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Abstract

This research gauges the ability of deep reinforcement learning (DRL) techniques to assist the
control of conjugate heat transfer systems governed by the coupled Navier–Stokes and heat equa-
tions. It uses a novel, “degenerate” version of the proximal policy optimization (PPO) algorithm,
intended for situations where the optimal policy to be learnt by a neural network does not depend
on state, as is notably the case in optimization and open-loop control problems. The numerical
reward fed to the neural network is computed with an in-house stabilized finite elements envi-
ronment combining variational multi-scale (VMS) modeling of the governing equations, immerse
volume method, and multi-component anisotropic mesh adaptation. Several test cases of natural
and forced convection in two and three dimensions are used as testbed for developing the method-
ology. The approach successfully alleviates the natural convection induced enhancement of heat
transfer in a two-dimensional, differentially heated square cavity controlled by piece-wise constant
fluctuations of the sidewall temperature. It also proves capable of improving the homogeneity of
temperature across the surface of two and three-dimensional hot workpieces under impingement
cooling. Various cases are tackled, in which the position of multiple cold air injectors is opti-
mized relative to a fixed workpiece position. The flexibility of the numerical framework makes it
tractable to solve also the inverse problem, i.e., to optimize the workpiece position relative to a fixed
injector distribution. The obtained results showcase the potential of the method for black-box op-
timization of practically meaningful computational fluid dynamics (CFD) conjugate heat transfer
systems. More significantly, they stress how DRL can reveal unanticipated solutions or parameter
relations (as the optimal workpiece position under symmetrical actuation turns to be offset from
the symmetry axis), in addition to being a tool for optimizing searches in large parameter spaces.

Keywords: Deep Reinforcement Learning; Artificial Neural Networks; Conjugate heat transfer;
Computational fluid dynamics; Thermal control.

1. Introduction1

Thermal control, defined as the ability to finesse the thermal properties of a volume of fluid2

(and of the solid objects inside) into a certain desired state, is a field of tremendous societal and3

economical importance. For instance, heat/cool exchangers are used in a broad range of industrial4

applications to regulate process temperatures by heat or cool transfer between fluid media, which5

in turn ensures that machinery, chemicals, water, gas, and other substances remain within safe op-6

erating conditions. Green building engineering is another field whose focus is on regulating indoor7

thermal conditions (temperature, humidity) under substantial variations of the ambient condi-8

tions to provide high-quality living and working environments. In many manufacturing processes,9

thermal conditioning is also intended to improve the final mechanical (e.g., hardness, toughness,10

resistance), electrical, or optical properties of the product, the general picture being that high11

temperature gradients are useful to speed up the process but generally harm the quality of the12

outcome because of heat transfer inhomogeneities caused by the increased convection by the fluid13

particles. All such problems fall under the purview of this line of study.14
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Numerous strategies have been implemented to control fluid mechanical systems (including con-15

jugate heat transfer systems combining thermal conduction in the solid and convective transfer in16

the fluid), either open-loop with passive appendices (e.g., end plate, splitter plate, small secondary17

cylinder, or flexible tail), or open-loop with actuating devices (e.g., plasma actuation, boundary18

temperatures, steady or unsteady base bleeding, rotation) or closed-loop (e.g. via transverse mo-19

tion, perturbations of the thermal boundary layer, blowing/suction, rotation, all relying on an20

appropriate sensing of flow variables). Nonetheless, many of the proposed strategies are trial and21

error, and therefore require extensive and costly experimental or numerical campaigns. This has22

motivated the development of analytical methods and numerical algorithms for the optimal control23

of Navier–Stokes systems [1–3], and the maturing of mathematical methods in flow control and24

discrete concepts for PDE constrained optimization. Applications to the heat equation [4] and the25

coupled Navier–Stokes and heat equations [5–8] have also been considered, including fresh devel-26

opments meant to alter the linear amplification of flow disturbances [9], but the general picture27

remains that the optimal control of conducting-convecting (possibly radiating) fluids has not been28

extensively studied.29

The premise of this research is that the related task of selecting an optimal subset of control30

parameters can alternatively be assisted by machine learning algorithms. Indeed, the introduc-31

tion of the back-propagation algorithm [10] has progressively turned Artificial Neural Networks32

(ANN) into a family of versatile non-parametric tools that can be trained to hierarchically extract33

informative features from data and to provide qualitative and quantitative modeling predictions.34

Together with the increased affordability of high-performance computational hardware, this has35

allowed leveraging the ever-increasing volume of data generated for research and engineering pur-36

poses into novel insight and actionable information, which in turn has entirely transformed scientific37

disciplines, such as robotics [11, 12] or image analysis [13]. Owing to the ability of neural networks38

to handle stiff, large-scale nonlinear problems [14], machine learning algorithms have also been39

making rapid inroads in fluid mechanics, as a mean to solve the Navier–Stokes equations [15] or40

to predict closure terms in turbulence models [16]; see also Ref. [17] for an overview of the current41

developments and opportunities.42

Neural networks can also be used to solve decision-making problems, which is the purpose of43

Deep Reinforcement Learning (DRL, where the deep terminology generally weighs on the sizable44

depth of the network), an advanced branch of machine learning. Simply put, a neural network trains45

in finding out which actions or succession of actions maximize a numerical reward signal, with the46

possibility for a given action to affect not only the immediate but also the future rewards. Successful47

applications of DRL range from AlphaGo, the well-known ANN that defeated the top-level human48

player at the game of Go [18] to the real-word deployment of legged robots [19], to breakthroughs in49

computer vision (e.g., filtering, or extracting image features) [20] and optimal control problems [21,50

22]. There is also great potential for applying DRL to fluid mechanics, for which efforts are ongoing51

but still at an early stage. Sustained commitment from the machine learning community has52

allowed expanding the scope from computationally inexpensive, low-dimensional reductions of the53

underlying fluid dynamics [23–25] to complex Navier–Stokes systems [26, 27], with a handful of54

pioneering studies providing insight into the performance improvements to be delivered in shape55

optimization [28–30] and flow control [31–37], including recent advances assessing experimentally56

the effectiveness of reinforcement learning control strategies [38].The literature on thermal control57

is even more scarce, as our literature review did not reveal any other study considering DRL-based58

control of conjugate heat transfer aside from [39], another research effort conducted in the same59

time frame as the present work that will be discussed further on, plus a few other publications60

relying on dealing with energy efficiency in civil engineering from low-dimensional thermodynamic61

models basically unrelated to the equations of fluid dynamics [40, 41].62

This research assesses the feasibility of using proximal policy optimization (PPO [22]) for control63

and optimization purposes of conjugate heat transfer systems, as governed by the coupled Navier–64

Stokes and heat equations. The objective here is to keep shaping the capabilities of the method65

(PPO is still a relatively newcomer that has quickly emerged as the go-to DRL algorithm due to66

its data efficiency, simplicity of implementation and reliable performance) and to narrow the gap67

between DRL and advanced numerical methods for multi-scale, multi-physics computational fluid68

dynamics (CFD). We investigate more specifically the “degenerate” single-step PPO algorithm69

introduced in [30] for optimization and open-loop control problems, as the optimal policy to be70
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learnt is then state-independent, and it may be enough for the neural network to get only one71

attempt per episode at finding the optimal. Several problems of conjugate heat transfer in two and72

three dimensions are used as testbed to push forward the development of this novel approach, whose73

potential for reliable black-box optimization of computational fluid dynamics (CFD) systems has74

been recently assessed for open-loop drag reduction in cylinder flows at Reynolds numbers ranging75

from a few hundreds to a few ten thousands [42]. To the best of the authors knowledge, this76

constitutes the first attempt to achieve DRL-based control of conjugate forced convection heat77

transfer, while [39] is the first attempt to achieve DRL control of conjugate natural convection78

heat transfer.79

The organization is as follows: section 2 outlines the main features of the finite element CFD80

environment used to compute the numerical reward fed to the neural network, that combines81

variational multi-scale (VMS) modeling of the governing equations, immerse volume method, and82

multi-component anisotropic mesh adaptation. The baseline principles and assumptions of DRL83

and PPO are presented in section 3, together with the specifics of the single-step PPO algorithm.84

Section 4 revisits the natural convection case of [39] for the purpose of validation and assessment85

part of the method capabilities. In section 5, DRL is used to control conjugate heat transfer in86

a model setup of two-dimensional workpiece cooling by impingement of a fluid. An extension to87

three-dimensional workpieces is proposed in section 6.88

2. Computational fluid dynamics89

The focus of this research is on conjugate heat transfer and laminar, incompressible fluid flow90

problems in two and three-dimensions, for which the conservation of mass, momentum and energy91

is described by the nonlinear, coupled Navier–Stokes and heat equations92

∇ · u = 0 , (1)
ρ(∂tu+ u · ∇u) = ∇ · (−pI + 2µε(u)) +ψ , (2)

ρcp(∂tT + u · ∇T ) = ∇ · (λ∇T ) + χ , (3)

where u is the velocity field, p is the pressure, T is the temperature, ε(u) = (∇u+∇uT )/2 is the93

rate of deformation tensor, ψ and χ are source terms (modeling, e.g., buoyancy or radiative heat94

transfer), and we assume here constant fluid density ρ, dynamic viscosity µ, thermal conductivity95

λ, and specific heat cp.96

2.1. The immersed volume method97

The numerical modeling of conjugate heat transfer mostly depends upon a heat transfer co-98

efficient to ensure that the proper amount of heat is exchanged at the fluid/solid interface via99

thermal boundary conditions. Computing said coefficient is no small task (as it requires solving100

an inverse problem to assimilate relevant experimental data, which in turn requires such data to101

be available), and is generally acknowledged to be a limiting issue for practical applications where102

one must vary, e.g., the shape, number and position of the solid, or the fluid and/or solid material103

properties. We thus rather use here the immerse volume method (IVM) to combine both the fluid104

and solid phases into a single fluid with variable material properties. Simply put, we solve equa-105

tions formally identical to (1)-(3) on a unique computational domain Ω, but with variable density,106

dynamic viscosity, conductivity, and specific heat, which removes the need for a heat transfer coef-107

ficient since the amount of heat exchanged at the interface then proceeds solely from the individual108

material properties on either side of it. In order to ensure numerical accuracy, such an approach109

must combine three key ingredients, that are briefly reviewed in the next paragraphs: an interface110

capturing method, anisotropic mesh adaptation to achieve a high-fidelity description of said inter-111

face, and relevant mixing laws to describe the properties of the composite fluid. One point worth112

mentioning is that the interface here is static, although the same numerical framework can be used113

to dynamically track moving interfaces, and thus to encompass the effect of solid displacements.114

This is because the solid is fixed once an action has been taken by the PPO agent, although not115

fixed over the course of optimization, as the solid position can very well be the quantity subjected116

to optimization, as illustrated in section 5.3.4.117

118
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- Level set method. The level set approach is used to localize the fluid/solid interface by the zero119

iso-value of a smooth function. In practice, a signed distance function φ is used to localize the120

interface and initialize the material properties on both either side of it, with the convention that121

φ > 0 (resp. φ < 0) in the fluid (resp. the solid).122

123

- Anisotropic mesh adaptation. The interface may intersect arbitrarily the mesh elements if it124

is not aligned with the element edges, in which case discontinuous material properties across125

the interface can yield oscillations of the numerical solutions. We thus use the anisotropic mesh126

adaptation technique presented in [43] to ensure that the material properties are distributed as127

accurately and smoothly as possible over the smallest possible thickness around the interface. This128

is done computing modified distances from a symmetric positive defined tensor (the metric) whose129

eigenvectors define preferential directions along which mesh sizes can be prescribed from the related130

eigenvalues. The metric used here is isotropic far from the interface, with mesh size set equal to131

h∞ in all directions, but anisotropic near the interface, with mesh size equal to h⊥ in the direction132

normal to the interface, and to h∞ in the other directions. This is written for an intended thickness133

δ as134

M = K(φ)n⊗ n+ 1
h2
∞
I with K(φ) =

 0 if |φ| ≥ δ/2 ,
1
h2
⊥
− 1
h2
∞

if |φ| < δ/2 , (4)

where n = ∇φ/||∇φ|| is the unit normal to the fluid/solid interface computed from the level set135

gradient. A posteriori anisotropic error estimator is then used to minimize the interpolation error136

under the constraint of a fixed number of edges in the mesh. A unique metric can be built from137

multi-component error vectors [43–46], which is especially relevant for conjugate heat transfer op-138

timization, as it allows each learning episode to use an equally accurate mesh adapted from the139

velocity vector and magnitude, the temperature field, and the level set.140

141

- Mixing laws. The composite density, dynamic viscosity and specific heat featured in equations (1)-142

(3) are computed as the arithmetic means of the fluid and solid values, for instance the composite143

density is144

ρ = ρfHε(φ) + ρs(1−Hε(φ)) , (5)

where Hε is the smoothed Heaviside function defined as145

Hε(φ) =


0 if φ < −ε ,
1
2(1 + φ

ε
+ 1
π

sin(πφ
ε

)) if |φ| ≤ ε ,
1 if φ > ε ,

(6)

and ε is a regularization parameter proportional to the mesh size in the normal direction to the146

interface, set here to ε = 2h⊥. In order to ensure continuity of the heat flux across the interface,147

the thermal conductivity is computed as the harmonic mean148

1
λ

= 1
λf
Hε(φ) + 1

λs
(1−Hε(φ)) , (7)

as obtained from a steady, no source, one dimensional analysis of the heat flux when the conduc-149

tivity varies stepwise from one medium to the next; see [47] for detailed derivation and analysis,150

and [48] for proof of the gain in numerical accuracy (with respect to the arithmetic mean model)151

by comparison with analytical solutions.152

2.2. Variational multi-scale approach (VMS)153

In the context of finite element methods (that remain widely used to simulate engineering154

CFD systems due to their ability to handle complex geometries), direct numerical simulation155
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(DNS) solves the weak form of (1)-(3), obtained by integrating by parts the pressure, viscous and156

conductive terms, to give157

(ρ(∂tu+ u · ∇u) , w) + (2µε(u) , ε(w))− (p , ∇ ·w) + (∇ · u , q) = (ψ , w) , (8)
(ρcp(∂tT + u · ∇T ) , s) + (λ∇T , ∇s) = (χ , s) , (9)

where ( , ) is the L2 inner product on the computational domain, w, q and s are relevant test158

functions for the velocity, pressure and temperature variables, and all fluid properties are those159

mixed with the smoothed Heaviside function (6).160

We use here the variational multi-scale (VMS) approach [49–51] to solve a stabilized formulation161

of (8)-(9), which allows circumventing the Babuska—Brezzi condition (that otherwise imposes that162

different interpolation orders be used to discretize the velocity and pressure variables, while we163

use here simple continuous piecewise linear P1 elements for all variables) and prevents numerical164

instabilities in convection regimes at high Reynolds numbers. We shall not go into the extensive165

details about the derivation of the stabilized formulations, for which the reader is referred to [52, 53].166

Suffice it to say here that the flow quantities are split into coarse and fine scale components, that167

correspond to different levels of resolution. The fine scales are solved in an approximate manner168

to allow modeling their effect into the large-scale equations. This gives rise to additional terms in169

the right-hand side of (8)-(9), and yields the following weak forms for the large scale170

(ρ(∂tu+ u · ∇u) , w) + (2µε(u) , ε(w))− (p , ∇ ·w) + (∇ · u , q) = (ψ , w)

+
∑
K∈Th

[(τ1RM , u · ∇w)K + (τ1RM , ∇q)K + (τ2RC , ∇ ·w)K ] , (10)

(ρcp(∂tT + u · ∇T ) , s) + (λ∇T , ∇s) = (χ , s)

+
∑
K∈Th

[(τ3RT , u · ∇s)K + (τ4RT , ζ∇T · ∇s)K ] , (11)

where ( , )K is the inner product on element K, we denote by ζ = u · ∇T/||∇T ||2 the (normal-171

ized) velocity projected along the direction of the temperature gradient, and the R terms are the172

governing equations residuals173

−RC = ∇ · u , −RM = ρ(∂tu+ u · ∇u) +∇p−ψ −RT = ρcp(∂tT + u · ∇T )− χ , (12)

whose second derivatives vanish since we use linear interpolation functions. In (10), τ1,2 are ad-hoc174

mesh-dependent stabilization parameters defined in [54, 55]. Conversely, in (11), τ3,4 are mesh-175

independent stabilization parameters acting both in the direction of the solution and of its gradient,176

that proceed from the stabilization of the ubiquitous convection-diffusion-reaction equation [56, 57],177

whose definition is given in [58, 59].178

The governing equations are solved sequentially, i.e., we solve first (10), then use the resulting179

fluid velocity to solve (11). All linear systems are preconditioned with a block Jacobi method180

supplemented by an incomplete LU factorization, and solved with the GMRES algorithm, with181

tolerance threshold set to 10−6 for the Navier–Stokes equations, and 10−5 for the heat equation.182

The time derivatives and convection terms of the Navier–Stokes equations and related VMS source183

terms are integrated semi-implicitly using the first-order backward differentiation formula and184

Newton–Gregory backward polynomial. The viscous, pressure and divergence terms are treated185

implicitly with the backward Euler scheme. Finally, the VMS stabilization terms τ1,2 are treated186

explicitly with the forward Euler scheme, which yields187

(ρ(u
i+1 − ui

∆t + ui · ∇ui+1) , w) + (2µε(ui+1) , ε(w))− (pi+1 , ∇ ·w) + (∇ · ui+1 , q) = (ψi , w)

+
∑
K∈Th

[(τ i1Ri+1
M , ui · ∇w)K + (τ i1Ri+1

M , ∇q)K + (τ i2Ri+1
C , ∇ ·w)K ] , (13)

with residuals188

−Ri+1
C = ∇ · ui+1 , −Ri+1

M = ρ(u
i+1 − ui

∆t + ui · ∇ui+1) +∇pi+1 −ψi , (14)
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Figure 1: Fully connected neural network with two hidden layers, modeling a mapping from R3 to R2.

where the superscript i refers to the solution at time ti = i∆t. The time derivatives, convection189

and conduction terms of the heat equation and related VMS source terms are integrated implicitly190

with the backward Euler scheme (modeling the velocity after ui+1 wherever needed on behalf of191

the sequential resolution process, although we drop the dependence in the notation to ease the192

reading). The VMS stabilization terms τ3,4 are treated explicitly with the forward Euler scheme1,193

to give194

(ρcp(
T i+1 − T i

∆t + ui+1 · ∇T i+1) , s) + (λ∇T i+1 , ∇s) = (χi , s)

+
∑
K∈Th

[(τ i3Ri+1
T , ui+1 · ∇s)K + (τ i4Ri+1

T , ζi∇T i · ∇s)K ] , (15)

with residual195

−Ri+1
T = ρcp(

T i+1 − T i

∆t + ui+1 · ∇T i+1)− χi . (16)

We solve equations (13)-(15) with an in-house VMS solver whose flexibility, accuracy and reliability196

is assessed in a series of previous papers to which the reader is referred for further information, see197

in particular [55, 60] for the detailed mathematical formulation of the IVM in the context of finite198

element VMS methods. The ability of the IVM to handle the abrupt conductivity change across199

the fluid/solid interface is documented in [53, 61, 62]. Excellent agreement with reference solutions200

available from the literature and in-house data obtained enforcing proper thermal conditions at the201

boundary of body-fitted meshes is reported for several time-dependent conjugate heat transfer test202

cases (e.g., mixed convection in a plane channel flow, combined convection in square enclosures203

and conduction/radiation heat transfer, all in two dimensions). Ref. [61] also reports favorable204

agreement between the IVM and in-house experimental data pertaining to a three-dimensional test205

case representative of an industrial cooling system, which provides strong evidence of relevance for206

the intended application.207

3. Deep reinforcement learning and proximal policy optimization208

3.1. Neural networks209

A neural network (NN) is a collection of artificial neurons, i.e., connected computational units210

that can be trained to arbitrarily well approximate the mapping function between input and output211

spaces. Each connection provides the output of a neuron as an input to another neuron. Each212

neuron performs a weighted sum of its inputs, to assign significance to the inputs with regard to the213

task the algorithm is trying to learn. It then adds a bias to better represent the part of the output214

that is actually independent of the input. Finally, it feeds an activation function that determines215

whether and to what extent the computed value should affect the outcome. As sketched in figure 1,216

1That is, with respect to T , but the velocity is modeled after its latest computed approximation ui+1 wherever
needed.
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Environment
st 7→ st+1

Agent
rt

at

wt

Figure 2: RL agent and its interactions with its environment.

a fully connected network is generally organized into layers, with the neurons of one layer being217

connected solely to those of the immediately preceding and following layers. The layer that receives218

the external data is the input layer, the layer that produces the outcome is the output layer, and219

in between them are zero or more hidden layers.220

The design of an efficient neural network requires a proper optimization of the weights and221

biases, together with a relevant nonlinear activation function. The abundant literature available222

on this topic points to a relevant network architecture (e.g., type of network, depth, width of each223

layer), finely tuned hyper parameters (i.e., parameters whose value cannot be estimated from data,224

e.g., optimizer, learning rate, batch size) and a sufficiently large amount of data to learn from as225

being the key ingredients for success; see, e.g., Ref. [63] and the references therein.226

3.2. Deep reinforcement learning227

Deep reinforcement learning (DRL) is an advanced branch of machine learning in which deep228

neural networks train in solving sequential decision-making problems. It is a natural extension of229

reinforcement learning (RL), in which an agent (the neural network) is taught how to behave in an230

environment by taking actions and by receiving feedback from it under the form of a reward (to231

measure how good or bad the action was) and information (to gauge how the action has affected the232

environment). This can be formulated as a Markov Decision Process, for which a typical execution233

goes as follows (see also figure 2):234

• assume the environment is in state st ∈ S at iteration t, where S is a set of states,235

• the agent uses wt, an observation of the current environment state (and possibly a partial236

subset of st) to take action at ∈ A, where A is a set of actions,237

• the environment reacts to the action and transitions from st to state st+1 ∈ S,238

• the agent is fed with a reward rt ∈ R, where R is a set of rewards, and a new observation239

wt+1,240

This repeats until some termination state is reached, the succession of states and actions defining241

a trajectory τ =
(
s0, a0, s1, a1, ...

)
. In any given state, the objective of the agent is to determine242

the action maximizing its cumulative reward over an episode, i.e., over one instance of the scenario243

in which the agent takes actions. Most often, the quantity of interest is the discounted cumulative244

reward along a trajectory defined as245

R(τ) =
T∑
t=0

γtrt , (17)

where T is the horizon of the trajectory, and γ ∈ [0, 1] is a discount factor that weighs the relative246

importance of present and future rewards (the agent being short-sighted in the limit where γ → 0,247

since it then cares solely about the first reward, and far-sighted in the limit where γ → 1, since it248

then cares equally about all rewards).249
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There exist two main types of RL algorithms, namely model-based methods, in which the250

agent tries to build a model of how the environment works to make predictions about what the251

next state and reward will be before taking any action, and model-free methods, in which the agent252

conversely interacts with the environment without trying to understand it, and are prominent in253

the DRL community. Another important distinction to be made within model-free algorithms254

is that between value-based methods, in which the agent learns to predict the future reward of255

taking an action when provided a given state, then selects the maximum action based on these256

estimates, and policy-based methods, in which it optimizes the expected reward of a decision policy257

mapping states to actions. Many of the most successful algorithms in DRL (including proximal258

policy optimization, whose assessment for flow control and optimization purposes is the primary259

motivation for this research) proceed from policy gradient methods, in which gradient ascent is260

used to optimize a parameterized policy with respect to the expected return, as further explained261

in the next section. The reader interested in a more thorough introduction to the zoology of RL262

methods (together with their respective pros and cons) is referred to Ref. [64].263

3.3. From policy methods to Proximal policy optimization264

This section intended for the non-specialist reader briefly reviews the basic principles and as-265

sumptions of policy gradient methods, together with the various steps taken for improvement.266

267

- Policy methods. A policy method maximizes the expected discounted cumulative reward of a268

decision policy mapping states to actions. It resorts not to a value function, but to a probability269

distribution over actions given states, that fully defines the behavior of the agent. Since policies270

are most often stochastic, the following notations are introduced:271

• π(s, a) is the probability of taking action a in state s under policy π,272

• Qπ(s, a) is the expected value of the return of the policy after taking action a in state s (also273

termed state-action value function or Q-function)274

Qπ(s, a) = Eπ
[
R(τ)|s, a

]
, (18)

where we use Eπ for the expected value E under policy π.275

• V π(s) is the expected value of the return of the policy in state s (also termed value function276

or V-function)277

V π(s) = Eπ
[
R(τ)|s

]
. (19)

The V and Q functions are therefore such that278

V π(s) =
∑
a

π(s, a)Qπ(s, a) , (20)

so V π(s) can also be understood as the probability-weighted average of discounted cumulated279

rewards over all possible actions in state s.280

- Policy gradient methods. A policy gradient method aims at optimizing a parametrized policy281

πθ, where θ denotes the free parameters whose value can be learnt from data (as opposed to the282

hyper parameters). In practice, one defines an objective function based on the expected discounted283

cumulative reward284

J(θ) = Eπθ
[
R(τ)

]
, (21)

and seeks the parameterization θ∗ maximizing J(θ), hence such that285

θ∗ = arg max
θ

Eπθ
[
R(τ)

]
, (22)

which can be done on paper by plugging an estimator of the policy gradient ∇θJ(θ) into a gradient286

ascent algorithm. This is no small task as one is looking for the gradient with respect to the policy287
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parameters, in a context where the effects of policy changes on the state distribution are unknown288

(since modifying the policy will most likely modify the set of visited states, which will in turn affect289

performance in some indefinite manner). One commonly used estimator, derived in [64] using the290

log-probability trick, reads291

∇θJ(θ) = Eπθ

[
T∑
t=0
∇θ log (πθ(st, at))R(τ)

]
∼ Eπθ

[
T∑
t=0
∇θ log (πθ(st, at)) Âπ(st, at)

]
, (23)

where Âπ is some biased estimator (here its normalization to zero mean and unit variance) of the292

advantage function293

Aπ(s, a) = Qπ(s, a)− V π(s) , (24)

that measures the improvement (if Aπ > 0, otherwise the lack thereof) associated with taking294

action a in state s compared to taking the average over all possible actions. This is because the295

value function does not depend on θ, so taking it off changes neither the expected value, nor the296

gradient, but it does reduce the variance, and speeds up the training. Furthermore, when the297

policy πθ is represented by a neural network (in which case θ simply denotes the network weights298

and biases to be optimized), the focus is rather on the policy loss defined as299

L(θ) = Eπθ

[
T∑
t=0

log (πθ(at|st)) Â(st, at)
]
, (25)

whose gradient is equal to the (approximated) policy gradient (23) (since the gradient operator acts300

only on the log-policy term, not on the advantage) and is computed with respect to each weight301

and bias by the chain rule, one layer at the time, using the back-propagation algorithm [10].302

303

- Trust regions. The performance of policy gradient methods is hurt by the high sensitivity to the304

learning rate, i.e., the size of the step to be taken in the gradient direction. Indeed, small learning305

rates are detrimental to learning, but large learning rates can lead to a performance collapse if the306

agent falls off the cliff and restarts from a poorly performing state with a locally bad policy. This307

is all the more harmful as the learning rate cannot be tuned locally, meaning that an above average308

learning rate will speed up learning in some regions of the parameter space where the policy loss309

is relatively flat, but will possibly trigger an exploding policy update in other regions exhibiting310

sharper variations. One way to ensure continuous improvement is by imposing a trust region con-311

straint to limit the difference between the current and updated policies, which can be done by312

determining first a maximum step size relevant for exploration, then by locating the optimal point313

within this trust region. We will not dwell on the intricate details of the many algorithms developed314

to solve such trust region optimization problems, e.g., natural policy gradient (NPG [65]), or trust315

region policy optimization (TRPO [66]). Suffice it to say that they use the minorize-maximization316

algorithm to maximize iteratively a surrogate policy loss (i.e. a lower bound approximating locally317

the actual loss at the current policy), but are difficult to implement and can be computationally318

expensive, as they rely on an estimate of the second-order gradient of the policy log probability.319

320

- Proximal policy optimization. Proximal policy optimization (PPO) is another approach with321

simple and effective heuristics, that uses a probability ratio between the two policies to maximize322

improvement without the risk of performance collapse [22]. The focus here is on the PPO-clip323

algorithm2, that optimizes the surrogate loss324

L(θ) = Eπθ
[
min

(
πθ(a|s)
πθold(a|s) , g(ε, Âπ(s, a))

)
Âπ(s, a)

]
, (26)

2There is also a PPO-Penalty variant which uses a penalization on the average Kullback–Leibler divergence
between the current and new policies, but PPO-clip performs better in practice.
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Figure 3: Agent network example used to map states to policy. The input state s0, here of size 2, is mapped to a
mean µ and a standard deviation σ vectors, each of size 2. All activation functions are ReLu, except for that of the
last layer, which are linear for the µ output, and softplus for the σ output. Orthogonal weights initialization is used
throughout the network.

where325

g(ε, A) =
{

1 + ε A ≥ 0 ,
1− ε A < 0 ,

(27)

and ε ∈ [0.1, 0.3] is the clipping range, a small hyper parameter defining how far away the new policy326

is allowed to go from the old. The general picture is that a positive (resp. negative) advantage327

increases (resp. decreases) the probability of taking action a in state s, but always by a proportion328

smaller than ε, otherwise the min kicks in (26) and its argument hits a ceiling of 1 + ε (resp. a329

floor of 1− ε). This prevents stepping too far away from the current policy, and ensures that the330

new policy will behave similarly.331

There exist more sophisticated PPO algorithms (e.g., Trust region PPO [67], that determines332

first a maximum step size relevant for exploration, then adaptively adjusts the clipping range to333

find the optimal within this trust region), but standard PPO has simple and effective heuristics.334

Namely, it is computationally inexpensive, easy to implement (as only the first-order gradient of335

the policy log probability is needed to calculate the clipped surrogate), and remains regarded as336

one of the most successful RL algorithms, achieving state-of-the-art performance across a wide337

range of challenging tasks.338

3.4. Single-step PPO339

We now come to single-step PPO, a “degenerate” version of PPO introduced in [30] and intended340

for situations where the optimal policy to be learnt by the neural network is state-independent, as341

is notably the case in optimization and open-loop control problems (closed-loop control problems342

conversely require state-dependent policies for which standard PPO is best suited). The main343

difference between standard and single-step PPO can be summed up as follows: where standard344

PPO seeks the optimal set of actions a? yielding the largest possible reward, single-step PPO seeks345

the optimal mapping fθ? such that a? = fθ?(s0), where θ denotes the network free parameters346

and s0 is some input state (usually a vector of zeros) consistently fed to the agent for the optimal347

policy to eventually embody the transformation from s0 to a?. The agent initially implements a348

random state-action mapping fθ0 from s0 to an initial policy determined by the free parameters349

initialization θ0, after which it gets only one attempt per learning episode at finding the optimal350

(i.e., it interacts with the environment only once per episode). This is illustrated in figure 4 showing351

the agent draw a population of actions at = fθt(s0) from the current policy, and being returned352

incentives from the associated rewards to update the free parameters for the next population of353

actions at+1 = fθt+1(s0) to yield larger rewards.354

In practice, the agent outputs a policy parameterized by the mean and variance of the proba-355

bility density function of a d-dimensional multivariate normal distribution, with d the dimension356

of the action required by the environment. Actions drawn in [−1, 1]d are then mapped into rele-357

vant physical ranges, a step deferred to the environment as being problem-specific. The resolution358
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s0 Agent Parallel
envs.

at

rt

θt → θt+1

Figure 4: Action loop for single-step PPO. At each episode, the input state s0 is provided to the agent, which in
turn provides n actions to n parallel environments. The latter return n rewards, that evaluate the quality of each
action taken. Once all the rewards are collected, an update of the agent parameters is made using the PPO loss
(26).

essentially follows the process described in section 3.3, only a normalized averaged reward substi-359

tutes for the advantage function. This is because classical PPO is actor-critic, i.e., it improves the360

learning performance by updating two different networks, a first one called actor that controls the361

actions taken by the agent, and a second one called critic, that learns to estimate the advantage362

from the value function as363

A(st, at) = rt + γV (st+1)− V (st) . (28)

In single-step PPO, the trajectory consists of a single state-action pair, so the discount factor can364

be set to γ = 1 with no loss of generality. In return, the advantage reduces to the whitened reward365

since the two rightmost terms cancel each other out in (28). This means that the approach can do366

without the value-function evaluations of the critic network, i.e., it is not actually actor-critic.367

3.5. Numerical implementation368

The present workflow relies on the online PPO implementation of Stable Baselines, a toolset369

of reinforcement learning algorithms dedicated to the research community and industry [68], for370

which a custom OpenAI environment has been designed using the Gym library [69]. Hyperbolic371

tangent is used as default activation function. The instant reward rt used to train the neural372

network is simply the quantity subjected to optimization (modulo a plus or minus sign to tackle373

both maximization and minimization problems). A moving average reward is also computed on the374

fly as the sliding average over the 100 latest values of rt (or the whole sample if it has insufficient375

size). All other relevant hyper parameters are documented in the next sections, with the exception376

of the discount factor (set to γ = 1).377

In practice, actions are distributed to multiple environments running in parallel, each of which378

executes a self-contained MPI-parallel CFD simulation and feeds data to the DRL algorithm (hence,379

two levels of parallelism related to the environment and the computing architecture). The algorithm380

waits for the simulations running in all parallel environments to be completed, then shuffles and381

splits the rewards data set collected from all environments into several buffers (or mini-batches)382

used sequentially to compute the loss and perform a network update. The process repeats for383

several epochs, i.e., several full passes of the training algorithm over the entire data set (so the384

policy network ends up being trained on samples generated by older policies, which is customary in385

standard PPO operation). This simple parallelization technique is key to use DRL in the context386

of CFD applications, as a sufficient number of actions drawn from the current policy must be387

evaluated to accurately estimate the policy gradient. This comes at the expense of computing388

the same amount of reward evaluations, and yields a substantial computational cost for high-389

dimensional fluid dynamics problems (typically from a few tens to several thousand hours for the390

steady-state optimization problems considered herein). In the same vein, it should be noted that391

the common practice in DRL studies to gain insight into the performances of the selected algorithm392

by averaging results over multiple independent training runs with different random seeds is not393

tractable, as it would trigger a prohibitively large computational burden. The same random seeds394

have thus been deliberately used over the whole course of study to ensure a minimal level of395

performance comparison between cases.396
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Figure 5: Schematic of the two-dimensional Rayleigh–Bénard set-up.

4. Control of natural convection in 2-D closed cavity397

4.1. Case description398

We address first the control of natural convection in the two-dimensional differentially heated399

square cavity schematically illustrated in figure 5(a). This is a widely studied benchmark system for400

thermally-driven flows, relevant in nature and technical applications (e.g., ocean and atmospheric401

convection, materials processing, metallurgy), that is thus suitable to validate and compare nu-402

merical solution algorithms while enriching the knowledge base for future projects in this field.403

A Cartesian coordinate system is used with origin at the lower-left edge, horizontal x-axis, and404

vertical y-axis. The cavity has side L, its top and bottom horizontal walls are perfectly insulated405

from the outside, and the vertical sidewalls are isothermal. Namely, the right sidewall is kept at406

a constant, homogeneous “cold” temperature Tc, and the left sidewall is entirely controllable via a407

constant in time, varying in space “hot” distribution Th(y) such that408

〈Th〉 > Tc , (29)

where the brackets denote the average over space (here over the vertical position along the sidewall).409

In the following, we neglect radiative heat transfer (χ = 0) and consider a Boussinesq system410

driven by buoyancy, hence411

ψ = ρ0β(T − Tc)gey , (30)

where g is the gravitational acceleration parallel to the sidewalls, β is the thermal expansion412

coefficient, and we use the cold sidewall temperature as Boussinesq reference temperature. By413

doing so, the pressure featured in the momentum equation (2) and related weak forms must be414

understood as the pressure correction representing the deviation from hydrostatic equilibrium. The415

governing equations are solved with no-slip conditions u = 0 on ∂Ω and temperature boundary416

conditions417

∂yT (x, 0, t) = ∂yT (x, L, t) = 0 , T (0, y, t) = 〈Th〉+ T̃h(y) , T (L, y, t) = Tc , (31)

where T̃h is a zero-mean (in the sense of the average over space) distribution of hot temperature418

fluctuations subjected to optimization, whose magnitude is bounded by some constant ∆Tmax419

according to420

|T̃h(y)| ≤ ∆Tmax , (32)

to avoid extreme and nonphysical temperature gradients. All results are made non-dimensional421

using the cavity side, the heat conductivity time, and the well-defined, constant in time difference422

between the averaged sidewall temperatures. The retained fluid properties yield values of the423

Rayleigh and Prandtl numbers424

Ra = gβ(〈Th〉 − Tc)L3

να
= 104 , Pr = ν

α
= 0.71 , (33)
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(a) (b) (c)

Figure 6: Iso-contours of the uncontrolled steady state (a) temperature and (b) velocity magnitude. (c) Adapted
mesh. The circle symbols in (b) mark the positions of the maximum horizontal and vertical velocity along the
centerlines reported in table 1.

Present Ref. [70] Ref. [71] Ref. [72] Ref. [73] Ref. [74]

Ra = 104

Nu 2.267 2.238 2.245 2.201 2.245 2.245
max u(0.5, y) 16.048 16.178 16.179 – 16.262 16.178

ymax 0.823 0.823 0.824 0.832 0.818 0.827
max v(x, 0.5) 19.067 19.617 19.619 – 19.717 19.633

xmax 0.120 0.119 0.121 0.113 0.119 0.123

Table 1: Comparison of the present numerical results in the absence of control with reference benchmark solutions
from the literature.

where α = λ/(ρcp) is the thermal diffusivity.425

In order to assess the accuracy of the numerical framework, the uncontrolled solution has426

been computed by performing 60 iterations with time step ∆t = 0.5 to march the initial solution427

(consisting of zero velocity and uniform temperature, except at the hot sidewall) to steady state.428

At each time step, an initially isotropic mesh is adapted under the constraint of a fixed number429

of elements nel = 4000 using a multiple-component criterion featuring velocity and temperature,430

but no level-set. This is because the case is heat transfer but not conjugate heat transfer, as the431

solid is solely at the boundary ∂Ω of the computational domain, where either the temperature is432

known, or the heat flux is zero. It is thus implemented without the IVM and without a level set433

(although accurate IVM numerical solutions have been obtained in [53] using thick sidewalls with434

high thermal conductivity). The solution shown in figure 6(a,b) features a centered roll confined435

by the cavity walls, consistently with the fact that Ra exceeds the critical value Rac ∼ 920 for the436

onset of convection (as extrapolated from the near-critical benchmark data in [70]) by one order437

of magnitude, and heat transfer is thus driven by both conduction and convection. This shows in438

the Nusselt number, i.e., the non-dimensional temperature gradient averaged over the hot sidewall439

Nu = −〈∂xT 〉 , (34)

whose present value Nu = 2.27 (as computed from 68 points uniformly distributed along the440

sidewall) exceeds that Nu = 1 of the purely conductive solution, and exhibits excellent agreement441

with benchmark results from the literature. This is evidenced in table 1 where we also report the442

magnitude and position of the maximum horizontal velocity u (resp. the vertical velocity v) along443

the vertical centerline (resp. the horizontal centerline). The corresponding adapted mesh shown in444

figure 6(c) stresses that all boundary layers are sharply captured via extremely stretched elements,445

and that the adaptation strategy yields refined meshes near high temperature gradients and close446

to the side walls. Note however, the mesh refinement is not only along the boundary layers but also447

close to the recirculation regions near the cavity center, while the elements in-between are coarse448

and essentially isotropic.449
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4.2. Control450

The question now being raised is whether DRL can be used to find a distribution of temperature451

fluctuations T̃h capable of alleviating convective heat transfer. To do so, we follow [39] and train a452

DRL agent in selecting piece-wise constant temperature distributions over ns identical segments,453

each of which allows only two pre-determined states referred to as hot or cold. This is intended454

to reduce the complexity and the computational resources, as large/continuous action spaces are455

known to be challenging for the convergence of RL methods [28, 75]. Simply put, the network456

action output consists of ns values T̂hk∈{1...ns} = ±∆Tmax, mapped into the actual fluctuations457

according to458

T̃hk = T̂hk − 〈T̂hk〉

maxl{1,
|T̂hl − 〈T̂hl〉|

∆Tmax
}
, (35)

to fulfill the zero-mean and upper bound constraints.3 Ultimately, the agent receives the reward459

rt = −Nu to minimize the space averaged heat flux at the hot sidewall.460

All results reported herein are for ∆Tmax = 0.75 (so the hot temperature varies in the range461

[0.25; 1.75]) and ns = 10 segments, as [39] report that ns = 20 was computationally too demanding462

for their case, and that ns = 5 yielded poor control efficiency. The agent is a fully-connected463

network with two hidden layers, each holding 2 neurons. The resolution process uses 8 environments464

and 2 steps mini-batches to update the network for 32 epochs, with learning rate 5 × 10−3, and465

PPO loss clipping range ε = 0.2.466

4.3. Results467

For this case, 120 episodes have been run, each of which follows the exact same procedure as468

above and performs 60 iterations with time step ∆t = 0.5 to march the zero-initial condition to469

steady state. This represents 960 simulations, each of which is performed on 4 cores and lasts470

20s, hence 5h of total CPU cost. We present in figure 7 representative iso-contours of the steady-471

state temperature and velocity magnitude computed over the course of the optimization. The472

latter exhibit strong temperature gradients at the hot sidewall, together with a robust steady roll-473

shaped pattern accompanied by a small corner eddy at the upper-left edge of the cavity, whose size474

and position depends on the specifics of the temperature distribution. The corresponding meshes475

are displayed in figure 7(c) to stress the ability of the adaptation procedure to handle well the476

anisotropy of the solution caused by the intrinsic flow dynamics and the discontinuous boundary477

conditions.478

We show in figure 8 the evolution of the controlled averaged Nusselt number, whose moving479

average decreases monotonically and reaches a plateau after about 90 episodes, although we notice480

that sub-optimal distributions keep being explored occasionally. The optimal computed by averag-481

ing over the 10 latest episodes (hence the 800 latest instant values) is 〈Nu〉? ∼ 0.57, with variations482

±0.01 computed from the root-mean-square of the moving average over the same interval (which483

is a simple yet robust criterion to assess qualitatively convergence a posteriori). Interestingly,484

the optimized Nusselt number is almost twice as small as the purely conductive value (Nu = 1),485

meaning that the approach successfully alleviates the heat transfer enhancement generated by the486

onset of convection, although it does not alleviate convection itself, as evidenced by the consistent487

roll-shaped pattern in figure 9. Similar results are reported in [39], for a different set-up in which488

the horizontal cavity walls are isothermal and control is applied at the bottom at the cavity (hence489

a different physics because of buoyancy), albeit with lower numerical and control efficiency since490

the authors report an optimal Nusselt number Nu ∼ 1 using up to 512 DRL environments with491

learning rate of 2.5 × 10−4. The reason for such discrepancies probably lies in different ways of492

achieving and assessing control, as we use single-step PPO to optimize the steady-state Nusselt493

3Another possible approach would have been to penalize the reward passed to the DRL for those temperature
distributions deemed non-admissible (either because the average temperature is non-zero or the temperature mag-
nitude is beyond the threshold). However, this would have made returning admissible solutions part of the tasks
the network is trained on (not to mention that non-zero average temperatures amount to a change in the Rayleigh
number), which would likely have slowed down learning substantially.
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(a) (b) (c)

Figure 7: (a,b) Steady-state (a) temperature and (b) velocity magnitude against zero-mean temperature distributed
at the left sidewall. (c) Adapted meshes.

number via a time-independent control, which requires choosing a sidewall temperature, marching494

the controlled solution to steady state, then computing the reward. The problem considered in [39]495

is more intricate, as classical PPO is used to optimize the reward accumulated over time via a496

time-dependent control temperature updated with a certain period scaling with the convection497

time in the cavity (the so-determined optimal control being ultimately time-independent for the498

considered value of Ra, but truly time-dependent for Rayleigh numbers above ∼ 105).499
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Figure 8: Evolution per learning episode of the instant (in grey) and moving average (in black) Nusselt number.
The horizontal dashed line marks the uncontrolled value.
(a) (b) (c)

Figure 9: (a,b) Steady-state (a) temperature and (b) velocity magnitude for the optimal zero-mean temperature
distribution. (c) Adapted mesh.

5. Control of forced convection in 2-D open cavity500

5.1. Case description501

This second test case addresses the control of actual conjugate heat transfer in a model setup502

for the cooling of a hot solid by impingement of a fluid; see figure 10(a). A Cartesian coordinate503

system is used with origin at the center of mass of the solid, horizontal x-axis, and vertical y-axis.504

The solid has rectangular shape with height h and aspect ratio 2:1, and is initially at the hot505

temperature Th. It is fixed at the center of a rectangular cavity with height H and aspect ratio506

4:1, whose walls are isothermal and kept at temperature Tw. The top cavity side is flush with nj507

identical holes of width ei whose distribution is subjected to optimization, each of which models508

the exit plane of an injector blowing cold air at velocity Vi and temperature Tc, and is identified509

by the horizontal position of its center xk∈{1...nj}. Hot air is released through the cavity sidewalls,510

blown with two identical exhaust areas of height eo, and identified by the vertical position of their511

center (e0 −H)/2.512

For this case, both buoyancy and radiative heat transfer are neglected (ψ = 0 and χ = 0),513

meaning that temperature evolves as a passive scalar, similar to the mass fraction of a reactant514

in a chemical reaction. All relevant parameters are provided in Table 2, including the material515

properties used to model the composite fluid, that yield fluid values of the Reynolds and Prandtl516

numbers517

Re = ρVie

µ
= 200 , Pr = 2 . (36)

Note the very high value of the solid to fluid viscosity ratio, that ensures that the velocity is zero518

in the solid domain and that the no-slip interface condition is satisfied. By doing so, the convective519
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(a) (b)

Figure 10: (a) Schematic of the 2-D forced convection set-up. (b) Sensors positions in the solid domain.

H h ei e0 Vi Tw Tc Th µ ρ λ cp

1 0.2 0.2 0.2 1 10 10 150 0.001 1 0.5 1000 Fluid
1000 100 15 300 Solid

Table 2: Numerical parameters used in the 2-D forced convection problem. All values in SI units, with the exception
of temperatures given in Celsius.

terms drop out in the energy equation, that reduces to the pure conduction equation for the solid.520

The governing equations are solved with no-slip isothermal conditions u = 0 and T = Tw on ∂Ω,521

except at the injection exit planes (u = −Viey, T = Tc), and at the exhaust areas, where a zero-522

pressure outflow condition is imposed (p = ∂xu = ∂xT = 0). No thermal condition is imposed at523

the interface, where heat exchange is implicitly driven by the difference in the individual material524

properties.525

5.2. Control526

The quantity being optimized is the distribution of the injectors center positions xk∈{1...nj}.527

Several control strategies are assessed in the following, whose ability to manage increasing design528

complexity translates into less constrained operation when it comes to optimizing a practically529

meaningful device. In practice, each injector is forced to sit in an interval [x−k ;x+
k ] whose edge530

values are determined beforehand of recomputed on the fly (depending on the control strategy),531

and bounded according to532

|x±k | ≤ xm , (37)

where we set xm = 2H − 0.75ei to avoid numerical issues at the upper cavity edges. The network533

action output therefore consists of nj values x̂ ∈ [−1; 1], mapped into the actual positions according534

to535

xk =
x+
k (x̂k + 1)− x−k (x̂k − 1)

2 . (38)

In order to compute the reward passed to the DRL, we distribute uniformly 15 probes in the536

solid domain, into nx = 5 columns and ny = 3 rows with resolutions ∆x = 0.09 and ∆y = 0.075,537

respectively; see figure 10(b). Selected tests have been carried out to check that the outcome538

of the learning process does not change using ny = 5 rows of nx = 5 probes (not shown here).539

The magnitude of the tangential heat flux is estimated by averaging the norm of the temperature540

gradient over all columns and rows, i.e., i-th column (resp. the j-th row) as541

〈||∇‖T ||〉i = 2
ny − 1 |

∑
j 6=0

sgn(j)||∇T ||ij | , 〈||∇‖T ||〉j = 2
nx − 1 |

∑
i 6=0

sgn(i)||∇T ||ij | , (39)

where subscripts i, j and ij denote quantities evaluated at x = i∆x, y = j∆y and (x, y) =542

(i∆x, j∆y), respectively, and symmetrical numbering is used for the center probe to sit at the543

intersection of the zero-th column and row. The numerical reward rt = −〈||∇‖T ||〉 fed to the DRL544

agent deduces ultimately by averaging over all rows and columns, to give545

〈||∇‖T ||〉 = 1
nx + ny

∑
i,j

〈||∇‖T ||〉i + 〈||∇‖T ||〉j , (40)
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Figure 11: (a) Steady-state temperature against arrangements of 3 injectors, with admissible values under the fixed
domain decomposition strategy S1 delimited by the dashed lines. (b) Adapted meshes colored by the magnitude of
velocity.

which especially yields rt = 0 for a perfectly homogeneous cooling.546

All results reported in the following are for nj = 3 injectors. The agent is a fully-connected547

network with two hidden layers, each holding 2 neurons. The resolution process uses 8 environments548

and 2 steps mini-batches to update the network for 32 epochs, with learning rate set to 5× 10−3,549

and PPO loss clipping range to ε = 0.3.550

5.3. Results551

5.3.1. Fixed domain decomposition strategy552

We consider first the so-called fixed domain decomposition strategy S1 in which the top cavity553

wall is split into nj equal subdomains, and each injector is forced to sit in a different subdomain (a554

somehow heavily constrained optimization problem if nj is not to small, relevant for cases where555

the design is rigid and the practitioner has limited freedom to act). The edge values for the position556

xk of the k-th injector read557

x−k = −xm + (k − 1)2xm + ei
nj

, x+
k = x−k + 2xm − (nj − 1)ei

nj
. (41)

It can be checked that x−k = x+
k−1 + ei, so, it is possible to end up with two side-by-side injectors,558

which is numerically equivalent to having nj − 1 injectors, nj − 2 of width ei plus one of width 2ei.559

For this case, 60 episodes have been run, each of which performs 1500 iterations with time step560

∆t = 0.1 to march the same initial condition (consisting of zero velocity and uniform temperature,561

except in the solid domain) to steady state, using the level set, velocity and temperature as multiple-562

component criterion to adapt the mesh (initially pre-adapted using the sole level set) every 5563

time steps under the constraint of a fixed number of elements nel = 15000. This represents 480564

simulations, each of which is performed on 8 cores and lasts 10mn, hence 80h of total CPU cost.565

It is out of the scope of this work to analyze in details the many flow patterns that develop when566

the blown fluid travels through the cavity. Suffice it to say that the outcome depends dramatically567

on the injectors arrangement, and features complex rebound phenomena (either fluid/solid, when568

a jet impinges on the cavity walls or on the workpiece itself, or fluid/fluid, when a deflected jet569

meets the crossflow of another jet), leading to the formation of multiple recirculation varying in570

number, position and size. Several such cases are illustrated in figure 11 via iso-contours of the571

steady-state temperature distributions, together with the corresponding adapted meshes colored by572

the magnitude of velocity to illustrate the ability of the numerical framework to capture accurately573

all boundary layers and shear regions via extremely stretched elements.574
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Figure 12: (a) Evolution per learning episode of the instant (in grey) and moving average (in black) rewards under
the fixed domain decomposition strategy S1. (b) Same as (a) for the injectors center positions, with admissible
values delimited by the dashed lines.

(b)(a)

Figure 13: Same as figure 11 for the optimal arrangement of 3 injectors under the fixed domain decomposition
strategy S1.

One point worth mentioning is that the individual position signals are best suited to draw robust575

quantitative conclusion, as there is noise in the reward signal shown in figure 12(a). We believe576

the issue to be twofold: on the one hand, the reward is approximated from point-wise temperature577

data (similar to experimental measurements) that are more sensitive to small numerical errors578

(e.g., the interpolation error at the probes position) than an integral quantity. On the other hand,579

the mesh adaptation procedure is not a deterministic process, as the outcome depends on the580

processors and number of processors used, and any initial difference propagates over the course581

of the simulation because the meshes keep being adapted dynamically. In return, two exact same582

control parameters can thus yield different rewards on behalf of different interpolation errors at583

the probes position. This likely slows down learning and convergence, but we show in figure 12(b)584

that the moving average distribution does converge to an optimal arrangement after roughly 25585

episodes. The latter consists of an injector at the right-end of the left subdomain (x1
? = −0.75)586

and two side-by-side injectors sitting astride the center and right subdomains (x2
? = 0.55 and587

x3
? = 0.75), that enclose the workpiece in a double-cell recirculation; see figure 13. These values588

have been computed by averaging the instant positions of each injector over the 10 latest episodes,589

with variations ±0.002 computed from the root-mean-square of the moving average over the same590

interval, a procedure that will be used consistently to assess convergence for all cases reported in the591

following. The efficiency of the control itself is estimated by computing the magnitude of tangential592

heat flux averaged over the same interval, found to be 〈||∇‖T ||〉? ∼ 8.3. Note, the position x2
? is593

actually obtained by averaging the absolute value of the instant position x2 (although the true,594

signed value is depicted in the figure), as the center injector keeps oscillating between two end595

positions ±0.55 on behalf of reflectional symmetry with respect to the vertical centerline.596

5.3.2. Follow-up strategy597

A less constrained problem is considered here using the so-called follow-up strategy S2, in which598

all injectors are distributed sequentially the ones with respect to the others. The corresponding599
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(b)(a)

Figure 14: (a) Steady-state temperature against arrangements of 3 injectors, with admissible values under the
follow-up strategy S2 delimited by the dashed lines. (b) Adapted meshes colored by the magnitude of velocity.

(c)(b)(a)

Figure 15: Evolution per learning episode of the instant (in grey) and moving average (in black) injectors center
positions under the follow-up strategy S2, with admissible values delimited by the dashed lines.

edge values600

x−1 = −xm , x+
1 = xm − (nj − 1)ei , (42)

x−k = x+
k−1 + ei , x+

k = xm − (nj − k)ei , (43)

readily express that the k-th injector is forced to sit between the k− 1-th one and the upper-right601

cavity edge while leaving enough space to distribute the remaining nj−k injectors, which increases602

the size of the control parameter space while again leaving the possibility for side-by-side injectors603

(since x−k = x+
k−1 + ei by construction). 75 episodes have been run for this case following the604

exact same procedure as above, i.e., marching the zero-initial condition in time up to t = 150 with605

∆t = 0.1, hence 600 simulations, each of which is performed on 8 cores and lasts 10mn, hence 100h606

of total CPU cost.607

The computed flow patterns closely resemble those obtained under the previous fixed domain608

decomposition strategy, although figure 14 exhibits increased dissymmetry when two or more in-609

jectors move simultaneously to the same side of the cavity. We show in figure 15 that the moving610

average distribution converges after roughly 60 episodes, with the optimal arrangement consisting611

of one injector roughly midway between the left cavity sidewall and the workpiece (x1
? = −0.96),612

and two side-by-side injectors at the right end of the cavity (x2
? = 1.65 and x3

? = 1.85). The613

variations over the same interval are by ±0.006; see also figure 16 for the corresponding flow pat-614

tern. Convergence here is much slower than under S1, as the search for an optimal is complicated615

by the fact that all injector positions are interdependent the ones on the others and it is up to the616

network to figure out exactly how. Another contingent matter is that the agent initially spans a617

fraction of the control parameter space because the large values of x1 considered limit the space618

available to distribute the other two injectors. This is all the more so as such configurations turn619
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Figure 16: Same as figure 14 for the optimal arrangement of 3 injectors under the follow-up strategy S2.

to be far from optimality, for instance the magnitude of tangential heat flux is 〈||∇‖T ||〉 ∼ 41.3 for620

x1 = 1.45, x2 = 1.65 and x3 = 1.85, but 〈||∇‖T ||〉? ∼ 6.3 at optimality. The latter value is smaller621

than the optimal achieved under S1, consistently with the fact that all positions spanned under S1622

are admissible under S2, hence the S1 optimal is expected to be a S2 sub-optimal.623

5.3.3. Free strategy624

We examine now a third strategy S3 referred to as the free strategy, in which all injectors are625

independent and free to move along the top cavity wall (a mildly constrained optimization problem,626

relevant for cases where the design is flexible and the practitioner has great freedom to act). The627

edge values for the position xk of the k-th injector read628

x−k = −xm , x+
k = xm , (44)

so two injectors can end up side-by side and even overlapping one another if |xl − xm| < ei. If629

so, we implement a single injector of width ei + |xl − xm| and maintain the blowing velocity (not630

the flow rate) for the purpose of automating the set-up design process, meaning that having nj631

injectors, two of which overlap exactly (i.e., |xl−xm| = 0) is rigorously equivalent to having nj −1632

injectors. 60 episodes have been run for this case following the exact same procedure as above.633

All flow patterns are reminiscent of those obtained under the previous fix decomposition S1634

and follow-up S2 strategies, even when two injectors overlap; see figure 17. Other than that, we635

show in figures 18 that the moving average distribution converges to an optimal consisting of two636

injectors almost perfectly overlapping one another at the left end of the cavity (x1
? = −1.85 and637

x2
? = −1.82), and a third injector at the right end of the cavity (x3

? = 1.85). The variations over638

the same interval are by ±0.007, and the associated flow pattern shown in figure 19 is symmetrical639

and features two large recirculation regions on either side of the workpiece. Convergence occurs640

after roughly 40 episodes, i.e., faster than under S2 (consistently with the fact that there is no641

need to learn anymore about how the network outputs depend the ones on the others) but slower642

than under S1 (consistently with the fact that the size of the control parameter space has increased643

substantially). It is worth noticing that the system is invariant by permutations of the network644

outputs, meaning that there exist 2nj − 2 distributions (hence 6 for nj = 3) associated with the645

same reward. Nonetheless, a single optimal is selected, which is essentially fortuitous since the646

agent does not learn about symmetries under the optimization process (otherwise S1 would have647

similarly selected a single optimal). The magnitude of tangential heat flux is 〈||∇‖T ||〉? ∼ 11.2 at648

optimality, i.e., larger than that achieved under S2. This can seem surprising at first, because all649

positions spanned under S2 are admissible under S3, and the S2 optimal is thus expected to be a650

S3 sub-optimal. However, the argument does not hold here because the overlap in the S3 optimal651

reduces the flow rate to that of a two-injectors set-up, so the comparison should be with the S2652

optimal with nj = 2.653

5.3.4. Inverse strategy654

Finally, we propose here to make the most of the numerical framework flexibility to solve a655

different optimization problem consisting in selecting first an injector distribution, then in finding656

the position x0 of the solid center of mass minimizing the magnitude of tangential heat flux (which657

is relevant for cases where the practitioner simply cannot act on the design). The so-called inverse658

strategy S4 considered herein features two injectors at each end of the cavity (x1 = −1.85 and659

x2 = 1.85), identical to the optimal arrangement of 3 injectors under the free strategy S3. The660
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Figure 17: (a) Steady-state temperature against arrangements of 3 injectors, with admissible values under the free
strategy S3 delimited by the dashed lines and overlaps marked by the dark grey shade. (b) Adapted meshes colored
by the magnitude of velocity.

(c)(b)(a)

Figure 18: Evolution per learning episode of the instant (in grey) and moving average (in black) injectors center
positions under the free strategy S3, with admissible values delimited by the dashed lines.

(b)(a)

Figure 19: Same as figure 17 for the optimal arrangement of 3 injectors under the free strategy S3.

center of mass can take any value in [−x0m;x0m] where we set x0m = 2(H − h) to avoid numerical661

issues at the sidewalls. The same coordinate system as above is used, but with reference frame662

attached to the cavity, not the moving solid (hence all results obtained under the previous strategies663

pertain to x0 = 0 in the new system).664

A total of 60 episodes have been run for this case using the exact same DRL agent, the only665

difference being in the network action output, now made up of a single value x̂0 ∈ [−1; 1], mapped666

into the actual position using667

x0 = x0mx̂0 . (45)

A large variety of flow patterns is obtained by doing so, that closely resemble those computed under668

the previous strategies, only the outcome is now also altered by the width of the gap between the669

cavity sidewalls and the workpiece, as illustrated in figure 20. We show in figure 21 that the position670

of the solid center of mass converges to an optimal x0
? = 0.42 (the variations over the same interval671
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Figure 20: (a) Steady-state temperature against solid center of mass position, with admissible domains under the
inverse strategy S4 marked by the dashed lines. (b) Adapted meshes colored by the norm of velocity.

Figure 21: Evolution per learning episode of the instant (in grey) and moving average (in black) center of mass
positions under the inverse strategy S4, with admissible values delimited by the dashed lines.

(b)(a)

Figure 22: Same as figure 20 for the optimal center of mass position under the inverse strategy S4.

being by ±0.005), the associated magnitude of tangential heat flux 〈||∇‖T ||〉? ∼ 4.1, being smaller672

than that achieved under S3 using a centered workpiece. The fact that the optimal position is673

offset from the vertical centerline is a little surprising at first, because intuition suggests that the674
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(c) (d)

(a) (b)

Figure 23: (a,b) Norm of the temperature gradient in the solid domain with superimposed streamlines of the
underlying velocity field, as computed for (a) x0 = 0, and (b) x0? = 0.45, i.e., the optimal position selected under
the inverse strategy S4. (c) Cuts along the two leftmost columns of probes. The solid and dashed lines refer to
x0 = 0 and x0? = 0.42, respectively, and the symbols mark the probe values. (d) Same as (c) for cuts along the
lower and upper rows of columns.

simplest way to achieve homogeneous heat transfer is by having symmetrically distributed injectors.675

Nonetheless, examining carefully the norm of the temperature gradient in the solid domain shows676

that x0 = 0 achieves close to perfect horizontal symmetry but vertical asymmetry, owing to the677

formation of two large-scale, small velocity end vortices entraining heat laterally downwards; see678

figure 23(a). Conversely, for x ∼ x0
?, the workpiece it almost at the core of the closest recirculation679

region, hence the surrounding fluid particles have small velocities and wrap almost perfectly around680

its surface, as illustrated in figure 23(b). This restores excellent vertical symmetry, as evidenced681

by relevant cuts along the two leftmost columns of probes in figure 23(c), and along the lower and682

upper rows in figure 23(d), which explains the improved the reward.683

5.4. Discussion684

Figure 24 reproduces the optimal temperature distributions computed under the various strate-685

gies considered above. For benchmarking purposes, we also provide in table 3 relevant convergence686

data computed over the 10 latest episodes. To recap, the most homogeneous cooling is achieved687

under the follow-up strategy S2, but the DRL agent seems more easily trained under the fixed688

decomposition domain strategy S1 and the free strategy S3. Another interesting point is the ex-689

tent to which the workpiece is actually cooled, for which S2 seems more relevant, on behalf of the690

dissymmetry in the left and right flow rates that creates order one velocities at the bottom of the691

cavity. This stresses S2 as a possible compromise to achieve efficient and homogeneous cooling,692

although a true optimal with this regard can be computed rigorously by applying the same ap-693

proach to compound functionals weighing, e.g., the magnitude of the tangential heat flux and the694

solid center temperature (which we defer to future work).695

These results provide a basis for future self-assessment of the method and identifies potential696

for improvement regarding the convergence efficiency. The approach can certainly benefit from697
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(d)(c)

Figure 24: (a-c) Optimal arrangements of 3 injectors under the (a) fixed decomposition domain strategy S1, (b)
follow-up strategy S2 and (c) free strategy S3. (b) Optimal position of the workpiece under the inverse strategy S4.

nj nep x0 x1 x2 x3 〈||∇‖T ||〉
S1 3 60 0 −0.75 ±0.55 0.75 8.3
S2 3 75 0 −0.96 1.65 1.85 6.3
S3 3 60 0 −1.85 −1.82 1.85 11.2
S4 2 60 0.42 −1.85 1.85 – 4.1

Table 3: Numerical data for the optimal arrangements computed under strategies S1−4. All values computed by
averaging the instant signal over the 10 latest learning episodes.

Figure 25: Schematic of the 3-D forced convection set-up.

a fine tuning of the reward computation, as having sufficient spatial resolution on the relevant698

state of the system is an obvious requirement to allow a successful control. Adjusting the trade-off699

between exploration and exploitation is also worth consideration to better handle the existence of700

multiple global optima (whether they stem from symmetries of from the topology of the reward701

itself) which could be done using non-normal probability density functions.702
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H h di d0 δ0 Vi Tw Tc Th µ ρ λ cp

1 0.2 0.2 0.24 0.16 1 10 10 150 0.01 1 0.5 1000 Fluid
1000 100 15 300 Solid

Table 4: Numerical parameters used in the 3-D forced convection problem. All values in SI units, with the exception
of temperatures given in Celsius.

6. Extension to 3-D forced convection703

6.1. Case description704

The model cooling set up considered in section 5 is extended here to 3-D to assess the extent to705

which the approach carries over to three-dimensional conjugate heat transfer. The main differences706

between 2-D and 3-D are as follows: a Cartesian coordinate system is used with origin at the center707

of mass of the solid, horizontal x-axis, vertical y-axis, and the z-axis completes the direct triad; see708

figure 25. The solid is a rectangular prism with aspect ratio 2:1:1, and is fixed at the center of a709

rectangular cavity with height H and aspect ratio 4:1:1. We consider nj circular-shaped injectors710

with diameter di, whose exit planes are forced to be symmetrical with respect to z = 0, hence each711

injector is identified by the horizontal position of its center xk∈{1...nj}. We also use circular-shaped712

exhaust areas with diameter do, offset by a distance δo from the bottom of the cavity, and whose713

exit planes are also symmetrical with respect to z = 0, hence each exhaust area is identified by the714

vertical position of its center (d0 + δo −H)/2. The governing equations are solved with the exact715

same boundary conditions as in section 5. All parameters are provided in Table 4, including the716

material properties used to model the composite fluid, that yield fluid values of the Reynolds and717

Prandtl numbers718

Re = ρVidi
µ

= 20 , Pr = 20 . (46)

6.2. Control strategy719

We keep here the same control objective and compute the reward fed to the DRL from 45720

probes arranged symmetrically into nz = 3 transverse layers with resolution ∆z = 0.075, each721

of which distributes uniformly 15 probes into nx = 5 columns and ny = 3 rows with resolutions722

∆x = 0.09 and ∆y = 0.075. In practice, the 3-D reward is simply the average over z of the 2-D723

reward defined in section 5, hence rt = −〈||∇‖T ||〉 with724

〈||∇‖T ||〉 = 1
(nx + ny)nz

∑
i,j,k

〈||∇‖T ||〉ik + 〈||∇‖T ||〉jk , (47)

with725

〈||∇‖T ||〉ik = 2
ny − 1 |

∑
j 6=0

sgn(j)||∇T ||ijk| , 〈||∇‖T ||〉jk = 2
nx − 1 |

∑
i 6=0

sgn(i)||∇T ||ijk| , (48)

and the subscripts ik, jk and ijk denote quantities evaluated at (x, z) = (i∆x, k∆z), (y, z) =726

(j∆y, k∆z) and (x, y, z) = (i∆x, j∆y, k∆z), respectively.727

All results reported in the following are for nj = 3 injectors. The edge values needed to map the728

network action output into the actual injectors positions deduce straightforwardly from (41)-(44)729

substituting the diameter di of the 3-D injectors for the length ei of the 2-D injectors. The same730

DRL agent is used, that consists of two hidden layers, each holding 2 neurons, and the resolution731

process uses 8 environments and 2 steps mini-batches to update the network for 32 epochs. Each732

environment performs 1250 iterations with time step ∆t = 0.1 to march the same initial condition733

(consisting of zero velocity and uniform temperature, except in the solid domain) to steady state,734

using the level set, velocity and temperature as multiple-component criterion to adapt the mesh735

(initially pre-adapted using the sole level set) every 10 time steps under the constraint of a fixed736
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Figure 26: Representative steady-state temperature distributions at the solid/fluid interface together with 3-D
streamlines colored by the magnitude of velocity.

number of elements nel = 120000. This is likely insufficient to claim true numerical accuracy, but737

given the numerical cost (320 3-D simulations per strategy, each of which is performed on 8 cores738

and lasts 2h30, hence 800h of total CPU cost), we believe this is a reasonable compromise to assess739

feasibility while producing qualitative results to build on.740
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Figure 27: Evolution per learning episode of the instant (in grey) and moving average (in black) injectors center
positions under the three-dimensional fixed domain decomposition strategy S1, with admissible values delimited by
the dashed lines.

Figure 28: Optimal 3 injector arrangement under the three-dimensional fixed decomposition domain strategy S1.

6.3. Results741

Only the fixed domain decomposition S1 strategy (in which the top cavity wall is split into742

nj equal subdomains and each injector is forced to sit in a different subdomain) and the free S3743

strategy (in which the injectors are entirely independent and free to move along the top cavity744

wall) are considered here to save computational resources, as learning has been seen to be slower745

in 2-D under the follow-up S2 strategy.746

A total of 60 episodes have been run under the fixed domain decomposition strategy S1. Several747

representative flow patterns computed over the course of optimization are shown in figure 26 via748

iso-contours of the steady-state temperature at the fluid-solid interface and 3-D streamlines colored749

by the magnitude of velocity, to put special emphasis on transverse inhomogeneities and display750

the increased degree of complexity due to the formation of large-scale horseshoe vortices wrapped751

around the nozzle jets. We show in figure 27 that the distribution slowly converges to an optimal752

arrangement consisting of one injector at the left end of the left subdomain (x1
? = −1.63), another753

one at the left end of the center subdomain (x2
? = −0.55), and a third one at the left end of754

the right subdomain (x3
? = 0.87), as has been determined by averaging the instant positions755

of each injector over the latest 10 learning episodes, with variations by roughly ±0.04 computed756

from the root-mean-square of the moving average over the same interval. This is larger by one757

order of magnitude than the variations reported in 2-D, as the agent keeps exploring slightly758

sub-optimal positions of the lateral injectors, which likely simply reflects the challenging nature759

of performing three-dimensional optimal control. The 3-D S1 optimal somehow resemble its 2-D760

counterpart, namely the center injector is at the exact same position, while the lateral injectors761

(especially the leftmost one) have been pushed towards the cavity sidewalls. The associated flow762

pattern is reported in figure 28. The associated optimal reward computed over the same interval763
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(c)(b)(a)

Figure 29: Evolution per learning episode of the instant (in grey) and moving average (in black) injectors center
positions under the three-dimensional free strategy S3, with admissible values delimited by the dashed lines.

Figure 30: Optimal 3 injector arrangement under the three-dimensional free strategy S3.

nj nep x0 x1 x2 x3 〈||∇‖T ||〉
S1 3 60 0 −1.63 −0.55 0.87 19.5
S3 3 40 0 −1.83 −1.82 1.83 4.7

Table 5: Numerical data for the optimal arrangements computed in three-dimensions under strategies S1 and S3.
All values computed by averaging the instant signal over the 10 latest learning episodes.

is 〈||∇‖T ||〉? ∼ 19.5, i.e. twice as large than in 2-D, although it is difficult to compare further764

because of the difference in the Reynolds and Prandtl number.765

Another 40 episodes have been run under the free strategy S3, for which the results are al-766

most identical to their 2-D counterparts, as the distribution converges in figure 29 to an optimal767

arrangement consisting of two overlapping injectors at the left end of the cavity (x1
? = −1.83 and768

x2
? = −1.82), and a third injector at the right end (x3

? = 1.83), with variations by with ±0.01769

for the lateral injectors, but ±0.03 for the center injector, for which the agent keeps occasionally770

exploring sub-optimal positions. The corresponding flow pattern shown in figure 30 is thus again771

symmetrical with two large, 3-D recirculation regions on either side of the workpiece. The asso-772

ciated optimal reward computed over the same interval is 〈||∇‖T ||〉? ∼ 4.7 substantially smaller773

than that achieved under the 3-D S1 strategy, which again demonstrates the feasibility to improve774

performances by allowing overlaps. All relevant numerical data are reported in table 5 for the sake775

of completeness.776
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7. Conclusion777

Optimization of conjugate natural and forced heat transfer systems is achieved here training a778

fully connected network with a novel single-step PPO deep reinforcement algorithm, in which it779

gets only one attempt per learning episode at finding the optimal. The numerical reward fed to the780

network is computed with a finite elements CFD environment solving stabilized weak forms of the781

coupled Navier–Stokes and heat equations with a combination of variational multi-scale modeling,782

immerse volume method, and multi-component anisotropic mesh adaptation.783

Convergence is assessed by alleviating the natural convection induced enhancement of heat784

transfer in a two-dimensional, differentially heated square cavity controlled by piece-wise constant785

fluctuations of the sidewall temperature. The approach is also relevant to forced convection prob-786

lems, as single-step PPO shows capable of improving the homogeneity of temperature across the787

surface of two and three-dimensional hot workpieces under impingement cooling. Several control788

strategies are considered, in which the position of multiple cold air injectors is optimized relative789

to a fixed workpiece position, each of which mimics a different levels of design constraint. The790

flexibility of the numerical framework also allows solving the inverse problem, i.e., optimizing the791

workpiece position relative to a fixed injector distribution, which is relevant in situations where the792

design cannot be changed. The approach is beneficial in two important respects: first, it is effi-793

cient, even though the parameter spaces are large and it may be costly to identify optimal control794

parameters from simple parametric searches. Second, and more significantly, it is capable of deter-795

mining additional optimal configurations, as the results of the inverse problem under symmetrical796

actuation indicate that the workpiece is best positioned offset from the symmetry axis, which had797

not been anticipated. Such results clearly stress that single-step PPO (and DRL in general) can798

be effective to explore and discover new solutions from unforeseen parameter combinations.799

Fluid dynamicists have just begun to gauge the ability of DRL to design optimal control strate-800

gies. The efforts for developing single-step PPO are ongoing and remain at an early stage, so we801

do not expect the approach to compete right away with more established methods, for instance802

Evolution strategies (ES), a popular class of algorithms imitating principles of organic evolution803

processes as rules for black-box optimum seeking. ES rely on a stochastic description of the vari-804

ables to optimize, i.e., they consider probability density functions, not deterministic variables.805

Simply put, at each generation (or iteration) new candidate solutions are sampled isotropically806

by variation of the current parental individuals according to a multivariate normal distribution.807

Recombination and mutation transformations are applied (that amount respectively to changing808

the mean and adding a random, zero-mean perturbation), after which the individuals with the809

highest cost function are selected to become the parents in the next generation. Improved variants810

include the covariance matrix adaptation evolution strategy (CMA-ES), that speeds up conver-811

gence by updating its full covariance matrix (which amounts to learning a second-order model of812

the objective function). In present form, single-step PPO can be thought as an evolutionary-like813

algorithm with simpler heuristics (i.e., without an evolutionary update strategy, as the optimal814

model parameters are learnt via gradient ascent), so it is our guess that the performance should815

be comparable to that of standard ES algorithms with isotropic covariance matrix. Besides con-816

solidating the acquired knowledge, future research should thus aim at improving efficiency (by817

fine-tuning the hyper parameters, or using pre-trained deep learning models) and convergence (by818

coupling with a surrogate model trained on-the-fly, using non-normal probability density functions,819

or modifying the balance between exploration and exploitation, as PPO prevents large updates of820

the policy to avoid the issue of performance collapse). For complex configurations representative of821

industrial applications, the implementation of properly designed numerical rewards (under partial822

state information) and noise reduction techniques is another issue that deserves consideration, as823

pointed out in [38].824

Scope is another key ingredient to keep pushing forward the state of the art. The next step825

is to tackle more complex test cases exhibiting flow unsteadiness and turbulence, which the CFD826

environment is perfectly suited to do via a combination of Reynolds-averaged Navier–Stokes mod-827

eling [76, 77] and second-order, semi-implicit time discretization [78]. We believe that this will828

highlight even more clearly the relevance of the methodology, as [42] speculates that DRL should829

be able to handle chaotic systems without suffering from the shortcomings and limitations of the830

adjoint method, and it is shown in [39] to outperform a canonical linear proportional-derivative831
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controller in controlling turbulent natural convection. The long-term objective would be to en-832

rich the description of the test cases using multi-physics modeling (e.g., radiative heat transfer,833

phase transformation) in order to pave the way toward flexible, ready-to-use control of industrially834

relevant applications, such as thermal comfort for building design or manufacturing processes.835
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