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a-trifluoromethylselenolated enones constitute valuable building-blocks for further synthesis of innovative fluorinated compounds. Herein, we described 

an easy access to such compounds in “green conditions” through a Morita-Baylis-Hillman like reaction. These conditions have also been extended to 

higher fluorinated homologs. 
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Introduction 

Nowadays, fluorinated molecules find more and more uses in a wide 

panel of applications, mainly due to their peculiar properties.[1-13] In the 

race of the development of molecules dedicated to targeted applications, 

fine tuning of physico-chemical properties is highly investigated. In this 

objective, new fluorinated moieties have been developed these last 

years.[14] In particular merging of chalcogens and trifluoromethyl group 

has recently known a growing interest,[15-21] particularly because of the 

increased lipophilicity brought by such substituents to the molecules.[22, 

23] 

Despite its negative reputation, selenium is an important element either 

for human physiology[24] or in the design of new compounds for various 

applications from materials[25, 26] to life sciences[27-36] and drug design.[37-43] 

Consequently, the design of CF3Se-molecules constitutes an interesting 

strategy for the development of new innovative substrates. 

On the other hand, carbonyl compounds are an important family of 

molecules found either in natural and bioactive compounds[44-48] or in the 

toolbox of building-blocks for further syntheses.[49-52] Therefore, 

trifluoromethylselenolated carbonyl compounds could constitute 

pertinent substrates for various purposes. 

Results and Discussion 

If a few syntheses of trifluoromethylselenolated carbonyl compounds 

have been already described,[53-62] only two methods described the access 

to CF3Se-enones whereas such substrates are very interesting as building-

blocks because of their higher reactivity.[60-62] These methods are based 

on the use of a [CF3SeCu] complex, implying stoichiometric amount of 

copper, and the preliminary preparation of corresponding vinyl bromides 

(or iodides). Furthermore, only acyclic a-CF3Se-a,b-unsaturated carbonyl 

compounds b-substituted with an aryl moiety or pyrones were described 

(scheme 1).[61, 62] 

 

Scheme 1. State of the art about synthesis of trifluoromethylselenolated a,b-

carbonyl compounds. 

Morita-Baylis-Hillman reaction is a well-known approach to easily obtain 

a,b-unsaturated carbonyl compounds.[63-65] Recently, we have developed 

a new family of reagent, namely the trifluoromethyselenosulfonates (1), 

as donor of CF3Se+ species.[20, 21, 59, 66] Consequently, an adaptation of 

Morita-Baylis-Hillman reaction by using our reagents as electrophilic 

partners has been considered. 

The reaction was studied with trifluoromethylselenotoluenesulfonate 

(CF3SeTs, 1a) as reagent and cyclohexone as model substrate (Table 1).  
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Table 1. Morita-Baylis-Hillman like reaction between 1a and 2a. 

 

N° 1a (eq.) catalyst (eq.) solventc T (°C) t (h) 3a (%)b 

1 1 DMAP (1) THF 30 15 < 5 

2 1 DMAP (1) CH2Cl2 30 15 16 

3 1 DMAP (1) CH3CN 30 15 45 

4 1 DMAP (1) DMF 30 15 7 

5 1 DMAP (1) DMSO 30 15 < 5 

6 1 DMAP (1) MeOH 30 15 56 

7 1 DMAP (1) H2O 30 15 58 

8 1 DMAP (1) H2O / MeOHa 30 15 70 

9 1 DMAP (1) H2O / MeOHa 30 1 66 

10 1 DABCO (1) H2O / MeOHa 30 1 39 

11 1 Et3N (1) H2O / MeOHa 30 1 50 

12 1 DBU (1) H2O / MeOHa 30 1 42 

13 1 PPh3 (1) H2O / MeOHa 30 1 < 5 

14 1 DMAP (1) EtOH 30 1 61 

15 1 DMAP (1) H2O / EtOHa 30 1 63 

16 1.2 DMAP (1) H2O / MeOHa 30 1 67 

17 1.5 DMAP (1) H2O / MeOHa 30 1 78 

18 1.5 DMAP (0.2) H2O / MeOHa 30 1 25 

19 1.5 DMAP (1) H2O / MeOHa 45 1 78 

20 1.5 K2CO3 (1) H2O / MeOHa 30 15 82 

21 1.5 K2CO3 (1) H2O / EtOHa 30 15 91 

22 1.5 K2CO3 (1) H2O / EtOHa 30 1 51 

23 1.5 K2CO3 (0.5) H2O / EtOHa 30 15 46 

24 1.5 K2CO3 (1.5) H2O / EtOHa 30 15 62 

[a] ratio 1:1. [b] Determined by 19F NMR with PhOCF3 as an internal standard.  

 

DMAP was first used as catalyst. In aprotic solvents, the observed yield 

increased with solvent polarity (entries 1-3).[67] However, polar solvents 

with a higher Gutmann’s donor number[67] appeared to be deleterious to 

the reaction (entries 4-5). Protic solvents seem to favor the reaction with 

similar results obtained in methanol or water (entries 6-7). A 1:1 ratio of 

both solvents considerably increased the yield (entry 8). Similar results 

were observed in 1h instead of 15h. (entry 9). Others common catalysts 

were also attempted but with disappointing results (entries 10-13). 

Because of methanol toxicity, ethanol was also considered, as substitute. 

The obtained results remained interesting but slightly lower than in 

MeOH (entries 14-15). An excess of reagent 1a favors the reaction and 

good results were obtained with 1.5 equivalents (entries 16-17). 

Stoichiometric amount of catalyst is required, lower yield being observed 

with only 20 mol% (entry 18). An increase of temperature had no 

influence on the reaction (entry 19).  

In the idea to perform this reaction in green conditions, eco-compatible 

surrogate of DMAP was searched. Because Morita-Baylis-Hillman 

reactions were described by using K2CO3 in methanol,[68] such a catalyst 

was also envisaged. Delightfully, a good yield, better than with DMAP, 

was observed (entry 20) in 15h. Under these conditions, this time the use 

of ethanol instead of methanol was a better choice (entry 21). 

Nevertheless, in these conditions, the reaction kinetic appeared slower 

(entry 22). Noteworthy that excess or default of K3CO3 have been 

deleterious for the reaction (entries 23-24). Finally, the optimal “green” 

conditions have proven to be 1.5 equivalent of 1a in EtOH/H2O (1:1) in 

presence of K2CO3 for 15h (entry 21). 

With these conditions in hand, several enones were tested (scheme 2). 

If satisfactory yields were obtained with cyclic enones (2a-b), the reaction 

is very sensitive to steric hindrance with an important yields decrease 

with crowding augmentation (3c-f). In case of compounds 3e-f, an 

electronic effect could be also considered, the reactivity of double bond 

being decreased due to resonance with aromatic ring. It should be 

noticed that isolated yields are often lower due to high volatility of 

formed compounds.  

Enals react also in the same conditions to furnish corresponding CF3Se-

compounds (3g-h). Similar negative steric hindrance influence was also 

observed. In contrast, a,b-unsaturated esters provided the expected 

products only with very low yield (3i), maybe due to a competitive 

saponification reaction or steric hindrance of tertio-butyl group. 

Interestingly, the reaction was scaled-up to 3 mmol scale with similar 

results (3a). 
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Scheme 2. Synthesis of a-trifluoromethylselenolated enones. Isolated yields, in 

parentheses, yields determined by 19F NMR with PhOCF3 as an internal standard. 

Since reagents with other fluoroalkyl moieties were also synthesized, 

reaction was also performed with higher homologs (scheme 3). The 

expected products were obtained with satisfactory results. These 

molecules constitute the first examples of a-perfluoroalkylselenolated 

enones. As previously observed, the yield decreases with the length of 

the perfluoroalkyl chain.[69] 

 

Scheme 3. Synthesis of a-perfluoroalkylselenolated enones. Isolated yields. 

In a mechanistic point of view, potassium ethanolate, in situ generated by 

deprotonation of ethanol by K2CO3, could reasonably be envisaged as 

“nucleophilic catalyst” to initiate the reaction (scheme 4). Such an 

activation was previously shown in literature with methanolate.[68] 

Alternatively, potassium hydroxide, arising from water, could, potentially, 

play also this role. Proticity of solvent could also favor the 1,4-addition 

onto enones thanks a hydrogen-bond activation of carbonyl function. 

Generation of expected product 3, by released of catalyst mediated by 

deprotonation with K2CO3, may be highly facilitated by the increased 

acidity of proton in a position of carbonyl group, due to the presence of 

the electron withdrawing CF3Se group. 

 

Scheme 1. Mechanism proposal. 

Conclusions 

To conclude a simple method was described to easily obtain a-

perfluoroalkylseleno-a,b-unsaturated carbonyl compounds. This strategy 

is based on a green approach from starting material easily available. 

Furthermore, for the first time a-perfluoroalkylselenolated enones were 

synthesize, in particular with the unusual C6F13Se group. The observed 

yields remain globally medium, but this method stays, however, 

competitive for the synthesis of such specific compounds with a high 

synthetic value. 

Experimental Section 

Synthesis of 2-[(trifluoromethyl)selanyl]cyclohex-2-en-1-one (3a) 

To a flask equipped with a magnetic stirrer are added 1a (0.45 mmol, 1.5 

equiv.), 2a (0.3 mmol, 1.0 equiv.), K2CO3 (0.3 mmol, 1.0 equiv.) in EtOH (1 

mL) and H2O (1 mL). The reaction mixture is stirred 15h at 30°C. The 

reaction mixture is, then, partitioned between Et2O and water. The 

aqueous layer is extracted with Et2O and the combined organic layers are 

washed with brine, dried over MgSO4, filtered and concentrated to 

dryness (under moderate vacuum). The crude residue is then purified by 

flash chromatography (Pentane/Et2O, 8:2) to afford the desired product 

3a (75%). 
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Supplementary Material 

Supporting information for this article is available on the WWW under 

http://dx.doi.org/10.1002/MS-number.  
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