N

N
N

HAL

open science

The evolution of tit-for-tat in bacteria via the type VI
secretion system

William P.J. Smith, Maj Brodmann, Daniel Unterweger, Yohan Davit, Laurie
E. Comstock, Marek Basler, Kevin R. Foster

» To cite this version:

William P.J. Smith, Maj Brodmann, Daniel Unterweger, Yohan Davit, Laurie E. Comstock, et al..
The evolution of tit-for-tat in bacteria via the type VI secretion system. Nature Communications,

2020, 11 (5395), pp.0. 10.1038/s41467-020-19017-z . hal-03031837

HAL Id: hal-03031837
https://hal.science/hal-03031837
Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-03031837
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

OATAO

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

This is a publisher’s version published in: https://oatao.univ-toulouse.fr/26952

Official URL:
https://doi.org/10.1038/s41467-020-19017-z

To cite this version:

Smith, William P.J. and Brodmann, Maj and Unterweger, Daniel and Davit, Yohan
+= and Comstock, Laurie E. and Basler, Marek and Foster, Kevin R. The
evolution of tit-for-tat in bacteria via the type VI secretion system. (2020) Nature
Communications, 11 (5395).

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr




ARTICLE B v

https://doi.org/10.1038/541467-020-19017-z OPEN

The evolution of tit-for-tat in bacteria via the type
V| secretion system

William P. J. Smith® "2 Maj Brodmann® 3, Daniel Unterweger®>, Yohan Davit®, Laurie E. Comstock’,
Marek Basler® 3 & Kevin R. Foster@® 2>

Tit-for-tat is a familiar principle from animal behavior: individuals respond in kind to being
helped or harmed by others. Remarkably some bacteria appear to display tit-for-tat behavior,
but how this evolved is not understood. Here we combine evolutionary game theory with
agent-based modelling of bacterial tit-for-tat, whereby cells stab rivals with poisoned needles
(the type VI secretion system) after being stabbed themselves. Our modelling shows tit-for-
tat retaliation is a surprisingly poor evolutionary strategy, because tit-for-tat cells lack the
first-strike advantage of preemptive attackers. However, if cells retaliate strongly and fire
back multiple times, we find that reciprocation is highly effective. We test our predictions by
competing Pseudomonas aeruginosa (a tit-for-tat species) with Vibrio cholerae (random-firing),
revealing that P. aeruginosa does indeed fire multiple times per incoming attack. Our work
suggests bacterial competition has led to a particular form of reciprocation, where the
principle is that of strong retaliation, or ‘tits-for-tat’.
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ARTICLE

he type VI secretion system (T6SS) is a contact-dependent

bacterial weapon that is found in numerous bacter-

ial species!~* and used to inject toxic effector proteins into
neighboring cells>’. Structurally and functionally homologous to a
phage’s tail®, the T6SS consists of a membrane-bound baseplate
complex, an effector-tipped needle, and a surrounding sheath whose
contraction drives the needle through the membranes of target
cells>10. Used by many notorious plant and animal pathogens, the
T6SS is a potent anti-competitor weapon: the T6SS can determine
whether a strain can invade, or defend, its niche in both environ-
mental and host-associated microbial communities!!-1.

There is remarkable variation in the regulation and use of T6SS
weaponry across species. Bacteria activate and deploy the T6SS
across a range of environmental contexts!®-!° and against both
prokaryotic and eukaryotic targets?0-22. The specific pattern of firing
by cells also varies: whereas placement of T6SS assembly appears to
be random in some species, such as Vibrio cholerae, Serratia mar-
cescens, and Acinetobacter baylyi?3-2, other bacteria are known to
fire from specific locations on their cell membranes. Perhaps, the
most striking example of this spatiotemporal control is the retalia-
tory firing strategy observed in Pseudomonas aeruginosa, whose
T6SS apparatus (encoded at the HSI-1 locus) is specifically activated
in cells that are themselves attacked by T6SS needles*®27.

The regulatory pathway underpinning T6SS retaliation in
P. aeruginosa is an active topic of study. So far, it has been shown
that various stimuli can trigger counterattacks in P. aeruginosa strain
PAOI, including incoming T6SS attacks from multiple bacterial
species?>27-28, conjugative T4SS pili?°, and membrane-disrupting
antibiotics like polymyxin B?. There is also evidence that retaliation
can be toxin-specific—not all T6SS effectors trigger counterattacks,
and in V. cholerae, only the lipase effector TseL triggers retaliation3C,
Across stimuli, P. aeruginosa appears to be responding to membrane
perturbation, and a putative model is that this response is mediated
post-transcriptionally via the TagQRST pathway. This signaling
cascade leads to the localized phosphorylation of cytoplasmic Fhal
proteins, and subsequent T6SS activation31-33,

Although the molecular regulation of retaliatory T6SS firing
has received attention?7-2830.34  jts evolution has not—leaving
open the question of why such a complex strategy has evolved in
bacteria, and only in some species. At a broader level, while the
evolution of reciprocation has a long history of study in evolu-
tionary biology3>~38, past efforts have focused largely on the
evolution of reciprocal cooperation, rather than competition.
Understanding the evolution of T6SS regulation and retaliation is
therefore important, both for understanding bacterial warfare and
as a distinct case in evolutionary biology.

To address this, we used an agent-based modeling framework
to simulate competition between different T6SS strategists. By
combining modeling with game theory, we explore the evolution
of T6SS regulation, including tit-for-tat (TFT) firing, across a
wide range of conditions. This reveals that TFT has significant
limitations as a strategy for T6SS warfare. We found that it rarely
wins in direct competition because it fails to fire against unarmed
strains and always fires second against armed strains. However,
we also found that a strong retaliator, which fires multiple times
in response to an attack, is a powerful competitor against ran-
domly firing T6SS attackers. Finally, by studying the retaliatory
firing patterns of P. aeruginosa, we show that it does indeed fire
multiple times in response to an incoming attack. Our work
suggests that T6SS reciprocation is most beneficial during combat
when performed in an aggressive manner.

Results
Agent-based modeling of different T6SS firing strategies. To
study the interactions and evolution of different T6SS firing

strategies, we began with an established agent-based modeling
framework (CellModeller)3°-42, The heart of this model is a
realistic representation of physically interacting bacteria growing
in dense communities. Agent-based models of this sort have
proved to be a powerful means to explore cell-cell interactions in
bacterial communities, generating a wide range of predictions
that have been verified by empirical work (reviewed in ref. 43).

We recently reported a new version of this model*4, designed
specifically for the study of T6SS competition, in which cells can
intoxicate neighbors by firing T6SS needles. Here, we extend this
model, such that different modes of T6SS firing (Supplementary
Table 1) can now be represented and compared: cells can be
programmed not to fire, or to fire constantly and in random
directions, or to fire in more elaborate patterns. Using this tool,
one can then compare the effectiveness of T6SS firing strategies
observed across different bacterial species, under tightly con-
trolled conditions, while varying physiological parameters (T6SS
firing rate kg, carriage cost Cupgonw Pro rata cost ¢, and hit
resilience Ny;). Further details of our model are provided in the
“Methods” section.

Random T6SS firing is effective against unarmed strains. First,
we used our agent-based model to study competition between
bacterial strains with two basic strategies: Random-firing T6SS+
attackers (R) and T6SS-susceptible Unarmed cells (U). We
simulated community growth within 2-D patch environments,
beginning with a randomly scattered, 1:1 mixture of R and U
cells. Each patch simulation begins with a finite, uniform resource
quota that is consumed as cells grow (exponentially, at rate kg ow)s
and simulations end once a patch becomes depleted of resources
(Supplementary Fig. 1A). Would-be weapon users therefore face a
trade-off: attacking one’s competitors prevents them from using
up a patch’s resources, but at the costs of both reduced repro-
ductive rate and efficiency. Here and throughout, we assume that
T6SS+ strategists are immune to the toxins of their clonemates.
We also assume that possessing and expressing T6SS genes is
costly, such that the specific growth rate of a T6SS+ strain is
reduced in proportion to its firing rate. However, we later show
that our key conclusions do not rest upon the assumption that the
T6SS is costly.

Figure la shows two patch simulations in which bacterial
strains with R and U strategies compete, carried out for different
starting cell densities. In the left example (at low cell density),
T6SS-mediated killing marginally increases the final frequency of
R strategists; to the right (high cell density), this competitive
advantage is greatly enhanced. Strong density dependence is
consistent with previous studies of T6SS competition—higher cell
density results in increased (and earlier) contact between R and U
cells, increasing overall killing®>. Another benchmark of the model
is that we also observe T6SS activity resulting in increased spatial
segregation between competing strains (Fig. la and Supplemen-
tary Movie 2), compared with T6SS— controls (Supplementary
Fig. 1A and Supplementary Movie 1), which is consistent with
previous theoretical and empirical work?o.

To further explore the competitive value of Random T6SS
firing, we compared R vs. U competition outcomes for a wide
range of input parameters: varying initial cell density, T6SS firing
rate, weapon cost, lysis rate, and toxin potency. These analyses
confirmed that Random T6SS firing can indeed offer a competitive
advantage (evidenced by increased R frequency after competition)
under a broad set of conditions. As well as being favored by high
cell density (Fig. 1b, Supplementary Figs. 2 and 7, and Supplemen-
tary Movie 2), which produces greater contact between R and U
cells, natural selection for Random T6SS attackers is increased for
low weapon costs (Supplementary Figs. 1C, D and 7), high toxin
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Fig. 1 The evolution of random T6SS firing. a Simulation snapshots showing initial and final cell configurations for surficial competition between T6SS—
Unarmed strain (U, green) and a Random-firing T6SS+ strain (R, blue). Simulations are carried out for both low and high initial cell densities (left and
right columns; initial cell populations 10 vs. 10 and 200 vs. 200 cells, respectively); pie charts (left) indicate the consumption of patch resources. Firing rate
kire,r = 50 firings cell=Th=1. b Competition outcomes, measured by final R cell proportion, as a function of firing rate kire,r for increasing initial cell densities
(see legend, right). Circles and lines correspond to data points and their means, respectively. € Invasion plots showing outcomes of local and global
invasion analyses for R vs. U competition (see “Methods"), as a function of firing rate ke r, for high initial cell density (200 vs. 200 cells); additional cases
are shown in Supplementary Fig. 3. d, e Pairwise invasion plots for competing R-type strategists (R1, R2), showing invasion outcomes for local (d) and
global (e) competition scales for intermediate cell density (50 vs. 50 cells). Arrows illustrate progression of evolving firing rates ke g, converging on
evolutionary stable strategy firing rates (ESS, white circles). Simulation parameters used throughout: Nyits =2, ¢ = 0.007; n =5 simulation replicates per
case in' b, ¢ and n=10 per case in d, e. Source data are provided as a Source Data file.

potency (Supplementary Figs. 1E and 2), and low victim cell lysis
duration (Supplementary Fig. 1E). Similarly, we found that
reducing weapon costs generally increases the optimal T6SS firing
rate (Supplementary Fig. 7).

Our models confirm the intuition that the T6SS can help a
bacterial strain to increase its frequency within a patch. But are
Random T6SS attackers also expected to invade an Unarmed
population when one also considers the competition between
different patches to colonize new sites (global competition)? This
question is important because while aggression may allow a strain
to defeat a competitor, if this comes at a large personal cost, an
aggressive strain may still end up producing very few dispersing
cells. If other patches contain only passive strategies that make
many dispersing cells, therefore, an aggressive strategy could win
locally but lose globally by failing to colonize new patches. To

address this question, we embedded our model in a game-theoretic
framework that uses the principles of adaptive dynamics?’. As
detailed in the “Methods” section, this approach considers the fate
of an initially rare, novel strategist placed in a metapopulation
(large set of patches) dominated by another, resident strategist. If
the relative fitness of the novel strategist is greater than that of the
resident, we assume that its frequency in the metapopulation will
increase until it supplants the resident as the common strategy. We
then also check whether the resident can itself re-invade a
population of the novel strategist from rarity, and when it cannot,
we assume that the novel strategy will permanently replace the
resident.

Figure 1c shows the fate of an invading Random T6SS
attacker (summarized by an invasion index, I;,,) as a function of
its attack rate, kg r, for when there is purely local competition
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(“local competition”) and when there is both local and global
competition (“global competition”, see “Methods”). For local
competition, Random attackers compete only within patches
with the resident Unarmed strain. For global competition, they
must also compete with Unarmed cells in neighboring patches
where Random attackers are absent. In both scenarios, we find
that R can successfully invade U for all non-zero firing rates,
assuming a high initial cell density (Fig. 1c, 200:200 cells). For
lower cell densities, the range of viable kg, r values narrows,
and is generally smaller for global competition than for local
competition (Supplementary Fig. 3). In sum, in this system, we
find that local and global competition scenarios give qualita-
tively similar results.

An evolutionarily stable rate of random T6SS firing. Our
models predict that Random T6SS attackers will readily invade a
population of Unarmed cells, under a range of conditions. As
Random attackers become more abundant, they will begin to
encounter one another, and so we next consider the outcomes of
battles between different R-type strategists. When can one Ran-
dom attacker invade another’s patch? Here we studied competi-
tion between pairs of R-type strategists, R1 and R2, each having
its own attack rate kg r1» kfrero» and each being susceptible to
the other’s toxins. Figure 1d shows a pairwise invasion
plot, commonly used in adaptive dynamics#’, indicating which of
R1 and R2 invades the other as a function of their respective
attack rates, for local (within-patch) competition. We find that
either competitor can invade the other by firing faster than it
(Supplementary Movie 3 shows an example of this), but only up
to a point. Beyond the yellow diagonal line, having a higher attack
rate than one’s competitor makes one vulnerable to invasion,
since the increased costs of the higher attack rate outweigh any
additional benefits conferred*. Figure 1e shows a similar pairwise
invasion plot, this time computed for the case of global
competition.

What firing rate kg g is predicted to evolve during competi-
tion between Random T6SS attackers? Here, we compute the
evolutionarily stable strategy (ESS) as the value of kg, g, denoted

ko, for which a resident strategist cannot be invaded by

mutants with a higher or lower firing rate. In Fig. 1d, the ESS for
local R1 vs. R2 competition is shown as a white circle—if a
resident strategist (R1) adopts this firing rate, then a mutant
strategist (R2) cannot invade irrespective of its firing rate.
Moreover, one can show that any resident population will evolve
towards this strategy. For example, suppose we begin with a
resident R1, which possesses the T6SS but does not use it (kgrer1 =
0, Fig. 1d). Then suppose a mutant R2 appears in this population
with kger» =9, where §>0 represents some small increment in
firing rate. Since the local invasion index I°%!(0, &) > 1, R2 can
invade R1, and kg r; = 8 becomes the resident strategy. The same
outcome occurs with kgero =28, 38 ... such that successive
invasions by incrementally more aggressive mutants increase the
firing rate in the resident population (Fig. 1d, black arrows),

eventually converging on kf i, Similarly, a resident population

with a very high firing rate (e.g. kfreri =250 firings cell 1 h=1)
will be displaced by mutants with lower firing rates (Fig. 1d, yellow

ESS local
fire,R

favors a reduced level of aggression than local competition (i.e.,

ESS,local ESS,global . .
Kere R kier ) @ trend also seen for other strategist pairs at

various initial densities (Supplementary Fig. 3). This follows one of
the core results of social evolution: between-group selection can
select against competition, and for cooperation, because global
(between-group) competition makes group productivity important
for fitness*849,

arrows), again converging on k . Global competition (Fig. le)

TFT retaliation fails to beat a random attacker. Our results
indicate that Random Té6SS firing can often be a successful
strategy, both enabling invasion of Unarmed populations and
achieving higher cell frequencies against other Random T6SS
attackers than Unarmed strategists attain. From this baseline, we
can evaluate the evolutionary costs and benefits of the more
complex T6SS firing strategy of TFT. Based on published
empirical work on P. aeruginosa®>?7, we assume that TFT differs
from R in two key respects: (i) TFT does not fire its T6SS con-
tinuously, but counterattacks once per incoming attack (retalia-
tory firing); (ii) TFT does not fire from randomly chosen sites on
its cell membrane, but instead from the points where incoming
attacks struck (spatial sensing). To provide a fair basis for strategy
comparison, we assume TFT to be identical to R in all other
respects (toxin potency, lysis delay, weapon costs per T6SS firing,
costs of weapon carriage).

Figure 2a shows our implementation of a TFT strategist in the
agent-based model. To assess conditions favoring TFT strategists,
we competed TFT against R for different initial cell densities, as
before (Fig. 2b, ¢, Supplementary Fig. 2, and Supplementary
Movie 4). We were surprised to find that, while TFT generally
does better against R than U (cf. Figure 1b), R is nevertheless
predicted to outcompete TFT in a wide range of conditions.
Specifically, we see that R can always evolve to a firing rate kg g
that makes it equal or better than TFT (Fig. 2d). We also see that
it is at the higher initial cell densities that R performs the best
against TFT. This effect is telling: increasing initial cell density
simultaneously creates more fronts between competing cell
groups and increases the time for which competing strains are
in physical contact—both of which favor the strain with the best
contact-dependent attack (above, Fig. la). Overall, our model
suggests that R can invade and displace TFT simply by evolving
relatively low kg, r values, for both local and global competition
scales (Fig. 2d and Supplementary Figs. 2 and 3), provided cell
density is sufficient.

Retaliation can evolve by investing in attack and defense. We
found that a wide range of conditions preclude the evolution of
TFT retaliatory T6SS firing from a population of Random
attackers. Trivially, TFT is also guaranteed to lose against U, since
the latter never triggers retaliatory T6SS attacks, and is spared the
cost of T6SS carriage?4. How then could TFT have evolved in P.
aeruginosa if it is predicted to be typically outcompeted by other
less sophisticated strategies?

To resolve this apparent paradox, we considered ways in which
the TFT strategist might evolve to improve its competitive ability.
This revealed that increasing the number of counterattacks
launched by retaliators can pay great dividends. Specifically, we
found that a strong retaliator strategist—dubbed 2-tits-for-tat
(2TFT)—is highly successful against a Random T6SS attacker
(Fig. 2e), outcompeting it for all T6SS firing rates and cell
densities studied (Fig. 2f and Supplementary Movie 5). Swapping
TFT for 2TFT also reversed the trend in competition outcome
with respect to initial cell density, with higher cell densities now
favoring 2TFT instead of R (Fig. 2f, cf. Fig. 2c). This again
illustrates that high cell density tends to intensify contact-
dependent warfare, and thereby favor whichever strain has the
best contact-dependent attack (Fig. 1a, last section).

Accordingly, we also found that 2TFT is able to invade a
population of R cells for all kg,.r >0 (Fig. 2g), and for all cell
densities studied (Supplementary Fig. 3). However, this robust
competitive advantage disappeared when we reduced the
resilience of both strategists (Ny;s reduced to 1 from 2), such
that a single T6SS hit is sufficient to kill any non-clonemate cell
(Supplementary Fig. 3): here, 2TFT performs no better than TFT.
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Fig. 2 2-Tits-for-tat (2TFT) outperforms tit-for-tat (TFT) vs. a (R)andom firing strategy. a Model representation of retaliatory T6SS firing in response to
a random attacker (R, blue). Following R's initial attack (t;), the retaliator cell (TFT, yellow) fires T6SS needles outwards from the points on its surface
where initial attacks struck (t,, magnified box). b Simulation snapshots showing initial and final cell configurations for competitions between R and TFT
strategists (“low” and “high” initial cell populations correspond to 10 vs. 10 and 200 vs. 200 cells as in Fig. 1). ¢ Competition outcome, measured by final R
cell proportion, as a function of firing rate kg, g for increasing initial cell densities (see legend, right). Circles and lines correspond to data points and their
means, respectively. d Invasion plots showing outcomes of local and global invasion analyses for R vs. TFT competition, as a function of firing rate, ke r, for
high initial cell density (200 vs. 200 cells). e-g Analogous to b-d, except with TFT replaced by 2TFT, which counterattacks twice per successful oncoming
attack. Simulation parameters: Npits = 2, ¢ = 0.001. n =5 simulation replicates per case in ¢, d, f, and g. Source data are provided as a Source Data file.

This suggests that sufficient investment in both defense against raises the possibility of rock-paper-scissors dynamics, also
T6SS intoxication and attack via increased firing is important for ~ suggested in a recent study®’, where non-transitive interactions
the evolution of retaliation. between competing bacterial species stabilizes variation in T6SS

While 2TFT is very successful in competition with R cells, it is ~ firing patterns®!>2. Consistent with this possibility, we found that
expected to lose against unarmed (U) strains, just like TFT. This parameter combinations exist (Supplementary Fig. 5) where
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unarmed U strains are beaten by random R attackers (T6SS killing
trumps growth advantage), who are beaten by 2TFT (superior
killing and growth advantage trumps T6SS aggression), and who
can be beaten in turn by unarmed strains (growth advantage
trumps unused costly T6SS).

We also tested the robustness of 2TFT’s supremacy across a
range of additional biological scenarios, including low diversity in
T6SS toxins in the population (Supplementary Fig. 8), the potential
for cheating strategies that do not use the T6SS but which are
immune to some T6SS toxins (Supplementary Figs. 9 and 10), and
conditions with high within-patch relatedness (Supplementary
Figs. 11 and 12). We discuss the effects of these scenarios in detail
in the supplement, but across all conditions, 2TFT was predicted to
be equivalent or superior to both TFT and R.

Retaliation brings both geometric and economic benefits. We
next sought to characterize the origin of 2TFT’s advantage over R,
in contrast to the standard model of T6SS retaliation (TFT). We
identified two key advantages offered by retaliatory T6SS firing,
and used our models to compare their relative contributions to
2TFT’s fitness in competition with R (Fig. 3). First, the ability to
sense where incoming attacks are coming from allows T6SS
counterattacks to be aimed specifically at attackers. By contrast,
Random attackers have no information on where target cells are,
and so miss most of the time (Fig. 3a). We confirmed this
principle by measuring T6SS hit:miss ratios in fixed, well-mixed
configurations of cells, showing that attacks by 2TFT cells were
significantly more likely to hit R cells than vice versa (Fig. 3b, see
“Methods”).

Second, the ability to sense when one is being attacked prevents
costly use of the T6SS when it is not needed. Examination of cell
growth rates during R vs. 2TFT competitions confirmed that only
2TFT cells that are in contact with competitors pay for T6SS
firing—compared with R cells, which pay for constant T6SS firing
whether or not competitors are actually in range (Fig. 3c). We
found that this resulted in significantly higher specific growth
rates for 2TFT cells than for R cells (Fig. 3d).

To determine which of these advantages—improved aim or
lower cost—drives 2TFT’s success in a given scenario, we created
three new retaliator phenotypes with one or both advantages
removed (Fig. 3e). To remove the advantage of T6SS aiming
through spatial sensing, we configured 2TFT cells to counter-
attack from randomly chosen sites on their membranes, instead
of from the points at which incoming attacks struck (Fig. 3e,
bottom row). To remove the advantage of reduced T6SS cost, we
configured 2TFT cells to pay the same growth costs as Random
T6SS attackers, for any given attack rate kgr (Fig. 3e, right
column). Comparing the single knockout cases (loss of aiming or
loss of cost saving) against a normal R vs. 2TFT competition, we
found that removing cost saving still allowed 2TFT to beat R
(albeit by a reduced margin) irrespective of weapon cost factor c,
including the limit in which weapon use is cost-free (Fig. 3e, top
right). By contrast, eliminating only T6SS aiming (Fig. 3e, bottom
left) allowed R to beat 2TFT, except where weapon costs were
very high. Similar results were seen when cell density was varied
instead of weapon costs (Supplementary Fig. 4). In sum, a 2TFT
strategist can accrue benefits from both advantages, but it is
improved aim that appears most critical to their success.

Pseudomonas aeruginosa launches multiple counterattacks.
Our model suggests that the evolution of retaliation via the T6SS
rests upon at least three specific characteristics of a retaliating cell:
(1) intrinsic resistance to T6SS attack such that a cell can survive
more than one hit (Supplementary Fig. 3), (2) the ability to
reciprocate with multiple counterattacks (Fig. 2), and (3) the

ability to aim counterattacks towards aggressors (Fig. 3). Pre-
dictions 1 and 3 are already supported by published work. An
opportunistic pathogen found in a wide variety of environments,
P. aeruginosa is a notably resilient species with a high natural
tolerance to many antibiotics and other toxins>3. More specifi-
cally, P. aeruginosa cells are known to regularly tolerate multiple
hits from the T6SSs of other species, including the human
pathogen V. cholerae?’. In addition, the firing behavior of P.
aeruginosa in response to an incoming hit is visibly non-random,
occurring reliably on the same side of the cell as the incoming
hit?3. However, prediction 2 has not been examined empirically,
offering us an opportunity to test our model against an unknown
aspect of T6SS biology.

We therefore analyzed the T6SS counterattacks of P.
aeruginosa (strain PAO1) cells, in response to random attacks
by V. cholerae (strain 2740-80) bacteria, as in the original T6SS
retaliation study?’ and subsequent work?>>4->6, In our experi-
ments, both cell types express functional T6SS apparatus, the
sheaths of which (TssB subunits in the case of P. aeruginosa and
VipA subunits in the case of V. cholerae) carry fluorescent tags
(see “Methods”). These tags allow individual T6SS firing events to
be tracked using time-lapse fluorescence microscopy, as described
in previous studies?>27>7. When the two are grown together on
agarose pads, V. cholerae antagonizes P. aeruginosa and causes it
to launch counterattacks (Supplementary Fig. 6 and Supplemen-
tary Movie 6), such that T6SS dynamics of the two species can be
compared directly in the same setting. By contrast, control
experiments using a T6SS— V. cholerae mutant resulted in no P.
aeruginosa T6SS activity, reproducing behavior reported in
previous studies?’~2°, and confirming the retaliatory nature of
P. aeruginosa attacks (Supplementary Movie 7).

Figure 4 shows example kymographs, tracking sheath lengths
in individual T6SS apparatus imaged in P. aeruginosa cells
(Fig. 4a) during these co-culture experiments. We observed that,
following an incoming attack, P. aeruginosa cells fire repeatedly
(between 1 and 6 firings over a 5-min time-lapse, with median 2
firings per site; see Fig. 4b and Supplementary Movie 8). As
predicted by our model, therefore, we found that retaliatory firing
in P. aeruginosa is associated with multiple counterattacks from
the same T6SS site. Conversely, we could detect no instances of
repeated T6SS firing by V. cholerae within the same time window
(Fig. 4c), confirming that repeated T6SS firing is not simply a
universal trait among y-Proteobacteria.

Discussion

We found that random constitutive firing of the T6SS can readily
evolve in unarmed populations, provided that (i) weapon costs
are not excessive and (ii) initial mixing provides enough inter-
strain contact. By contrast, retaliatory firing is successful only
against other T6SS users, and then only if the retaliator is robust
to incoming attack, gains an aiming advantage, and deals more
damage than it sustains (strong retaliation). Ultimately, these
additional constraints stem from the first-strike advantage pos-
sessed by random attackers: having already been struck by at least
one T6SS needle, a retaliator always enters combat at a dis-
advantage, requiring that retaliation be disproportionate to be
generally successful.

The additional constraints limiting retaliator evolution may
explain why P. aeruginosa is, to our knowledge, the only example
of a T6SS retaliator found so far—whereas many species appear to
use random T6SS firing?3-2°. It is also clear that P. aeruginosa is
very well suited for T6SS retaliation. First, P. aeruginosa can resist
oncoming T6SS attacks from other species like V. cholerae?’.
Second, P. aeruginosa’s ability to aim T6SS firing—through spa-
tially resolved, TagQRST-mediated attack sensing—is likely to be
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Fig. 3 Aiming and cost saving allow 2TFT to beat random attackers. a Diagram comparing likelihood of successful T6SS attack for random firing (top)
and retaliatory firing (bottom). b Measurements of absolute and non-clonemate cell hit probabilities from static, mixed-cell populations, for random
(R, blue) and retaliatory (2TFT, yellow) T6SS firing. Statistical test for absolute hit probability comparison: two-sample, two-sided t test, no adjustment for
multiple comparisons, t = —125.0560, effect size (Cohen's d) =17.676539, p = 2.2803e — 190. For comparison of non-clonemate cell hit probabilities, we
use the same test; here t = —160.6783, effect size 22.6885, p =1.0388e — 211. In both cases, n =100 firing events taken from same sample, giving 198
degrees of freedom. Whiskers, boxes, and centerlines denote ranges, interquartile ranges, and median values, respectively. € Visual comparison of R and
2TFT cell growth rates during competition. Cell configuration and magnified sections are colored by cell type (left) or by growth rate (right). Magenta
arrow highlights a single TFT cell whose growth rate is reduced by active firing; dead cells are outlined in red in the right-hand panel. d Comparison of R and
2TFT cell population average growth rates, measured at the end of five separate R vs. 2TFT competitions (statistical test as in b; t = —207.4396, effect size
131.3978, p = 3.2643e — 16, growth rate from ~10,000 cells across five independent simulations, 8 degrees of freedom). Circle markers indicate population
means. e Comparison of R vs. 2TFT competition outcomes, in which 2TFT strategists are modified to remove T6SS aiming (bottom row) and/or cost saving
(right column), for increasing weapon costs ¢ (see legend, top left). Circles and lines correspond to data points and their means, respectively. In b, d, ***p <
0.001. Source data are provided as a Source Data file.

a key contributor to its success as a retalitor (Fig. 3e), because it random. By placing T6SS assemblies at attack sites, P. aeruginosa
provides cells with additional information on the location of can substantially improve its hit efficiency, compared with a
attackers. This contrasts with other forms of T6SS regulation, random firer that has no information on the location of its target.
where the rate of T6SS firing is increased in response to cellular Third, our models predict that P. aeruginosa cells can only
damage!8-2458, but with T6SS placement occurring apparently at  fully exploit this aiming advantage if they also launch multiple
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Fig. 4 Repeated T6SS assemblies in P. aeruginosa. a Mixture of P.
aeruginosa PAO1 tssB-mNeonGreen (green) with T6SS+ V. cholerae 2740-80
vipA-mCherry2 (black), highlighting retaliatory T6SS contractions within

P. aeruginosa cells. A merge of phase contrast and GFP channels is shown
(left). Field of view, 3.3 x 3.3 pmz, is shown; scale bars, 1um. White arrows
mark axes of assembled T6SSs. Kymograms (right) show fluorescence
signal along each T6SS axis (2 s pixel~!, GFP channel), indicating up to six
T6SS contractions occurring at the same location over a 5-min period
(yellow arrows). Vertical axes correspond to direction of T6SS contraction.
b Histogram showing numbers of repeated T6SS contractions of P.
aeruginosa PAQT1 tssB-mNeonGreen cells in contact with V. cholerae 2740-80
vipA-mCherry2 (average of repeated firings =1.992, standard deviation of
0.975, median: 2, n= 1500, two biological replicates). ¢ Kymograms
recorded for V. cholerae cells, analogous to a, showed no repeated T6SS
contractions within the 5 min viewing period (cyan arrows). Scale bars,
1um. Source data are provided as a Source Data file.

counterattacks from a given site of impact. Otherwise, they still
stand to lose more cells per pairwise T6SS battle than their
competitors, such that the latter can still win overall if the two
strains are sufficiently well mixed. Our experiments confirmed
that P. aeruginosa does indeed fire repeatedly from T6SS assem-
blies placed at hit sites, a pattern not observed in random-firing
V. cholerae. In light of this observation, P. aeruginosa’s retaliatory
firing appears better characterised as a tits-for-tat strategy than a
tit-for-tat one3°.

Methods

Agent-based model. As in previous studies®*-4!, we model bacterial communities
as collections of 3-D rod-shaped cells, growing in independent patch environments
on a flat surface (Supplementary Fig. 1A). Every cell is an independent agent whose
behavior depends on its phenotype, and on its interactions with neighboring cells.
Each model simulation tracks cell growth, movement, and death within a single
patch. Patches have an allotted quota (E,) of growth-limiting resources, which cells
consume until the patch becomes depleted, thereby ending the simulation. Cell
phenotypes, model variables, and model parameters are summarized in Supple-
mentary Tables 1-3, respectively.

Cell growth and division: Each cell’s volume V; increases exponentially
through elongation, from initial volume Vj, according to the equation dV;/dt =
kgrow,iVis where kgro,i is a (phenotype-dependent) cell growth rate with
maximum ky,,x. For simplicity, we assume that all living cells deplete patch
resources E at a rate proportional to their current volume, and independent of
the resources remaining in the patch (i.e., zeroth-order kinetics): dE/dt =
—Kmax,2iV;. Cells divide lengthwise into two identical daughter cells once they
reach volume 2Vy + #givision> With #division @ uniform random noise term. Each
daughter’s axis vector a; is perturbed slightly by a noise term with weight
Horientations» tO Tepresent spatial imperfections in the division process. Following
the cell growth phase, the cell configuration is returned to a quasi-stationary
mechanical equilibrium using an energy minimization algorithm, described
previously?®. Briefly, cells whose surfaces overlap are identified using a standard
contact finding algorithm>. Then, sets of impulse vectors p satisfying the
equation (ATA + aM)p = —Ad are calculated, where A is a matrix summarizing
cell contact geometry, M is a matrix of drag coefficients, d is a vector of contact
distances, and « is a matrix regularization weighting coefficient. The application
of these impulses returns cells to mechanical equilibrium while also minimizing
cell displacement.

T6SS firing and costs: T6SS+ cells can fire toxin-laden needles of length L, cedie
outwards from points on their surface. Every timestep d¢, a focal T6SS+ cell i may
fire Nfrings, > 0 times. The number and spatial orientations of firings depend on the
phenotype of the focal cell (Supplementary Table 1). If the focal cell is a Random-
firing (R-type) strategist, Nirings,i is drawn from a Poisson distribution with mean
kere; these needles emanate from randomly chosen points on the focal cell’s surface
(Supplementary Fig. 1B). For retaliatory TFT-type strategists, needles instead
emanate from surface points at which the focal cell was struck; Nirings,; is then the
number hits sustained by the focal cell in a given timestep. Similarly, two-tits-for-
tat (2TFT-type) strategists fire back twice for every hit they sustain. To reflect the
material and energetic costs of T6SS carriage and use, T6SS+ cells reduce their

grOMh rate to kgmw‘i = kmax (1 - CTotal,i) » where CTotal,i = Cupfront + C(Nﬁrings.i/dt)'

Here, cyupfront Tepresents the cost of T6SS gene carriage, while the latter term reflects
the pro rata running costs of T6SS firing.

T6SS hit detection: To determine whether a given firing event is successful, we
run a two-step hit detection algorithm to determine (i) whether that needle
intersected any other cell in the population, and if so, (ii) where on the target cell
the needle struck (Supplementary Fig. 1B). Both checks involve standard methods
in computational geometry”: (i) involves computing the shortest distance dp;,
between the needle and cell line segments; dp, <R — Lepetration indicates contact
between the needle and the cell, where R is the cell radius of the victim, and
Lyeneration @ small tolerance factor. Test (ii) involves checking whether a needle
vector passes through the cylindrical midsection of the cell, or through spheres of
radius R placed at its poles; whichever intercept lies closest to the needle’s origin is
logged as the entry point (Supplementary Fig. 1B, middle, yellow stars). Here, we
show an example of a needle (red arrow) that intercepts only the cell midsection,
and a second example (magenta arrow) intercepting both the left polar sphere and
the midsection.

T6SS intoxication: Any cell struck by a T6SS needle fired from a non-clonemate
cell becomes intoxicated (cells of the same genotype are assumed mutually
immune). Cells respond to T6SS intoxication with a step-like dose response: once a
cell’s cumulative translocation count reaches threshold N, that cell begins to lyse.
Nhits therefore parameterizes both the potency of a given T6SS effector and the
capacity of a victim cell to withstand it. Lysing cells die—and are immediately
removed from the simulation—after a delay of 1/kyygs, where iy, is the victim cell
lysis rate. Lysing cells do not grow or consume patch resources.
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Model parameterization. The parameters of our model (21 in total) are sum-
marized in Supplementary Table 3. Numerical and mechanical parameters con-
trolling cell mechanical interactions and movement were taken from previous
publications?”-3%40. Where possible, parameters governing T6SS firing and
response were estimated directly from previous experimental observations of T6SS
competition?>44, We used a lower bound of Ny, = 1 based on a previous study*4.
However, based on the observation that P. aeruginosa seems to withstand multiple
T6SS hits before being killed?”, we also considered larger values (Nphits = 2, 3, and oo
in cases where target cells possess immunity to oncoming T6SS attacks).
Throughout the study, we used the parameter values ¢ = 0.001, cypront = 0.05; we
chose these values because they made the optimal firing rate in R vs. U competi-
tions roughly consistent with the firing rates observed in random-firing bacteria
like V. cholerae and A. baylyi (~50-100 firings cell =1 h—1)2744, Since it was not
possible to glean cost parameter values directly from experiments, we instead
performed broad parameter sweeps to test the effects of different costs.

Game theory. As in previous studies**%0, we use the logic of game theory

and adaptive dynamics?” to determine whether a focal strategy (U, R, TFT, or
2TFT) could evolve from a given bacterial metapopulation, subject to different
scales of competition. This method uses short-term competition outcomes to infer
the evolutionary fate of a rare, novel strategy in a metapopulation where a different
“resident” strategy predominates. If the novel strategist can reproduce faster than
the resident strategist even when rare, its frequency in the metapopulation will
increase, until eventually it supplants the resident. For example, to test whether an
R strategist can invade a population of U strategists, we compare their effective
fitnesses where one is rare, and the other common. For R to invade U, we require

W, (rare Rjcommon U) > 1, W, (common R|rare U) 21, (1)

where W(X|Y) is the relative fitness of X against Y. The first inequality specifies
that R can invade U from rarity; the second checks that R is resistant to re-invasion
by U once R becomes common. The definition of relative fitness W, depends
upon the spatial scale of competition within the metapopulation. If competition is
localized, then R competes primarily with nearby residents. Here, invasion is
predicted simply from the ratio of strategists’ fitnesses within a spatial patch: R
invades U provided that

w(®Y) o

wy(R[U)
where wy (X|Y) is the fitness of strategist X in competition with strategist Y, with
wy defined as wy = log, (ZV (tenq)/Z Vx (tqart))- Alternatively, competition may
occur on much greater spatial scales, such that R must also compete with U
strategists in other patches in the metapopulation. Assuming that R is initially rare,
its encounters will predominately be with resident strategists, so its effective fitness
is its reproductive capacity when in competition with U. Meanwhile, residents will
encounter the novel strategy only rarely, and so will have an effective fitness based
on reproduction when in competition with other residents. For R to invade U
under these conditions, we require

w(RV)  wp(RR)
wy(U[U) wy(R[U)

We refer to these two sets of inequalities as local and global invasion
constraints, respectively. To create the 1-D invasion plots shown in Fig. 1c, we
computed mean values of wy (R|R), wy(U|U), wg(R|U), and wy(R|U) for the R-
strategist firing rates kg shown in Fig. 1b, linearly interpolating one additional
value between each pair of adjacent data points. We then classified each firing rate
according to which of the local and global invasion constraints held true. We used
the same methodology for other pairs of strategists (replacing U with TFT, 2TFT or
a second R strategist; cf. Supplementary Fig. 3). For global invasion analyses of R1
vs. R2 competition (Fig. le), we have the special case that the two global invasion
constraints are equivalent (i.e., R1 invading R2 precludes R2 invading R1). Here,
both strategists are characterized by their own independent firing rates kgye r1skfire,
r2> and so invasion outcome is summarized by the 2-D color map,

®3)

global
Lo (kﬁre‘Rlﬂ kﬁre.RZ) = wgy (R2|R1)/wg, (R1[R1). (4)
The corresponding invasion index for local competition scales (Fig. 1d) is
195" (Ko Koo ) = wra(R2IRL) /gy (R2IR1): (5)

Incorporating mutual immunity. To test the effects of allowing for mutual
immunity between T6SS+- strains, we re-ran competition simulations as before,
except with T6SS attacks having no effect on T6SS+ target cells. We then expanded
our definition of a strategist’s fitness, wx, to be a weighted sum of its fitness against
a competitor with (Y’) or without (Y) mutual immunity,
wy (Y) = pwx(X[Y') + (1 — py)wx (X]Y). Note that we assume that T6SS carriage
is a prerequisite for immunity, so unarmed (U) strategists are never immune and
always have p; = 0.

We then used this updated definition to recompute global invasion indices, now
as a function both of firing rate kg, r and of the weighting parameter p,. The

updated invasion indices are as follows: for R vs. U, we have

. R[U)
Lglobal _ wR( 1.
inv,1 (kﬁre.,R) wU(U\U) >1, (6>
R|U)
Iigrisbal klre sy Ps ) = wU( <1, 7)
2 ( fre p> Pswr(RIR) + (1 — p,)wy (RR) (
and for R vs. Y =TFT or 2TFT, we have
global _ pwr(R|Y') + (1 = py)wr (R]Y)
Tiav (kﬂre.R7ps> = oy (YY) >1, (8)
o (RIY') + (1 — py)wy(R]Y)
7elobal Keve s P :pis( s) Wy < 9
3 (o) = AR + (1 .o R ®)

We interpreted invasion indices as previously: for each strategist pairing, the

inequalities I;'ﬂsvbfl >1and Iigr}szd <1, respectively, test whether a focal strategist can

invade a resident metapopulation from rarity, and resist re-invasion once

established. For instance, for R vs. U, Iﬁsﬁal <1 and Iig,isz“l >1 would indicate a
circumstance in which U is able to invade R and not vice versa. In this way, we used
invasion index traces to compute and generate stacks of pairwise invasion plots
(Supplementary Fig. 8). These plots were colored and annotated according to

invasion index values, using the key shown.

Incorporating cheaters. To examine the effects of cheater emergence in our
pairwise competition system, we created a new strategist (R.), representing a
cheater strain emerging from a T6SS+ parent (which could be R, or TFT, or 2TFT).
R possesses the same T6SS genes as its parent (conferring possible immunity to
other T6SS+ strains, in exchange for the growth cost of T6SS gene carriage Cupfront)
but never invests in any T6SS activity (kg x, = 0). We then computed pairwise
(global) invasion indices for R vs. every other strain, in the following groupings: R
vs. U vs. R, R vs. TFT vs. R, and R vs. 2TFT vs. R.. We determined invasion
behavior using the same invasion index system as before, again considering both
cases with mutual vulnerability and mutual immunity. This introduced four
additional invasion indices in each grouping, whose values indicate whether the
cheater can invade (and avoid re-invasion by) the other two strategists in each case.
Thus, the invasion behavior within each grouping is summarized by the values of
six invasion indices.

Incorporating reduced in-patch relatedness. To incorporate the effects of
increased within-patch relatedness, we created a second weighting scheme in which
an R-strategist’s effective fitness wp is a weighted sum of (i) fitness when growing
alone (i.e., paired with itself), and (ii) fitness growing alongside a competitor Y.
Note that being paired with self implies mutual immunity to T6SS attacks, since by
assumption all clonemates share identical T6SS effector and immunity genes. Thus,
we have

g (Y) = Iwg (RIR') + (1 = Dwg (R[Y), (10)

where I is a weight parameter representing the probability of perfect strategist
segregation, and where wy (R|R’) represents R’s fitness when grown with mutually
immune clonemates. In this regime, the local invasion constraint then becomes

_ Lag(RIR) + (1 = Day(R]Y)
1 (ke T) = Zo 9199+ (=D Rl) ” (1)

for Y =U, TFT, or 2TFT. For global invasion, the (common) resident strategist will
statistically only encounter other competitors sharing that strategy. Here, within-
patch relatedness controls whether those resident competitors have the same or
different effector/immunity sets, that is, the probability of mutual immunity:

O common = L0y (YY) + (1 = Day (Y]Y). (12)

Note that Y = U, TFT, or 2TFT undertake no T6SS firing when paired in this way;
in these cases, this equation reduces to @y (ymmon = @y (Y|Y). Therefore, our global
invasion indices become

lobal Iog(RIR') + (1 — Dwr (R]Y)
Ll (kﬁre.va) == @y (YY) - >1, (13)
Y
al Twy (YY) + (1 — Dawy (R]Y
D (1) = O LU DB
Twg (RIR') + (1 = Dwg (R[R)

for Y = U, TFT, or 2TFT. We used these indices to construct 1-D invasion plots
(as in Figs. 1 and 2 and Supplementary Fig. 3) for I values of 0.01, 0.5, and 0.99,
representing increasing levels of within-patch relatedness. These results are plotted
in Supplementary Figs. 11 and 12.

Computation and postprocessing. Agent-based model simulations were run on a
2017 Apple ® MacBook Pro laptop computer, with simulations distributed between
an Intel ® 3.1 GHz quadcore i7-7920HQ CPU, an Intel ® HD 630 Graphics card,
and an AMD Radeon Pro 560 Compute Engine. Simulation data were analyzed
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using custom Matlab © scripts (version R2017a 9.2.0.556344), and visualized using
the Paraview software (version 5.4.0)61.

Bacterial strains and growth conditions. Pseudomonas aeruginosa PAO1 tssB-
mNeonGreen, V. cholerae 2740-80 vipA-mCherry2, and V. cholerae 2740-80 vipA-
mCherry2 Ahcpl Ahcp2 were inoculated from Luria broth (LB) agar plates and
grown aerobically at 37 °C in LB to an OD600 of 1 (~3 h). One milliliter of each day
culture was then pelleted at 11,000 x g for 1.5 min and resuspended in LB to reach
OD600 of 10. Pseudomonas aeruginosa PAO1 tssB-mNeonGreen was mixed with V.
cholerae 2740-80 vipA-mCherry2 or V. cholerae 2740-80 vipA-mCherry2 Ahcpl
Ahcp2 in a 1:5 ratio (10-50 pl). Both mixtures (1.5 pl) were spotted on a pad of 1%
agarose in 1/3 LB and 2/3 phosphate-buffered saline). The pad was covered with a
glass coverslip and incubated for 30 min at 30 °C before imaging.

Fluorescence microscopy. For live-cell fluorescence microscopy, the same
equipment was used as described previously®23; a Nikon Ti-E inverted micro-
scope with Perfect Focus System and a Plan Apo 1003 Oil Ph3 DM (NA 1.4)
objective lens, a SPECTRA X light engine (Lumencore), and ET-GFP (Chroma
#49002) and ET-mCherry (Chroma #49008) filter sets to excite and filter fluor-
escence. Exposure time was set to 150 ms and LED powers to 20%. Images were
recorded with a sCMOS camera pco.edge 4.2 (PCO, Germany; 65-nm pixel size)
and VisiView software (version 4.4.0.10, Visitron Systems, Germany). Imaging was
carried out at 30 °C and 95% humidity controlled by an Okolab T-unit (Okolab)
and images were collected every 2 s for 5 min. The imaging experiments were
performed in two biological replicates.

Image analysis. Image analysis and manipulation was carried out with Fiji®4.
Contrasts were set equally for a set of compared images. Intensity of GFP and
mCherry channels was corrected with the simple ratio bleach correction function.
Numbers of P. aeruginosa PAO1 tssB-mNeonGreen cells in contact with V. cholerae
2740-80 vipA-mCherry2 or V. cholerae 2740-80 vipA-mCherry2 Ahcpl Ahcp2 cells
were counted based on the phase contrast and GFP channel. The number of T6SS
structures per cell in P. aeruginosa PAO1 tssB-mNeonGreen was counted in the
maximum intensity projection image of the GFP channel. Only T6SS structures of
cells in contact with V. cholerae were counted. To quantify the number of repeated
T6SS assemblies in kymograms, the reslice function was used. Only repeated T6SS
assemblies directed towards V. cholerae cells were analyzed. Kymograms of V.
cholerae were used to calculate the time without new T6SS after contraction (2's
pixel™1). Only T6SS assemblies directed towards P. aeruginosa cells were included
in the analysis. All quantifications were performed manually. GraphPad Prism7
was used to display the histogram of repeated T6SS assemblies. The number of cells
analyzed, averages with standard deviations, and medians are given in the figure
legend.

Statistical analyses. Unless indicated otherwise, the number of simulation
replicates is five for each parameter combination shown. Two biological replicates
were used in all experiments. For comparative statistics (Fig. 3b, d), we used a two-
sample, two-sided ¢ test, assuming data normality. No adjustments were made for
multiple comparisons. To estimate effect sizes, we used Cohen’s d measure,

d= M, where y; and SD; are, respectively, data means and standard
(SD}+SD3)/2
deviations for each sample i. All statistical calculations were performed in Matlab ®

(version R2017a 9.2.0.556344).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Source data are provided with this paper.

Code availability

Our model software is based on CellModeller, a GPU-compatible Python/OpenCL
modeling framework3?:40. Our source code is available to download from Github (https:/
github.com/WilliamPJSmith/CellModeller).
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