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Abstract 

 

How plant-plant interactions will interact with global change drivers such as increased drought during the 

regeneration phase is a key question to forecast future vegetation dynamics. Chemical interaction and especially 

allelopathy and drought have been suggested to affect plant performance synergistically, i.e. that plant under 

drought stress would be more sensitive to allelochemicals and that exposure to allelopathic interactions could 

increase drought sensitivity through an inhibition of root development and mycorrhization. In this paper, we tested 

these hypotheses by using a controlled experiment with Quercus pubescens Mill. as a target species and three co-

occurring species plus itself as source species. Allelopathic treatments consisted of annual provision of litter and 

monthly watering with green leaf aqueous extracts during 2 vegetation seasons starting from oak acorns. During 

the second vegetation season, a drought stress treatment was added on half of the seedlings. Allelopathy of co-

occurring species reduced seedlings dimensions while Q. pubescens treatment increased it. During the second 

vegetation season, seedling growth rate and physiology were reduced by drought but poorly affected by 

allelopathic treatment. At the end of the experiment, drought stress and allelopathy from Cotinus coggygria and 

Pinus halepensis both reduced seedling biomass but had opposite effects on the root/shoot ratio. Drought and 

allelopathy did not interact significantly and, contrary to our hypothesis, there was a tendency of lower allelopathic 

effects under drought. Our results suggest that drought and allelopathy could additively alter seedling development, 

but the opposite effects of allelopathy and drought on the root/shoot ratio call for further experiments testing the 

interaction between these two factors.  
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1. Introduction  

 

Plant regeneration plays a central role in the dynamics of plant populations and communities, particularly early 

phases including germination, growth and establishment of seedlings (Nathan and Muller-Landau 2000; Nathan 

and Ne'eman 2004; Grubb 1977). These demographic stages are influenced by both biotic and abiotic factors 

(Lortie et al. 2004). In Mediterranean forests, summer drought is among the most constraining factors for seedling 

establishment, which often represent an important bottleneck for species regeneration (e.g. Marañón et al. 2004; 

Pérez-Ramos et al. 2012). Furthermore, summer drought stress is expected to increase with climate change 

consequently to globally rising temperatures and changing precipitation patterns (IPCC 2014, Giorgi and Lionello 

2008) which may reinforce the drought limitation for seedling establishment (Pérez-Ramos et al. 2013).  

Biotic factors such as plant-plant interactions are also particularly important for plant regeneration. The 

surrounding vegetation can influence seedling establishment processes by a change of resource availability and 

microclimate (Gómez-Aparicio et al. 2005; Prévosto et al. 2016; Gavinet et al. 2016a), but also through chemical 

interactions (Fernandez et al. 2009; Gavinet et al. 2019; Weir et al. 2004). Plant-plant chemical interactions, i.e. 

allelopathy (Rice 1984), can be positive - typically through nutrient release - or negative due to the release of 

phytotoxic compounds. Negative chemical interactions play an important role in Mediterranean ecosystems (Vilà 

and Sardans 1999) and in particular in forest succession dynamics (Alías et al. 2006; Fernandez et al. 2008, 2013, 

2016). For example, specialized compounds produced by plants (terpenoids and/or phenolic compounds) can delay 

seed germination, inhibit seedling growth (Mallik 2003) or affect root symbionts (Einhellig 1999; Mallik and Zhu 

1995) which play a key role during summer drought by improving seedling water and nutrient uptake (Sardans 

and Peñuelas 2013). Specialized compounds can also indirectly affect seedling development through modified 

nutrient cycles during the litter decomposition process (Chomel et al. 2014; Kuiters 1990; Kainulainen et al. 2003; 

Gavinet et al. 2019). Phenolic compounds are mostly soluble and can be released from plant leaves during rainy 

events or during the litter decomposition process. Terpenoids in contrast are highly volatile and may interact with 

surrounding plants in their gaseous phase after volatilization, either from living leaves or from litter (Santonja et 

al. 2019). Allelopathic potential has long been examined through isolation of compounds and laboratory tests on 

model species such as Lactuca sativa, with the aim of identifying potential natural herbicides. However, the 

investigation of allelopathic interactions in natural ecosystems, especially forests, require more realistic 

experiments, testing the effects of natural extracts of plant materials on co-occurring species, taking into account 

the phenological stages of the interacting species (Inderjit & Weston 2000).  

The interaction between drought and plant-plant interactions has been intensively debated (Maestre et al. 2005, 

2009; Michalet 2007) and this debate becomes particularly important when trying to forecast global change impact 
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on plant distribution (Michalet and Pugnaire 2016). The interaction between drought and shading has been 

intensively studied (e.g. Sánchez-Gómez et al. 2006; Holmgren et al. 2012; Laanisto and Niinemets 2015) but 

drought and chemical interactions have rarely been studied jointly. Drought could impact plant-plant chemical 

interactions by increasing the production of allelochemicals by source plants (Einhellig 1999; Pedrol et al. 2006; 

Gatti et al. 2014) or fostering the production of compounds with greater phytotoxic activities (Oueslati et al. 2005; 

Gatti et al. 2014). Plants may be more sensitive to allelochemicals under drought stress (Pedrol et al. 2006) and 

allelopathy may aggravate drought stress by antagonistic effects on root development: allelopathy is often 

inhibiting root development (e.g. Gavinet et al. 2019), while increased biomass allocation to roots is a well-known 

morphological response to drought aiming at increasing seedling ability to capture belowground water (Dickson 

and Tomlinson 1996; Lloret et al. 1999; Poorter et al. 2012).  

Quercus pubescens Willd. (downy oak) forests represent more than one million hectares in France. Downy oak 

often occurs in the transition of several climatic influences and is sensitive to drought at the seedling stage (Morin 

et al. 2010), which translates into frequent regeneration failure in the Mediterranean (Prévosto et al. 2013; Gavinet 

et al. 2016b). The natural regeneration from seeds of Mediterranean oaks is uncertain, as many obstacles can hinder 

the process: poor seed supply, lack of an effective dispersal vector, high predation on seeds or difficulties in setting 

up seedlings (Puerta-Piñero 2010; Pausas et al. 2009). Emergence, survival and growth of oak seedlings are highly 

variable depending on the microsite (Prévosto et al. 2011; Pérez-Ramos et al. 2013). This variability is often related 

to competition for resources with existing vegetation, but allelopathic interactions may also contribute to the 

definition of oaks regeneration niche (Li and Romane 1997; Gavinet et al. 2019). Downy oak acorns are likely to 

be dispersed in places surrounded by species with important contents of phenolics or terpenoids and known to 

exhibit allelopathic potential such as Pinus halepensis (Fernandez et al. 2008), Acer monspessulanum L. or Cotinus 

coggygria Scop. and Q. pubescens itself. Indeed, in Mediterranean forest, A. monspessulanum is a companion 

species of downy oak in the tree stratum while the shrub C. coggygria can dominate the understorey in 

supramediterranean  conditions (Hashoum et al. 2017). P. halepensis also coexists with Downy oak in warmer and 

drier environments (Santonja et al. 2015a). The chemical content of the four source species has been analyzed in 

several previous studies. Aqueous extracts from needles, roots and litter of P. halepensis contain large amounts of 

compounds belonging to different functional phytochemical groups likely to induce allelopathic effects 

(monoterpenes, sesquiterpenes, phenolics; Fernandez et al. 2009; Gavinet et al. 2018). Allelochemicals from P. 

halepensis are known to slow down the germination of herbaceous species (Fernandez et al. 2006; Fernandez et 

al. 2013; Santonja et al. 2019) or the growth of tree species such as Q. pubescens especially in early stage of its 

development (Fernandez et al. 2016) but also the growth of P. halepensis via autotoxicity (Fernandez et al. 2008). 
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Aqueous extracts from green leaves, senescent leaves and litter of A. monspessulanum, C. coggygria and Q. 

pubescens contain flavonoids such as quercetin, isorhamnetin and naringenin, compounds with reported 

allelopathic activities (Paszkowski and Kremer 1988; Macias 1995). Notably, allelopathic effects from those 

aqueous extracts have been reported on the germination and growth of two herbaceous target species occurring in 

the same community (Linum perenne and Festuca ovina) with senescent leaves extract that inhibited seeds’ 

germination velocity while green leaves extract impacted seedlings growth (Hashoum et al. 2017). Moreover, total 

phenolics, terpenes and nutrients contents of the litter are also described in Gavinet et al. 2018 and Santonja et al. 

2015a.  

 

In this study, we performed a greenhouse experiment to test how Q. pubescens seedlings establishment is affected 

by plant-plant chemical interactions with itself and three co-occurring species (A. monspessulanum, C. coggygria. 

and P. halepensis), and how these chemical interactions interact with drought. We hypothesized that i) chemical 

interactions alter oak seedlings development by decreasing root biomass and mycorrhization, ii) exposure to 

chemical interactions consequently increase seedlings sensitivity to drought and iii) oak seedlings under drought 

stress are more sensitive to allelochemicals.  

2 .  M a t e r i a l  a n d  M e t h o d s  

2.1 Plant and soil material  

Plants and soils used in this experiment were collected at the Oak Observatory (O3HP) at the ‘‘Observatoire de 

Haute Provence’’ (Hashoum et al. 2017), in a supramediterranean forest site. Acorns of Q. pubescens from 

different trees were collected in autumn 2014 and visually sorted to eliminate those damaged, infested or aborted 

and to select acorns of roughly similar size. The selected acorns were layered in a moist substrate consisting of 

sand and organic substrate (50:50) at 4°C until the radicle appeared. Litter from the four source species used (Q. 

pubescens, A. monspessulanum, C. coggygria and P. halepensis) was collected in autumn 2014 directly after the 

fall of the senescent leaves using tarpaulins placed under the trees, separated according to the different species in 

order to obtain pure litters from each species, and stored in the laboratory in the dark at ambient temperature. Green 

leaves of the four source species were harvested each month of the growing season (April to October) during all 

the experiment duration.  

The soil used for the experiment was collected in January 2015 and used directly to prepare the substrate for 

plantations. 



6 
 

2.2 Experimental design 

The experiment took place at the botanical garden of Mediterranean Institute of Biodiversity and Ecology, Aix-

Marseille University, Marseille, South of France. The climate is typically Mediterranean with a mean annual 

temperature of 14.9°C and mean annual precipitations of 536 mm (1921 - 2019), mainly distributed in spring and 

autumn with a dry summer season. Two hundred acorns were sowed in February 2015 in 6L pots (1 acorn per pot, 

18.3 cm wide, 25.5 cm high) filled with a substrate composed of 50% natural soil, 25% peat moss substrate, and 

25% perlite. The use of natural soil ensures that soil microorganisms naturally present in Q. pubescens forests of 

the O3HP site were in the pot.  

In order to relate as closely as possible to natural conditions, we considered two of the main release modes of 

allelochemicals into the environment (Rice 1984): litter decomposition and leachates, i.e. leaching of water-soluble 

compounds from leaves during rain events. Allelopathic treatments are thus the addition of litter of source species 

(litter decomposition mode) and aqueous leaf extracts of source species (leachates). The use of aqueous extracts is 

justified because it is widely recognized that water-soluble compounds are those most often involved in allelopathy 

(Vyvyan 2002). Allelopathic treatments were applied from February 2015 to April 2016 on 40 pots per source 

species + a control (5 treatments applied on 40 pots each). For each source species, the pot was supplied with 25g 

of litter in February 2015 and 15g in October 2015 in order to simulate the annual leaf fall, and watered with leaf 

extracts every month. Depending on the phenological stage of the plant on the O3HP, leaves used for extract 

preparation were green leaves (vegetation season), senescent leaves (autumn) or litter (winter). The two processes 

of chemical interactions through leachates and litter have thus been investigated jointly here to mimick natural 

conditions. The control was supplied with fiberglass cloth used to imitate the physical litter effect but without 

releasing allelochemicals (Sydes and Grime 1981; Gavinet et al. 2018) and watered with water. To determine the 

quantity of leaf litter supply, we measured the natural leaf litter amount of each species on the forest site in ten 

400 cm2 blocks, then a common average value of 25g per pot was used for all source species. A net was placed on 

each pot to prevent litter loss or addition. Aqueous extracts were prepared with fresh foliar material macerated in 

water for 24 hours at ambient temperature. To determine aqueous extracts concentrations on a leaf dry mass basis, 

a sample of fresh green leaves were dried and weighed to determine the leaf water content of each species.  

During the first year (from February 2015 to April 2016), 500 ml of aqueous extracts at 2.5% (weight/volume) 

were added to each pot of the allelopathic treatment every month. The second year (from April 2016 to October 

2016), half of the pots of each treatment were submitted to a water stress treatment by reducing water supply to 

maintain the pots at 20% of field capacity, while the other half were maintained at field capacity (not stressed). 

Soil moisture was maintained through an automatic drip irrigation system. Water-stressed pots submitted to 

allelopathic treatments were supplied monthly with 125 ml of aqueous extracts at 10%, aiming at keeping the same 
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amount of compounds but less diluted than the allelopathic pots under no-stress treatment. Our design thus mimick 

a first year with no drought stress followed by a second year with drought stress, keeping the allelopathic treatment 

constant (Figure 1). Treatments of chemical interactions are referred hereafter by the Genus name of the source 

species, i.e. Acer, Cotinus, Quercus and Pinus.   

 

 

Fig1: Schematic drawing of the experimental design used to test biotic interactions between companion species 

and Q. pubescens under drought. The biotic interactions applied through the decomposition of litter and the 

supply of aqueous extract are designated by the initial of the genus name (Q: Q. pubescens; C: C. coggygria; A: 

A. monspessulanum; P: P. halepensis; GF: glass fiber; FC: field capacity; N15/01, N16/04: number of replicates 

followed by the corresponding date). In April 2016, each treatment was then divided in two subsamples, one 

submitted to water stress and the other kept at field capacity. 

 

2.3 Plant growth response 

Seedling size (height and diameter at ground level) was measured at the end of the first growing season, in 

November 2015, and at the end of the second growing season, in October 2016. At the end of the second growing 

season, seedlings were harvested, and root systems were gently washed above a sieve to remove soil particles 

without losing roots. Seedlings were separated between leaves, stems, coarse and fine roots (diameter < 2mm), 

oven-dried at 60°C for 4 days and weighed. The total number of leaves was also recorded for each seedling.  

Allelopathy treatment: from February 2015 to October 2106

January 2015
Sowing with litter
N=40

No stress
100% FC

Stress
20% FC

Water stress treatment: from April 2016 to October 2016

N15/01 N16/04 Litter Leachate

40 23 Q Q

40 31 C C

40 27 A A

40 29 P P

40 32 GF Water

February 2015
Emergence
N=23-32/40

5 Allelopathy treatments 10 treatments: 5 Allelopathy x 2 Water Stress

April 2016
Budburst
N= 23-32/40
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2.4 Plant physiological response, mycorrhization rate and litter decomposition 

CO2 and H2O exchanges were measured four months after the application of water stress, in August 2016, on a 

subsample of 10 seedlings per treatment and on one leaf per seedling. Each leaf was clipped in a PLC3 Universal 

Cuvette (diameter 18 mm, 2.5 cm2 surface) relied to an Infrared Analyzer (Synersy, CIRAS 3 PPSystem). Gas-

exchange measurements allowed direct calculations of net photosynthesis (A, μmol CO2 m-2 s-1), stomatal 

conductance to water vapor (gs, mmol.m-2.s-1) and transpiration (E, μmol H2O m-2 s-1). Measurements were 

performed under 30°C temperature, constant CO2 concentration (400 ppm) and saturating PAR (1000 µmol.m-2.s-

1). Five measurements were recorded (one measurement every ten seconds), and the average of the five recordings 

was used for statistical analysis.  

In this experiment, we also evaluated the percentage of ectomycorrhizal colonization. This type of symbiotic 

association is largely represented in Mediterranean forest species where fungi develop mainly around the root, 

forming a mycelian mantle from which hyphae develop (Duponnois et al., 2013). More, they can modify the 

sensitivity of plants to allelopathic substances. (Gallet and Pellissier, 2002). We took root samples from each 

modality directly after the seedlings were collected, at the end of the experiment. Then these samples were stored 

in 60% alcohol until the time of analysis. We randomly selected 5 samples per modality for analysis, for a total of 

50 samples. To quantify the percentage of ectomycorrhizal colonization, we used the line intersection method 

(Giovannetti and Mosse, 1980). This semi-quantitative method is based on the control of mycorrhization at all 

points of intersection between the roots present and a grid (1x1cm) placed under a Petri dish. 5 fragments of 3 cm 

of roots are therefore analyzed in a Petri dish with a few milliliters of distilled water to prevent drying the roots. 

The counting is done under a binocular magnifying glass at a 4x40 magnification with high illumination to ensure 

good visualization. The mycorrhization rate is obtained as the ration of the number of mycorrhized root intersection 

points to the total number of root intersection points.  

The litter from each pot was collected at the end of the experiment, freeze-dried and weighed to calculate the 

decomposition rate as follows: (total mass supplied - final mass) / total mass supplied.  

2.5 Statistical analyses  

Allelopathic effects on oak seedling emergence were tested using a generalized linear model with a binomial 

distribution. Allelopathic effects on early oak growth (length and diameter after 10 months of allelopathic 

treatments, before drought treatment application) were tested through 1-way ANOVA followed by Tukey post-

hoc tests. Seedling length and diameter relative growth rate during the second year was computed as RGR = 

(log(X2) – log(X1)) / (t2 – t1), with X2 is seedling dimension (height or diameter) at the last measurement date t2 
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(i.e. November 2015), and X1 the same dimension at the first measurement date t1 (i.e. in October 2016). Given 

that growth during the winter season is negligible, this value essentially represents the growth rate during the 

second season, when water stress was applied on half of the seedlings. The effects of allelopathy, drought treatment 

and their interactions on oak RGR, physiology, biomass, biomass allocation and mycorrhization rates were tested 

through two-ways ANOVAs. Litter mass loss was calculated as the difference of final litter mass and all litter 

inputs and expressed in percentage. Conditions of normality and homoscedasticity were checked using the 

Kolmogorov-Smirnov and Levene tests, respectively, and the data was log-transformed if necessary (seedling 

length, diameter and RGR).  

3 .  R e s u l t s  

3.1 Allelopathic effects on oak seedlings emergence and early growth  

Oak seedling emergence was only marginally influenced by allelopathic treatment (χ2 = 7.3, P= 0.06), with a 

tendency of higher emergence in control conditions than in the Quercus treatment (Figure 2). Allelopathic 

treatment influenced seedling length (F=18.9, P < 0.001) and diameter (F=3.6, P = 0.009). Seedlings had a smaller 

diameter in the Acer, Cotinus and Pinus treatments and a higher length in the Quercus treatment (Figure 2). 

 

Fig2: Allelopathic treatment effects on Q. pubescens acorn emergence and early seedling growth after the first 

vegetation season. Different letters represent significant differences (P < 0.05, Tukey post-hoc tests). Data are 

model predictions of emergence probability and means of growth variables ± standard errors (n=40 acorns per 

treatment for emergence, n= 27 – 32 acorns per treatment for growth).  

 

3.2 Allelopathy and drought effects on Q. pubescens growth and biomass allocation  

Seedling RGR during the second growing season was affected by drought for both height and diameter growth (P 

< 0.001) but not by allelopathy nor by the interaction between these factors (Figure 3), although allelopathy 

marginally influenced diameter RGR (P = 0.07; Figure 3) with a tendency of better growth under Pinus treatment.  
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Fig 3: Allelopathy and drought effects on seedling relative growth rate (RGR) in length and diameter during the 

second growing season. Data are means ± standard errors (n=11–17 seedlings per treatment). Results of two-ways 

ANOVA testing the effect of allelopathy (FA, DF = 4), drought (FD, DF = 1) and their interaction (FA×FD, DF = 4) 

are indicated (with the symbols + for P < 0.1, * for P <0.05, ** for P <0.01 and *** for P <0.001). 

 

Drought and allelopathy affected all biomass and biomass allocation parameters, except fine roots biomass (Figure 

4). No significant interaction was detected. Over the total duration of the experiment, the drought treatment caused 

an average decrease of 27% of total biomass, 39% of aerial biomass, and 20% of root biomass compared to 

seedlings under non-stressed conditions. Drought also caused a 48% decrease in the number of leaves, which is 

the most significant morphological effect of this treatment (data not shown). Litter and leachates of Cotinus led to 

a decrease in the number of leaves, coarse and fine root biomass, total seedling biomass and root/shoot ratio 

compared to the control. Root biomass and root/shoot ratio were also reduced by the Pinus treatment (Figure 4). 
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Fig 4: Drought and allelopathy effects on seedling biomass and root/shoot ratio. Allelopathy has been applied 

during 2 growing seasons and drought during the last growing season. Data are means ± standard errors (n=11–17 

seedlings per treatment). Results of two-ways ANOVA testing the effect of allelopathy (FA , DF = 4), drought (FD, 

DF = 1) and their interaction (FA×FD, DF = 4) are indicated (with the symbols * for P <0.05, ** for P <0.01 and 

*** for P <0.001). 

 

3.3 Allelopathy and drought effects on Q. pubescens physiology and mycorrhization rate 

Drought reduced stomatal conductance (gs) and photosynthesis (A) by 33.5 and 28.5% respectively compared to 

the unstressed condition (Figure 5). Allelopathy marginally influenced stomatal conductance (P = 0.05) and 

influenced seedling photosynthetic rate (P= 0.02), with in both cases seedlings under Quercus treatment having 

higher values than the control (Figure 5). Mycorrhization rates of Q. pubescens seedlings were generally high, 

ranging from about 70% to 75%, with no significant differences of mycorrhization rates between drought 

treatments (P = 0.92), allelopathy treatments (P=0.96) or their interaction (P=0.84) (data not shown). 
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Fig 5: Allelopathy and drought effects on seedling leaf photosynthetic rate (A) and stomatal conductance (gs) 

during the summer of the second growing season. Data are means ± standard errors (n=10 seedlings per treatment). 

Results of two-ways ANOVA testing the effect of allelopathy (FA, DF = 4), drought (FD, DF = 1) and their 

interaction (FA×FD, DF = 4) are indicated (with the symbols + for P < 0.1,  * for P <0.05, ** for P <0.01 and *** 

for P <0.001). 

 

3.4 Allelopathy and drought effects on litter decomposition 

Drought and allelopathy had an interactive effect on litter decomposition (FAxD=3.5, P = 0.01; Figure 6). Under 

well-watered conditions there was a difference in species decomposition rates according to the gradient Quercus 

< Acer <= Pinus < Cotinus, with the Cotinus litter decomposing particularly fast with a loss of 61% of its mass at 

the end of the experiment under control conditions. The drought treatment reduced only the decomposition of 

Cotinus and Pinus litter, leading to a decrease of the difference between species in the drought treatment (Figure 

6).  
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Fig 6: Litter mass loss in the different allelopathic and drought treatments. Data are means ± standard errors (n=11-

17 pots of surviving seedlings per treatment). Results of two-ways ANOVA testing the effect of allelopathic source 

species (FA, DF = 3), drought (FD, DF = 1) and their interaction (FA×FD, DF = 3) are indicated (with the symbols 

* for P <0.05, ** for P <0.01 and *** for P <0.001). 

 

 4 .  D i s c u s s i o n  

4.1 Allelopathy from companion species but not autotoxicity affects Q. pubescens seedlings development 

The present results confirm the allelopathic potential of C. coggygria and P. halepensis, as they decreased seedling 

biomass and in particular root biomass of Q. pubescens. Several studies have found that the root part of a target 

plant is more sensitive to allelochemicals than the aerial part (Ben-Hammouda et al. 2001; Turk and Tawaha 2003; 

Gatti et al. 2010; Zhang et al. 2010). This sensitivity could be related to the root uptake role implying a direct 

contact between roots and allelochemicals in the soil (Turk and Tawaha 2003). Inhibition of root growth by 

allelochemicals may be due to changes in DNA synthesis in cells of root apical meristem, alteration of 

mitochondrial metabolism (Abrahim et al. 2000) or changes in cellular mitotic indices (Dayan et al. 1999; Romagni 

et al. 2000). As in this study, an inhibition of root development by C. coggygria leaf aqueous extracts has also 

been demonstrated on Q. pubescens 2-month-old seedling (Gavinet et al. 2019). However, Gavinet et al. (2018) 

found no effect of C. coggygria and P. halepensis litter on Q. pubescens seedlings development, which suggest 

that aqueous extracts may have a greater allelopathic effect than litter. The chemical composition and the quantity 

of allelochemicals in the leaves are highly variable between green leaves and litter leaves (Fernandez et al. 2009; 

Hashoum et al. 2017; Silva et al. 2014). Nektarios et al. (2005) also found that green needle extracts of P. 

halepensis had a more pronounced negative effects on herbaceous species growth than litter extracts. The supply 

of aqueous extracts and litter could also have cumulative effects as the concentration of available allelochemicals 

in soil water is a direct determinant of the phytotoxic activity of allelochemicals in soil (Kobayashi 2004). Litter 

decomposition allow to release nutrients and allelochemicals according to initial leaf litter quality (Chomel et al. 

2014, 2016, Santona et al. 2015 a, b), and Cotinus and Pinus litter have a high concentration of phenolics and 

terpenoids, respectively (Santonja et al. 2015a; Gavinet et al. 2018). 

We found no evidence of autotoxicity for Q. pubescens. The treatment with litter and aqueous extracts from Q. 

pubescens tended to inhibit seedling emergence but increased seedling length. These effects may be due to 

mechanical litter effects (Facelli and Pickett 1991; Kostel-Hughes et al. 2005). Q. pubescens litter had the largest 

and thickest leaves, which may constitute a greater physical barrier in line with its tendency to decrease seedling 



14 
 

emergence compared to the artificial litter treatment. Xiong et al (2001) also showed that the negative effects of 

litter increased with the size of the litter leaves. Similarly, after cutting oak litter leaves, Li and Ma (2003) observed 

an increase in seedling emergence. The increase in seedling length is consistent with our hypothesis of a physical 

effect of Quercus litter through light interception (Facelli and Pickett 1991), which can accelerate the elongation 

of the stem. Interestingly, Quercus treatment improved seedling photosynthesis and transpiration. As this species 

litter present the lowest decomposition rate (Figure 5) and is known to release few nutrients (Santonja et al. 2015b), 

the positive effects of its own litter may come from improved seedling water status thanks to a lower soil moisture 

evaporation, as also suggested by Gavinet et al. (2018).  

4.2 Drought affect Q. pubescens seedlings physiology and growth but do not interact with allelopathy 

Water stress induced a progressive decrease in stomatal conductance and photosynthesis, a classic physiological 

response to drought already documented for different oak species (Chaves et al. 2002; Vaz et al. 2010, Arend et 

al. 2013). The reduced photosynthesis combined with a lower leaf biomass indicates a lower carbon gain for the 

plant, which participate to explain the lower seedling biomass under drought stress. Seedling biomass reduction 

by drought was particularly marked for leaves but not for roots, indicating a change in biomass allocation and an 

increased root/shoot ratio as expected (Poorter et al. 2012). However, contrary to our hypothesis, drought effects 

were not more important for seedlings submitted to allelopathic treatments. This is particularly surprising as 

regards the Cotinus and Pinus treatments which strongly reduced root development. These allelopathic treatments, 

however, caused no change in leaf carbon and water exchange rates, contrary to previous results showing that 

allelopathy can reduce plant water uptake, stomatal conductance or photosynthesis (Barkosky et al. 2000; Zhou 

and Yu 2006). In our study, seedling length and diameter relative growth during the second year did not differ 

between allelopathic treatments, whatever the drought stress. This suggest that i) allelopathic effects were 

restricted to the first phase of our experiment, ii) root biomass reduction that occurred in the first year was not 

strong enough to induce a reduction of water absorption by roots during subsequent drought. An element of 

explanation of this latter effect could be that Cotinus and Pinus treatments did not affect rooting depth, which is 

the main factor controlling seedling water absorption (Padilla and Pugnaire 2007). Finally, the absence of treatment 

effect on mycorrhization rate may hide differences in mycorrhization type : for instance, mycorrhizae with longer 

extrametrical mycelia may help seedlings to sustain their carbon and water exchange and growth rates (García de 

Jalón et al. 2020) despite lower root biomass.  

Our results do not support the hypothesis of Pedrol et al. (2006) that sensitivity to allelochemicals is increased 

under drought stress. At the contrary, allelopathic effects tended to be less pronounced (although not significantly) 

under drought stress. A reduced allelopathic effect under drought stress is possible if the lower water availability 
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prevents the transport of soluble allelochemicals to the roots. The dry treatment also reduced litter decomposition 

rate for Cotinus and Pinus, possibly limiting the release of litters’ allelochemicals through volatilization or 

solubilization. However, it must be highlighted that drought was applied during the second year of oak seedling 

development only, a period during which allelopathic effects were reduced as indicated by growth and 

physiological measurements. Similarly, Gavinet et al. (2019) showed that Cotinus inhibited root development of 

young seedling but not that of older saplings. Differences of root biomass measured at the end of the experiment 

may thus reflect only legacy effects of the first year allelopathic effects. Drought applied during the first year, or 

on more sensitive target species, may lead to different results. For instance, Hashoum et al. (2019) showed that 

drought and allelopathy from Cotinus interact to decrease the germination of the herbaceous Linum perenne L. In 

addition, under natural conditions drought can be more pronounced that the drought treatment applied here and 

reach lethal levels for seedlings, particularly under the expected climate change (Giorgi and Lionello 2008). In 

that case, an inhibition of oak seedling root development by neighboring allelopathic species such as Cotinus and 

Pinus could reduce survival probability in case of more pronounced water stress. Finally, we have not investigated 

whether drought could induce changes in the production of allelochemicals by the source species, which must be 

considered to assess if allelopathic interactions will change under increased drought stress. However, other studies 

contradict this view, evidencing at the contrary a lower total phenolics production under water stress (e.g. 

Karageorgou et al. 2002), meaning that this issue is far from being resolved.  

4.3 Consequences for oak regeneration in different forest microsites 

In a previous study, Hashoum et al. (2017) showed that the dominant tree Q. pubescens and its companion species 

A. monspessulanum and C. coggygria may limit the growth of understory herbaceous plants in downy oak forests 

through the production and release of allelochemicals. Here, we evidenced no negative effects of Q. pubescens 

and A. monspessulanum on Q. pubescens seedlings, suggesting that herb inhibition by allelochemicals could be an 

advantage for oak regeneration since herbs are usually strong competitors for seedling establishment (Gordon et 

al. 1989; Coll et al. 2003; Rey Benayas et al. 2005; Gavinet et al. 2016b). In contrast, C. coggygria affects both 

herb and oak seedlings, pointing to a possible negative effect of this species on understory diversity and oak 

regeneration (Gavinet et al. 2019). Finally, P. halepensis had negative effect on oak regeneration, but strong 

autotoxicity have also been evidenced. Oak regeneration is often successful in pine habitats (Lookingbill and 

Zavala 2000), especially under moderate pine cover (Gavinet et al. 2015), indicating that allelopathy is not a strong 

limitation fir oak regeneration under pine.  

In conclusion, our results suggest a better potential for Quercus pubescens regeneration under its own stands, due 

to the positive effects of its litter and leachates, but in the absence of Cotinus coggygria in the understory. 
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Allelopathy does not appear to be stronger under drought stress, but further investigations are needed in particular 

to elucidate the consequences of the opposite effects of allelopathy and drought on the root/shoot ratio. Finally, 

the allelopathic treatments tested here were rather limited, particularly during their interaction with drought in the 

second year. Interactions with drought may be more evident in systems where allelopathy is a stronger driver of 

plant performance, particularly in the case of strategies adopted by Exotic Invasive Plants Species (e.g. Medina-

Villar et al. 2020) 
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