Understanding dynamics of Plasmodium falciparum gametocytes production: Insights from an age-structured model
Ramsès Djidjou-Demasse, Arnaud Ducrot, Nicole Mideo, Gaëtan Texier

To cite this version:
Ramsès Djidjou-Demasse, Arnaud Ducrot, Nicole Mideo, Gaëtan Texier. Understanding dynamics of Plasmodium falciparum gametocytes production: Insights from an age-structured model. 2020. hal-03030234

HAL Id: hal-03030234
https://hal.archives-ouvertes.fr/hal-03030234
Preprint submitted on 11 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Understanding dynamics of *Plasmodium falciparum* gametocytes production: Insights from an age-structured model

Ramsès Djidjou-Demassea,*, Arnaud Ducrotb, Nicole Mideoc, Gaëtan Texierd,e

aMIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
bNormandie Univ., UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600 Le Havre, France
cDepartment of Ecology & Evolutionary Biology, University of Toronto, Toronto, Canada
dAix Marseille Univ., IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France
eCentre d’Épidémiologie et de Santé Publique des Armées (CESPA), Marseille, France.
*Author for correspondence: ramses.djidjoudemasse@ird.fr

Abstract

Many models of within-host malaria infection dynamics have been formulated since the pioneering work of Anderson et al. in 1989. Biologically, the goal of these models is to understand what governs the severity of infections, the patterns of infectiousness, and the variation thereof across individual hosts. Mathematically, these models are based on dynamical systems, with standard approaches ranging from K-compartments ordinary differential equations (ODEs) to delay differential equations (DDEs), in order to capture the relatively constant duration of replication and bursting once a parasite infects a host red blood cell. Using malariatherapy data, which offers fine-scale resolution on the dynamics of infection across a number of individual hosts, we compare the fit of one of these standard approaches (K-compartments ODEs) with a partial differential equations (PDEs) model, which explicitly tracks the "age" of an infected cell. We find that the PDE model outperforms the K-compartments ODEs, particularly early on in infections, where ODEs wildly over-estimate parasite densities. Further, the PDE model highlights a strong qualitative connection between the density of transmissible parasite stages (i.e., gametocytes) and the density of host-damaging (and asexually-replicating) parasite stages, which is difficult to capture by the K-compartments ODEs model. This finding provides a simple tool for predicting which hosts are most infectious to mosquitoes — vectors of *Plasmodium* parasites — which is a crucial component of global efforts to control and eliminate malaria.

Key words. Within-host model, malaria, gametocytemia, parasitemia, infectiousness
1 Introduction

Malaria has always been a public health problem and, since the discovery of malaria parasites in human blood by Charles Laveran in 1880, remains so despite more than 100 years of research. Malaria continues to have a significant impact on the world with over 400,000 deaths alone each year [47]. It is a vector-borne disease caused by five plasmodial species: \textit{Plasmodium falciparum}, \textit{P. vivax}, \textit{P. malariae}, \textit{P. ovale}, and \textit{P. knowlesi}, with \textit{P. falciparum} being the most pathogenic species infecting humans [29].

The malaria parasite has a complex life cycle involving sexual reproduction occurring in the insect vector [1] and two stages of infection within a human (or animal host), a liver stage [20] and blood stage [5]. Human infection starts by the bite of an infected mosquito, which injects the sporozoite form of \textit{Plasmodium} during a blood meal. The sporozoites enter the host peripheral circulation, and rapidly transit to the liver where they infect liver cells (hepatocytes) [20]. The parasite replicates within the liver cell before rupturing to release extracellular parasite forms (merozoites), into the host circulation, where they may invade red blood cells (RBCs) to initiate blood stage infection [36]. Then follows a series of cycles of replication, rupture, and re-invasion of the RBC. Some asexual parasite forms commit to an alternative developmental pathway and become sexual forms (gametocytes) [40]. Gametocytes can be taken up by mosquitoes during a blood meal where they undergo a cycle of sexual development to produce sporozoites [1], which completes the parasite life cycle.

The classical model of within-host parasite multiplication in malaria infections was formulated by Anderson \textit{et al.} [3]. This model tracks uninfected red blood cells (RBCs), parasitized RBCs (pRBCs) and merozoites. The pioneer work of Anderson \textit{et al.} [3], has been further developed in several directions including in particular immune response [21, 23–25, 30, 37, 38]. Those models use an exponential process to describe the rate of rupture of pRBCs and, as a consequence, then fail to capture realistic lifetimes of the pRBCs [42]. To correct this issue, some models of malaria infection included K-compartments ordinary differential equations (ODEs) representing a progression through a parasite’s developmental cycle [21, 26, 41, 48], or delay differential equations (DDEs) to capture the time pRBCs take to mature before producing new merozoites [9, 25, 28]. Other approaches are the use of partial differential equations (PDEs) to track the age-structure of the pRBC population [4, 13, 14, 29]. It is shown in [19] that DDEs perform better than the ODEs in representing the dynamics of red blood cells during malaria infection.

In this work, using gametocyte production as a proxy variable of infectiousness, we compared model outputs from a PDE stage-structured formulation to those from classical K-compartments ODEs. Using malarial therapy data of gametocyte densities over time, we found the PDE model performed best in representing the observed dynamics. Further, the PDE model highlights a strong qualitative connection between gametocyte density and parasitemia. However, we will shown that this strong connection is difficult to capture by the K-compartments ODEs model.
2 Material and method

2.1 Data and methodology

Our analysis is based on data collected from malariatherapy taken in [18]. Indeed malaria inoculation was a recommended treatment for neurosyphilis between 1940 and 1963. We also refer to [10] for a review paper on malariatherapy and the knowledge gained in the understanding of malaria infection. The data we shall use consist in daily records of gametocyte density for twelve patients. Although malariatherapy has been dismissed for obvious ethical reasons, the advantages to use such data are multiple. Indeed patients are naive to malaria infection and the dynamics are not perturbed by anti-malarial treatments. Let us notice that such data have been widely used in the literature and in particular to estimate mathematical model parameters. We refer to [18] and the references therein.

The method we shall develop consists in devising a mathematical model to describe the intra-host development of the infection and fitting the model to the available data. The output of the mathematical model will allow us to access various quantities related to the time course of the infection, including parasitemia.

2.2 Mathematical model

As discussed above, we now present the mathematical model we shall use to recover parasitemia for twelve patients from observed time courses of gametocyte density. We shall describe the within-host malaria infection coupled with red blood cells (RBCs) production as well as immune effectors. Fig. 1 presents the flow diagram of the model considered in this note. Our model is divided into four parts: (i) uninfected RBC (uRBCs) dynamics; (ii) changes in parasite stage or parasite maturity; (iii) Gametocyte production and dynamics and (iv) immune response dynamics.

For uRBCs dynamics, we divide cells into three age classes: reticulocyte (young), mature and senescent. All three ages are vulnerable to \textit{P. falciparum} infection. This can be different for other species of \textit{Plasmodium}. Although we focus in this work on the case of \textit{P. falciparum}, the model described below could be applied to study other species such as \textit{P. vivax} or \textit{P. malariae}, which have specific RBC-age preferences [39]. Such age-structured dynamics for uRBC are well known in the literature, see for instance [34]. For the parasites, we consider stage-structured dynamics for their development within pRBC. Here the stage is a continuous variable representing the time since the concerned RBC is parasitized. Such a continuous stage structure will allow us to track the maturity of sequestrated parasites, but also to have a refined description of the pRBC rupture and of the merozoites release phenomenon. We also emphasize that such a model easily allows for inclusion of anti-malarial treatments acting on only some parasite developmental stages.

\textbf{Uninfected RBC dynamics.} We denote by $R_r(t)$, $R_m(t)$ and $R_s(t)$ respectively the density of reticulocytes, mature RBCs and senescent RBCs at time t.

In the absence of malaria parasites, the evolution of circulating red blood cells is assumed to follow a discrete age maturation system of ordinary differential equations
Figure 1: (S1) The RBC development chain, (S2) the parasite development chain. $T_D =$ average duration (± one standard deviation) spent in an RBC age class given in [35], Λ_0 is the RBC production rate from the marrow source. In our model, the parameter $1/\mu_{r \rightarrow m}$ (resp. $1/\mu_{m \rightarrow s}$, $1/\mu_{s \rightarrow d}$) is the time spent in RBC reticulocyte (resp. mature, senescent) class. A continuous parameter a denotes the time since the concerned RBC is parasitized: ring stage ($0 < a < 26$ hours), trophozoite ($26 < a < 38$ hours) and schizont ($38 < a < 48$ hours). In the case of $P. falciparum$ infection, one has ($\gamma_r = \gamma_m = \gamma_s = 1$) while for $P. vivax$ one has ($\gamma_r = 1$, $\gamma_m = \gamma_s = 0$) and for $P. malariae$ ($\gamma_r = \gamma_m = 0$, $\gamma_s = 1$) [39].
that take the form
\[
\begin{align*}
\frac{dR_r(t)}{dt} &= \Lambda_0 - \mu_{r\rightarrow m}R_r(t), \\
\frac{dR_m(t)}{dt} &= \mu_{r\rightarrow m}R_r(t) - \mu_{m\rightarrow s}R_m(t), \\
\frac{dR_s(t)}{dt} &= \mu_{m\rightarrow s}R_m(t) - \mu_{s\rightarrow d}R_s(t).
\end{align*}
\]

(1)

The parameters $1/\mu_{r\rightarrow m}$, $1/\mu_{m\rightarrow s}$ and $1/\mu_{s\rightarrow d}$ respectively denote the duration of RBCs in the reticulocyte, mature and senescent age classes while Λ_0 represents the normal value of the RBC production from marrow source (i.e. the production rate of RBC). System (1) can also be found in [34].

The parameters of this system are selected from [24, 34] (see Table 1) so that in the absence of parasites, the equilibrium age distribution is given by

\[(R^*_r; R^*_m; R^*_s) = (62.50; 4853; 83.30) \times 10^6 \text{ cell/ml.} \]

(2)

This leads to the homeostatic equilibrium concentration of RBC ($R^*_r + R^*_m + R^*_s$) around 4.99×10^9 cells/ml which is in the range expected for humans.

Parasite dynamics with stage-structured formulation (PDE model). Here we consider the interaction between free merozoites together with the circulating RBCs. We respectively denote by $m(t), p(t, a)$ and $G(t)$ the density of merozoites, parasitized RBC, and mature gametocytes at time t. The variable a denotes the time since the concerned RBC is parasitized (i.e. $\int_a^{t+2} p(t, a) da$ corresponds to the density of pRBC at time t which are infected since the time $a_1 < a < a_2$). The system we shall consider reads as:

\[
\begin{align*}
\dot{p}(t, 0) &= \beta m(t) \sum_{j=r,m,s} \gamma_j R_j(t), \\
\partial_t p(t, a) + \partial_a p(t, a) &= -(\mu(a) + d_0) p(t, a), \\
\dot{m}(t) &= (1 - \alpha_G) \int_0^\infty r \mu(a)p(t, a) da - \mu_m m(t) - \beta m(t) \sum_{j=r,m,s} \gamma_j R_j(t), \\
\dot{G}(t) &= \alpha_G \int_0^\infty r \mu(a)p(t, a) da - \mu_G G(t).
\end{align*}
\]

(3)

We briefly sketch the interpretation of the parameters arising in (3). Parameters d_0, μ_m and μ_G, respectively, denote the natural death rates for uRBC, for free merozoites and for mature gametocytes. Function $\mu(a)$ denotes the additional death rate of pRBC due to the parasites at stage a and leading to the rupture. The rupture of pRBC at stage a results in the release of an average number r of merozoites into the blood stream, so that pRBC then produce, at stage a, merozoites at rate $r \mu(a)$. Together with this description, the quantity $\int_0^\infty r \mu(a)p(t, a) da$ corresponds to the number of merozoites produced by pRBC at time t. The parameter β describes the contact rate between uRBC and free merozoites. Here the rupture function $\mu(a)$ is taken of the form

\[\mu(a) = \begin{cases}
0 & \text{if } a < 48h, \\
\bar{\mu} & \text{if } a \geq 48h.
\end{cases} \]

Note that the probability $D(a) = \exp\left(-\int_0^a \mu(\sigma)d\sigma\right)$, that a pRBC remains parasitized after a hours of infection, takes the form $D(a) = 1$, for $a \leq 48$ and $D(a) = e^{-(a-48)/\bar{\mu}}$, for $a > 48$. Therefore, after $48h$ (the average RBC sequestration period), D decreases...
Then, setting \(\dot{p}_{\text{set}} \) "committed" to the gametocyte developmental pathway. From a bursting asexual schizonts that will enter the gametocyte compartment, i.e., are committed to the gametocyte compartment, we shall be concerned in \(P. falciparum \) infection is concerned then target RBCs are mostly senescent cells, that is \(\gamma_r = \gamma_m = \gamma_s = 1 \) and \(\gamma_m = \gamma_s = 0 \), so that target RBCs mostly consist in reticulocytes while when \(P. vivax \) infection is concerned then target RBCs are mostly senescent cells, that is \(\gamma_r = \gamma_m = 0 \) and \(\gamma_s = 1 \) [39]. The parameter \(\alpha_G \) represents the proportion of merozoites from a bursting asexual schizonts that will enter the gametocyte compartment, i.e., are "committed" to the gametocyte developmental pathway.

Parasite dynamics with \(K \)-compartments ODEs formulation (ODE model). For the ODE model formulation, we consider \(K \) stages for the pRBC before rupture and set \(p = (p_1, p_2, p_3, \ldots, p_K) \), such that \(p_j(t) \) denotes the concentration of pRBC at time \(t \). Then, setting \(\dot{\zeta} = \frac{\partial}{\partial t} \) the ODE model writes

\[
\begin{aligned}
\dot{p}_1(t) &= \beta m(t) \sum_{j=r,m,s} \gamma_j R_j(t) - (\mu_1 + d_1) p_1(t), \\
\dot{p}_2(t) &= \mu_1 p_1(t) - (\mu_2 + d_2) p_1(t), \\
& \vdots \\
\dot{p}_K(t) &= \mu_{K-1} p_{K-1}(t) - (\mu_K + d_K) p_K(t), \\
\dot{m}(t) &= (1 - \alpha_G) r \mu_K p_K(t) - \mu_m m(t) - \beta m(t) \sum_{j=r,m,s} \gamma_j R_j(t), \\
\dot{G}(t) &= \alpha_G r \mu_K p_K(t) - \mu_G G(t),
\end{aligned}
\]

wherein \(1/\mu_i \) and \(d_i \) are the duration of the \(i \)-stage and the death rate of pRBC respectively. The average RBC sequestration period for the \(K \)-compartments ODEs model is similar to the PDE model and writes \(\frac{1}{\mu_1} + \cdots + \frac{1}{\mu_K} = 48h \). Other parameters and state variables are the same as for the PDE model.

The immune responses. Following [15], here we consider two immune responses (IRs) controlling the growth of the parasite population: (i) an innate IR \(S_I(t) \) at time \(t \) representing the effect of the pro-inflammatory cytokine cascade and (ii) an adaptive IR \(S_A(t) \) at time \(t \). The effect of the innate IR is a function of the present parasite (merozoite) density that takes the form

\[
S_I(t) = \frac{m(t)}{m(t) + S_I^*},
\]

where \(S_I^* \) is the critical parasite density at which the current multiplication factor is reduced by 50%.

The adaptive IR is a function of the cumulative parasite density; this function is determined by two host-specific parameters and one constant: (1) \(S_A^* \) is the critical cumulative parasite density at which the current multiplication factor is reduced by 50%; (2) \(\Delta_0 = 16 \) days is the average delay required by adaptive IR to become effective [15], i.e., for time \(t \) before \(\Delta_0 \) the cumulative density is set to zero (the adaptive IR has no effect and \(S_A(t) = 0 \) for \(t \leq \Delta_0 \)) and (3) \(\Delta_1 = 8 \) days is the delay that determines the
last term in the cumulative density for times \(t \geq \Delta_0 \), i.e.,

\[
S_A(t) = \begin{cases}
\int_{\Delta_0}^{t} m(s)ds, & \Delta_0 \leq t < \Delta_0 + \Delta_1; \\
\int_{\Delta_0}^{\Delta_0 + \Delta_1} m(s)ds + S_A^*, & t \geq \Delta_0 + \Delta_1.
\end{cases}
\]

Thus, including these two IR effects, the dynamics of asexual parasite concentration \(m(t) \) should be replaced in Models (3) and (4) respectively by:

\[
\dot{m}(t) = (1 - \alpha G) \int_0^\infty r \mu(a) p(t,a) da - \left(\mu_m + \beta \sum_{j=r,m,s} \gamma_j R_j(t) + S_A(t) \right) m(t) - S_I(t),
\]

and

\[
\dot{m}(t) = (1 - \alpha G) r \mu_K p_K(t) - \left(\mu_m + \beta \sum_{j=r,m,s} \gamma_j R_j(t) + S_A(t) \right) m(t) - S_I(t).
\]

Initial conditions For both PDE and ODE models, the initial RBCs are assumed to be at their homeostatic equilibrium distribution in the absence of parasites given by (2), i.e., \(R_r(0) = R_r^*; R_m(0) = R_m^*; R_s(0) = R_s^* \). Above models are also assumed to be free of pRBCs at the initial time, and the initial density of malaria parasites is such that \(m(0) = m_0 \), with \(m_0 \) a positive constant. Theses initial conditions are summarized in Table 2.

3 Results

3.1 Fitting the model parameters with data

The model presented above is fitted with the data for the time course of gametocytes of the patients. To fit our model, let us observe that most of the parameters are known from the literature [3, 18, 24, 34, 35]. Table 1 provides the values we shall use for the fixed parameters. Only three parameters need to be estimated from the data, these are: the proportion of asexual merozoites \(\alpha_G \), the merozoite initial density \(m_0 \), and the duration of sexual stage \(1/\mu_G \). These parameters are adjusted from the data for each patient by using a least square method. Basically, we find the values which minimize the difference between the ODE model prediction gametocyte density and observed data by using MatLab nonlinear least-squares solver *lsqcurvefit*. Those optimal parameters for the EDO model are then used to run the PDE model. The superposition of the data and gametocyte density output of the mathematical models are presented in Fig. 2, while the estimated parameter values for each patient are given in Table S1.

3.2 Comparison of ODE and PDE model outputs

We have presented two modelling frameworks to properly model the within-host infection of malaria. Within this context, we compare a classical model based on ordinary
Figure 2: Comparison with data and mathematical model output for gametocyte density for patients G221, G54, S1050 and G299. Comparison for other patients is provided by Figure S1.

Our first observation is on the parametrisation of both models. More precisely, a good description of the rupture of pRBC required at least three additional parameters and equations for the ODE model compared to PDE model; see (3) versus (4). According to the infection dynamics, our comparative results show that the PDE model fitted better the true dynamics of malaria infection, compared to the ODE model (Fig. 2). Indeed, for the initial phase of infection (approximately the first two weeks), the ODE model captures less well the delay imposed by the parasite sequestration by RBC. This sequestration period, about 48 hours for each cycle of infection by *P. falciparum*, is better highlighted by the PDE model formulation (Fig. 2). Further, the goodness-of-fit of the PDE model relatively to ODE is increased when the initial parasites load m_0 is relatively high (Fig. 2, Patient-G221, G54, S1050). Next, the initial growth phase of both models seems more similar when the initial production of gametocytes is very slow and hard to find with early sampling, as a consequence of low infection densities and small fractions of pRBCs making gametocytes (Fig. 2, Patient-G299). Finally, this first wave of gametocytes development is then followed by decreasing densities for which the PDE model prediction is overall more realistic than the ODE model.

3.3 Relationship between parasitemia and gametocyte density

Our mathematical model has been fitted with the available data for each patient under consideration, which consists of gametocyte densities over time. We now use the output of this mathematical model to recover the time course of the parasitemia, defined as the
The proportion of all infected RBC among the total number of RBC. Using the notation of the model, the parasitemia at time t, denoted by $P(t)$, can be calculated as follows:

$$P(t) = \frac{\int_0^\infty p(t,a)da}{\int_0^\infty p(t,a)da + (R_r(t) + R_m(t) + R_\ell(t))}.$$

The time course of parasitemia, $P(t)$, computed from our model are presented in Fig. 3 for each patient together with the fitted gametocyte trajectories. As is observed for each patient, the relationship between these curves exhibits two different regimes. During some period of time $[2, T_0]$, the two curves are increasing with rather similar shape up to a time shift (of length 2 days). This means that, in this increasing regime, the gametocyte density at time t depends on the parasitemia at time $t-2$, a delay which reflects the life cycle of the parasites inside the RBCs. After this period of increasing parasitemia and gametocyte density, namely after time T_0, both curves are decreasing and the shapes seem to depend upon the specific patient considered. In order to make these comments more quantitative, we introduce the following formula from an estimation of the gametocyte density $G(t)$ from the parasitemia $P(t)$:

$$G(t) = \begin{cases} k_1 P(t-2)^{\theta_1} & \text{if } 2 \leq t \leq T_0 \text{ days}, \\ k_2 P(t)^{\theta_2} & \text{if } T_0 \leq t \leq 30, \end{cases} \quad (9)$$

where k_1, k_2, θ_1 and T_0 are four positive parameters while θ_2 is negative parameter.

In order to determine the unknown parameters k_1, k_2, θ_1, θ_2 and the changing time T_0 for each patient, we perform a least square analysis. More specifically we adjust these
parameters through a logarithmic scale, that is through the following formula

$$\log_{10} G(t) = \begin{cases} \log_{10} k_1 + \theta_1 \log_{10} P(t - 2) & \text{if } 2 \leq t \leq T_0, \\ \log_{10} k_2 + \theta_2 \log_{10} P(t) & \text{if } T_0 < t \leq 30. \end{cases}$$

To be more precise, our analysis couples the estimate for the time parameter T_0, at which the above formula is changing formulation, together with two linear regressions on each part of the graph. We find that parameters k_1, k_2, θ_1 and T_0 are remarkably robust with respect to individuals while θ_2 depends upon each individual. The results of this analysis as well as the estimated parameters are presented in Fig. S3 and summarized by Table S2 for each patient. The quality of the fit is quantified using the coefficient of determination R^2 (for the linear regressions). It is computed for each patient and for the two regimes independently. This adjustment metric is computed using the sample of points induced by the time discretization of the partial differential equation model. For our four cases, this coefficient of determination R^2 is approximately 0.99 in the first part of the curve and even closer to one in the second part of the graph.

Coming back to the adjusted parameters described in Table S2, one may observe that four parameters k_1, k_2, θ_1 and T_0 have robust values with respect to patients while the parameter θ_2 depends on the patient. Using average values of adjusted parameters on the set of malariatherapy data, we derive the following clinical formula:

$$G(t) = \begin{cases} 3.843 \times 10^7 \cdot P(t - 2)^{1.0304} & \text{if } 2 < t \leq T_0 \text{ days}, \\ 2.981 \times 10^9 \cdot P(t)^{-0.0470} & \text{if } T_0 < t \leq 30 \text{ days}, \end{cases}$$

with $T_0 = 14.5636 \pm 0.0064 \text{ days}$. The relative error for (10) is such that $\left| \frac{\Delta G}{G} \right|^2 \leq 2.3884 \times 10^{-4} + 1.0617 \left| \frac{\Delta P}{P} \right|^2$, where $\left| \frac{\Delta P}{P} \right|$ is the relative error on the measurement of parasitemia. Therefore, if $\left| \frac{\Delta P}{P} \right| \leq 5\%$, then $\left| \frac{\Delta G}{G} \right| < 5.38\%$. From practical point of view, notice that formula (10) can be really useful to estimate the gametocyte density from the parasitemia measurement without necessarily use the quite ‘complex’ mathematical model described in this note.

4 Discussion

Many models of within-host malaria infection dynamics have been formulated since the pioneer work of Anderson et al. [3] in 1989. These models are based on dynamical systems, with standard approaches ranging from ordinary differential equations (ODEs), to delay differential equations (DDEs) or partial differential equations (PDEs). Most ODE model formulations [21, 23–25, 30, 37, 38] assume an exponential process to describe the rate of pRBCs rupture and therefore fail to capture realistic lifetimes of the pRBCs. This issue is somewhat corrected when pRBC sequestration and rupture is modeled either by a set of K-compartments ODEs [21, 26, 41, 48], or DDEs [9, 19, 25, 28]. Other approaches are the use of PDEs to track the infection history of a pRBC [4, 13, 14, 29]. Using gametocyte production as a proxy variable and malariatherapy data, we found that a PDE model outperforms the K-compartments ODEs. Further, the PDE model highlights a strong qualitative connection between gametocyte density and parasitemia which is difficult to capture by the K-compartments ODEs model.
Reducing infections in mosquitoes—vectors of *Plasmodium* parasites—is a crucial component of global efforts to control and eliminate malaria [2]. Because a strong correlation exists between the gametocyte density within a host and infectivity to mosquitoes [7, 11, 12, 22], progress towards this goal would be bolstered by quantifying gametocytes and identifying highly infectious hosts [8, 45, 46]. On the other hand, parasitemia is easily quantified by light microscopy and therefore is more technically accessible, particularly in regions where malaria is endemic. So, quantifying the relationship between the gametocyte density and parasitemia is of great interest to define more simple tools for the prediction of mosquito infection. The results presented in this note provide one such tool.

From a public health or population dynamics point of view, the time course of disease within a host is strongly related to the so-called basic reproduction number, denoted by R_0. The R_0 is defined as the number of secondary infection from a single infected individual introduced in a fully susceptible population. This important metric can be estimated from real data but also using mathematical models. The simplest (deterministic) mathematical model reads as the Ross system of equations from which one can compute this threshold number R_0 as follows:

$$R_0 = R_0^{VH} \times R_0^{HV}$$

with

$$\begin{cases} R_0^{VH} = abd_M, \\ R_0^{HV} = macd_H. \end{cases}$$

In the above formula, m represents the number of mosquitoes per person, a denotes the mosquito biting rate, b and c denote the per bite transmission probability respectively from mosquito to human and from human to mosquito, while d_H and d_M correspond respectively to the human recovery and the mosquito death rates. Although more ingredients can be included into the mathematical model, leading to different formulations for R_0, the above expression contains the main important parameters [32, 33, 43]. Parameters b and c serve as the link between within- and between-host dynamics, since transmission rates from (to) a host will depend on the dynamics of what is happening within that host (vector). Further, there is a clear relationship between gametocyte density (G) and the transmission probability per bite from human to mosquito (c) [6, 7, 11, 12, 17, 27, 44]. From a practical point of view, the parameter c is difficult to estimate in a relevant way. Indeed, an efficient measurement of c requires a good measure of the gametocyte density which is quite difficult to obtain in practice. So, a simple way to estimate the gametocyte density will help to infer the parameter c. Thanks to formula (9) proposed here, we then have a robust relationships between the parasitemia (easier to measure) and gametocyte density, at least during the first days of infections (approximately the first two weeks).

Overall, the proposed model for the dynamics of gametocytes is certainly valid for the first asexual wave which last approximately 40 days for each patient in this malaria therapy dataset. This relative short term validation is enough for the aim of the current study. However, for the longterm gametocyte dynamics, we need to bring more complexity in the model proposed here. Indeed, the conversion probability of asexual parasites to circulating gametocytes (α_G) should be considered to vary among successive waves of asexual parasitaemia to tackle such issue of the longterm gametocyte dynamics [18], particularly since smear-positive asymptomatic malaria infections detectable by microscopy are an important gametocytes reservoir and often persist for months [31].

The robustness of the model proposed here, especially the formula linking parasitaemia and gametocyte density, is only guaranteed during the first two weeks after infection. Be-
beyond this time, this estimate is highly variable from one patient to another. This variability is explained, at least in part, by the variability of the duration of sexual stage \((1/\mu_G)\) which governs the decrease in gametocyte density (Table S1). One interpretation of the variation in this parameter is that there exists variation in how well individuals clear gametocytes or kill them through immune responses [16, 31]. Less variability is expected at the beginning of infections, where the whole system is less constrained by immunity. This is likely to be true for the malariatherapy patient data presented here, since hosts were initially naive. However in high transmission settings, acquired immunity—particularly in older hosts—may obscure the relationship between early gametocyte and asexual parasite densities our work has revealed. Further fine scale, longitudinal data could assess the applicability of this relationship across settings and age groups, although such data is understandably difficult to obtain.

Finally, while our work reveals a simple tool for linking aspects of the early dynamics of malaria infections, it also offers specific suggestions for how best to mathematically describe those infection dynamics more broadly. Both PDE and \(K\)-compartments ODE models have been adopted to capture some the subtleties of malaria parasite life cycles in blood-stage infections [29]. Our work provides more evidence that, among those choices, PDE models offer clear advantages.

Table 1: Fixed model parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
<th>Values</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Lambda_0)</td>
<td>Production rate of RBC</td>
<td>(1.73 \times 10^6) RBC/h/ml</td>
<td>[3, 35]</td>
</tr>
<tr>
<td>(1/\mu_{r</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<p>ightarrow m}) | Duration of the RBC reticulocyte stage | 36 h | [34] |
| (1/\mu_{m
ightarrow s}) | Duration of the RBC mature stage | 116.5 days | [34] |
| (1/\mu_{s
ightarrow d}) | Duration of the RBC senescent stage | 48 h | [34] |
| (\beta) | Infection rate of uRBC | (6.27 \times 10^{-10}) RBC/ml/day | [3] |
| (d_0) | Natural death rate of uRBC | 0.00833 RBC .day(^{-1}) | [3] |
| (\mu_m) | Decay rates of malaria parasites | 48 RBC.day(^{-1}) | [24] |
| (\alpha_G) | Proportion of asexual merozoites | 0.05 | [35] |
| (S^_I) | Innate IR density that gives 50% of parasite killing | 2,755 cells.(\mu l)^{-1} | [15] |
| (S^_A) | Adaptive IR density that gives 50% of parasite killing | 20.4 cells.(\mu l)^{-1} | [15] |
| (\Delta_0) | Delay required by adaptive IR to be effective | 16 days | [15] |</p>

Table 2: Initial values for the model

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
<th>Initial Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_r(0))</td>
<td>Population of reticulocytes RBC</td>
<td>(62 \times 10^6) RBC.(ml)^{-1}</td>
</tr>
<tr>
<td>(R_m(0))</td>
<td>Population of mature RBC</td>
<td>(4.85 \times 10^9) RBC.(ml)^{-1}</td>
</tr>
<tr>
<td>(R_s(0))</td>
<td>Population of senescent RBC</td>
<td>(83 \times 10^6) RBC.(ml)^{-1}</td>
</tr>
<tr>
<td>(p(0,.))</td>
<td>Population of pRBC for the PDE model</td>
<td>0 cells.(ml)^{-1}</td>
</tr>
<tr>
<td>(p_j)</td>
<td>Population of pRBC for the ODE model</td>
<td>0 cells.(ml)^{-1}</td>
</tr>
<tr>
<td>(G(0))</td>
<td>Population of mature gametocyte</td>
<td>0 cells.(ml)^{-1}</td>
</tr>
<tr>
<td>(m(0))</td>
<td>Population of malaria parasites</td>
<td>variable</td>
</tr>
</tbody>
</table>
Acknowledgements

Authors thank Samuel Alizon, Laurence Ayong, Carole Eboumbou and Christophe Rogier for comments and suggestions to improve the manuscript.

References

A Supplementary figures

Figure S1: Comparison with data and mathematical model output for gametocyte density for other patients.
Figure S2: The time evolution parasitemia and gametocyte density curves computed from the PDE model for other patients.
Figure S3: Comparison between model prediction and the linear regression based on formula (9)
B Supplementary tables

Table S1: Patient-specific parameters estimated from the data

<table>
<thead>
<tr>
<th></th>
<th>G54</th>
<th>G221</th>
<th>S1050</th>
<th>S1204</th>
<th>S1300</th>
<th>G104</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_G \times 10^{-3}$</td>
<td>2.27</td>
<td>0.4632</td>
<td>1.99</td>
<td>1.5</td>
<td>1.07</td>
<td>0.667</td>
</tr>
<tr>
<td>$\alpha_G \times 10^{-8}$</td>
<td>13.02</td>
<td>1.206</td>
<td>1.161</td>
<td>1.289</td>
<td>13.47</td>
<td>13.02</td>
</tr>
<tr>
<td>$m_0 \times 10^7$</td>
<td>2.5</td>
<td>1</td>
<td>1</td>
<td>2.97</td>
<td>2.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>G139</td>
<td>G161</td>
<td>G305</td>
<td>G338</td>
<td>G299</td>
<td>S1326</td>
</tr>
<tr>
<td>$\mu_G \times 10^{-3}$</td>
<td>1.25</td>
<td>1.25</td>
<td>0.526</td>
<td>0.667</td>
<td>0.80</td>
<td>1.43</td>
</tr>
<tr>
<td>$\alpha_G \times 10^{-8}$</td>
<td>0.134</td>
<td>118.57</td>
<td>12.84</td>
<td>1.321</td>
<td>1.1682</td>
<td>1.382</td>
</tr>
<tr>
<td>$m_0 \times 10^7$</td>
<td>2.5</td>
<td>5</td>
<td>0.7</td>
<td>2</td>
<td>0.05</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table S2: Estimated parameters for the shape (9)

<table>
<thead>
<tr>
<th></th>
<th>G221</th>
<th>G54</th>
<th>S1050</th>
<th>S1204</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log_{10}(k_1)$</td>
<td>2.9586 ± 0.0037</td>
<td>2.9326 ± 0.0039</td>
<td>2.9520 ± 0.0037</td>
<td>2.9502 ± 0.0037</td>
</tr>
<tr>
<td>θ_1</td>
<td>1.0321 ± 0.0028</td>
<td>1.0312 ± 0.0030</td>
<td>1.0315 ± 0.0029</td>
<td>1.0315 ± 0.0028</td>
</tr>
<tr>
<td>$\log_{10}(k_2)$</td>
<td>2.9437 ± 0.0002</td>
<td>3.8802 ± 0.0005</td>
<td>2.9101 ± 0.0004</td>
<td>2.9148 ± 0.0003</td>
</tr>
<tr>
<td>θ_2</td>
<td>-0.0141 ± 0.0004</td>
<td>-0.0477 ± 0.0005</td>
<td>-0.0336 ± 0.0005</td>
<td>-0.0280 ± 0.0003</td>
</tr>
<tr>
<td>T_0(days)</td>
<td>14.7125 ± 0.0075</td>
<td>13.2917 ± 0.0083</td>
<td>14.4958 ± 0.0083</td>
<td>13.4666 ± 0.0025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S1300</th>
<th>G104</th>
<th>G139</th>
<th>G161</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log_{10}(k_1)$</td>
<td>2.9861 ± 0.0037</td>
<td>2.9821 ± 0.0041</td>
<td>2.8024 ± 0.0037</td>
<td>2.9272 ± 0.0039</td>
</tr>
<tr>
<td>θ_1</td>
<td>1.0315 ± 0.0028</td>
<td>1.0304 ± 0.0031</td>
<td>1.0315 ± 0.0028</td>
<td>1.0312 ± 0.0029</td>
</tr>
<tr>
<td>$\log_{10}(k_2)$</td>
<td>3.9442 ± 0.0003</td>
<td>3.9663 ± 0.0002</td>
<td>1.9360 ± 0.0003</td>
<td>4.8774 ± 0.0002</td>
</tr>
<tr>
<td>θ_2</td>
<td>-0.0336 ± 0.0003</td>
<td>-0.0170 ± 0.0002</td>
<td>-0.0336 ± 0.0003</td>
<td>-0.0214 ± 0.0003</td>
</tr>
<tr>
<td>T_0(days)</td>
<td>14.5375 ± 0.0075</td>
<td>13.2625 ± 0.0083</td>
<td>14.5625 ± 0.0083</td>
<td>13.3875 ± 0.0025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>G299</th>
<th>G305</th>
<th>G338</th>
<th>S1326</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log_{10}(k_1)$</td>
<td>2.9712 ± 0.0034</td>
<td>2.9854 ± 0.0037</td>
<td>2.9897 ± 0.0041</td>
<td>2.9893 ± 0.0037</td>
</tr>
<tr>
<td>θ_1</td>
<td>1.0301 ± 0.0027</td>
<td>1.0315 ± 0.0028</td>
<td>1.0304 ± 0.0031</td>
<td>1.0315 ± 0.0028</td>
</tr>
<tr>
<td>$\log_{10}(k_2)$</td>
<td>2.9063 ± 0.0003</td>
<td>3.9607 ± 0.0001</td>
<td>2.9739 ± 0.0002</td>
<td>2.9474 ± 0.0003</td>
</tr>
<tr>
<td>θ_2</td>
<td>-0.0203 ± 0.0003</td>
<td>-0.0188 ± 0.0002</td>
<td>-0.0170 ± 0.0002</td>
<td>-0.0336 ± 0.0003</td>
</tr>
<tr>
<td>T_0(days)</td>
<td>20.0083 ± 0.0075</td>
<td>14.6917 ± 0.0083</td>
<td>14.2625 ± 0.0083</td>
<td>14.5458 ± 0.0025</td>
</tr>
</tbody>
</table>