xρε.

(72)

Finally, using that L(√µÂ) = √µA and that L is self-adjoint in L2
v, we have

II1 = 1
ε
∇x ·

(
Â(v)√µ,L(gε)

)
L2
v

+ 1
ε
∇x(θε + ρε).

Collecting the previous calculations, we obtain

∂tuε + 1
ε
∇x(ρε + θε) + 1

ε
∇x ·

(
Â(v)√µ,L(gε)

)
L2
v

= 0, (73)

then the second equations of ( 67 ) holds.
Step 3. Conservation law of θε. We multiply the first gε-equation of ( 3 ) by

(
|v|2

3 −
1
)√

µ ∈ N (L) and integrate over v ∈ R3, we have

∂tθε + 1
ε

(
v · ∇xgε,

( |v|2
3 − 1

)√
µ

)
L2
v︸ ︷︷ ︸

III1

+ 1
ε2

(
Lgε,

( |v|2
3 − 1

)√
µ

)
L2
v︸ ︷︷ ︸

III2=0

= 1
ε2

(
Γ(gε, gε),

( |v|2
3 − 1

)√
µ

)
L2
v︸ ︷︷ ︸

III3=0

.

(74)

For the term III2, we introduce B(v) := v
(
|v|2

2 −
5
2

)
. We have that B√µ ∈ N⊥(L)

and there exists B̂(v) such that L(√µB̂) = √µB with B̂√µ ∈ N⊥(L). Then, we can
write

III2 = 1
ε
∇x ·

(
gε, v

( |v|2
3 − 1

)√
µ

)
L2
v

= 2
3

1
ε
∇x ·

(
gε, v

( |v|2
2 −

5
2

)√
µ

)
L2
v

+ 2
3

1
ε
∇x · (gε, v

√
µ)L2

v

= 2
3

1
ε
∇x · (gε, B(v)√µ)L2

v
+ 2

3
1
ε
∇x · uε

= 2
3

1
ε
∇x ·

(
B̂(v)√µ,L(gε)

)
L2
v

+ 2
3

1
ε
∇x · uε.

(75)

Collecting the above relations, we deduce that

∂tθε + 2
3

1
ε
∇x · uε + 2

3
1
ε
∇x ·

(
B̂(v)√µ,L(gε)

)
L2
v

= 0, (76)

hence the third equation of ( 67 ) holds.
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4.2 Limits from the global energy estimate

Based on Theorem 1.1 , the Cauchy problem (3 ) admits a global solution gε belonging
to L∞([0,∞);H3

xL
2
v) which is subject to the global energy estimate ( 12 ), namely, there

is a positive constant, independent of ε, such that

sup
t≥0
‖gε(t)‖2

H3
xL

2
v
≤ C (77)

and ∫ ∞
0
‖gε,2(t)‖2

χ3(T3
x×R3

v)dt ≤ Cε2. (78)

From the energy bound (77 ), there exists g ∈ L∞([0,∞);H3
xL

2
v), such that

gε ⇀ g as ε −→ 0 (79)

where the convergence is weak-? in L∞([0,∞);H3
xL

2
v) (the limits may hold for some

subsequence). From the energy dissipation bound ( 78 ), we have

{I − Π0}gε −→ 0 strongly in L2([0,∞);H3
xL

2
v) (80)

as ε −→ 0. We thereby deduce from combining the first convergence in ( 79 ) and ( 80 )
that

{I − Π0}g = 0. (81)

Indeed, we have {I − Π0}gε converges in the sense of distributions to {I − Π0}g as ε
tends to zero. By uniqueness of the limit, we obtain the proof. Then, it immediately
gives that there are (ρ, u, θ) ∈ L∞([0,∞);H3(T3

x)) such that

g = ρ(x)√µ+ u(x) · v√µ+ θ(x)
( |v|2

2 −
3
2

)√
µ. (82)

Via the definitions of ρε, uε and θε in ( 66 ) and the uniform energy bound (77 ), we
obtain

sup
t≥0

(
‖ρε‖2

H3(T3
x) + ‖uε‖2

H3(T3
x) + ‖θε‖2

H3(T3
x)

)
. sup

t≥0
‖gε‖2

H3
xL

2
v
≤ C. (83)

We thereby deduce the following convergences from the convergence of ( 79 ) and the
limit function g(t, x, v) given in ( 82 ) that

ρε = (gε,
√
µ)L2

v
−→ (g,√µ)L2

v
= ρ,

uε = (gε, v
√
µ)L2

v
−→ (g, v√µ)L2

v
= u,

θε =
(
gε,
( |v|2

3 − 1
)√

µ

)
L2
v

−→
(
g,
( |v|2

3 − 1
)√

µ

)
L2
v

= θ,

(84)

weakly-? in L∞([0,∞);H3(T3
x)).
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4.3 Convergences to limiting equations

In this subsection, we will derive the incompressible Navier-Stokes-Fourier system (13 )
from the conservation laws ( 67 ) in Lemma 4.1 and the convergences obtained in the
previous subsection.
Incompressibility and Boussinesq relation: From the first equation of ( 67 ) in
Lemma 4.1 and the energy uniform bound (77 ), it is easy to deduce

∇x · uε = −ε∂tρε −→ 0 (85)

in the sense of distributions as ε −→ 0. By using the convergence ( 84 ), we have ∇x ·uε
converges in the sense of distributions to ∇x · u as ε tends to zero. By uniqueness of
the limit, we obtain

∇x · u = 0. (86)

Via the second equation of ( 67 ), we have

∇x(ρε + θε) = −ε∂tuε −∇x ·
(
Â(v)√µ,L(gε)

)
L2
v

. (87)

Notice that

∇x ·
(
Â(v)√µ,L(gε)

)
L2
v

= ∇x · (A(v)√µ, {I − Π0}gε)L2
v

where the self-adjointness of L and the fact that A√µ ∈ N⊥(L) are utilized. Then
we derive from the Hölder inequality, and the uniform energy dissipation bound (78 )
that∫ ∞

0
‖∇x ·

(
Â(v)√µ,L(gε)

)
L2
v

‖2
H2
x
dt =

∫ ∞
0
‖ (A(v)√µ,∇x{I − Π0}gε)L2

v
‖2
H2
x
dt

.
∫ ∞

0
‖{I − Π0}gε‖2

H3
xL

2
v
dt

.
∫ ∞

0
D2(t)dt

≤ Cε2,

then, ∇x ·
(
Â(v)√µ,L(gε)

)
L2
v

−→ 0 strongly in L2([0,∞);H2(T3
x)). Consequently, it

is easy to deduce that

∇x(ρε + θε) −→ 0 (88)

in the sense of distributions as ε −→ 0. By using the convergence ( 84 ), we have
∇x(ρε + θε) converges in the sense of distributions to ∇x(ρ+ θ) as ε tends to zero. By
uniqueness of the limit, we obtain the Boussinesq relation

∇x(ρ+ θ) = 0. (89)

Now, we will show that Boussinesq relation can be strengthened. Using ( 4 ) and ( 66 ),
we have that ∫

T3
(ρε + θε)dx = 0.
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Furthermore, using also ( 84 ), we obtain∫
T3

(ρε + θε)dx −→
∫
T3

(ρ+ θ)dx in D′t,

from which we deduce that∫
T3

(ρ+ θ)dx = 0, for a.e. t > 0.

Finally ( 89 ) yields the strengthened form

ρ+ θ = 0. (90)

Convergence of 3
5θε −

2
5ρε: Before doing this, we introduce the following Aubin-

Lions-Simon Theorem, a fundamental result of compactness in the study of nonlinear
evolution problems, which can be found in Theorem II.5.16 in [5].

Lemma 4.2 (Aubin-Lions-Simon Theorem). Let B0 ⊂ B1 ⊂ B2 be three Banach
spaces. We assume that the embedding of B1 in B2 is continuous ans that the embedding
of B0 in B1 is compact. Let p, r be such that 1 ≤ p, r ≤ +∞. For T > 0, we define

Ep,r = {u ∈ Lp(0, T ;B0), ∂tu ∈ Lr(0, T ;B2)}.

1) If p < +∞, the embedding of Ep,r in Lp(0, T ;B1) is compact.

2) If p = +∞ and if r > 1, the embedding of Ep,r in C(0, T ;B1) is compact.

On the one hand, the third equation of ( 67 ) multiplied by 3
5 minus 2

5 times of the first
equation of ( 67 ) gives

∂t

(3
5θε −

2
5ρε

)
+ 2

5
1
ε
∇x ·

(
B̂(v)√µ,L(gε)

)
L2
v

= 0. (91)

We thus have that∥∥∥∥∂t(3
5θε −

2
5ρε

)∥∥∥∥
H2
x

=
∥∥∥∥2

5
1
ε
∇x · (B(v)√µ, {I − Π0}gε)L2

v

∥∥∥∥
H2
x

.
1
ε
‖B(v)√µ‖L2

v
‖{I − Π0}gε‖H3

xL
2
v

.
1
ε
‖{I − Π0}gε‖H3

xL
2
v

which immediately implies from the uniform energy dissipation bound (78 ) that∥∥∥∥∂t(3
5θε −

2
5ρε

)∥∥∥∥
L2(0,T ;H2

x)
.
(∫ ∞

0

1
ε2D

2(t)dt
)1/2
≤ C (92)

for any T > 0 and 0 < ε ≤ 1. On the other hand, we easily have from (83 ) that∥∥∥∥(3
5θε −

2
5ρε

)∥∥∥∥
L∞(0,T ;H3

x)
≤ C (93)

for all T > 0 and 0 < ε ≤ 1. One notices that

H3
x ↪→ H2

x ↪→ H2
x, (94)
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where the embedding of H3
x in H2

x is compact and the embedding of H2
x in H2

x

is naturally continuous. Then, from Aubin-Lions-Simon Theorem in Lemma 4.2 ,
the bounds ( 92 ), ( 93 ) and the embeddings ( 94 ), we deduce that there is a θ̃ ∈
C(R+;H2(T3

x)) ∩ L∞(R+;H3(T3
x)) such that(3

5θε −
2
5ρε

)
−→ θ̃

strongly in C(R+;H2(T3
x)) as ε −→ 0. On the other hand, we have that (3

5θε −
2
5ρε)

converges in the sense of distributions to (3
5θ −

2
5ρ) as ε tends to zero. By uniqueness

of the limit, we obtain that (3
5θ−

2
5ρ) = θ̃. Now we can write θ = (3

5θ−
2
5ρ) + 2

5(ρ+ θ),
which gives us θ̃ = θ, since ρ+ θ = 0 according to the relation ( 90 ). As a result,(3

5θε −
2
5ρε

)
−→ θ (95)

strongly in C(R+;H2(T3
x)) as ε −→ 0, where θ ∈ C(R+;H2(T3

x)) ∩ L∞(R+;H3(T3
x)).

Convergence of Puε: Here P is the Leray projection operator given by

P = I −∇x∆−1
x ∇x· (96)

where I is the identical mapping. Taking P on the second equation of ( 67 ) gives

∂tPuε + 1
ε
P∇x ·

(
Â(v)√µ,L(gε)

)
L2
v

= 0, (97)

where we used P∇x(ρε + θε) = 0. We thus have that

‖∂tPuε‖H2
x

=
∥∥∥∥1
ε
P∇x · (A(v)√µ, {I − Π0}gε)L2

v

∥∥∥∥
H2
x

.
∥∥∥∥1
ε
∇x · (A(v)√µ, {I − Π0}gε)L2

v

∥∥∥∥
H2
x

.
1
ε
‖A(v)√µ‖L2

v
‖{I − Π0}gε‖H3

xL
2
v

.
1
ε
‖{I − Π0}gε‖H3

xL
2
v

which immediately implies from the uniform energy dissipation bound (78 ) that

‖∂tPuε‖L2(0,T ;H2
x) .

(∫ ∞
0

1
ε2D

2(t)dt
)1/2
≤ C (98)

for any T > 0 and 0 < ε ≤ 1. We easily have from (83 ) that

‖Puε‖L∞(0,T ;H3
x) . ‖uε‖L∞(0,T ;H3

x) ≤ C. (99)

Then, from Aubin-Lions-Simon Theorem in Lemma 4.2 , the bounds ( 98 ), ( 99 ) and
the embeddings ( 94 ), we deduce that there is a ũ ∈ C(R+;H2(T3

x))∩L∞(R+;H3(T3
x))

such that

Puε −→ ũ

strongly in C(R+;H2(T3
x)) as ε −→ 0. On the other hand, we have Puε converges

in the sense of distributions to Pu as ε tends to zero. By uniqueness of the limit,
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we obtain that ũ = Pu. Using that where we used ∇x · u = 0 according to the
incompressibility relation ( 86 ), we get

Puε −→ u (100)

strongly in C(R+;H2(T3
x)) as ε −→ 0, where u ∈ C(R+;H2(T3

x)) ∩ L∞(R+;H3(T3
x)).

Regarding the convergence of P⊥. We have

P⊥uε −→ 0 (101)

weakly-? in L∞([0,∞);H3(T3
x)). Indeed, on the one hand we have

‖P⊥uε‖L∞(0,T ;H3
x) . ‖uε‖L∞(0,T ;H3

x) ≤ C. (102)

On the other hand, we have P⊥uε converges in the sense of distributions to 0 as ε
tends to zero, hence the relation ( 101 ) is true.
Equation of u and θ: We first calculate the term(

Ê(v)
√
M,

1
ε
Lgε

)
L2
v

where Ê = Â or B̂. Following the standard formal derivations of fluid dynamic limits
of Boltzmann equation (see [4] for instance), we obtain(

Â(v)√µ, 1
ε
Lgε

)
L2
v

= uε ⊗ uε −
|uε|2

3 I3 − νΣ(uε)−Rε,A, (103)

and (
B̂(v)√µ, 1

ε
Lgε

)
L2
v

= 5
2uεθε −

5
2κ∇xθε −Rε,B, (104)

where

Σ(uε) := ∇xuε +∇xu
>
ε −

2
3∇x · uεI3, (105)

ν := 1
10
(√

µA,
√
µÂ

)
L2
v

, (106)

κ := 2
15
(√

µB,
√
µB̂

)
L2
v

. (107)

For E = A or B, Rε,E are of the form

Rε,E = ε
(
Ê(v)√µ, ∂tgε

)
L2
v

+
(
Ê(v)√µ, v · ∇x{I − Π0}gε

)
L2
v

+
(
Ê(v)√µ,Γ({I − Π0}gε, {I − Π0})gε

)
L2
v

+
(
Ê(v)√µ,Γ(Π0gε, {I − Π0}gε)

)
L2
v

+
(
Ê(v)√µ,Γ({I − Π0}gε,Π0gε)

)
L2
v

.

(108)

For the vector field uε, we decompose uε = Puε + P⊥uε. Then, plugging the relation
( 103 ) into the equation ( 97 ), we have

∂tPuε + P∇x · (Puε ⊗ Puε)− ν∆xPuε = Rε,u (109)

33



where,

Rε,u = P∇x ·Rε,A − P∇x · (Puε ⊗ P⊥uε + P⊥uε ⊗ Puε + P⊥uε ⊗ P⊥uε). (110)

Noticing that θε =
(

3
5θε −

2
5ρε

)
+ 2

5(ρε + θε), we substitue the relation ( 104 ) into the
equation ( 91 ) and then obtain

∂t

(3
5θε −

2
5ρε

)
+∇x ·

[
Puε

(3
5θε −

2
5ρε

)]
− κ∆x

(3
5θε −

2
5ρε

)
= Rε,θ (111)

where

Rε,θ = 2
5∇x ·Rε,B −

2
5∇x · [Puε(ρε + θε)]−∇x ·

[
P⊥uε

(3
5θε −

2
5ρε

)]
− 2

5∇x ·
[
P⊥uε(ρε + θε)

]
+ 2

5κ∆x(ρε + θε).
(112)

Our final goal is now to perform the limit ε to 0 in ( 109 ) and ( 111 ) in order to deduce
the u and θ equations in ( 13 ). We first focus on ( 109 ).
Now, we take the limit from (109 ) to obtain the u-equation of ( 13 ). For any T > 0,
let a vector-valued test function ψ(t, x) ∈ C1(0, T ;C∞c (T3)) with ∇x ·ψ = 0, ψ(0, x) =
ψ0(x) ∈ C∞c (T3) and ψ(t, x) = 0 for t ≥ T ′ where T ′ < T . We multiply ( 109 ) by
ψ(t, x) and integrate by parts over (t, x) ∈ [0, T ]× T3. Then we obtain∫ T

0

∫
T3
∂tPuε · ψ(t, x)dxdt = −

∫
T3
Puε(0, x) · ψ(0, x)dx︸ ︷︷ ︸

IV1

−
∫ T

0

∫
T3
Puε · ∂tψ(t, x)dxdt︸ ︷︷ ︸

IV2

.

(113)

From the initial condition ( 14 ) in Theorem 1.2 and the convergence ( 100 ) , we deduce
that ∫

T3
Puε · ∂tψ(t, x)dxdt→

∫
T3
u · ∂tψ(t, x)dxdt (114)

and ∫
T3
Puε(0) · ψ0(x)dx→

∫
T3
Pu0 · ψ0(x)dx (115)

as ε→ 0. Indeed, for the term IV2, we have∣∣∣∣∣
∫ T

0

∫
T3

(Puε − u) · ∂tψ(t, x)dxdt
∣∣∣∣∣ . max

t≥0
‖Puε − u‖L2

x
‖∂tψ‖L1(0,T ;L2

x)

≤ Cψ,T max
t≥0
‖Puε − u‖L2

x
−→ 0.

For the term IV1 we have,∣∣∣∣∫
T3

(Puε(0)− Pu0)ψ0(x)dx
∣∣∣∣ . ‖Puε(0)− Pu0‖L2

x
‖ψ0(x)‖L2

x

. ‖Puε(0)− Pu0‖L2
x
−→ 0.

As a consequence, we have∫ T

0

∫
T3
∂tPuε · ψ(t, x)dxdt −→ −

∫
T3
Pu0 · ψ0(x)dx−

∫
T3
u · ∂tψ(t, x)dxdt (116)

as ε→ 0. Now, we will study the convergence of terms P∇x ·(Puε⊗Puε) and ν∆xPuε
in the following lemma.
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Lemma 4.3. It holds that

P∇x · (Puε ⊗ Puε)→ P∇x · (u⊗ u) strongly in C(R+;H1
x),

ν∆xPuε → ν∆xu strongly in C(R+;L2
x),

(117)

as ε→ 0, where ν is defined in ( 106 ).

Proof. Using that ∇x · Puε = ∇x · u = 0, we have

‖∇x · (Puε ⊗ Puε − u⊗ u)‖H1
x
. ‖∇x(Puε − u) · Puε‖L2

x
+ ‖∇xu · (Puε − u)‖L2

x

+ ‖∇̃x∇x(Puε − u) · Puε‖L2
x

+ ‖∇x(Puε − u) · ∇xPuε‖L2
x

+ ‖∇̃x∇xu · (Puε − u)‖L2
x

+ ‖∇xu · ∇x(Puε − u)‖L2
x

.
(
‖u‖L∞t H3

x
+ ‖Puε‖L∞t H3

x

)
‖Puε − u‖C(R+;H2

x)

. ‖Puε − u‖C(R+;H2
x) −→ 0,

where we denote by ∇̃xΛ with Λ = (λij)1≤i,j≤3 the matrix defined by

∇̃xΛ =

∂x1λ11 ∂x1λ12 ∂x1λ13
∂x2λ21 ∂x2λ22 ∂x2λ23
∂x3λ31 ∂x3λ32 ∂x3λ33

 .
In addition, we have

‖µ∆x(Puε − u)‖C(R+;L2
x) . ‖Puε − u‖C(R+;H2

x) −→ 0.

The limit of the last term Rε,u is handled in the following lemma.

Lemma 4.4. In the distributional sense,

Rε,u → 0 (118)

as ε→ 0, where Rε,u is defined in ( 110 ).

Proof. First, we have

‖P∇x · (Puε ⊗ P⊥uε + P⊥uε ⊗ Puε)‖L∞t H2
x

. ‖Puε‖L∞t H3
x
‖P⊥uε‖L∞t H3

x
,

and by employing the convergences ( 100 ) and ( 101 ), one can obtain

P∇x · (Puε ⊗ P⊥uε + P⊥uε ⊗ Puε)→ 0 (119)

in the sense of distributions as ε→ 0. Let us now show that

P∇x · (P⊥uε ⊗ P⊥uε)→ 0 (120)

in the sense of distributions as ε→ 0. To this end, we set

βε := ρε + θε.
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One observes that, Equation ( 73 ) reads

ε∂tuε +∇xβε = −∇x ·
(
Â(v)√µ,L(gε)

)
L2
v

. (121)

Now, we multiply the first gε-equation of ( 3 ) by |v|
2

2
√
µ ∈ N (L) and integrate over

v ∈ R3, we have

ε∂tβε +∇x ·
(
gε, v
|v|2

3
√
µ

)
L2
v

= 0, (122)

where we check easily that

∇x ·
(
gε, v
|v|2

3
√
µ

)
L2
v

= 2
3∇x ·

(
gε, v

( |v|2
2 −

5
2

)√
µ

)
L2
v

+ 5
3∇x · (gε, v

√
µ)L2

v

= 2
3∇x ·

(
B̂(v)√µ,L(gε)

)
L2
v

+ 5
3∇x · P⊥uε.

Using [25, Proposition 1.6], we can write

P⊥uε = ∇xUε

with Uε ∈ L∞([0,∞);H4(T3
x)). After applying P⊥ to ( 121 ) and reformulating ( 122 ),

we obtain that Uε and βε satisfy{
ε∂t∇xUε +∇xβε = Fε

ε∂tβε + 5
3∆xUε = Gε

(123)

with

Fε = −P⊥∇x · (A(v)√µ, {I − Π0}gε)L2
v

Gε = −2
3∇x · (B(v)√µ, {I − Π0}gε)L2

v
.

We get from the uniform energy dissipation bound ( 78 ) that

‖Fε‖L2([0,∞);L2(T3
x)) . ε and ‖Gε‖L2([0,∞);L2(T3

x)) . ε

then Fε and Gε converge strongly to 0 in L2([0,∞);L2(T3
x)) which implies that Fε

and Gε converge strongly to 0 in L1
loc(dt;L2

loc(dx)). Moreover, returning to ( 83 ),
( 102 ) we have Uε ∈ L∞([0,∞);H4(T3

x)), βε ∈ L∞([0,∞);H3(T3
x)). Then, according

to [13, Lemma 13.1] we deduce that ( 120 ) is true. From the above, we conclude that

P∇x · (Puε ⊗ P⊥uε + P⊥uε ⊗ Puε + P⊥uε ⊗ P⊥uε)→ 0 (124)

in the sense of distributions as ε→ 0. Next we prove that E = A or B

Rε,E → 0 (125)

in the sense of distributions as ε → 0, where Rε,E are defined in ( 108 ). Indeed, For
any T > 0, let a vector-valued test function ψ(t, x) ∈ C1(0, T ;C∞c (T3)) , ψ(0, x) =
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ψ0(x) ∈ C∞c (T3) and ψ(t, x) = 0 for t ≥ T ′ where T ′ < T . Then, from the uniform
bound (77 ) and the initial energy bounds given in Theorem 1.2 that∣∣∣∣∣

∫ T

0

∫
T3
ε
(
Ê(v)√µ, ∂tgε

)
L2
v

· ψ(t, x)dxdt
∣∣∣∣∣

.
∣∣∣∣∫

T3
ε
(
Ê(v)√µ, gε,0

)
L2
v

· ψ(0, x)dx
∣∣∣∣+

∣∣∣∣∣
∫ T

0

∫
T3
ε
(
Ê(v)√µ, gε

)
L2
v

· ∂tψ(t, x)dxdt
∣∣∣∣∣

. ε‖Ê(v)√µ‖L2
v

(
‖gε,0‖L2

xL
2
v
‖ψ0‖L2

x
+ ‖gε‖L∞(0,T ;L2

xL
2
v)‖∂tψ‖L1(0,T ;L2

x)
)

≤ Cψ,T ε
(
‖gε‖L∞(0,T ;H3

xL
2
v) + ‖gε,0‖H3

xL
2
v

)
−→ 0,

(126)

as ε −→ 0, which implies that ε
(
Ê(v)

√
M,∂tgε

)
L2
v

−→ 0 in the sense of distributions
as ε→ 0. Hölder inequality yields that∥∥∥ (Ê(v)√µ, v · ∇x{I − Π0}gε

)
L2
v

∥∥∥2

H2
x

. ‖{I − Π0}gε‖2
H3
xL

2
v

which immediately derives from the uniform energy dissipation bound (78 ) that∥∥∥(Ê(v)√µ, v · ∇x{I − Π0}gε
)
L2
v

∥∥∥
L2(0,T ;H2

x)
.
(∫ ∞

0
D2(t)dt

)1/2
≤ C ε −→ 0.

Then we have (
Ê(v)√µ, v · ∇x{I − Π0}gε

)
L2
v

−→ 0

strongly in L2(R+;H2
x) as ε −→ 0. For any T > 0, we take any vector-valued test

function φ(t, x) ∈ C∞c ([0, T ]× T3). Then, by employing the uniform bound (78 ) and
Lemma 4.1 we get that∣∣∣∣∣

∫ T

0

∫
T3

(
Ê(v)√µ,Γ{I − Π0}gε, {I − Π0}gε

)
L2
v

· φ(t, x)dxdt
∣∣∣∣∣

. ‖Ê(v)√µ‖L2
v
‖φ‖L∞([0,T ]×T3)

(∫ ∞
0
D2(t)dt

)
≤ Cφ,T ε

2 −→ 0.

Thus, we know that (
Ê(v)√µ,Γ{I − Π0}gε, {I − Π0}gε

)
L2
v

−→ 0

in the sense of distributions as ε→ 0. Analogously, one easily derives that∣∣∣∣∣
∫ T

0

∫
T3

(
Ê(v)√µ,Γ({I − Π0}gε,Π0gε) + Γ(Π0gε, {I − Π0}gε)

)
L2
v

· φ(t, x)dxdt
∣∣∣∣∣

. ‖Ê(v)√µ‖L2
v
‖φ‖L∞([0,T ]×T3) ‖gε‖L∞(0,T ;H3

xL
2
v)

(∫ ∞
0
D2(t)dt

)1/2

≤ Cφ,T ε −→ 0,

which immediately implies that(
Ê(v)√µ,Γ({I − Π0}gε,Π0gε) + Γ(Π0gε, {I − Π0}gε)

)
L2
v

−→ 0

in the sense of distributions as ε→ 0.
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Collecting the limits ( 116 ), ( 117 ) and ( 118 ) gives that u ∈ L∞(R+;H3
x)∩C(R+;H2

x)
satisfies

∂tu+ P∇x · (u⊗ u)− ν∆xu = 0 (127)
with the initial data

u(0, x) = Pu0(x). (128)
Finally, we take the limit from (111 ) to the third θ-equation in ( 13 ) as ε → 0. For
any T > 0, let ξ(t, x) be a test function satisfying ξ(t, x) ∈ C1(0, T ;C∞c (T3)) with
ξ(0, x) = ξ0(x) ∈ C∞c (T3) and ξ(t, x) = 0 for t ≥ T ′ where T ′ < T . We have that∫ T

0

∫
T3
∂t

(3
5θε −

2
5ρε

)
(t, x)ξ(t, x)dxdt = −

∫ T

0

∫
T3

(3
5θε −

2
5ρε

)
(t, x)∂tξ(t, x)dxdt︸ ︷︷ ︸

V1

−
∫
T3

(
gε,0,

(3
5

( |v|2
3 − 1

)
− 2

5

)√
µ

)
L2
v

ξ0(x)dx
︸ ︷︷ ︸

V2

.

(129)

From the initial condition ( 14 ) in Theorem 1.2 and the convergence ( 95 ) , we deduce
that ∫ T

0

∫
T3

(3
5θε −

2
5ρε

)
(t, x)∂tξ(t, x)dxdt −→

∫ T

0

∫
T3
θ(t, x)∂tξ(t, x)dxdt

and∫
T3

(
gε,0,

(3
5

( |v|2
3 −1

)
−2

5

)√
µ
)
L2
v

ξ0(x)dx→
∫
T3

(
g0,
(3

5

( |v|2
3 −1

)
−2

5

)√
µ
)
L2
v

ξ0(x)dx.

Indeed, for the term V1, we have∣∣∣∣∣
∫ T

0

∫
T3

((3
5θε −

2
5ρε

)
− θ

)
· ∂tξ(t, x)dxdt

∣∣∣∣∣ . max
t≥0

∥∥∥∥((3
5θε −

2
5ρε

)
− θ

)∥∥∥∥
L2
x

‖∂tξ‖L1(0,T ;L2
x)

≤ Cξ,T max
t≥0

∥∥∥∥((3
5θε −

2
5ρε

)
− θ

)∥∥∥∥
L2
x

−→ 0.

For the term V2 we have,∣∣∣∣∣
∫
T3

(
gε,0 − g0,

(3
5

( |v|2
3 − 1

)
− 2

5

)√
µ
)
L2
v

ξ0(x)dx
∣∣∣∣∣ . ‖gε,0 − g0‖L2

x,v
‖ξ0(x)‖L2

x
−→ 0.

As a consequence, we have∫ T

0

∫
T3
∂t

(3
5θε −

2
5ρε

)
(t, x)ξ(t, x)dxdt

−→ −
∫ T

0

∫
T3
θ(t, x)∂tξ(t, x)dxdt−

∫
T3

(3
5θ0 −

2
5ρ0

)
ξ0(x)dx

(130)

as ε → 0. Now, we will study the convergence of terms ∇x ·
[
Puε

(
3
5θε −

2
5ρε

)]
and

κ∆x

(
3
5θε −

2
5ρε

)
in the following lemma.

38



Lemma 4.5. It holds that

∇x ·
[
Puε

(3
5θε −

2
5ρε

)]
→ ∇x · (uθ) strongly in C(R+;H1

x),

κ∆x

(3
5θε −

2
5ρε

)
→ κ∆xθ strongly in C(R+;L2

x),
(131)

as ε→ 0, where κ is defined in ( 107 ).

Proof. Indeed, we have∥∥∥∥κ∆x

(3
5θε −

2
5ρε − θ

)∥∥∥∥
C(R+;L2

x)
.
∥∥∥∥(3

5θε −
2
5ρε − θ

)∥∥∥∥
C(R+;H2

x)
−→ 0.

In addition, we have∥∥∥∥∇x ·
(

(Puε − u)
(3

5θε −
2
5ρε

))
+∇x ·

(
u
(3

5θε −
2
5ρε − θ

))∥∥∥∥
H1
x

.
∥∥∥∥(Puε − u) · ∇x

(3
5θε −

2
5ρε

)∥∥∥∥
L2
x

+
∥∥∥∥u · ∇x

(3
5θε −

2
5ρε − θ

)∥∥∥∥
L2
x

+
∥∥∥∥∇x(Puε − u)> · ∇x

(3
5θε −

2
5ρε

)∥∥∥∥
L2
x

+
∥∥∥∥∇x

(
∇x

(3
5θε −

2
5ρε

))>
(Puε − u)

∥∥∥∥
L2
x

+
∥∥∥∥∇xu

> ·
(3

5θε −
2
5ρε − θ

)∥∥∥∥
L2
x

+
∥∥∥∥∇x

(
∇x

(3
5θε −

2
5ρε

))>
· u
∥∥∥∥
L2
x

. ‖u‖L∞t H3
x

∥∥∥∥(3
5θε −

2
5ρε − θ

)∥∥∥∥
C(R+;H2

x)
+
∥∥∥∥(3

5θε −
2
5ρε

)∥∥∥∥
L∞t H

3
x

‖Puε − u‖C(R+;H2
x)

. ‖Puε − u‖C(R+;H2
x) +

∥∥∥∥(3
5θε −

2
5ρε − θ

)∥∥∥∥
C(R+;H2

x)
−→ 0.

The limit of the last term Rε,θ is handled in the following lemma.

Lemma 4.6. In the distributional sense,

Rε,θ → 0 (132)

as ε→ 0, where Rε,θ is defined in ( 109 ).

Proof. First, we have

2
5∇x · [Puε(ρε + θε)] + 2

5∇x ·
[
P⊥uε(ρε + θε)

]
+∇x ·

[
P⊥uε

(3
5θε −

2
5ρε

)]
→ 0 (133)

weakly-? in L∞([0,∞);H2(T3
x)) as ε→ 0. Indeed, we have∥∥∥∥2

5∇x · [Puε(ρε + θε)] + 2
5∇x ·

[
P⊥uε(ρε + θε)

]
+∇x ·

[
P⊥uε

(3
5θε −

2
5ρε

)] ∥∥∥∥
L∞t H

2
x

≤ C

and by employing the convergence ( 100 ) and ( 101 ) we derive that

2
5∇x · [Puε(ρε + θε)] + 2

5∇x ·
[
P⊥uε(ρε + θε)

]
+∇x ·

[
P⊥uε

(3
5θε −

2
5ρε

)]
→ 0 (134)
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in the sense of distributions as ε→ 0. Let us now show that

κ∆x(ρε + θε)→ 0 (135)

weakly-? in L∞([0,∞);H1(T3
x)) as ε→ 0. We have

‖∆x(ρε + θε)‖L∞(R+;H1
x) . ‖ρε + θε‖L∞(R+;H3

x) ≤ C, (136)

and by employing the convergence ( 88 ) we derive that

∇x · ∇x(ρε + θε) −→ 0

in the sense of distributions as ε → 0. Consequently, the convergences ( 125 ), ( 133 )
and ( 135 ) imply the convergence ( 132 ).

Collecting the limits ( 130 ), ( 131 ) and ( 132 ) gives that θ ∈ L∞(R+;H3
x)∩C(R+;H2

x)
satisfies

∂tθ +∇x · (uθ) = κ∆xθ (137)

with the initial data
θ(0, x) = 3

5θ0(x)− 2
5ρ0(x). (138)

A Appendix

A.1 Study of the linear Landau equation

In this section, we show a local existence of the solution of the linear Landau equa-
tion. We use the technique introduced by Degond in [9] for the linear Fokker-Planck
equation.
We consider now the linear Cauchy problem{

∂tg + 1
ε
v · ∇xg + 1

ε2Lg = Uε

g(0, x, v) = g0(x, v) (139)

where g0(x, v) and Uε(t, x, v) are given functions.
For simplicity denote X := L2([0, T ];H3

xH
1
v,∗) and X ′ := L2([0, T ];H3

x(H1
v,∗)′) (see

( 8 )), where X ′ is the dual of X w.r.t. H3
xL

2
v. We denote by Y the set of functions

defined by

Y =
{
g ∈ X, ∂tg + 1

ε
v · ∇xg ∈ X ′

}
.

We will construct a local solutions of the problem (139 ) on Y . In what follows, we
consider ε as a fixed parameter.

Proposition A.1. Let ε > 0, we assume that g0 ∈ H3
xL

2
v and Uε ∈ X ′. Then the

Cauchy problem (139 ) admits a weak solution g ∈ Y .
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Proof. We take the change of unknown as follows

g̃(t, x, v) = e−λtg(t, x, v).

The linear Landau equation ( 139 ) for g̃ = g̃(t, x, v) takes the following form{
∂tg̃ + 1

ε
v · ∇xg̃ + 1

ε2Lg̃ + λg̃ = e−λtUε := Ũε

g̃(0, x, v) = g0(x, v). (140)

We introduce the following Lions Theorem, that we will use to prove the existence of
solution, which can be found in [21].
Theorem A.2 (Lions Theorem). Let F be a Hilbert space, provided with a norm ‖·‖F,
and an inner product (·, ·)F. Let V be a subspace of F, provided with a prehilbertian
norm ‖ · ‖V, such that the injection V ↪−→ F, is continuous. We consider a bilinear
form E

E : F×V → R
(g, φ) 7→ E(g, φ)

such that E(·, φ) is continuous on F for any fixed φ ∈ V, and such that

|E(φ, φ)| ≥ α‖φ‖2
V, ∀φ ∈ V, with α > 0.

Then, given a linear form L in V′, there exists a solution g in F of the problem

E(g, φ) = L(φ), ∀φ ∈ V. (141)

In the remaining part of the proof, to lighten the notations, we will drop the tildes.
Let F = X be a Hilbert space with norm

‖f‖2
X =

∫ T

0
‖f‖2

χ3(T3
x×R3

v)dt,

where ‖f‖χ3(T3
x×R3

v) is defined in ( 7 ). Let V be the space C∞c ([0, T [×T3
x × R3

v) of in-
finitely differentiable functions, with compact support in [0, T [×T3

x×R3
v. V is provided

with a norm defined by

‖φ‖2
V = ‖φ‖2

X + 1
2‖φ(0)‖2

H3
xL

2
v
, ∀φ ∈ V.

We define the operator Q as follows:

Q := −∂t −
1
ε
v · ∇x + 1

ε2L, (142)

with domain C∞c ([0, T [×T3
x × R3

v). We also define the bilinear form E, and the linear
form L as following

E(g, φ) :=
∫ T

0

(
(g,Qφ)H3

xL
2
v

+ λ (g, φ)H3
xL

2
v

)
dt,

L(φ) := 〈Uε, φ〉X′,X + (g0, φ(0))H3
xL

2
v
.

The mapping E(·, φ) is continuous on X: let g ∈ X, we have

|E(g, φ)| ≤ (‖Qφ‖X + λ‖φ‖X)‖g‖X ≤ Cφ‖g‖X .
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The mapping E is a bilinear and coercive form on V: let φ ∈ V, using ( 33 ), we have

|E(φ, φ)| ≥ 1
2‖φ(0)‖2

H3
xL

2
v

+ Cγ
ε2

∫ T

0
D2(φ)dt+ λ

∫ T

0
‖φ‖2

H3
xL

2
v
dt,

by using that

‖φ1‖2
χ3(T3

x×R3
v) ≤ C‖φ‖2

H3
xL

2
v
,

where C > 0 and φ1 = Π0φ ( see ( 9 )), we obtain

|E(φ, φ)| ≥ 1
2‖φ(0)‖2

H3
xL

2
v

+ Cγ

∫ T

0
D2(φ)dt+ λ

C

∫ T

0
‖φ1‖2

χ3(T3
x×R3

v)dt,

≥ min
(

1, Cγ,
λ

C

)( ∫ T

0
‖φ‖2

χ3(T3
x×R3

v)dt+ 1
2‖φ(0)‖2

H3
xL

2
v

)
,

then
|E(φ, φ)| ≥ α‖φ‖2

V.

The mapping L is a linear continuous form on V: let φ ∈ V, we have

|L(φ)| ≤ ‖Uε‖X′‖φ‖X + ‖g0‖H3
xL

2
v
‖φ(0)‖H3

xL
2
v

≤ ‖Uε‖X′‖φ‖V +
√

2‖g0‖H3
xL

2
v
‖φ‖V

≤ (‖Uε‖X′ +
√

2‖g0‖H3
xL

2
v
)‖φ‖V,

then
|L(φ)| ≤ C ′‖φ‖V.

Finally thanks to Lions Theorem, there exists a solution g ∈ X for the variational
problem (141 ) and in particular, we deduce that

∂tg + 1
ε
v · ∇xg = Uε −

1
ε2Lg − λg ∈ X

′,

then g belongs to Y . Now, to prove that g satisfies the initial condition, we use the
following Lemma:
Lemma A.3. 1) If g belongs to Y , g admits (continuous) trace values g(0, x, v),

g(T, x, v) in H3
xL

2
v.

2) For g and g̃ in Y , we have〈
∂tg + 1

ε
v · ∇xg, g̃

〉
X′,X

+
〈
∂tg̃ + 1

ε
v · ∇xg̃, g

〉
X′,X

= (g(T ), g̃(T ))H3
xL

2
v
− (g(0), g̃(0))H3

xL
2
v
.

(143)

We note that the proof of Lemma A.3 is similar to the proof of Lemma A.1 in [9] by
considering H3

xL
2
v as a pivot space. Now, using ( 140 ) and ( 143 ), we obtain that the

solution g of the variational problem (141 ) satisfies

(g(0)− g0, φ(0))H3
xL

2
v

= 0, ∀φ ∈ V.

Then, the initial condition is satisfied in H3
xL

2
v.
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