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THREE LAYERS OF UNCERTAINTY∗

Ilke Aydogan† Löıc Berger‡ Valentina Bosetti§ Ning Liu¶

Abstract

We explore decision-making under uncertainty using a framework that decom-

poses uncertainty into three distinct layers: (1) risk, which entails inherent random-

ness within a given probability model; (2)model ambiguity, which entails uncertainty

about the probability model to be used; and (3) model misspecification, which en-

tails uncertainty about the presence of the correct probability model among the set

of models considered. Using a new experimental design, we isolate and measure at-

titudes towards each layer separately. We conduct our experiment on three di↵erent

subject pools and document the existence of a behavioral distinction between the

three layers. In addition to providing new insights into the underlying processes

behind ambiguity aversion, we provide the first empirical evidence of the role of

model misspecification in decision-making under uncertainty.

Keywords: Ambiguity aversion, model uncertainty, model misspecification, non-expected

utility, reduction of compound lotteries
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1 Introduction

Uncertainty is pervasive and plays a major role in economics. Whether

economic agents pursuing individual goals, or policymakers pursuing social

objectives, decision-makers (DMs) rarely have complete information about

the likelihoods of the relevant states of the world. A valid understanding of

individual behavior in the face of uncertainty is therefore of great importance

for the construction of realistic economic models capable of making accurate

predictions, as well as for prescriptive applications guiding decision-making

processes.

Model uncertainty Uncertainty can take many forms. Most economic ap-

plications typically focus on the notion of risk, in which the DM knows the

correct model that quantifies the uncertainty about the possible states of the

world but not necessarily the correct state. A model is viewed here as a prob-

ability distribution over states that governs the exogenous contingencies on

which the consequences of a decision may depend. It is typically induced by a

mechanism that represents some natural or social phenomenon of interest. For

example, a model may be used to predict inflation rates in macroeconomics,

the temperature response to increased atmospheric CO2 concentration in cli-

mate science, or the e↵ective reproduction number of a virus in epidemiology.

In most real-life decision problems, including the examples above, the as-

sumption that the DM knows the correct model is hardly satisfied. In partic-

ular, DMs typically do not know the exact mechanism at play, thus giving rise

to model uncertainty (Marinacci, 2015). For example, there might exist di↵er-

ent models trying to describe the same phenomenon or, because each model

is by design a simplification, there might be concerns about the specifications

of the models themselves and the way they describe the regular features of

the phenomenon. How do DMs react to the existence of alternative models?

Does the approximate nature of models a↵ect their decisions? The aim of this

paper is to explore and measure attitudes towards model uncertainty.

As is the case in many real-life situations, we consider situations in which

the DM is able to formulate models but is uncertain about the “correct” one.

In line with Hansen and Sargent (2022), these formulated models are referred

to as “structured models”. They are usually explicitly featured because they

possess a substantive motivation. For example, they may be based on scien-

tific knowledge or well-behaved statistical distributions, relying on empirical
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evidence or on theoretical arguments. Yet, as the structured models are pos-

sibly misspecified, it might be the case that the DM decides to consider a

potentially richer collection of probability distributions to characterize the

phenomenon of interest. Such alternative models, which do not possess a

formal substantive motivation, are referred to as “unstructured models”. To

illustrate, consider the situation of a policymaker having to decide a climate

policy based on existing alternative climate models. Each structured model

is characterized by a given probability distribution over the long-term tem-

perature response to CO2 emission pathways. As multiple instances of this

distribution exist (depending on the modeling assumptions made by climate

scientists or the type of data used to estimate the probabilistic relationship),

there are both uncertainty across structured models and uncertainty about

the models themselves, thus leaving the possibility to the policymaker to con-

sider alternative unstructured models.1 In this paper, we draw on the crucial

distinction between structured and unstructured models to decompose uncer-

tainty into di↵erent layers of analysis.

Three layers Building on the early insights of Arrow (1951) and the recent

contributions of Hansen (2014), Marinacci (2015), and Hansen and Marinacci

(2016), our investigation focuses on a decomposition of uncertainty into three

distinct layers : (i) risk, in which the uncertainty is about the possible states

(or outcomes) within a given probability model; (ii) model ambiguity, in which

the uncertainty is about which alternative probability model one should use

among a posited set of structured models; and (iii) model misspecification, in

which there is uncertainty regarding whether the correct probability model

belongs to the set of structured models or not.

More specifically, the first layer of risk characterizes situations in which

the consequences of the DM’s actions depend on states of the world over

which there is an objectively known probability distribution. This uncertainty

about states represents the inherent variability within a particular probability

model and, as such, is considered as being of an aleatory type, analogous

to chance mechanisms. The extra layer of model ambiguity arises when the

DM is not able to identify the correct model among the set of structured

ones. This uncertainty across models has an epistemic nature, which may

be quantified by means of subjective probabilities (Marinacci, 2015). Finally,

1For a further discussion of model uncertainty in the context of climate change economics, see
Berger and Marinacci (2020).
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because models are, by design, approximations of more complex phenomena,

they are often misspecified. In consequence, the set of structured models

under consideration might not include the correct model, thus giving rise to

the third layer, or epistemic uncertainty about models being correct (Hansen

2014; Hansen and Marinacci 2016, see also White 1982).

Figure 1 illustrates situations with di↵erent layers of uncertainty. Situa-

tions (a) and (b) encompass the layer of risk only, which is presented in a

single stage and in two stages, respectively. Situation (c) encompasses both

the layers of model ambiguity and risk. In that case, no objective probabilities

can be assigned to the two structured models. Situation (d) is an instance

encompassing all the three layers together: in addition to risk and model

ambiguity, there is uncertainty about the set of models to be considered.
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Figure 1: Situations with di↵erent layers of uncertainty.
Notes: Branches whose probabilities can be defined with an “objective” measure
(i.e., aleatory uncertainty) are represented with solid lines. Branches whose prob-
abilities cannot be defined with an objective measure (i.e., epistemic uncertainty)
are represented with dashed lines, without any probability attached.

The three layers of uncertainty are inherent in any decision problem under

uncertainty in which a DM adopts probabilistic theories about the outcomes

of a phenomenon and forms beliefs about their relevance. Therefore, they

provide a useful framework to analyze the vast majority of real-life decision

problems under ambiguity.2 An example is when di↵erent experts provide

opinions about the probability of an event (e.g., developing a disease, fire

risk in buildings, aircraft accidents, etc.). From the DM’s perspective, each

expert’s probability model can be interpreted as an instance of risk. As ex-

perts may provide di↵erent assessments, the second layer of model ambiguity

emerges regarding which expert’s model to rely on. Finally, the third layer

2Since Ellsberg (1961), the term “ambiguity” has emerged in the literature to characterize
situations in which probabilities are unknown (Knightian uncertainty). Accordingly, situations
encompassing the layers of model ambiguity or model misspecification are often called ambiguous.
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of model misspecification captures the possibility that none of the experts

consulted is correct. Such a decomposition of uncertainty into di↵erent layers

has been recently used to describe the problem of a policymaker during a

pandemic (Berger et al., 2021), and in the context of climate change (Brock

and Hansen, 2017; Barnett et al., 2020; Berger and Marinacci, 2020).

This article This paper presents an empirical investigation of attitudes to-

wards each of the three layers of uncertainty. As previous experimental re-

search under the standard Ellsberg (1961) paradigm has so far concerned

the layers of risk and model ambiguity exclusively, this paper is also, to our

knowledge, the first examination of model misspecification in a laboratory en-

vironment.3 Indeed, the ambiguous two-color Ellsberg urn containing N balls

provides implicitly N + 1 potential compositions, each of which constitutes

a risk, whereas the distribution over the compositions, unknown to the DM,

relates to model ambiguity. However, as the set of possible distributions is

fully specified in an Ellsberg urn, such a setting necessarily leaves out the is-

sue of model misspecification. For that reason, our experiment entails a new,

extended Ellsberg setting, in which the number of possible compositions is

first left unspecified. Then, by changing the information about the possible

compositions, we are able to implement di↵erent situations of (compound)

risk, model ambiguity, and model misspecification.

Our design enables us to isolate the e↵ect of model ambiguity from that of

risk by comparing situations characterized by a known probability distribution

over possible urn compositions with situations in which this distribution is

unknown (e.g., comparing situations (b) and (c) in Figure 1). We further

isolate the e↵ect due to model misspecification by considering situations in

which alternative compositions, outside the set of structured models, cannot

be excluded (e.g., comparing situations (c) and (d)).

Our investigation complements and extends previous empirical research on

the multi-stage presentation of uncertainty and its relation to ambiguity (e.g.,

Halevy, 2007; Abdellaoui et al., 2015; Chew et al., 2017, see also the discussion

in Section 7). In what follows, we specifically distinguish the stages and layers

of uncertainty. In particular, whereas our instances of compound risk, model

ambiguity and model misspecification are all presented in two stages, they

3Note that there also exists a recent, but distinct, experimental literature on learning with
misspecified models (e.g., Esponda et al., 2020; Götte et al., 2020). This literature focuses on the
behavior of agents who behave optimally but learn with a possibly misspecified model (Berk, 1966;
Esponda and Pouzo, 2016).
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di↵er in terms of the layers of uncertainty they encompass (see Figure 1). Our

conjecture is that there may exist distinct attitudes towards di↵erent layers of

uncertainty, beyond those towards the multi-stage presentation. If this is the

case, taking into account and calibrating these attitudes could reveal essential

for analyzing a vast majority of applied decision problems under uncertainty.

We test our conjecture by conducting three experiments. The main ex-

periment is run as a standard laboratory experiment on a pool of university

students. The experimental results show that there exists a distinction be-

tween both stages and layers of uncertainty. Specifically, while we find that

students are typically averse to uncertainty presented in multiple stages (i.e.,

situations (b), (c), and (d) in Figure 1), they also treat situations with dif-

ferent layers of uncertainty di↵erently. In particular, our subjects are willing

to pay on average 8.4% of their expected payo↵ to avoid being faced with the

layer of model ambiguity, and an extra 5.3% to avoid the layer of model mis-

specification. We explore the robustness of these findings using two follow-up

experiments. First, we run the experiment on a pool of risk professionals to

understand to what extent our results depend on the specificity of our sub-

ject pool and its potential limitations to deal with the relevant complexity of

the multi-stage presentation of uncertainty. Second, we run the experiment

online using a between-subject (rather than within-subject) design to test the

comparative ignorance hypothesis of Fox and Tversky (1995) while evaluating

situations with more or less layers of uncertainty. The follow-up experiments

support our main conclusions and rule out several alternative explanations.

On the one hand, the experiment with risk professionals shows that the role

played by the layers in explaining overall uncertainty attitudes is stable when

considering a more sophisticated subject pool. On the other hand, the on-

line experiment shows that the results obtained are not due to order e↵ects

or contagion across treatments. Overall, the two follow-up experiments thus

provide further evidence in favor of the behavioral distinction between the

three layers.

Organization The paper is organized as follows. Section 2 presents the

main features of our experiment, which is designed to study attitudes towards

the three layers of uncertainty. Section 3 introduces the notions of total and

di↵erential premia that are used to analyze the attitudes elicited. Section 4

considers di↵erent modern theories of choice under uncertainty, discusses how

they deal with the three layers, and states our predictions. The results of the
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main experiment, run in the lab on students, are presented in Section 5. The

results of the two follow-up experiments are summarized in Section 6. We

discuss our results in relation to the extant literature and conclude in Section

7.

2 Experiments

We examine choices under di↵erent sources of uncertainty that potentially

encompass di↵erent layers.4 We run three distinct experiments with the same

stimuli. The main experiment took place in a laboratory with university

students, whereas the follow-up experiments took place, respectively, in the

field with risk professionals, and online. All experiments used real monetary

incentives.

2.1 The sources of uncertainty

We consider five sources of uncertainty. These sources are constructed

in an extended Ellsberg two-color setting using decks, from which a card is

randomly drawn. All the decks contain an unspecified number of cards.5 The

sources are characterized by di↵erent deck compositions, defined in terms of

their proportion of black cards (and the complementary proportion of red

cards).

1. Simple risk, denoted SR, entails a deck containing an equal proportion

of black and red cards;

2. Compound risk, denoted CR, entails a deck that contains either P% or

Q% black cards, with equal probability;

3. Model ambiguity, denoted MA, entails a deck that contains either P%

or Q% black cards, with unknown probability;

4. Model misspecification, denoted MM , entails a deck that is likely (i.e.,

with at least 50% probability) to contain either P% or Q% black cards,

but may also contain another (unknown) proportion of black cards;

4We refer to sources of uncertainty as “groups of events that are generated by the same mecha-
nism of uncertainty, which implies that they have similar characteristics” (Abdellaoui et al., 2011,
p. 696).

5For the sake of comprehensiveness and to allow comparisons with previous literature, we also
consider the standard two-color Ellsberg ambiguous situation in which the ambiguous deck contains
100 cards. This source was always presented at last to prevent a priming e↵ect about the number
of cards in the decks. A discussion of this extra source is presented in the Online Appendix.
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5. Extended Ellsberg, denoted EE, entails a deck that contains an unknown

proportion of black cards.

As illustrated in Figure 1, the sources CR, MA, and MM are all presented in

two stages, while they di↵er in terms of the layers of uncertainty they encom-

pass. The source CR entails only the layer of risk, although it is presented

in a compound way. Under CR, the two possible deck compositions, P%

and Q% black cards, are each unambiguously assigned an objective proba-

bility of 50%. Conversely, the source MA entails both the layers of model

ambiguity and risk. Under MA, the two possible deck compositions can only

be assigned subjective probabilities.6 The source MM entails all the three

layers together, adding the extra layer of model misspecification as follows:

Although the probability distribution is likely to be characterized by one of

the two compositions as in MA, we cannot exclude the possibility of an alter-

native composition.7 Finally, whereas SR is an instance of single-stage risk,

EE corresponds, in spirit, to Ellsberg’s (1961) ambiguous situation in which

“numerical probabilities are inapplicable.”

2.2 Procedure in the main experiment

The main experiment was run on computers at the Bocconi Experimental

Laboratory for Social Sciences (Italy) using a within-subject design. Subjects

were seated in cubicles and could not communicate with one another during

the experiment. Each session started with the experimental instructions, ex-

amples of the stimuli, and comprehension questions. A typical session lasted

approximately one hour, including instructions and payment. Complete in-

structions are provided in the Online Appendix.

Subjects Five experimental sessions were organized, with a total of 125 uni-

versity students (average age 20.5 years, 52 women), recruited on a voluntary

basis.
6Under a symmetry assumption, these subjective probabilities might be assumed to be 50%.

Such a symmetry assumption has been supported empirically in various studies (e.g., Abdellaoui
et al., 2011; Chew et al., 2017; Epstein and Halevy, 2019), as well as in an additional experiment
that we conducted under the same conditions as in our main experiment. Specifically, in an
additional experiment, we show that the symmetry assumption holds both at the aggregate and
individual level (see Online Appendix S3).

7It must be clear that a crucial distinction between MA and MM is that the set of probability
models includes only explicitly featured structured models in MA, whereas this is not the case
in MM . Specifically, to explore misspecification, we allow for the possibility to consider a po-
tentially richer collection of probability distributions, which includes unstructured models lacking
substantive motivation.
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Stimuli Subjects faced monetary prospects under the five sources of uncer-

tainty introduced previously. For CR, MA, and MM , we considered two

cases with di↵erent sets of structured models. In each case, the proportion of

black cards is either P% or Q%, where Q = 100� P . In the first case, P = 0

and in the second P = 25. For example, CR with P = 0 entails a deck that

contains either 0% black or 100% black cards with equal probability, whereas

CR with P = 25 entails a deck that contains either 25% black or 75% black

cards with equal probability. MA and MM are built analogously. We denote

the respective cases as CR0, CR25, and so forth. Thus, there were eight

monetary prospects in total: SR, CR0, CR25, MA0, MA25, MM0, MM25,

and EE. Each prospect gave the subjects either e20 or e0, depending on

the color of a card randomly drawn from a deck. In every prospect, the color

giving e20 (black or red) was selected by the subjects themselves.

Table 1 summarizes the main characteristics of the eight prospects. They

Table 1: Characteristics of the prospects used in the experiment

Source Prospect
# of layers of
uncertainty

Set of structured
models (M)

Information available (µ) a

SR SR 1 {50%} µ(50%) = 1

CR
CR0 1 {0%, 100%} µ(0%) = µ(100%) = 0.5
CR25 1 {25%, 75%} µ(25%) = µ(75%) = 0.5

MA
MA0 2 {0%, 100%} µ(0%) + µ(100%) = 1
MA25 2 {25%, 75%} µ(25%) + µ(75%) = 1

MM
MM0 3 {0%, 100%} µ(0%) + µ(100%) � 0.5
MM25 3 {25%, 75%} µ(25%) + µ(75%) � 0.5

EE EE 3 / /
a µ(m) represents the subjective prior probability attached to the structured model m 2 M . Note that
under rational expectations, subjective and ‘true’ probabilities coincide (i.e., for SR and CR).

were implemented as follows: In SR, the subjects were instructed that the

deck contained an equal proportion of red and black cards. In the cases of

CR, MA, MM , and EE, subjects were instructed that the deck would be

picked randomly from a pile of decks. In CR0 (CR25), the pile consisted

of decks containing 0% (25%) black cards and decks containing 100% (75%)

black cards, with an equal proportion of each. In MA0 (MA25), the pile

also consisted of decks containing 0% (25%) black cards and decks containing

100% (75%) black cards, but with an unknown proportion of each. In MM0

(MM25), the subjects were instructed that at least half of the pile consisted of
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decks containing 0% (25%) black and decks containing 100% (75%) black cards

with an unknown proportion of each. Notably, the subjects were also informed

that the pile considered may (or may not) contain decks whose composition is

di↵erent than the ones described. In EE, the pile consisted of decks containing

red and black cards, each with an unknown composition.

All the decks and piles were constructed in advance by one of the collabora-

tors, who was not present in the room during the experimental sessions.8 The

subjects were also reminded that they could check the piles and the decks

at the end of the experiment to verify the truthfulness of the information

provided. During the instructions, subjects were given examples of the di↵er-

ent sources of uncertainty that they would face throughout the experiment.

We tested their understanding of the di↵erences between the sources through

comprehension questions, for which they were given automatic feedback.

We elicited the certainty equivalents (CEs) of the eight prospects using a

choice list design.9 Specifically, in each prospect, the subjects were asked to

make 12 binary choices between the prospect of receiving e20 and receiving

a sure monetary amount ranging from e0 to e20. The sure amounts were

incremented by e2 between e1 and e19, and the order of the prospects was

randomized. After completing the choice lists, the subjects answered a short

sociodemographic survey.

Incentives Subjects received a e5 show-up fee. In addition, they received

a variable amount depending on one of the choices they made during the ex-

periment (i.e., random incentive). The choice situation on which the payment

was based was the same for all the subjects in the same session. In practice,

the 12 binary choice questions of the choice lists and the descriptions of the

uncertain situations were printed on paper and physically enclosed in sealed

envelopes before every session. In each session, a volunteer from the subject

pool randomly picked two envelopes before the experiment started: one con-

8Thus, no one in the room, including the experimenters, had any additional information about
the content of the decks and piles, other than what was described in the experimental instructions.
The subjects were informed accordingly to prevent the e↵ects of comparative ignorance, according
to which a comparison with a more knowledgeable individual (in this case, the experimenter) may
induce ambiguity aversion (Fox and Tversky, 1995).

9The validity of CE elicitations has been a topic of debate due to anomalies such as preference
reversals (e.g., Grether and Plott, 1979; Hara et al., 2019). The consensus in the experimental
literature is that choice-based elicitations of CEs (as in choice list designs) leads to more reliable
measurements than asking subjects directly for their CEs by generating fewer such inconsisten-
cies(Bostic et al., 1990; Attema and Brouwer, 2013). For a more detailed discussion, see Online
Appendix S5.
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taining an uncertain situation and the other containing a question from the

choice lists. After the two envelopes had been picked, they were attached,

still sealed, to a white board visible to all participants. The subjects were

informed that the choice situation that would matter for their payment was

contained in the envelopes, which would remain closed and visible until the

end of the experiment. When all subjects had completed the questionnaire,

the envelopes were opened and their contents were revealed. The draws from

the piles and/or from the decks were made according to the uncertain situa-

tion contained in the first envelope and the subjects were paid according to

their response to the choice question contained in the second envelope.10

2.3 Procedure in follow-up experiments

Field experiment with actuaries The subject pool in the first follow-up

experiment consists of 84 risk professionals (average age 40 years, 37 women),

who attended the 31st International Congress of Actuaries in Berlin, Germany.

The majority of the subjects were highly educated in the fields of mathemat-

ics, statistics, and actuarial science. Subjects had an average of 13 years of

work experience in the insurance and finance industries. They faced the same

stimuli as in the lab experiment, except that the stakes were multiplied by

a factor of 10 (a correct bet yielded e200, instead of e20). To reduce the

expected experimental costs and monetary transactions during the conference

schedule, only a fraction of the subjects (one out of 10) was paid based on one

of their choices. Experimental details are provided in Online Appendix S1.

Online experiment The second follow-up experiment adopts a between-

subject (rather than within-subject) design while mostly using the same stim-

uli as in the main experiment.11 The experiment was conducted in the online

platform Prolific. The subject pool consists of the members of the platform

from all over the world. To remain as close as possible to the main experiment,

we recruited subjects who had declared a student status and were currently

10The random incentive system (RIS) is one of the most commonly used mechanisms for indi-
vidual choice experiments in economics. The prior incentive system of Johnson et al. (2021) that
we use performs the randomization before, rather than after, the choices and the resolutions of
uncertainty. Hence it aims to reinforce the isolation assumption of Kahneman and Tversky (1979),
which is equivalent to monotonicity and therefore su�cient to guarantee the incentive compatibility
of the RIS (see Azrieli et al., 2018; Baillon et al., 2022).

11The main di↵erence concerns the implementation of the choice lists. In this follow-up ex-
periment, we use (i) smaller incremental steps for sure amounts on the list (£1 between £0.5 and
£19.5), which increase the level of resolution in CE elicitations, and (ii) an automatic filling system.
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enrolled in either undergraduate, graduate or doctorate degree. Subjects were

randomly assigned to one of the following three treatments: (1) Compound

Risk (N = 277), (2) Model Ambiguity (N = 229), and (3) Model Misspec-

ification (N = 234). Each subject faced the two corresponding prospects of

their treatment (CR, MA or MM) with P = 0 and P = 25, as well as the

sources R and EE. The stake size of the prospects was £20. Experimental

details are given in Online Appendix S2.

3 Measures

In the analysis that follows, we take the midpoint of an indi↵erence interval

implied by the switching point in the choice list as a proxy for the CE of the

prospect. Switching in the middle of the list implies a CE equal to the expected

value (EV) of the prospect, which is e10 in the lab experiment (e100 in the

field experiment and £10 in the online experiment).

3.1 Total uncertainty premia

We use the following notions of uncertainty premium to analyze our results.

Definition 1. The total uncertainty premium ⇧i is defined as

⇧i ⌘ EVi � CEi

for all i 2 {SR,CR0, CR25,MA0,MA25,MM0,MM25, EE}.

In words, the total premium represents the amount of money that an indi-

vidual is willing to pay to receive the expected value of the prospect with

certainty, rather than facing the uncertainty. The premium is positive (resp.

zero, or negative) when a subject is averse (resp. neutral, or loving) to the

uncertainty in prospect i. The most well-known total uncertainty premium is

the standard risk premium, noted ⇧SR.

3.2 Di↵erential uncertainty premia

Because we are interested in comparing the way people react to di↵erent

layers of uncertainty, a more directly relevant measure for our purposes is the

notion of di↵erential premium.

Definition 2. The di↵erential uncertainty premium ⇧i,j is defined as

12



⇧i,j ⌘ ⇧j � ⇧i

for all i, j 2 {SR,CR0, CR25,MA0,MA25,MM0,MM25, EE}.

Given that all the prospects in our experiment have the same EV under sym-

metry, the di↵erential premiummay equivalently be expressed as the di↵erence

between the CEs of the prospects i and j:

⇧i,j = CEi � CEj.

The di↵erential premium is positive (resp. zero, or negative) when a sub-

ject is more (resp. as much, or less) averse to the uncertainty in prospect

j than that in prospect i. The version of this premium that has been typ-

ically considered in the literature is the one relative to simple risk, so that

⇧SR,j refers to the so-called compound risk premium when j 2 {CR0, CR25}
(see, e.g., Abdellaoui et al., 2015), and to the ambiguity premium when

j 2 {MA0,MA25,MM0,MM25, EE} (see, e.g., Maccheroni et al., 2013).

In our experiment, two other di↵erential premia will be of special impor-

tance for analyzing the results. The first, which is called the MA (model

ambiguity)-premium, refers to the marginal e↵ect between the first and the

second layers of uncertainty. It measures what an individual is ready to pay

to avoid being confronted with epistemic uncertainty in the first stage. To

isolate the e↵ect of model ambiguity alone (filtering out the e↵ect due to the

multi-stage presentation), it is measured in relation to compound risk, by

⇧CR0,MA0 and ⇧CR25,MA25. The second important premium for our analysis,

called the MM (model misspecification)-premium, refers to the marginal e↵ect

between the second and the third layers of uncertainty. It measures what

an individual is ready to pay to be sure that the correct model belongs to

the set of structured models. It is measured by ⇧MA0,MM0 or ⇧MA25,MM25.

Overall, the total e↵ect due to model uncertainty can thus be measured by

⇧CR,MM ⌘ ⇧CR,MA + ⇧MA,MM .

4 Theory and predictions

We can now use these premia to make predictions following some promi-

nent theories of decision-making under uncertainty that accommodate a multi-

stage representation. After introducing basic concepts and notation, we use

13



the sources CR, MA, and MM to draw general predictions under four general

hypotheses.12

4.1 Preliminaries

Let S denote the set of states of the world and C the set of consequences.

Formally, a prospect (or an act) is a function P : S ! C mapping states

into consequences. We consider a DM who has a complete and transitive

preference relation % over prospects. We consider a classic setup in the spirit

of Wald (1950), in which M is a set of structured models m representing

the probabilistic behavior of a phenomenon of interest. Each model m thus

characterizes the inherent randomness governing states’ realizations, while the

set M is taken as a datum of the decision problem.13 In line with Wald (1950),

most of the classical frameworks that we present make the assumption that the

DM knows that the true model belongs to M , and so face model ambiguity

and risk only (for an in-depth review, see Marinacci, 2015). An exception

may be found in the recent work of Cerreia-Vioglio et al. (2022), in which

model misspecification potentially arises by removing the assumption that

the correct model belongs to M .

4.2 Expected Utility hypothesis

Traditionally, economists have dealt with uncertainty by following the

subjective expected utility (SEU) approach (Savage 1954). In line with the

Bayesian tradition, this approach favors quantifying uncertainty in probabilis-

tic terms and treats any source of uncertainty as risk, reducing uncertainty

de facto to its first layer. A two-layer version of SEU distinguishing risk from

model ambiguity has been axiomatized by Cerreia-Vioglio et al. (2013b). In

this version, it is assumed that the DM has a subjective prior probability mea-

sure µ : 2M ! [0, 1] quantifying the epistemic uncertainty about the models

m 2 M . The subjective probabilities (or priors) reflect the structural infor-

mation received and some personal information that the DM may have on the

models. The SEU of a prospect is

12Interested readers will find further theoretical developments and predictions in the Online
Appendix S4.

13In particular, following Wald (1950) and Marinacci (2015), the physical information M is taken
as a primitive of the decision-making problem. Formally, we assume the existence of a measurable
space (S,⌃) , where ⌃ is an algebra of events of S. A model m : ⌃ ! [0, 1] is thus a probability
measure, and the collection M is a finite subset of �(S), the collection of all probability measures.
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VSEU(P) = Eµ (Emu (P)) , (1)

where u : C ! R is the von Neumann-Morgenstern utility function capturing

risk attitude and E is the expectation operator (taken with respect to the

measures µ and m, respectively).14 Criterion (1) is a two-stage criterion that

describes the di↵erent layers of uncertainty through standard probability mea-

sures. The same attitude is considered towards the layers of risk and model

ambiguity, therefore implying compound risk and ambiguity neutrality. The

expected utility hypothesis can thus be summarized as follows.

EU hypothesis:

⇧SR,CR = ⇧SR,MA = ⇧SR,MM = 0. (2)

In words, distinct layers of uncertainty are treated in the same way, and

di↵erent stages are reduced to a single one under the EU hypothesis.15 In

consequence, this hypothesis also predicts zero MA and MM premia, i.e.,

⇧CR,MA = 0 and ⇧MA,MM = 0.

4.3 Layer hypothesis

Next, we consider families of approaches that allow for di↵erent attitudes

towards di↵erent layers of uncertainty. We start by focusing on the theo-

ries considering the layers of risk and model ambiguity only and alternatively

present the maxmin criteria of Wald (1950) and Gilboa and Schmeidler (1989),

and the smooth criterion of Klibano↵, Marinacci, and Mukerji (2005). We then

present a general framework that incorporates the fear of model misspecifica-

tion.

Wald The decision criterion of Wald (1950) considers only the worst possible

model among all the structured ones in M :

VWald(P) = min
m2M

Emu (P) . (3)

The layer of risk is not a↵ected by the extreme cautiousness entailed by this

criterion. For example, it is perfectly conceivable for a DM to be neutral to
14In other words, expression (1) corresponds to VSEU(P) =

P
m µ (m)

�P
s p(s|m)u (P(s))

�
in

its discrete version, where p(s|m) is the objective probability of state s conditional on model m,
and to VSEU(P) =

´
M

�´
S
u (P(s)) dm(s)

�
dµ (m) in its continuous version.

15Note that, while there exists no formal three-layer version of the SEU, the last equality in (2)
directly follows from the symmetry assumption, which would lead to treat any set of unstructured
models symmetrically.
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compound risk while being extremely averse to model ambiguity.

Multiple priors The multiple priors (MP) criterion axiomatized by Gilboa

and Schmeidler (1989) is less extreme than that of Wald. In this framework,

the DM’s information about epistemic uncertainty is quantified by a compact

set C ✓�(M) of priors µ over the structured models, and the decision is

based on the prior giving the least favorable SEU. The two-layer version of

this criterion is written16

VMP(P) = min
µ2C

Eµ [Emu (P)] . (4)

Under the MP model, which is built within the Anscombe and Aumann (1963)

framework, the layer of risk is evaluated under the expected utility criterion

of von Neumann and Morgenstern (1944).

Smooth ambiguity model While the two previous criteria depart from the

Bayesian paradigm, the smooth ambiguity model of Klibano↵, Marinacci, and

Mukerji (2005, hereafter KMM) adheres to the Bayesian framework, but gen-

eralizes the classical SEU approach by allowing di↵erent attitudes towards the

layers of risk and model ambiguity. The utility of a prospect P under this

criterion is

VKMM(P) = Eµ� [Emu (P)] , (5)

where � ⌘ v � u�1. The strictly increasing continuous function v : C ! R
captures the attitude towards the layer of model ambiguity (Marinacci, 2015).

Ambiguity aversion results from the concavity of �, which corresponds to a

stronger aversion towards the layer of model ambiguity than that of risk (i.e., v

being more concave than u).17 Note that when two stages of risk are involved,

each stage is evaluated by the same function u, so that criterion (5) collapses

to criterion (1).

16This version was studied by Cerreia-Vioglio et al. (2013a), while the original version of the
MP model proposed by Gilboa and Schmeidler (1989) is recovered when considering the predictive
subjective probabilities µ̄(s) ⌘

P
m µ(m)p(s|m) (see Online Appendix S4 for details).

17When v = u –thus when � is linear– the attitudes towards the two layers of risk and model
ambiguity are identical and the smooth ambiguity criterion reduces to the SEU representation (1).
See also the model of Nau (2006), which, at least in special cases, takes the same representation
as (5) and shares the same interpretation as KMM.
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Fear of model misspecification Finally, in a recent contribution, Cerreia-

Vioglio et al. (2022, hereafter CHMM) propose a decision-theoretic approach

able to deal with the three layers of uncertainty together. Starting from a

setup in which the DM is able to posit a set M of structured models m that

are motivated by the information available, this approach explicitly removes

the assumption that the correct model belongs to M . It then allows the DM

to contemplate unstructured models when ranking prospects and to express

a fear of model misspecification by following the criterion

VCHMM(P) = min
p2�(S)

[Epu (P) + cM (p)] , (6)

where cM (p) = minm2M c(p,m) is a measure of distance between a model p

and the posited set M of structured models. Intuitively, the DM here may

consider any type of models but penalizes those that are unstructured (and

thus lack the substantive motivation of structured ones) by a cost function

cM(p) 6= 0 for all p /2 M . In particular, the closer a p is to the set M of

structured models, the more plausible it is in view of the DM’s information

and the lower is the adverse impact on the preferences. Representation (6) is

special case of the variational criterion axiomatized by Maccheroni, Marinacci,

and Rustichini (2006). When the cost function has the relative entropy form,

criterion (6) coincides with the criterion proposed by Hansen and Sargent

(2022).18 Finally, when the cost function has a particular form (that assigns 0

to models inside M and infinity otherwise), the misspecification fear is absent

and criterion (6) coincides with criterion (3).

Overall, if a distinction is made between di↵erent layers of uncertainty, we

expect the MA premium and/or the MM premium to be non-zero. Because

both sources SR and CR only entail the layer of risk, these theories often

assume compound risk reduction (see, e.g., Klibano↵ et al. (2005), or Gilboa

and Schmeidler (1989)). Hence, the layer hypothesis is summarized as follows.

18When model ambiguity is absent and the set M is a singleton, it further reduces to the the
multiplier decision criterion of Hansen and Sargent (2001, 2008). The multiplier decision criterion
can also be equivalently written in the smooth ambiguity form when �(x) = �e��x (Hansen and
Sargent, 2007; Cerreia-Vioglio et al., 2011). Note that alternative attempts to deal with a general
concern about the epistemic uncertainty surrounding the correct probability model also appear in
the vast literature on robust control theory (e.g., see Petersen, James, and Dupuis, 2000; Hansen
and Sargent, 2001, 2008).
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Layer hypothesis:

8
<

:
⇧SR,CR = 0

⇧CR,MA 6= 0 or ⇧MA,MM 6= 0 (or both).
(7)

4.4 Stage hypothesis

Finally, there exists a family of theories that models ambiguity as multiple

stages of uncertainty while not necessarily making a distinction between the

layers. For example, Segal’s (1987; 1990) and Seo’s (2009) approaches take

any source of ambiguity as compound risk and relax the reduction principle

to capture non-neutral attitudes towards ambiguity.

Recursive rank dependent utility model Segal’s (1987; 1990) recursive

rank dependent utility (RRDU) approach proposes evaluating the first and

second stages of uncertainty by using Quiggin’s (1982) rank dependent util-

ity.19 In the RDU model of Quiggin, the lottery x = (x1, p1; ...; xn, pn), with

x1 � ... � xn, is evaluated by

VRDU(x) = u(xn) +
nX

s=2

[u(xs�1)� u(xs)] f

 
s�1X

t=1

pt

!
. (8)

In this expression, f : [0, 1] ! [0, 1], with f(0) = 0 and f(1) = 1, is a

strictly increasing transformation function, which is also convex under (global)

uncertainty aversion.20 Segal’s RRDU first computes and ranks the certainty

equivalents (CEs) derived for each model m 2 M using (8) and then applies

formulation (8) recursively to the distribution of these CEs induced by the

probability measure µ.

Seo’s approach Seo (2009) assumes distinct expected utilities in the di↵er-

ent stages, using a criterion analogous to that presented in (5). Under this

interpretation, u and v each capture the attitude towards one particular stage

of uncertainty. As a consequence, ambiguity aversion arises in the same way

as nonreduction of compound risk.

19An alternative approach, using Gul’s (1991) disappointment aversion, is presented in Online
Appendix S4.

20Note that the common empirical finding in the literature is local uncertainty seeking for low
likelihood events and uncertainty aversion for moderate and high likelihood events, implying an
inverse S-shaped–concave and then convex–f function (see Wakker, 2010).
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The theories that relate ambiguity attitudes to attitudes towards di↵erent

stages of uncertainty thus only predict violation of the reduction of compound

risk axiom (i.e., non-indi↵erence between a compound risk and its reduced

–simple risk– form),21 and make no distinction between layers:

Stage hypothesis: 8
<

:
⇧SR,CR 6= 0

⇧CR,MA = ⇧MA,MM = 0.
(9)

Finally, note that a generalization of the stage hypothesis that further dis-

tinguishes between the di↵erent layers can be derived from Ergin and Gul

(2009). This generalization of Segal’s approach allows for di↵erent transfor-

mation functions for the aleatory and epistemic layers of uncertainty present

at each stage, thus giving rise to the hybrid:

Stage and layer hypothesis:

8
<

:
⇧SR,CR 6= 0

⇧CR,MA 6= 0 or ⇧MA,MM 6= 0 (or both).
(10)

5 Results of the lab experiment

5.1 Data

The data we collected in the lab experiment consist of 124 observations

for MA25 and 125 observations for the rest of the prospects.22 We excluded

36 (3.6% of all) choice lists from 13 di↵erent subjects, because they involve

multiple-switching, no-switching, or reverse-switching patterns.23 The pro-

portion of these patterns is significantly lower than the typical 10% observed

21Note that Segal’s (1987; 1990) theory assumes a weaker condition than the reduction of com-
pound risk, which is known as time neutrality (i.e., indi↵erence between the resolution of uncer-
tainty in the first or in the second stage) and implies ⇧SR,CR0 = 0 in our experiment. Other
models in general also predict violation of time neutrality by assuming distinct attitudes within
di↵erent stages (e.g., Seo, 2009).

22One subject omitted answering the choice situation MA25 by mistake.
23Such a procedure is standard in the experimental literature (see, e.g., Dean and Ortoleva,

2019). It is justified on the grounds that these data are not compatible with standard assumptions
on preferences (e.g., monotonicity in money) and that they might be due to a lack of understanding
of the choice tasks. Our results are, however, also robust to the inclusion of such data with multiple
switching patterns.
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in the literature (Yu, Zhang, and Zuo, 2020). We do not observe any order

treatment e↵ect.24

5.2 General attitudes towards uncertainty

We start by looking at the general attitudes towards di↵erent sources of un-

certainty before decomposing them into distinct layers. Unless mentioned oth-

erwise, we report the results with two-sided t-tests. The use of non-parametric

tests does not alter our main conclusions.
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Figure 2: Mean total uncertainty premia and 90% confidence intervals

Figure 2 summarizes the mean total uncertainty premia ⇧i. We find

positive uncertainty premia for all the prospects (p<0.001 for CR25,MA0,

MA25,MM0,MM25,EE and p=0.099 for CR0) except for SR (p=0.16),

which indicates risk neutrality (such a result is reasonable for the small and

moderate monetary gains considered in our experiment). Moreover, we ob-

serve an increasing trend in total premia from CR to MA and MM (ANOVA

with repeated measures, p < 0.001 and p = 0.001 for treatments with P = 0

24The results testing potential order e↵ects are reported in Online Appendix S5. An additional
experiment using a between-subject design confirms that the results are not due to contagion (see
Online Appendix S2).
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and P = 25, respectively), suggesting di↵erences between these sources.

Table 2 summarizes the mean di↵erential uncertainty premia relative to

simple risk. Our data indicate consistent ambiguity aversion, as shown by

Table 2: Compound risk and ambiguity premia

P = 0 P = 25 Average

⇧SR,CR 0.10 (N = 118) 1.40⇤⇤⇤ (N = 117) 0.74⇤⇤⇤ (N = 120)

⇧SR,MA 1.18⇤⇤⇤ (N = 119) 1.81⇤⇤⇤ (N = 117) 1.46⇤⇤⇤ (N = 120)

⇧SR,MM 1.71⇤⇤⇤ (N = 119) 2.10⇤⇤⇤ (N = 120) 1.91⇤⇤⇤ (N = 120)

⇧SR,EE 2.30⇤⇤⇤ (N = 116)
Notes: The number of observations is in parentheses. Average premia are based on all non-
missing values. ⇤⇤⇤p-value<0.01, ⇤⇤p-value<0.05, ⇤p-value<0.1, based on two-sided t-tests.

the positive ambiguity premia under the sources MA, MM , and EE. The

compound risk premium is also positive when P = 25 but not when P = 0

(p=0.58). The proportions of zero, positive, and negative premia are reported

in Online Appendix S5.

5.3 Decomposing attitudes towards uncertainty: the model ambi-

guity and misspecification premia

We now focus on the specific attitudes towards the layers of model ambi-

guity and model misspecification. To explore the empirical relevance of these

attitudes and their respective di↵erential premia, we first conduct a principal

component analysis (PCA) of the premia for compound risk (⇧SR,CR) and

ambiguity (⇧SR,MA and ⇧SR,MM). The results are reported in Table 3.

Table 3: Principal Component Analysis of the relative Compound Risk
and Ambiguity Premia

P = 0 P = 25

Variable
1st

comp.
2nd

comp.
3rd

comp.
1st

comp.
2nd

comp.
3rd

comp.

⇧SR,CR 0.54 0.82 0.21 0.57 -0.68 0.45

⇧SR,MA 0.58 -0.54 0.61 0.57 0.73 0.37

⇧SR,MM 0.61 -0.20 -0.77 0.58 -0.04 -0.81

Eigenvalue of the component 1.86 0.68 0.48 2.43 0.31 0.26

Proportion of variance explained 0.62 0.22 0.16 0.81 0.10 0.09
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We interpret the first component, having positive and roughly equal load-

ings on the three premia in both treatments with P = 0 and P = 25, as

capturing a general attitude towards the multi-stage presentation of uncer-

tainty, which is shared by all the three sources. This component explains 62%

and 81% of the variance in the treatment P = 0 and P = 25, respectively.25 In

contrast, the second component has loadings of opposite signs on compound

risk and model ambiguity, whereas its loading on model misspecification is

relatively small. Hence, the second component is interpreted as capturing

the attitude towards the layer of model ambiguity. The second component

explains 22% and 10% of the variance in the two treatments, respectively.

Finally, the third component has a high and negative loading on model mis-

specification compared to the positive loadings on the other sources. The

third component may thus be interpreted as capturing the attitude towards

the layer of model misspecification. This last component explains respectively

16% and 9% of the variance in the two treatments.

Next, we confirm these interpretations by looking at the actual di↵erential

premia for the layers of model ambiguity (⇧CR,MA) and model misspecification

(⇧MA,MM). These premia are indeed highly correlated with, respectively, the

second and third components of the PCA (r =0.93 when P = 0 and r =0.998

when P = 25 for the second component, and r =0.96 when P = 0 and r =0.82

when P = 25 for the third component). Corroborating the hypothesis of

distinct attitudes towards di↵erent layers, we observe, in Table 4, that the

premia for the specific layers of model ambiguity and model misspecification,

as well as that for the general notion of model uncertainty (⇧CR,MM) are all

positive. The table, for example, indicates that our subjects are ready to pay

Table 4: Model ambiguity and model misspecification premia

P = 0 P = 25 Average

⇧CR,MA 1.11⇤⇤⇤ (N = 119) 0.50⇤⇤⇤ (N = 116) 0.84⇤⇤⇤ (N = 120)

⇧MA,MM 0.50⇤⇤ (N = 120) 0.37⇤ (N = 118) 0.53⇤⇤⇤ (N = 122)

⇧CR,MM 1.48⇤⇤⇤ (N = 120) 0.67⇤⇤⇤ (N = 118) 1.05⇤⇤⇤ (N = 122)
Notes: The number of observations is in parentheses. Average premia are based on all non-
missing values. ⇤⇤⇤p-value<0.01, ⇤⇤p-value<0.05, ⇤p-value<0.1, based on two-sided t-tests.

25This result suggests a lower importance for the multi-stage presentation in the treatment with
P = 0 than that with P = 25. This discrepancy can be attributed to the relative simplicity of the
treatment with P = 0: Despite being technically presented in two stages, this treatment can be
seen as featuring only one stage of uncertainty (the second stage being degenerate). We further
address the role of complexity in these data in another study (see Aydogan et al., 2019).
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on average 8.4% of their expected payo↵ to avoid facing the layer of model

ambiguity, and an extra 5.3% to avoid the layer of model misspecification.

5.4 Explaining the uncertainty premium: the role of layers

Having documented the existence of positive premia for the di↵erent layers

of uncertainty, we now investigate the relevance of distinguishing between dif-

ferent layers while explaining the overall uncertainty premium. To do so, we

run a regression analysis of total premia with subject fixed e↵ects. Our anal-

ysis compares two baseline models that do not entail any distinction between

the layers with models that capture model ambiguity and model misspecifica-

tion.

Following the EU hypothesis, the first baseline model assumes the same

uncertainty premium across all prospects:

Model 1 (EU): ⇧s

i
= ↵0 + �s + "s

i
, (11)

where ⇧s

i
is the total uncertainty premium for prospect i 2 {SR,CR0,

CR25,MA0,MA25,MM0,MM25} for subject s, �s is the individual sub-

ject fixed e↵ect, and "s
i
is the error term. The second baseline model is in

line with the stage hypothesis, assuming a distinction between simple and

multiple-stage presentations of uncertainty, but without distinguishing the

layers:

Model 2 (Stages): ⇧s

i
= �0 + �1TS0i + �2TS25i + �s + "s

i
, (12)

where TS0i and TS25i are dummy variables for prospects presented in two

stages, as opposed to the single-stage simple risk (SR) in the base category.

Specifically, TS0i takes value 1 in the treatment P = 0, which presents one

degenerate and one non-degenerate stage of uncertainty, whereas TS25i takes

value 1 in the treatment P = 25, which entail two non-degenerate stages of

uncertainty.

Then, we investigate the potential improvements in the specification when

distinguishing the layers of model ambiguity and model misspecification by

considering the models
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Model 1’ (Layers): ⇧s

i
= ↵0 + ↵1MAi + ↵2MMi + �s + "s

i
(13)

and

Model 2’ (Stages & layers): ⇧s

i
= �0+�1TS0i+�2TS25i+�3MAi+�4MMi+�s+"s

i
,

(14)

where MAi and MMi are dummy variables for the prospects entailing respec-

tively the second and third layers.

Table 5 reports the estimation results. The estimations indicate that the

introduction of layers or stages always leads to significant increases in the

uncertainty premium. Importantly, a model comparison exercise shows that

Table 5: Fixed effect regressions of total premia

No distinction between stages Distinction between stages

Model 1 Model 1’ Model 2 Model 2’

(EU) (Layers) (Stages) (Stages & layers)

MA 1.003⇤⇤⇤ 0.758⇤⇤⇤

(0.164) (0.168)

MM 1.413⇤⇤⇤ 1.166⇤⇤⇤

(0.171) (0.167)

TS0 1.001⇤⇤⇤ 0.357⇤⇤

(0.172) (0.170)

TS25 1.760⇤⇤⇤ 1.113⇤⇤⇤

(0.217) (0.207)

Constant 1.644⇤⇤⇤ 0.952⇤⇤⇤ 0.462⇤⇤⇤ 0.464⇤⇤⇤

(0.066) (0.083) (0.158) (0.157)

Observations 845 845 845 845
Notes: Robust standard errors, cluster-corrected at individual level in parentheses,
⇤⇤⇤p-value<0.01, ⇤⇤p-value<0.05, ⇤p-value<0.1

the models incorporating the distinction between the layers systematically

outperform the ones that do not. Specifically, we reject the EU and stage hy-

potheses, which assume the existence of the layer of risk only (F -test, p<0.001

for both tests ↵1 = ↵2 = 0 in model 1’ and �3 = �4 = 0 in model 2’). Fur-

thermore, we also reject the hypothesis that no distinction exists between the

layers of model ambiguity and model misspecification (p=0.015 and p=0.016

respectively for tests ↵1 = ↵2 in model 1’ and �3 = �4 in model 2’). Finally,

we observe that the models making a distinction between single and two-stage
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presentations of uncertainty also outperform the models not making such a

distinction (p<0.001 for the test �1 = �2 = 0 in both models 2 and 2’).

5.5 Individual-level analysis

We now present an individual-level analysis classifying subjects’ prefer-

ences according to the theoretical predictions. Specifically, we test the com-

patibility of each individual’s preferences over R, CR, MA, and MM with our

four hypotheses in both treatments P = 0 and P = 25.26 Table 6 summarizes

the results.

Table 6: Classification of individuals

EU hyp. Layer hyp. Stage hyp. Stage and layer

hyp.

19.7% 31.2% 8.1% 41.0%

As can be observed, the most common preference pattern (41 % of the

subjects) is consistent with the hybrid stage and layer hypotheses. In that

case, the subject exhibits non-reduction of compound risk as well as distinct

attitudes towards layers. The second most common pattern (31%) is in line

with the layer hypothesis, in which the subject reduces compound risk while

at the same time exhibits non-neutrality towards ambiguity. Next, 20% of

the subjects made choices consistent with the EU hypothesis, thus exhibiting

neutrality towards compound risk and ambiguity. Finally, the pure stage

hypothesis holds for 8% of the subjects.

The consistency of this classification analysis is confirmed by examining

the behavior under the source EE. First, we remark that 83% of the EU

subjects are also EE-ambiguity neutral (i.e. ⇧R,EE = 0), whereas 77% of all

non-EU subjects are non-neutral towards EE (Fisher’s exact test, p < 0.001).

Second, the proportions of EE-ambiguity non-neutrality is consistently high

within each type of non-EU individuals (75% under the layer hypothesis, 79%

26For subjects whose preferences support a di↵erent hypothesis in each treatment, the classifica-
tion score is split between the two hypotheses. For example, a subject whose preferences conforms
to the SEU hypothesis in treatment with P = 0 and the layer hypotheses in treatment with P = 25
is classified as following 50% SEU and 50% layer hypotheses. The complete classification under
the two treatments is reported in Online Appendix S5.
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under the stage hypothesis, and 78.5% under the stage & layer hypothesis),

suggesting that the source of EE may have been considered as a source en-

compassing both stages and layers of uncertainty.

Altogether, the results obtained in our experiment thus confirm that each

layer of uncertainty plays a distinct and significant role while explaining un-

certainty attitudes. Consistent with the previous literature, our findings also

indicate the importance of the multi-stage presentation of uncertainty in ex-

plaining ambiguity attitudes. In the next section, we summarize the main

findings of the two follow-up experiments testing the robustness of these find-

ings.

6 Robustness: Results of the follow-up experiments

Our follow-up experiments address two potential concerns about our re-

sults. The first concern is that our results may depend on the specificity of

our subject pool. It may, for example, be the case that our findings are arti-

facts of the potential limitations of the subject pool to deal with the relevant

complexity of our sources, which can result in an aversion towards sources

with several stages and layers of uncertainty. To evaluate this interpretation,

we ran our experiment on the field with a pool of risk professionals. These

subjects are expected to be more (quantitatively) sophisticated and thus bet-

ter able to deal with the complexity inherent to a multi-stage presentation of

uncertainty.

The second concern is that our results may be a consequence of order ef-

fects or contagion between sources encompassing distinct layers, which results

from our within-subjects design. Accordingly, a potential factor behind the

distinction between the sources CR, MA, andMM can be the successive eval-

uation of the sources by the same subject, causing her to be on average more

averse to additional layers of uncertainty (comparative ignorance hypothesis

of Fox and Tversky, 1995). To remove this concern, we run the experiment

online using a between-subject design, in which each source is evaluated sep-

arately. Additional details on these two experiments are provided in Online

Appendices S1 and S2.

Figure 3 presents the total premia in the follow-up experiments. As can

be observed, we replicate the positive trend in CR � MA � MM in both

experiments, suggesting di↵erent attitudes towards those sources (ANOVA
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with repeated measures, p < 0.001 for both P = 0 and P = 25 in the field

experiment with actuaries; and ANOVA, p = 0.004 and p = 0.024 respectively

for P = 0 and P = 25 in the online experiment). Interestingly, we also find
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Figure 3: Left: Mean total premia in the field experiment with actuaries (left) and
in the online experiment (right)

that the subjects in these experiments were better able to reduce compound

risk, as indicated by the average compound risk premium that does not di↵er

from zero (p > 0.10 for average ⇧SR,CR in both experiments). The attitudes

towards the layers of uncertainty are nevertheless robust and consistent with

those in our main experiment. In particular, the average model uncertainty

premium amounts to 13.13% of the expected payo↵ in the experiment with

risk professionals and to 11.2% in the online experiment (p < 0.001 for both),

which is comparable to the 10.5% observed in the main experiment.

The role played by the layers in explaining the total uncertainty premia

is also confirmed in replications of the regression analysis. In both follow-

up experiments, we find that the presence of di↵erent layers increases the

uncertainty premia and that incorparating them into the analysis improves

the estimation results of the premia. Yet, as also suggested by the weaker

compound risk premia, we find less evidence on specific attitudes toward the

multi-stage presentation of uncertainty in these experiments than in the main

one (see Online Appendix for details).

The stability of attitudes towards layers (rather than stages) is further

observed in a replication of the individual level analysis with the pool of risk

professionals. Specifically, the proportion of risk professionals following the
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layer hypothesis is 28%, which does not di↵er from the 31.2% observed in our

main experiment (two-sample Z-test of proportions, p = 0.59), whereas the

proportion of them exhibiting attitudes towards a multiple-stage presentation

is significantly lower than among students (49% vs. 17%, p < 0.001). Overall,

these additional results suggest that our main findings on the layers of uncer-

tainty are neither an artifact of a specific subject pool, nor due to any order

e↵ect or contagion.

7 Concluding remarks and related literature

In this paper, we use a simple experimental environment to demonstrate

the existence of an empirical distinction between attitudes towards the three

layers of uncertainty. In what follows, we clarify the contribution of our study

in relation with the existing literature.

Characterization of ambiguity. Since Ellsberg (1961), ambiguity aversion

has been one of the most intensively investigated phenomena in experimen-

tal economics (see Trautmann and van de Kuilen, 2015). Among the di↵er-

ent theoretical approaches that have been proposed to explain Ellsberg-type

behaviors, the multi-stage representation of ambiguity, which assumes a set

of possible probability models (or distributions), has received much atten-

tion.27 The theories adopting a multi-stage approach are reviewed in Mari-

nacci (2015), and recent empirical applications include Halevy (2007), Baillon

and Bleichrodt (2015), Chew et al. (2017), and Cubitt et al. (2019). Among

other findings, a tight association between ambiguity and compound risk atti-

tudes, as for example highlighted in Halevy (2007), has been replicated (with

varying degrees of success) in the empirical literature (see Abdellaoui et al.,

2015; Berger and Bosetti, 2020; Dean and Ortoleva, 2019; Gillen et al., 2019;

Chapman et al., 2018, and further results in the Online Appendix). Such an

association supports a characterization of ambiguity by means of compound

risk, in line with the theoretical claims of Segal (1987; 1990).

Following the recent discussions in Hansen (2014) and Hansen and Mari-

nacci (2016), what we argue in this paper is that a decomposition into three

distinct layers of analysis –which arise naturally in many real life decision prob-

27Another important approach that assumes non-additive beliefs is due to Schmeidler (1989) and
the cumulative prospect theory of Tversky and Kahneman (1992). Note that there is also a close
link between these models and the multiple priors approach assuming sets of probabilities.
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lems where a set of possible probabilities can be posited– can provide a better

characterization of ambiguity in applications. Going beyond the preceding

contributions in the literature, our experiments aim to quantify the attitudes

towards each of the three layers and test their respective role in attitudes

towards ambiguity. Our results demonstrate that, although a multi-stage pre-

sentation of uncertainty indeed plays a role in ambiguity attitudes, ambiguity

cannot simply be reduced to the layer of risk. In particular, we show that (1)

individuals are ready to pay positive premia to avoid being confronted to the

the specific layers of model ambiguity and model misspecification; (2) statisti-

cal models that assume only a distinction between stages underperform when

estimating ambiguity premia, compared to models that distinguish di↵erent

layers; and (3) individual behaviors can be characterized by three main types,

namely (i) those who distinguish between both the layers and stages of uncer-

tainty, (ii) those who distinguish between the layers of uncertainty only, and

(iii) those following the expected utility hypothesis, whereas a fourth type

associated with a distinction between stages only is marginal. Overall, our

results call for further empirical and theoretical developments accommodating

the three layers of uncertainty.

More on model misspecification In this paper, we follow the decomposi-

tion of uncertainty into three layers proposed by Hansen (2014) and Hansen

and Marinacci (2016). These layers are distinguished based on the knowledge

of the DM. The most challenging layer to accomodate is probably model mis-

specification, in which uncertainty is induced by the approximate nature of

the models considered. How to deal with model misspecification in a fruitful

way is a concern that has occupied statisticians, econometricians, and con-

trol theorists for a long time. For example, it has long been a challenge for

statisticians, whose objective is to find the correct statistical model but who

have been trained with the idea that “essentially, all models are wrong [i.e.,

misspecified], but some are useful” (Box, 1976; Watson and Holmes, 2016),28

or for econometricians, who stand outside an economic model and are asked to

28Box (1976, p. 792) wrote “Since all models are wrong the scientist must be alert to what
is importantly wrong. It is inappropriate to be con- cerned about mice when there are tigers
abroad”, and Cox (1995): “Finally it does not seem helpful just to say that all models are wrong.
The very word model implies simplification and idealization. The idea that complex physical,
biological or sociological systems can be exactly described by a few formulae is patently absurd.
The construction of idealized representations that capture important stable aspects of such systems
is, however, a vital part of general scientific analysis and statistical models, especially substantive
ones, do not seem essentially di↵erent from other kinds of model.”
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choose among di↵erent parameters characterizing a family of possible models

to best explain real-world data and to test the implications of these mod-

els (White, 1982). Considering model misspecification under this perspective

thus relates to the process of examining models to identify their flaws and po-

tential improvements. While this uncertainty about the correct specification

of a model is certainly relevant for a statistician or econometrician outside the

model, it is also potentially important for agents inside an economic model,

be it individuals pursuing individual goals, or policymakers pursuing social

objectives, who confront uncertainty as they make decisions.

Yet, surprisingly enough, the concern of how to account for model mis-

specification in a way that guides the use of purposefully simplified models in

a sensible way has been largely absent (with the exception of Cerreia-Vioglio

et al., 2022) in decision theory, whose objective is precisely to describe how a

person should behave in an uncertain environment . One reason for this short-

coming is that the distinction between model ambiguity and potential model

misspecification can arguably be fuzzy. Typical approaches in practice blur

the distinction mathematically by simply embedding the existing substantive

models in a much bigger space of potential probability models and treating

them symmetrically within a bigger universe that could capture the misspec-

ification. However, in reality, the fear of a potential model misspecification is

conceptually more complicated to address than the already challenging prob-

lem of how much credibility we should give to the di↵erent models we consider.

In a variety of policy applications, including public health, climate change, and

macroeconomics, multiple models are on the table with potentially unknown

(or in principle unknowable) parameters. At the same time, we know that all

those models under consideration are misspecified, in some ways by design.

Consequently, the issue of how much weight to give to the di↵erent models is

di↵erent from how we should confront potential model misspecification. The

latter leads to a concern that our simplified models could promote misleading

policy conclusions if taken too literally.

This paper highlights empirically the importance of considering the fear of

model misspecification as a distinct layer from model ambiguity. While trying

to capture such a distinction experimentally with a simple urn necessarily ren-

ders some aspects of decision-making under uncertainty simplistic, our results

suggest that artificially enlarging the spread between potential probability

models and treating them symmetrically does not fully capture concerns for

potential misspecification. Overall, our treatment of model misspecification
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should thus be viewed as a good proxy to provide insights into the relevance of

the third layer in a controlled environment. Extrapolating our experimental

findings to real-life situations, in which model misspecification arises natu-

rally, we conjecture that the role of model misspecification is potentially more

important than what we capture in our experiment.
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