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Previous theoretical works suggested that superhydrophobicity could be enhanced through partial inhibition
of the quantum vacuum modes at the surface of a broadband-absorber metamaterial which acts in the extreme
ultraviolet frequency domain. This effect would then compete with the classical Cassie-Baxter interpretation
of superhydrophobicity. In this article, we first theoretically establish the expected phenomenological features
related to such a kind of “quantum” superhydrophobicity. Then, relying on this theoretical framework, we
experimentally study patterned silicon surfaces on which organosilane molecules were grafted, all the coated
surfaces having similar characteristic pattern sizes but different profiles. Some of these surfaces can indeed
freeze quantum photon modes while others cannot. While the latter ones allow hydrophobicity, only the
former ones allow for superhydrophobicity. We believe these results lay the groundwork for further complete
assessment of superhydrophobicity induced by quantum fluctuations freezing.

PACS numbers: 47.55.dr,61.30.Hn,68.90.+g

I. INTRODUCTION

A few years ago, it was shown, from first-principle nu-
merical calculations, that superhydrophobicity of nanos-
tructured surfaces is dramatically enhanced by tuning
vacuum photon-modes via proper design of the sur-
face corrugation, independently of any kind of chemi-
cal functionalization1–3. While nanostructures are com-
monly used for developing superhydrophobic surfaces,
available wetting theoretical models ignore the effect of
vacuum photon-modes alteration on van der Waals forces
and thus on hydrophobicity4–9. Quantum physics teaches
us that the van der Waals force results from the exchange
of virtual photons – i.e. quantum vacuum fluctuations
of the electromagnetic field – between both interacting
bodies10–14. Then, considering nanostructured surfaces
designed to form a thin metamaterial layer with ultra-
broadband and wide-angle absorption of electromagnetic
radiation, we could preclude the exchange of virtual pho-
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tons thus inducing the collapse of the van der Waals
force1,2. In this context, the study of non-wetting phe-
nomena is a clever way to indirectly probe the van der
Waals interactions and water obviously appears to be the
most relevant liquid to study those effects. In spite of this
exciting possibility, experimental investigations are still
missing which would support such a quantum approach.
In this article, we address this problem from a practical
point of view and shed light on how freezing of electro-
magnetic quantum fluctuation allows a kind of superhy-
drophobicity and could be experimentally demonstrated.
In section II, we recall the theoretical framework and
provide a new practical description and context. In sec-
tion III, we report on our first experimental attempts to
observe the effect of quantum freezing on superhydropho-
bicity by studying the wettability of controllable nanos-
tructured silicon coated with organosilane self-assembled
monolayers. Our results suggest that superhydrophobic-
ity shows up only in those samples for which freezing
of quantum photon modes was predicted to take place.
We believe these results make a significant case in the
experimental proof of superhydrophobicity enhancement
by freezing of electromagnetic quantum fluctuations.

http://arxiv.org/abs/2007.11909v2
mailto:michael.sarrazin@ac-besancon.fr
mailto:olivier.deparis@unamur.be
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II. THEORETICAL FRAMEWORK

The main contributions to van der Waals interactions
come from virtual photon exchange in the Extreme Ultra-
Violet (EUV) domain1–3,15,16. As shown in our previous
theoretical studies, an ultra-broadband and wide-angle
electromagnetic absorber in EUV domain should then
preclude relevant photon exchange between the absorber
and a water droplet, thus inducing van der Waals interac-
tions between them to collapse1,2. As the surface tension
of the water droplet dominates – over its interaction with
the broadband absorber surface – water cannot spread on
it 1. (see Fig. 1). As a result, an ultra-broadband and
wide-angle absorber in the EUV domain should act as a
superhydrophobic metamaterial. Such a broadband ab-
sorber metamaterial can be designed by decorating a flat
substrate with conical nanostructures organized as a sub-
wavelength periodical array1,2. This kind of nanostruc-
tured surface is known to act as an optically antireflecting
layer as it is equivalent to a graded index multilayer1,2.
Using a numerical code based on Rigourous Coupled
Wave Analysis (RCWA)17, it is possible to compute the
scattering matrices (S matrices) describing light wave in-
teractions with surfaces – nanostructured or not. A rel-
evant expression of van der Waals forces connects these
interactions to S matrices at a quantum level1,2,18–21.
Between the interfaces separating two interacting bod-
ies by a distance L, the potential energy U(L) related to
van der Waals forces is given by the well-known Hamaker
expression22:

U(L) = − AH

12πL2
, (1)

where AH is the Hamaker constant. AH can be derived
through heavy numerical computations of the scatter-
ing matrices describing the problem under study. In
our previous numerical studies, we considered nanostruc-
turing by an hexagonal array of cones as a theoretical
framework. For this kind of nanostructured surface, the
Hamaker constant was computed against the cone height
h1,2 leading to a dependence on h which is well fitted by:

AH ∼ AH,0
1

1 + h/h0
, (2)

1 Many liquids are often used to study wetting (or non-wetting)
phenomena, such as diiodomethane, DMSO, ethanol, cyclohex-
ane, or ethylene glycol. For a corrugated interface, the required
condition to obtain enhanced non-wetting phenomena is that
the contact angle on the flat interface on the same material is
θ ≥ 90◦, i.e. the flat surface is already non-wettable. This is nec-
essary to obtain an almost flat liquid-solid interface as required
for the Cassie-Baxter approach of the superhydrophobicity or
for the present quantum model. From our own measurements on
flat silicon grafted with organosilane molecules (the material used
herein), none of the above mentioned liquids meet the expected
condition. The best result was obtained for ethylene glycol with
θ = 87.5±2.9◦ on flat grafted silicon. As a result, water is better
than any other fluid for the present purpose.

with h0 ∼ a0/π, where a0 is the grating parameter – i.e.
the spatial period of the cone array – and AH,0 is the
Hamaker constant of the flat surface (h = 0). Such a
convenient expression can also be derived in the context
of a simple analytical model introduced in this article,
in order to clarify the physical meaning of Eq. 2 and to
drive easily experimental investigation. For the sake of
clarity, details of the following mathematical arguments
are given in Appendices A and B.

Water

θ

L0

FIG. 1. (Color online). Sketch of the studied system. At
equilibrium, the water droplet is separated from the nanos-
tructured surface by the distance L0

16. The droplet presents
a contact angle θ. The nanostructured silicon (grey) is coated
(orange) with organic molecules in order to emulate a nanos-
tructured molecular solid surface.

Let us consider media (bodies) 1 and 2 occupying the
half-spaces z < 0 and z > L, respectively, and separated
by a vacuum. At absolute zero temperature, it can be
shown that the van der Waals interaction potential en-
ergy U is given by18–21 U =

∑

p
1
2~(ωp(L)−ωp(L → ∞))

where ωp(L) is the eigen angular frequency – for a given
polarization – of the pth vacuum photon-mode available
between the two media facing each other. Using the
Cauchy’s argument principle and the analytical proper-
ties of the Fresnel coefficients of each body, the interac-
tion energy is then given by the exact expression19–21:

U(L) =
~

2π

∑

m=s,p

∫

d2k//

(2π)2

∫

∞

0

dξ (3)

× ln(1 − Rm
1 (iξ, k//)R

m
2 (iξ, k//)e

−2κL),

where κ =

√

ξ2

c2 +
∣

∣k//

∣

∣

2
, R1

m (R2
m) is the complex re-

flection coefficient of slab 1 (slab 2) in the m polarization
state (s or p states) and k// is the parallel component of
the photon wave vector. The use of the complex an-
gular frequency ω = iξ arises from numerical computa-
tion considerations. Although this theory has been de-
rived at zero temperature, it must be noticed that Eq. 3
can be perfectly used at room temperature provided that
ℏωp ≫ kBT , a condition that is satisfied for all photon
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energies involved here as shown elsewhere1–3,15,16. Such a
condition means that the interaction reduces only to the
effect of virtual photon exchange while the contribution
of blackbody photons can be neglected. Independently of
this consideration, the interaction energy given by Eq. 3
still exhibits a temperature dependence simply because
the dielectric properties of materials – permittivity values
involved in the reflection coefficients – are temperature
dependent.

Let us take medium 1 as the solid and medium 2 as the
liquid. Hereafter, we propose a useful phenomenological
theoretical description of the superhydrophobicity tuning
induced by the use of a slab of metamaterial having ultra-
broadband and wide-angle absorption added on the flat
interface of the medium 1 in order to form a corrugated
interface. For convenience, the reflection coefficient Rc of
the corrugated interface can be related to the reflection
coefficient of the initially flat interface Rf , whatever the
polarization state is, by using the ansatz:

Rm
1,c → Rm

1,f Λ (ω, h, a) , (4)

where Λ (ω, h, a) is a function of the incident wave an-
gular frequency ω, of the metamaterial slab’s geometry
(layer thickness h) and its physical properties (effective
absorption coefficient a, see below).

In the following, the metamaterial under interest is
obtained from the flat interface by carving the surface
of the solid across the depth h between 0 and 100 nm
(or more), for instance, hence creating on the surface
an array of nanospikes – roughly of conical or pyrami-
dal shape – with a typical base about 10 nm and a high
aspect-ratio1,2. The conical, or pyramidal, shape of these
nanospikes provides a layer with an effective gradient
index across the thickness h, acting as a antireflective
layer such that the corrugated interface now exhibits an
ultra-broadband and wide-angle absorption1,2. This ef-
fect is well-known, for instance, in black silicon where
surface nanostructuring transforms a flat silicon wafer
into a nearly perfect black material23–26. In this case, it
is well-known that23:

Λ (ω, h, a) = e−a(ω/c)h, (5)

where a is an effective absorption coefficient here sup-
posed to be constant against ω. Obviously, this equa-
tion corresponds to the Beer–Lambert law with a =
2Im {n} = 2n′′, which is applied to an interface covered
by an idealized perfect absorbing layer with a thickness h
and with an effective optical index n (see Appendix A for
the derivation of n). Theoretically, this model is justified
provided that the reflection of the absorbing layer is in-
deed negligible, i.e. if the highly antireflecting properties
are allowed by an effective gradient index. Experimen-
tally, this simple model is very well justified for black
silicon23–26 for instance.

From Eqs. 1, 3 and 4 it can be shown (see Appendix
B for details) that the Hamaker constant can be recast
as:

AH = f AH,0, (6)

where AH,0 is the Hamaker constant describing the in-
teraction between the liquid and the flat interface, i.e.
without the metamaterial slab, and f is a function which
describes the effect of the metamaterial. For a metama-
terial layer made of the array of cones described above
via Eq. 5, we obtain (see Appendix B):

f =
1

1 + h/h0
(7)

It should be noted that, for an array of cylinders, f is
a constant which does not depend on the metamaterial
layer thickness h1,3. As justified later herein, this makes
cylinder-based metamaterials irrelevant to demonstrate
quantum effect on hydrophobicity1,3.

The above derivation of the Hamaker constant is moti-
vated by our will to compare theoretical predictions with
experiments. It is well-known that Hamaker’s theory is
able to predict the equilibrium contact angle of liquid
droplets on a surface11, in general, and of water droplets
in particular13. Indeed, from the van der Waals poten-
tial energy calculated between a solid and a liquid, we can
immediately deduce13 the corresponding contact angle θ:

cos(θ) = −1 +
|U(L0)|

γl
, (8)

where U(L0) is the potential energy between the two
media separated by the distance L0, which is the equi-
librium separation distance16 between the water droplet
and the surface. This distance, originally defined for a
flat surface16, remains about the same when the solid
surface is corrugated as shown elsewhere13. In Eq. 8, γl

is the liquid surface tension.
As a result, from Eqs. 1, 6, and 8, the contact angle

associated with the nanostructured surface can be easily
expressed through the relation:

cos(θ) = −1 + (1 + cos(θ0)) f (9)

which results from the quantum electrodynamics inter-
pretation of the van der Waals interfacial forces and
where θ0 is the contact angle on the flat surface. For
the cone array slab, using Eq. 7, one gets:

cos(θ) = −1 + (1 + cos(θ0))
1

1 + h/h0
, (10)

By setting h = 0 in Eq. 10, one recovers the contact angle
associated with the corresponding flat surface.

Nevertheless, it could be suggested that Eq. 10 could
be also interpreted through the usual Cassie-Baxter
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model4, which originates from a pure thermodynamic
and geometrical analysis. We now underline that such
an alternative interpretation is not valid. Let us start
with the Cassie-Baxter expression4:

cos(θ) = f1 cos θ1 + f2 cos θ2, (11)

with f1 + f2 = 1, and where f1 and f2 are the frac-
tional areas of media composing the nanostructured sur-
face, here respectively the air and the substrate. Hence,
θ1 would be the contact angle with the air, i.e. θ1 = 180◦,
and θ2 would be the contact angle with the flat substrate,
i.e. θ2 = θ0. By assuming Eq. 11 to be equivalent to
Eq. 10, we would get for f2 (and f1 = 1 − f2):

f2 =
1

1 + h/h0
. (12)

On the other hand, according to the Cassie-Baxter ap-
proach, f2 is the fractional area of liquid in contact with
the surface S2 of the substrate material. By noting S1

the area of the liquid/air interface, it comes:

f2 =
S2

S1 + S2
=

1

1 + S1/S2
. (13)

Considering Eqs. B14 and 12, Eq. 13 could be inter-
preted in the context of the Cassie-Baxter approach if
and only if:

S1

S2
=

πh

a0
. (14)

However, even when neglecting air pressure and liquid
weight, S1 and S2 must depend on the exact geometry
of the nanostructure (spikes), on the deformation of the
liquid-air interface due to surface tension, and on the ex-
tend of the wet surface at the top of the spikes. In our
quantum mechanically derived model, the ratio only de-
pends on the height of the spikes (not on their actual ge-
ometry) and on the lattice parameter of the array of these
spikes. As a matter of fact, there is no trivial geometri-
cal construction that allows us to accept such an identity
(Eq. 14), except by pure coincidence. For this reason, the
main outcome of our model, i.e. Eq. 10, cannot be in-
terpreted according to the Cassie-Baxter model. From a
fundamental point of view, Eq. 10 results from optically-
controlled suppression of vacuum photon modes respon-
sible for van der Waals interaction. As a consequence,
any experimental evidences of a wetting behaviour fol-
lowing Eq. 10 would be a signature of a superhydrophobic
effect induced by optically-controlled suppression of vac-
uum photon modes. The next section reports on our very
first attempts to check this statement experimentally.

Before reporting and discussing results, we point out
that, for a cylinder-based metamaterial slab, as f is
constant, it is always possible to relate f to geometri-
cal parameters, by resorting solely to a Cassie-Baxter

model, for instance. For example, considering an hexag-
onal array of cylinders with radius r0, one gets f =
(2π/

√
3)(r0/a0)2. Unfortunately, in this case and as

shown elsewhere1,3, ab initio numerical computations
based on the quantum derivation of the van der Waals
forces do not allow us to discriminate between quantum
contributions and thermodynamical ones in a Cassie-
Baxter approach. This is further discussed in the next
section.

III. EXPERIMENTAL RESULTS

(1) Initial sample

TMA + H2O

(2) Al2O3 ALD

UV − O3

(3) UV-O3 etching

Ar − Cl2

(4) Plasma etching (5) Piranha bath (6) Coating

Polystyrene

Silicon

PMMA
AlOx

OTS/OMoDCS

FIG. 2. (Color online). Sketch of each fabrication step 1 to
6 detailed in the text. 1. Formation of honeycomb structure
of PMMA self-assembled studs in a PS matrix using block
copolymer nano-manufacturing. 2. PMMA domain conver-
sion into AlxOy (green) by sequential infiltration synthesis. 3.
Selective removal of the PS matrix using UV-O3 treatment.
4. Silicon etching by RIE with AlxOy nanostructures as hard
mask. 5. Hard mask stripping. 6. Organosilane monolayer
grafting.

As an experimental platform to check our theoret-
ical predictions, nanopatterned silicon samples were
fabricated using block copolymer nano-manufacturing
and coated with two kinds of organosilane mono-
layers: octadecyltrichlorosilane (OTS) or octadecyl-
methoxydichlorosilane (OMoDCS). These molecules bear
the same aliphatic chain (n = 18) and only differ due to
the substitution of a methoxy group (OMoDCS) instead
of a chloride (OTS) on the silicon atom. This substi-
tution allows an easier control of the surface grafting.
Such a coating was motivated by our previous theoretical
works1,2 where nanopatterned surfaces of molecular ma-
terials – such as polyethylene – where considered. This
avoided some difficulties to construe van der Waals inter-
actions with covalent materials. In the present work, sili-
con facilitates manufacturing at the nanometer scale, but
the organic coating allows to keep the choice of molecular
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Sample h (nm) a0 (nm) r0 (nm) Graft θ (◦)

C35-5’ 200 ± 5 35 ± 2 15 ± 2 OTS 159 ± 3

C35-3’ 120 ± 5 35 ± 2 15 ± 2 OMoDCS 130 ± 3

C23-5’ 100 ± 5 23 ± 2 10 ± 2 OMoDCS 161 ± 3

C23-3’ 85 ± 5 23 ± 2 8.5 ± 2 OMoDCS 142 ± 3

TABLE I. Samples used for wetting characterization (Cxx-y’ with xx the lattice parameter in nm and y the etching time
in min). h: structure’s height, a0: lattice parameter, r0: structure’s radius on surface, Graft: Organosilane monolayer, θ:
equilibrium contact angle.

materials as a working hypothesis2.
The samples exhibit roughly hexagonal arrays of

nanopillars or nanospikes. In order to fabricate our sam-
ples, we followed a protocol inspired by the work of
Checco et al

28,29 and we adapted it in order to reach
smaller lateral features (i.e. lattice parameter a0) that
are mandatory for the problem under consideration. This
constraint set a huge challenge for experimentalists since
we had to create spikes as close as a few tens of nanome-
ters to one another and as high as one hundred nanome-
ters.

We proceeded as follows (steps 1-3: formation of a
nanopatterned mask on silicon, steps 4-5: etching of
silicon through the mask, steps 6: conformal grafting
of an organic monolayer on the nanostructured silicon
surface, see Fig. 2):

1. Silicon wafers were spin-coated with a
poly(styrene)-b-poly(methyl methacrylate) (PS-
b-PMMA) block copolymer solution on a silicon
substrate grafted with a neutral statistical (PS-
stat-PMMA) copolymer, and thermally annealed,
resulting in the formation of an honeycomb
structure of PMMA self-assembled studs in a PS
matrix.

2. The PMMA core was substituted by aluminium ox-
ide (AlxOy) by sequential infiltration synthesis per-
formed within an Atomic Layer Deposition (ALD)
apparatus using trimethylaluminum (TMA) and
H2O as precursors.

3. The PS matrix was removed by UV-O3 treatment.

4. Silicon was etched by RIE (Reactive Ion Etching
with Ar and Cl2 plasma in ratio 4:1) with the
AlxOy nanostructures as a hard mask.

5. The hard mask was removed in a bath of “piranha”
solution (H2O2 + H2SO4 in ratio 3:1).

2 It can be proved that just few nanometers of coating material
allows to erase the effects of the covered medium3,16.

6. Etched silicon surfaces were grafted with an or-
ganic layer of OTS or OMoDCS (Degreasing: 10
min ultrasonication (US) in acetone + 10 min US
in methanol. Activation: 30 min in H2SO4/H2O2

(70:30) solution at 90 ◦C. Grafting solutions: 4 mM
OTS in hexane (0 ◦C, 60 min) or 2 mM OMoDCS
in hexane (RT, 120 min). Rinsing: 2 × 5 min US
in CHCl3).

Two different PS-b-PMMA block copolymers with
different intrinsic periodicity (i.e., C23 and C35 with
cylinder-to-cylinder distance of 23 and 35 nm, respec-
tively) were used to fabricate the corrugated patterns
in order to obtain different lattice parameters. In to-
tal, 17 samples have been realized, but only 4 samples
had the appropriate geometry for testing our prediction
after steps 2 to 5 (silicon etching and mask removal).
This means that the manufacturing process provides –
with a success rate of 24% – the samples with the ex-
pected lateral corrugation distance, with a weak disper-
sion, and with patterns sufficiently similar to each other.
These samples were then grafted with organic molecules
in order to emulate the nanostructured molecular solid
surface previously considered in our ab initio theoret-
ical model1. Hence, the initial nanostructured silicon
wafer served only as a mechanical support for the organic
monolayer.

The properties of these samples are summarized in
Table 1 and their typical surface pattern are shown in
Fig. 3 by scanning electron microscopy (SEM). Equi-
librium contact angle measurements were performed on
these samples and the corresponding results are reported
in Table 1. The measured angle values and their uncer-
tainties are also shown in Fig. 4 (blue bars). For the
flat surfaces, organosilane layer thickness determined by
spectroscopic ellipsometry after optimisation of the graft-
ing process were in agreement with the literature val-
ues (OTS: 3.0 ± 0.8 nm and OMoDCS: 2.3 ± 0.3 nm).
For the same surface, the advancing contact angles were
109±1◦ (OTS) and 110±1◦ (OMoDCS). Nanostructura-
tion clearly induces an increase of the advancing contact
angles. On the basis of usually accepted criteria for su-
perhydrophobicity (contact angle larger than 150◦ and
low contact angle hysteresis), samples C35-5’ and C23-
5’, respectively corresponding to the cones and spikes
nanostructures, can be considered as superhydrophobic.



6

(a)

(c)

(b)

(d)

FIG. 3. Scanning electron microscopy images of nanopat-
terned silicon surfaces for C35-5’ sample (a), C35-3’ sample
(b), C23-5’ sample (c) and C23-3’ sample (d). Scale bar: 100
nm.

Using Eq. 10, we computed the theoretical contact an-
gles using the reported experimental flat surface contact
angle, as well as the height h and the periodicity a0 of
the nanostructures which were estimated from SEM ob-
servations. The observed nanostructures were classified
according to two extreme shapes, namely cylindrical pil-
lars and sharp cones (spikes). The results are reported
in Fig. 4 (red bars) together with uncertainties resulting
from error propagation of the experimental inputs. As
expected from our theoretical analysis, since pillar-like
nanostructures offer no significant anti-reflecting prop-
erties in UV domain1–3 (due to the absence of effective
index gradient), Eq. 10 cannot be applied to C35-3’ and
C23-3’ nanostructures, which explains the differences be-
tween theoretical and measured angles. By contrast,
Eq. 10 should be highly relevant to spikes (samples C35-
5’ and C23-5’) since they allow for the graded-index pro-
file at the origin of the optically-controlled suppression
of vacuum photon modes. Indeed, one can observe that
experimental and theoretical contact angles match very
well in both C35-5’ an C23-5’ samples (see Fig. 4). How-
ever, it is worth noticing that general and complex exact
numerical computations using Eq. 3 for cylindrical pillars
– previously achieved for polyethylene3 – led to a contact
angle about 140◦ similar to those of samples C35-3’ and
C23-3’, thus strengthening our approach derived from
Eq. 3. Nevertheless, as explained in the previous section,
the theoretical behaviour of the hydrophobic properties
of the cylindrical-based effective layer given by Eq. 9 (f
being constant against h) can be also discussed, for in-
stance, on the basis of the Cassie-Baxter approach (with
f = (2π/

√
3)(r0/a0)2). Then, using values of r0 and a0

given in Table 1, Eq. 9 leads to the following contact an-
gles: 124 ± 9◦ (C35-3’) and 132 ± 13◦ (C23-3’). Despite
large uncertainties, these predicted values are compati-
ble with the measured contact angles. In conclusion, not

only the cylindrical pillars do not enable to obtain super-
hydrophobicity, but they do not allow us to discriminate
between classical effects and quantum ones.

FIG. 4. (Color online). Comparison for each kind of patterns
between experimental (blue) contact angles (in degrees) and
theoretical ones (red) from Eq. 10 assuming quantum contri-
butions inducing superhydrophobicity. The patterns are clas-
sified according to two extreme shapes, i.e. pillars (cylinders)
and spikes (sharp cones).

It could be then suggested that the present results – re-
garding surfaces covered with cones and spikes – could be
also interpreted through a classical Cassie-Baxter model.
For instance, instead of perfect cones, and as it could be
suggested by SEM images, one could consider truncated
cones surmounted by hemispheres with radius rtop. In
such a case, the contact angle is given by the well-known
relation30:

cos θ = nπr2
top(1 + cos θ0)2 − 1, (15)

where n is the number of hemispheres per unit area for
a hexagonal array, i.e. n = 2/(a2

0

√
3). However, fitting

rtop in order to match experimental data leads then to
hemispheres’ radii two times larger than those expected
from SEM measurements. This discrepancy clearly in-
validates such a Cassie-Baxter approach. It could also
be objected that more complex classical models, for in-
stance using finite element methods relying on Navier-
Stokes equations5–7, could maybe explain also these re-
sults. Nevertheless, the experimental study of wetting
models on corrugated surfaces with lateral corrugations
as close as 10 nm is complicated by complex manufactur-
ing processes – hard to replicate – and by huge uncertain-
ties on contact angle measurements31,32. This leaves us
with a narrow experimental window in order to defini-
tively validate or invalidate our model. Moreover, as
shown by Eq. 15 for instance, superhydrophobic be-
haviour mainly depends on the geometrical properties of
the top of the nanostructures in the Cassie-Baxter ap-
proach, while the quantum description given by Eq. 10
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underlines the importance of the nanostructures’ height.
As a consequence, any remaining doubts on the exact
mechanisms at play will only be resolved if one is able
to improve the reliable production of a large number of
samples with different profiles in order to increase the
significance of the present experimental results and to be
able to compare the classical and quantum models, for
instance by looking for a dependance of the contact angle
on the nanostructures’ height. We hope that the present
study will stimulate further research in this direction.

IV. CONCLUSIONS AND PERSPECTIVES

Previous theoretical works suggested that, superhy-
drophobicity can be induced through the use of a nanos-
tructured surface that is designed to form a thin metama-
terial layer with ultra-broadband and wide-angle absorp-
tion. This layer precludes the exchange of virtual pho-
tons and induces the collapse of the van der Waals force
allowing to reach superhydrophobicity. We have given
an interpretation of this fundamental concept through a
phenomenological approach which allowed us to derive a
simple effective contact angle formula that is the typical
signature induced by quantum effects on superhydropho-
bicity. Using advanced masking and etching techniques
for silicon wafer texturing at the nanometer scale and
subsequent grafting of organic monolayers, we have re-
alized unique deeply nanostructured surfaces covered by
arrays of nanospikes or nanopillars in order to provide a
plateform for assessing our model. In samples exhibit-
ing nanospikes, we have measured static contact angles
which could be interpreted as a result of the suppression
of quantum fluctuations as predicted by our model. Fur-
ther similar experiments will be considered in a next work
in order to reinforce the first assessment of the model pro-
vided by these preliminary results.
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Appendix A: Metamaterial effective optical index

When the surface is corrugated by an array of conical
pillars, two effects occur: diffraction modes arising from
the periodic lateral corrugation and refractive index gra-
dient arising from the vertically aligned cones.

ω
c

=
k

ωc

c

π
a0

ω
c

=
k

neff

ω
c

k

(a)

K(0)

ξc
c

αh

K(ξ)

log(ξ)

(b)

FIG. 5. (Color online). (a) Virtual photon dispersion between
interfaces (grey) with frequency cut-off (permittivity cut-off)
and wavevector cut-off (due to periodic array). Green and
orange areas are equal and define the average dispersion rela-
tion and then the effective index neff. (b) The K(ξ) function,
Eq. B9, presents a typical low-band pass behaviour with a
cut-off frequency at ξc, which is illustrated here. The dashed
line illustrates the cut-off that is introduced in the Hamaker
constant expression, Eq. B10, by the factor e−α(ξ/c)h.

First, in the long wavelength limit, a grating effective
index neff can be defined, which is related to the wavevec-
tor cut-off effect due to the lateral corrugation character-
ized through the period a0. Let us now estimate neff. As
the medium is constituted by a set of periodic nanospikes
with a period a0, and since one deals with wavelengths
greater than a0, all diffraction orders of the periodically
structured surface (i.e. grating) are evanescent except for
the zeroth-order of diffraction (specular reflection). As a
result, the electromagnetic field can efficiently penetrate
the medium while being exponentially damped, allowing
for a strong effective absorption of light. Since the surface
has discrete translational symmetry in lateral directions
(cf. periodical array), k// should present a cut-off typi-
cally near π/a0 at the border of the Brillouin zone. In
addition, ω, and thus ξ, should present a typical cut-off
ξc ∼ ωc beyond which the permittivity of the material
tends to the vacuum permittivity. This consideration is
general and valid for any material, as the frequency tends
to infinity. In practice ωc can be considered as finite.
In addition, for short distances between interacting bod-

ies, evanescent waves ( ω2

c2 n2
eff −

∣

∣k//

∣

∣

2
< 0) dominate and

must follow the dispersion relation ω
c < k///neff. As a re-

sult, possible virtual photons parameters (ω, k//) occupy
the domains in (ω, k//)-space that are depicted in green
and orange in Fig. 5a. Considering both wavevector and
frequency finite limits, we decide to describe neff as the
effective index which corresponds to the average disper-
sion relation separating green and orange domains into
two equal parts. Then, from geometrical considerations,
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one easily shows that:

neff =
2x2

2x − 1
with x =

πc

a0ξc
. (A1)

In the following, we will assume that ξc is small enough
compared to πc/a0 so that3 neff ∼ x. In practice, x is of
the order of ten.

Next, always in the long wavelength limit, the profile of
the corrugation can lead to a refractive index gradient1,2

ng(z) while z varies between the substrate (z = 0) and
the top of the corrugation (z = h) in vacuum. For in-
stance – for a cone array along an hexagonal lattice – one
gets1:

ng(z) =
√

1 + γ(n2
eff − 1)(z − h)2/h2, (A2)

where γ = π/(2
√

3) is the 2D filling rate of the close-
packed hexagonal lattice at the bottom of the cone (z =
0). For cylindrical pillars, on the other hand, it is worth
noting that such a gradient does not exist but also that
Eq. 5 cannot be applied as explained above (end of sec-
tion A). In the present phenomenological approach, we
replace ng(z) by a spatially averaged index which must
correspond to the above mentioned effective optical index
n of the absorbing layer. To derive such a mean index,
one considers the optical path L through the absorbing
layer of thickness h such as:

L =

∫ h

0

ng(z)dz = nh, (A3)

with

n =
1

h

∫ h

0

ng(z)dz. (A4)

It can be shown that4

n ∼ (1/2) neff. (A5)

Considering Eq. A5, we are able to find the searched
expression for α:

α = 2n ∼ neff ∼ x

∼ πc

a0ξc
. (A6)

3 a0 ≈ 10 nm, i.e. πc/a0 ≈ 1017 rad·s−1, while typical permittiv-
ity cut-off is about27 1016 rad·s−1. Therefore x is of the order
of 10 and the assumption x ≫ 1 made to approximate neff by x
from Eq. A1 is fully justified.

4 Using the expression of Eq. A2 in Eq. A4, and setting u = 1 −
z/h and p2 = γ(n2

eff − 1), one gets n =
∫ 1

0

√

1 + p2u2du =

1
2

(

√

1 + p2 + arg sinh(p)/p

)

. For p great enough, n ∼ p/2,

and thus, for neff great enough – in the present context neff ≈ 5
fulfilling the condition – n ∼ (

√
γ/2)neff ≈ (1/2) neff.

Appendix B: Hamaker constant derivation

In the case where the surface of body 1 is corrugated
the expression of the potential energy, Eq. 3, becomes,
thanks to Eq. 4 (the subscripts on the reflection coeffi-
cients in Eq. 4 are dropped for conciseness):

U(L) =
~

2π

∑

m=s,p

∫

d2k//

(2π)2

∫

∞

0

dξ (B1)

× ln(1 − Rm
1 (iξ, k//)Λ (iξ, h, α) Rm

2 (iξ, k//)e
−2κL),

Considering Eq. 5 where a is now substituted by5 α =
2n(iξ), where we further assume that n(iξ) ∼ n is con-
stant, i.e. frequency-independent on the domain of in-
terest. A tricky part of the present phenomenological
approach lies in the estimation of the effective optical
index n of the metamaterial layer, which is detailed in
Appendix A.

Let us first rewrite Eq. B1 as:

U(L) =
~

4π2L2

∑

m=s,p

∫

∞

0

qdq

∫

∞

0

dξ (B2)

× ln(1 − Rm
1 (iξ, q/L)Λ (iξ, h, α) Rm

2 (iξ, q/L)e−2ρ),

where we used: (1/(2π)2)
∫

d2k// = (1/2π)
∫

k//dk//, and

ρ =
√

ξ2

c2 L2 + q2, with q = k//L. Using Eq. 1, the effective

Hamaker constant AH is directly deduced from Eq. B2:

AH = −3~

π

∑

m=s,p

∫

∞

0

qdq

∫

∞

0

dξ (B3)

× ln(1 − Rm
1 (iξ, q/L)Λ (iξ, h, α) Rm

2 (iξ, q/L)e−2ρ).

Recalling the expressions of the Fresnel coefficients for
flat interfaces:

Rs
1(2)(ω, k//) =

kz,3 − kz,1(2)

kz,3 + kz,1(2)
, (B4)

Rp
1(2)(ω, k//) =

ε3kz,1(2) − kz,3ε1(2)

ε3kz,1(2) + kz,3ε1(2)
, (B5)

where kz,i =
√

ω2

c2 εi − k2
//, we get, since k// = q/L:

lim
L→0

Rs
1(2)(iξ, q/L) = 0, (B6)

and

lim
L→0

Rp
1(2)(iξ, q/L) =

ε3(iξ) − ε1(2)(iξ)

ε3(iξ) + ε1(2)(iξ)
. (B7)

5 Indeed, as exp(−aω(ω/c)h) = exp(−2(ω/c)Im {n(ω)} h) =
Re {exp(i2(ω/c)n(ω)h)}, then exp(−aiξ(iξ/c)h) =
Re {exp(i2(iξ/c)n(iξ)h)} = exp(−2(ξ/c)n(iξ)h) since n(iξ)
is real.
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Then, in the limit where L tends to zero:

AH = −3~

π

∫

∞

0

qdq

∫

∞

0

dξ (B8)

× ln(1 − K(ξ)e−2qΛ (iξ, h, α)),

with

K(ξ) =
ε3(iξ) − ε1(iξ)

ε3(iξ) + ε1(iξ)

ε3(iξ) − ε2(iξ)

ε3(iξ) + ε2(iξ)
. (B9)

For most of usual materials, it can be verified that K(ξ) is
small enough such that ln(1 − K(ξ)e−2qΛ (iξ, h, α)) ∼
−K(ξ)e−2qΛ (iξ, h, α). In that case, the integral over q
can be solved analytically, so that Eq. B8 becomes:

AH ∼ 3~

π

∫

∞

0

qdq

∫

∞

0

dξK(ξ)e−2qΛ (iξ, h, α)

=
3~

4π

∫

∞

0

dξK(ξ)Λ (iξ, h, α) . (B10)

For a flat interface (i.e. h = 0, for instance), Eq. B10
reduces to:

AH,0 =
3~

4π

∫

∞

0

dξK(ξ)

=
3~

4π

∫

∞

0

dξ (B11)

×ε3(iξ) − ε1(iξ)

ε3(iξ) + ε1(iξ)

ε3(iξ) − ε2(iξ)

ε3(iξ) + ε2(iξ)
,

which is the well-known expression of the Hamaker con-
stant at absolute zero temperature albeit valid up to the
room temperature3,16.

On the other hand, using Lorentz description27 of the
dielectric functions ε(iξ) and using the expression for
K(ξ) (see Eq. B9), one can verify that K(ξ) possesses
globally a low-pass spectral behaviour shown in Fig. 5b.
As K(ξ) is almost constant until the cut-off is reached at
ξc, one can approximate AH,0 by:

AH,0 ∼ 3~

4π
K(0)ξc (B12)

∼ 3~

4π

ε3(0) − ε1(0)

ε3(0) + ε1(0)

ε3(0) − ε2(0)

ε3(0) + ε2(0)
ξc.

Now, in Eq. B10, that is for a nanostructured interface,
the factor Λ (iξ, h, α) = e−α(ξ/c)h (from Eq. 5) introduces
a new cut-off frequency at c/αh, which depends on h. A
careful analysis shows that6:

6 As a heuristic argument, as K(ξ) is almost constant until its cut-
off at ξc, we can write:
AH = 3~

4π

∫

∞

0
dξK(ξ)e−α(ξ/c)h

∼ 3~
4π

∫

∞

0
dξK(0)e−ξ/ξc e−α(ξ/c)h

∼ 3~
4π

K(0)
∫

∞

0
dξe−ξ(1/ξc+αh/c),

since the integral is essentially determined by the cut-off fre-
quency imposed by α (see Fig. 5b) and therefore K can be
considered as constant in the integral. Now, if h = 0, we
have: AH,0 = 3~

4π

∫

∞

0
dξK(ξ)e−ξ/ξc ∼ 3~

4π
ξcK(0). As a result:

AH = 3~
4π

ξcK(0)/(1 + αξch/c) = AH,0/(1 + αξch/c).

AH ∼ AH,0
1

1 + h/h0
, (B13)

with h0 = c/(ξcα). Using the approximation of Eq. A6
which relates α to a0 and ξc, we get:

h0 =
a0

π
. (B14)

Then, Eqs. B13 is the searched expression, Eq. 2, giving
the dependence of Hamaker constant against the cone
height h, i.e. the thickness h of the effective broadband
absorber metamaterial under consideration.
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