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Abstract We present an event of simultaneous observations of the northern and southern
middle‐altitude polar cusps by the Polar spacecraft and Cluster fleet that occurred on 23 September 2004.
We examine the possible asymmetries in the fields and plasma parameters, although the proximity
of the equinox should limit these asymmetries. Ion sensors reveal two dispersions in both cusps, and data
analysis leads to the conclusion that those dispersions are due to pulsed reconnection at a single X‐line,
which runs along the subsolar magnetopause. While the electromagnetic and particle energy fluxes injected
in both cusp are globally very similar, we report significant differences in ion dispersions, width of the
low‐latitude boundary layer, and peak convection velocities. We ascribe these differences to the dipole tilt
that introduces an asymmetry in the magnetosheath flow at the exterior cusps.

1. Introduction
1.1. Polar Cusps

The polar cusps are the magnetospheric regions through which the shocked solar wind plasma has direct
access to the magnetosphere and ionosphere. Those two funnel‐shaped regions are small in the magneto-
sphere and so are their ionospheric footprints, but they play an important role in the plasma, energy, and
momentum transfer from the solar wind to the magnetosphere and ultimately down to the upper polar
atmosphere. Apart from being one of the densest regions of the magnetosphere, bringing in low‐energy par-
ticles from the solar wind, they are also one of themost dynamic. The location of the polar cups is indeed very
sensitive to the external conditions: solar wind dynamic pressure and interplanetary magnetic field (IMF)
intensity and orientation (e.g., Newell et al., 1989; Pitout et al., 2006). Another feature commonly observed
in themiddle‐ or low‐altitude cusps is themultiple ion dispersions or ion steps. Their origin has been ascribed
to the acceleration process in the reconnection region (Newell &Meng, 1991), the temporal changing nature
of the reconnection process (Escoubet et al., 1992; Lockwood & Smith, 1992, 1994), or the presence of several
reconnection lines at the magnetopause (Trattner et al., 2005; Wing et al., 2001). While their dynamics and
properties are overall well understood in a statistical sense, potential asymmetries between the two cusps
have seldom been studied for obvious observational reasons: The Southern Hemisphere has been poorly
explored, and having two spacecraft simultaneously in the two magnetospheric cusps is rare.

1.2. Hemispheric Asymmetries

It is well known that the high‐latitude ionosphere and magnetosphere exhibit, at times, hemispheric asym-
metries in their plasma and/or field properties.

Some of the causes of these asymmetries are obvious: The inclination of the Earth's axis of rotation induces a
difference in insulation and therefore drives asymmetries in the ionospheric conductivities. Consequently,
variations of the ground magnetic field are more pronounced in the sunlit hemisphere (Wescott, 1962).
Also, this seasonal effect combined with the inclination of the magnetic axis (dipole tilt) results in asymme-
tries in the solar wind‐magnetosphere‐ionosphere coupled system. These are seen in the cusp location:
Burch (1972) showed that the cusp lies at higher/lower latitude when the dipole tilts sunward/antisunward.
This effect was quantified by Newell andMeng (1989). The role of the dipole tilt also shows up in ionospheric
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convection patterns inferred from SuperDARN data: Pettigrew et al. (2010) reported clear statistical differ-
ences in the shape of the convection cells and in the cross‐polar potential in the two hemispheres and
explained these differences by the effect of the dipole tilt.

The auroral display may also exhibit strong differences in the two hemispheres. For instance,
Stenbaek‐Nielsen et al. (1973) noticed much brighter aurora in the Northern Hemisphere compared to the
magnetically conjugate region. Using rare conjunctions of Polar and IMAGE spacecraft, Østgaard et al. (2005)
or Laundal and Østgaard (2009) showed significant auroral asymmetries that were highly unexpected and
challenged the current understanding of the mapping of the magnetic field between hemispheres and the
acceleration processes that result in auroral emissions.

Newell and Meng (1988) showed another consequence of the seasonal effect: They performed a statistical
study of DMSP F7 passes through the cusp and observed a strong asymmetry in low‐energy precipitation
near solstices. The authors ascribed this asymmetry to the faster magnetosheath flow above the winter hemi-
sphere exterior cusp, preventing the low‐energy particle to enter.

However, other—internal or external—sources of asymmetries may exist and lead to an asymmetric magne-
tosphere or ionosphere, even around equinoxes. For instance, the stronger magnetic field in the Southern
Hemisphere (Laundal & Richmond, 2017) may account for some of the asymmetries observed in the popula-
tions of the two lobes (Haaland et al., 2017). Likewise, using theAMPERE experiment (Anderson et al., 2014),
Coxon et al. (2016) noticed that around equinox, the Birkeland (field‐aligned) currents flowing in the
Northern Hemisphere are stronger than those flowing in the Southern Hemisphere. They explained this
by different magnetic field and total electron content in the two hemispheres.

Among external sources, the magnetic reconnection process may also introduce north/south asymmetries in
the magnetospheric system. It is clearly the case when the IMF points northward: Magnetic reconnection
may then take place in one hemisphere but not in the other (e.g., Fuselier et al., 2014). This depends on
the season (Wilder et al., 2013) but possibly equivalently on the orientation of the IMF in the (xGSM, zGSM)
plane (effect of the cone angle). More unexpectedly, Berchem et al. (2016) have shown that the y‐component
of the IMF could also yield hemispheric asymmetries, at least under northward IMF.

1.3. Instrumentation

In this work, we analyze data from ESA's Cluster fleet (Escoubet et al., 2001) and NASA's Polar satellite
(Harten & Clark, 1995). To monitor the entry of magnetosheath plasma into the magnetosphere and identify
the polar cusp in the two hemispheres, we have used particle data from the CIS ion sensor (Rème et al., 2001)
and PEACE electron sensor (Johnstone et al., 1997) on board Cluster and the HYDRA particle sensor
(Scudder et al., 1995) on board Polar. Additionally, we estimate the Poynting flux and convection velocity
using electric and magnetic fields measured by the electric field and wave (EFW, Gustafsson et al., 2001)
and flux gate magnetometer (FGM, Balogh et al., 2001) experiments on board Cluster and the electric field
instrument (EFI, Harvey et al., 1995) and magnetic field experiment (MFE, Russell et al., 1995) on board
Polar. The external conditions are provided by the Geotail spacecraft: The MGF magnetometer (Kokubun
et al., 1994) measures the IMF, and the solar wind properties are provided by the Comprehensive Plasma
Instrument (CPI) described by Frank et al. (1994). SuperDARN (Greenwald et al., 1995) data complement
the diagnostic by determining the time lag to apply between Geotail in the solar wind and Cluster and
Polar in the cusps.

2. Observations on 23 September 2004
2.1. Orbital Configuration and External Conditions

On 23 September 2004, the northern and southern dayside magnetosphere are crossed near the noon sector
at about the same time (~15:15 UT) by Polar in the Southern Hemisphere and the Cluster fleet in the
Northern Hemisphere. Figure 1 displays two views of the spacecraft location in the (y, z)GSM and (x, z)GSM
planes; some magnetic field lines given by the T96 model (Tsyganenko, 1995) are also displayed. The
Cluster spacecraft were on a string of pearl configuration, following one another, with a separation of about
890 km between C1 and C4, the two satellites we shall focus on. This conjunction was found with the
Conjunction Search Tool added to the 3DView on line service (Génot et al., 2018). At 15:20 UT, Cluster
was located at (2.5, −0.4, 4.1) Earth's radii (RE) in Geocentric Solar Magnetic coordinate system (GSM)

10.1029/2020JA028346Journal of Geophysical Research: Space Physics

PITOUT ET AL. 2 of 14



and Polar at (0.8, 0.0,−4.0) REGSM. These locations give geocentric distances of 4.8 RE for Cluster and 4.0 RE
for Polar. The directions of motion of Cluster and Polar are both poleward, that is, northward for Cluster and
southward for Polar. All spacecraft are located close to the magnetic noon, on the late morning side
(Figure 1, top panel). Although close to equinox, a small asymmetry is visible in the northern and
southern cusps in GSM: The grids in both panels of Figure 1 divide the planes in 1‐Re2 squares. The
exterior cusp is located around (+2.5, +2) RE in the Northern Hemisphere and (+1.5, −2.5) RE in the
southern so the northern cusp is more directed toward the Sun than the southern cusp (Figure 1, bottom

Figure 1. Cluster and Polar locations between 15::00 and 15:30 UTC on 23 September 2004 projected in the (y, z)GSM and
(x, z)GSM planes (top and bottom, respectively). Superimposed to the figures are magnetospheric field lines from the
Tsyganenko 96 model.
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panel). The position of Cluster, having a larger XGSM position than Polar when it flies through the cusp, also
reflects this asymmetry.

External conditions (Figure 2) are given by the Geotail spacecraft, which was located just outside the bow
shock at (13.5, −6, 8) RE in the GSM coordinate system (Figure 1). During our time of interest, between
15:00 and 15:30 UT, the solar wind conditions remain relatively steady with a proton density around
4 cm−3 and an x component of the solar wind velocity around 450 km/s. The IMF is steady southward until
15:15 UT when the z component jumps from about −3 to +3 nT.

The timing of the IMF changes and their subsequent responses in the magnetosphere is an important matter
in this study. To have a view as precise as possible, we have used SuperDARN radar data to monitor changes
in the cusp location in response to IMF rotations. We have compared the IMF to data taken along Beam 7 of
the Saskatoon radar, which covers well the area where the magnetic foot points of the Cluster spacecraft are
(Figure 3). Figure 4 shows the data taken along Beam 7. The regions of backscattered signal are characterized
by a strong away velocity (i.e., poleward velocity) of about 1 km/s (top panel of Figure 4), a high spectral width
exceeding 200m/s (middle panel), and a higher power (bottom panel). All these signatures are typical for the
ionospheric cusp (Baker et al., 1990, 1995). The latitudinal motion of the cusp in response to the changes in
the IMF helps us to determine the time delay between Geotail measurements and the cusp response. We
know from numerous studies (e.g., Newell et al., 1989; Pitout et al., 2006) that for southward IMF conditions
the cusp is located at lower latitudes while moving to higher latitudes during northward IMF conditions.

In Figure 4, abrupt changes in the cusp location are indicative of an IMF rotation. For instance, the north-
ward turning of the IMF at 15:15 UT at Geotail (named T1 in Figure 2) triggers a polewardmotion of the cusp
starting at 15:30 UT (M1 in Figure 4). Likewise, the discontinuity seen in the cusp latitude around 15:50 UT
(M2 in Figure 4) matches well the southward turning of 15:35 UT that reaches a minimum in Bz of −4 nT at
15:40 UT (T2 in Figure 2), thus a time lag of 10 to 15 min. This is consistent with the typical propagation time
from the bow shock to the Earth's ionosphere of 10–16min reported by Samsonov et al. (2018). Moreover, the
magnetosphere as well as the ionospheric convection need about 4–6 min to adjust to the prevailing IMF

Figure 2. Three GSM components of the IMF (top panel), solar wind proton density, and X component of the solar wind velocity (middle and bottom panels)
versus time at Geotail. The gray verticals tagged T1 and T2 correspond to the two IMF turnings discussed.
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conditions (Pitout et al., 2001; Taylor et al., 1998; Trattner et al., 2016) so a time lag between observations at
Geotail and in themagnetospheric cusps is probably closer to 10min.We shall adopt this value from now on.

Let us emphasize that this event was already studied from the point of view of Cluster (Escoubet et al., 2008),
and we shall occasionally refer to that study. In that paper, the authors studied the consequences of the IMF
rotation that occurs at 15:15 UT at Geotail.

2.2. Location and Morphological Features of the Cusps

Figure 5 shows the lagged IMF measured by MGF on board Geotail and three ion spectrograms of the differ-
ential energy flux (for 0–15° pitch angle) from Cluster 1 CIS‐HIA, Cluster 4 CIS‐CODIF, and Polar HYDRA.
The three spectrograms are recorded, while the prevailing IMF is southward. The signature of the polar cusp
in ion spectrograms usually exhibits a typical energy‐time dispersion. This feature is clearly seen in data from
all three spacecraft. The orientation of those dispersions, with decreasing energies observed with increasing
latitude, is consistent with the IMF pointing southward (e.g., Pitout et al., 2009; Reiff et al., 1977). One can
also notice that two dispersions are clearly seen in the data from all spacecraft.

Figure 6 displays electron and ion spectrogramsmeasured by theHYDRA instrument on board Polar (two top
panels) and electron and ion spectrograms from the CIS‐HIA and PEACE instruments respectively on board
Cluster (two bottom panels) as a function of the AACGMmagnetic latitude (Shepherd, 2014). It is interesting
to compare the locations of the open‐closed field line boundaries (OCB) and the cusp equatorward bound-
aries (CEB). Assuming high fluxes of keV electrons are on closed field lines and ~100 eV on open field lines,
we can locate the OCB around 77.2° AACGM latitude in the south and 77.8° in the north. Likewise, the CEB,
definedwhere the first ~keV dispersed ions are observed, is seen at a somewhat lower AACGM latitude in the

Figure 3. Polar view of Cluster 1 magnetic footprints (in orange) in the Northern Hemisphere. The field of view of the
SuperDARN Saskatoon radar is shown in gray, as well as its Beam 7 in blue.
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south: 77.7° versus 78.0° in the north. The OCB and CEB are shown as magenta and white vertical lines in
Figure 6. Consequently, the width of the electron boundary layer (between the first detected low‐energy
electrons and ions) is wider at Polar in the Southern Hemisphere (~0.5°) than at Cluster in the Northern
Hemisphere (~0.2°). In principle, this is indicative of a faster plasma sheath flow in the Southern
Hemisphere, where Polar is located (Newell & Meng, 1987). We should note that these boundaries may be
moving back and forth with respect to the spacecraft since we can observe short interruptions of energetic
electrons (above 1,000 keV) on Cluster (2) and Polar (1). The second dispersion on Cluster is not as clear as
in Figure 4 since omnidirectional flux is plotted and particles going downward and upward are mixed.

2.3. Particle Density in the Cusps

Near equinox and irrespective of the tilt angle, one can expect a symmetric filling of the two cusps and there-
fore identical plasma properties. The ion densities given by CIS on board Cluster 1 and Cluster, and by
HYDRA on board Polar are shown in Figure 7. Their values are quite comparable, around 6–8 cm−3, slightly
lower at Polar in the Southern Hemisphere cusp, but this difference might not be significant.

3. Interpretation and Discussion
3.1. Consequence on the Pulsating Nature of Reconnection

The ion dispersions observed at Cluster and Polar have the two properties that have strong implications
regarding the reconnection process at play.

On each spectrogram, the successive ion dispersions do not overlap each other. This indicates we are not in
presence of a multiple X‐line (Fu & Lee, 1985; Lee & Fu, 1985, 1986) but rather of temporal structures due to

Figure 4. SuperDARN data taken by the Saskatoon radar between 14:30 and 16:30 UT on 23 September 2004. The three color panels show, from top to bottom, the
line‐of‐sight plasma velocity in m/s, the spectral width in m/s, and the backscattered power in dB measured along Beam 7. The two gray vertical lines mark
the cusp motion in response to two rotations of the IMF.
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pulsed reconnection (Boudouridis et al., 2001; Lockwood & Davis, 1995; Lockwood et al., 1993). To the
authors' knowledge, it is the first time that the consequence of pulsed reconnection is observed
simultaneously in the two polar cusps.

The first dispersions end and second ones start at about the same time. This is consistent with satellites being
at about the same distance to the reconnection site. Given their location and altitude, this means that the
reconnection site should be close to the magnetic equator. The maximum shear model (Trattner et al., 2007)
around 15:19 UT (Figure 8) predicts a reconnection line running along the dayside magnetopause very close
to the subsolar point. This point will be verified in the next subsection.

3.2. Distance to and Location of the Reconnection Site

We use here the time of flight effect (Rosenbauer et al., 1975) applied to the lower cutoff energy of the cusp
ions (Lockwood, 1997; Lockwood & Smith, 1994) to estimate the distance along the magnetic field lines
between the satellite, where cusp particles are detected, and the reconnection site, where the same cusp par-
ticles are injected. The energy Ei of a given zero pitch angle ion of massm as a function of the distance to the
reconnection site d and the time of flight ti− t0 is given by Lockwood and Davis (1995) and Lockwood (1997):

Ei ¼ m
2

d2

ti − t0ð Þ2

This yields the distance to the reconnection:

d ¼ t2 − t1ð Þ
1
V2

−
1
V1

Figure 5. Composite plot with, from top to bottom: the interplanetary magnetic field measured by MGF on board Geotail (the data are time shifted by 10 min),
differential energy flux of ions given by Cluster 1‐HIA, Cluster 4‐CODIF (H + only), and Polar‐HYDRA.
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where V1 and V2 are the ion velocities of the lowest‐energy and zero pitch angle ions measured at times
t1 and t2. After plotting the ion dispersion in a 1/V‐time spectrogram (where V is the velocity of
precipitating ions), the slope of the dispersion gives us directly an estimate of the distance to the reconnection
site along the local magnetic field line. In practice, (t1, V1) and (t2, V2) are taken along a line of constant
energy flux. Depending of the values chosen, the distance obtained may vary slightly.

At Cluster, we obtain values between 9.4 and 11.6 RE depending on the reference points one takes. These
values are in good agreement with Escoubet et al. (2008) who found 11.4 RE with another technique.

Figure 6. Electron and ion differential energy flux spectra as a function of AACGM latitude from Polar (top panels) and Cluster 1 (bottom panels). OCB are shown
in magenta and CEB in white.

Figure 7. Ion densities measured on board Polar (top panel) and Cluster 4 and Cluster 1 (middle and bottom panels).
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Given the altitude of the spacecraft—or rather its distance to the ground level along the local magnetic field
line—this is equivalent to a distance along the field line from the surface of the Earth to the reconnection
point between 13.2 and 15.4 RE.

At Polar, we find a distance to the reconnection site of the order of 11–12.5 RE, which means a distance
between the reconnection point and the surface of the Earth between 14 and 15.5 RE.

For comparison, the Tsyganenko 02 (T02) model (Tsyganenko, 2002a, 2002b) gives a length, from surface to
surface in the two opposite hemispheres, of the last closedmagnetic field line of 32.7 RE. This value is close to
the addition of the two values found from the ion dispersions (around 30 RE). All this suggests that the recon-
nection line is located very close to or at the subsolar magnetopause and that both Cluster and Polar ion dis-
persions come from the same reconnection line.

3.3. Energy Input

To estimate the electromagnetic energy injected into the two cusps, the magnetic and electric fields mea-
sured at both spacecraft were used to calculate the Poynting flux (Kelley et al., 1991). The Poynting vector

S
!

is defined as follows:

S
!¼ E

!
× δ B

!
μ0

where E
!

is the measured electric field, δ B
!

the magnetic field variation (we have removed the background
field by fitting the total measured field before and after the cusp crossings), and μ0 is the vacuum
permeability.

SB, the component of S
!

parallel to B
!
, determined at Cluster 1 and Polar is given in Figures 9a and 9c. The

power is globally injected toward the Earth in both cases: positive values at Cluster in the Northern
Hemisphere and negative values in the Southern Hemisphere at Polar. Peak values reach about
0.2 mW/m2 in both hemispheres.

Figure 8. Magnetic shear angle at Earth between the IMF and the geomagnetic field. The gray line corresponds to the
expected reconnection line according to the maximum shear model. The intersection between the magnetopause and
the (XGSM, ZGSM) plane is depicted in black.
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Knowing that the velocity of the two spacecraft is about 4.5 km/s and that the time interval considered lasts
600 s at Cluster 1 (from 15:10 to 15:20 UT) and 960 s at Polar (from 15:08 to 15:24 UT), we may integrate over
the latitudinal width of the cusp. We obtain +59.4 W/m at Cluster and−60.5 W/m at Polar. (The plus sign in
the Northern Hemisphere and the minus in the Southern Hemisphere both mean that the power is injected
toward the Earth.) We find very similar values for both hemispheres; the energy injected from the solar wind
into the magnetosphere is thus equally distributed through the two cusps.

It is interesting to note that the total amount of energy at Polar remarkably equals that measured at Cluster
only if one considers the two dispersions recorded at each spacecraft. If not, the first dispersion recorded at

Figure 9. Panels (a) and (c) show for Cluster 1 the field‐aligned Poynting flux and Cluster 1 and Polar; panels (b) and
(d) display the total particle energy flux (PEF) carried by electrons (red) and ions (black) at Polar. The gray vertical
bars indicate the boundaries taken for the integrations.
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Polar injects little energy (−20 W/m) compared to the second one (−40 W/m), while at Cluster, the first dis-
persion contains +40 W/m and the second +20 W/m.

The latter result is surprising because the particle energy fluxes show the opposite trend: The energy flux in
the first dispersions is higher than in the second ones. Figures 9b and 9c show the total energy fluxes carried
by the electrons (red) and ions (black) at Cluster 1 and Polar. In both cusps, we find values of the order
0.01 mW/m2 for the electrons, which carry most of the energy.

These results deserve some comments. The energy flux carried by the particles is about 10 times smaller than
that transported by the Poynting flux; this is not uncommon (Korth et al., 2005). Then, the first dispersions
correspond well with the downward Poynting fluxes. We have integrated over the whole cusp crossings as
we did for the Poynting fluxes. This gives integrated energy fluxes of 11.9 W/m at Cluster in the northern
cusp (9.7 W/m carried by electrons and 2.2 by ions). At Polar, in the southern cusp, we obtain 10.9 W/m
(10.6 W/m carried by electrons and 0.3 W/m by ions). We confirm once again that the particles in the cusp
contain similar energy in both cusp. It has to be noted that the ion energy flux in the southern cuspmeasured
by Polar is significantly lower than that measured by Cluster. Although this has very little effect on the total
particle energy flux, this could be explained by the different energy range of the HIA and HYDRA sensors or
their different evolution in time. The second dispersion at Polar contains only 3.5 W/m of integrated particle
flux (about one third of the 10.9 W/m), while according to the electric and magnetic field instruments,
40 W/m (two thirds of the 60.5 W/m) is injected toward the Earth. Such a mismatch is difficult to interpret.
This kind of decorrelation has already been observed in 25% of the cases studied by Deng et al. (2015) and
interpreted as a reconfiguration of the magnetosphere‐ionosphere system following a change in the IMF.
In our case, smaller changes in the x and z components of the IMF are recorded at Geotail between 15:20
and 15:35 UT but it remains unclear whether they might cause our observations.

Another way of comparing the energy input in the magnetosphere is in principle to look at the cross‐polar
cap electric potential. Estimates provided by the SuperDARN network between 15:14 and 15:16 UT for
instance are 51 and 52 kV for the Northern and Southern Hemispheres, respectively. A word of caution
though: While the values for the Northern Hemisphere can be trusted (the radar coverage is good), the
values for the Southern Hemisphere have to be handled with much care due to a poor radar coverage.

3.4. Convection Velocity and Magnetosheath Flow

Having the electric field E
!

and themagnetic field B
!
, it is straightforward to obtain the convection velocity at

each satellite:

V
!¼ E

!
× B
!

B2

Figure 10 shows the convection velocities calculated at Cluster 1 and Polar. The average convection velocity
in the cusp is about 9.0 km/s at Polar and 9.8 km/s at Cluster. We may consider the different altitudes of
Cluster and Polar and adjust the velocity found at Polar to the altitude of Cluster. To do so, we assume that
there is no potential drop along a given field line and we apply a scaling factor on the convection velocity
due to the change of magnitude of the magnetic field with the altitude. This scaling factor is obtained with
the T02 model (Tsyganenko, 2002a, 2002b). We find an average velocity of 9.9 km/s. The average convec-
tion velocities are essentially the same in both hemisphere. However, peak velocities measured at Polar
reach at best 20 km/s while they often exceed 40 km/s at Cluster. These differences cannot be explained
by the altitude difference only, neither by the different shapes of the ion dispersions. Of course, one has
to bear in mind that these differences may also come from the two electric field instruments, which have
different designs (additional container for the bias current electronics at the end of wire boom included
on Cluster).

The dipole tilt in the (x, z)GSM plane during this event is about +9°. While this value is small, it is large
enough to yield the exterior northern cusp at a larger XGSM and lower ZGSM (in absolute value) than the
southern cusp. In other words, the northern cusp is located at lower magnetic latitude than the southern
one. This implies a faster magnetosheath flow at the southern exterior cusp (Spreiter et al., 1966).
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4. Summary

We have reported on an event of simultaneous in situ observations of the northern and southern polar cusps
by Polar and Cluster on 23 September 2004. This event is interesting for two reasons: (i) simultaneous cusp
crossing are quite rare and (ii) this one occurred only 2 days after the Autumn equinox, which should in prin-
ciple limit hemispherical asymmetries of seasonal (geometric) origin.

In many respects, the two cusps crossings presented in this paper look indeed the same: Both spacecraft
observe two ion dispersions, which seem to be the signature of pulsed reconnection in the cusp; they record
similar ion density, average convection velocity, and energy input (Poynting flux and particle energy flux).

From this specific event, we can confirm that near equinox, dayside electromagnetic and particle energy
transfer from the solar wind to the magnetosphere is indeed evenly distributed between the two cusps.
However, peak convection velocities and ion dispersions exhibit substantial differences that may be the con-
sequences of the (weak) tilt angle, implying that the two cusps find themselves at slightly different magnetic
latitudes. More of those simultaneous cusp crossings should be studied—and modeled—to confirm this
hypothesis. In addition, a mismatch between the distribution of Poynting flux and particle energy flux has
been found at Polar and remains unexplained.

Data Availability Statement

OMNI data (solar wind and IMF parameters) were retrieved through the AMDAwebsite (http://amda.cdpp.
eu; they are also available at https://omniweb.gsfc.nasa.gov/). Cluster and Polar data have been plotted with
CLWeb (http://clweb.irap.omp.eu/). SuperDARN data are available at Virginia Tech (http://vt.superdarn.
org). Figures 1 and 3 showing the (projected) orbits of Cluster and Polar were generated by 3DView (http://
3dview.cdpp.eu). Simulation results have been provided by the Community Coordinated Modeling Center
at Goddard Space Flight Center through their public Runs on Request system (http://ccmc.gsfc.nasa.gov).
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