Scalable molecular dynamics on CPU and GPU architectures with NAMD - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Chemical Physics Année : 2020

Scalable molecular dynamics on CPU and GPU architectures with NAMD

James Phillips
  • Fonction : Auteur
Julio Maia
  • Fonction : Auteur
John Stone
  • Fonction : Auteur
João Ribeiro
  • Fonction : Auteur
Rafael Bernardi
  • Fonction : Auteur
Ronak Buch
  • Fonction : Auteur
Giacomo Fiorin
  • Fonction : Auteur
Ryan Mcgreevy
  • Fonction : Auteur
Marcelo Melo
  • Fonction : Auteur
Brian Radak
  • Fonction : Auteur
Robert Skeel
  • Fonction : Auteur
Abhishek Singharoy
  • Fonction : Auteur
Yi Wang
  • Fonction : Auteur
Benoit Roux
  • Fonction : Auteur
Aleksei Aksimentiev
  • Fonction : Auteur
Zaida Luthey-Schulten
  • Fonction : Auteur
Laxmikant Kalé
  • Fonction : Auteur
Klaus Schulten
  • Fonction : Auteur
Christophe Chipot
Emad Tajkhorshid

Résumé

NAMD is a molecular dynamics program designed for high-performance simulations of very large biological objects on central processing unit (CPU)-and graphics processing unit (GPU)-based architectures. NAMD offers scalable performance on petascale parallel supercomputers consisting of hundreds of thousands of cores, as well as on inexpensive commodity clusters commonly found in academic environments. It is written in C++ and leans on Charm++ parallel objects for optimal performance on low-latency architectures. NAMD is a versatile, multipurpose code that gathers state-of-the-art algorithms to carry out simulations in apt thermodynamic ensembles, using the widely popular CHARMM, AMBER, OPLS and GROMOS biomolecular force fields. Here, we review the main features of NAMD that allow both equilibrium and enhanced-sampling molecular dynamics simulations with numerical efficiency. We describe the underlying concepts utilized by NAMD and their implementation, most notably for handling long-range electrostatics, controlling the temperature, pressure and pH, applying external potentials on tailored grids, leveraging massively parallel resources in multiple-copy simulations, as well as hybrid QM/MM descriptions. We detail the variety of options offered by NAMD for enhanced-sampling simulations aimed at determining free-energy differences of either alchemical or geometrical transformations, and outline their applicability to specific problems. Last, we discuss the roadmap for the development of NAMD and our current efforts towards achieving optimal performance on GPUbased architectures, for pushing back the limitations that have prevented biologically realistic billion-atom objects to be fruitfully simulated, and for making large-scale simulations less expensive and easier to set up, run and analyze. NAMD is distributed free of charge with its source code at www.ks.uiuc.edu.
Fichier principal
Vignette du fichier
2020__NAMD_Reference_Paper.pdf (54.06 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03032818 , version 1 (01-12-2020)

Identifiants

Citer

James Phillips, David J. Hardy, Julio Maia, John Stone, João Ribeiro, et al.. Scalable molecular dynamics on CPU and GPU architectures with NAMD. Journal of Chemical Physics, 2020, 153 (4), pp.044130. ⟨10.1063/5.0014475⟩. ⟨hal-03032818⟩
107 Consultations
245 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More