Root traits as key proxies to unravel plant and ecosystem functioning: entities, trait selection and outlook


To cite this version:

Boris Rewald, Gregoire Freschet, Catherine Roumet, Alexia Stokes, Monique Weemstra, et al.. Root traits as key proxies to unravel plant and ecosystem functioning: entities, trait selection and outlook. 2020. hal-03028581

HAL Id: hal-03028581
https://hal.archives-ouvertes.fr/hal-03028581

Preprint submitted on 27 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Root traits as key proxies to unravel plant and ecosystem functioning: entities, trait selection and outlook


1Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria (boris.rewald@boku.ac.at)
2Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE - IRD), Montpellier, France
3Station d’Ecologie Théorique et Expérimentale, CNRS, Moulis, France
4School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
5James Hutton Institute, Invergowrie Dundee, UK
6School of Engineering, Mathematics and Physics, University of Dundee, Dundee, UK
7Water Management Research Unit, USDA-ARS, Fort Collins, USA
8Soil Biology and Biological Soil Quality Group, Wageningen University, Wageningen, The Netherlands
9Institute of Botany, Czech Academy of Sciences, Třeboň, Czech Republic
10School of Agriculture, Policy & Development, University of Reading, Reading, UK
11Center for Tree Science, Morton Arboretum, Lisle, USA
12Plant Ecology, University of Goettingen, Göttingen, Germany
13Plantes et Systèmes de culture Horticoles, INRA UR 1115, Avignon, France
14Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
15Department of Biological Sciences, Macquarie University, North Ryde, Australia
16Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, Murcia, Spain
17Odum School of Ecology, University of Georgia, Athens, USA
18Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland

Root systems show a tremendous diversity both between and within species, suggesting a large variability in plant functioning and effects on ecosystem properties and processes. In recent decades, developments in many areas of root research have brought considerable advances in our understanding of root traits and their contribution to plant and ecosystem functioning. However, despite major progress, a comprehensive overview—bridging research fields—is lacking. Furthermore, considerable uncertainties exist in the identification of root entities, and the selection and standardized measurement of traits. Here, we provide a comprehensive overview on root entities, exemplify recent advances in our understanding of both theoretical and demonstrated relationships between root traits and plant or ecosystem functioning, discuss trait-trait relationships and hierarchies among traits, and critically assess current strengths and gaps in our knowledge.