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Abstract
Epidemiological networks are commonly used to explore dynamics of parasite transmission

among individuals in a population of a given host species. However, many parasites infect

multiple host species, and thus multi-host networks may offer a better framework for investi-

gating parasite dynamics. We investigated the factors that influence parasite sharing – and

thus potential transmission pathways – among rodent hosts in Southeast Asia. We focused

on differences between networks of a single host species and networks that involve multiple

host species. In host-parasite networks, modularity (the extent to which the network is divid-

ed into subgroups of rodents that interact with similar parasites) was higher in the multi-spe-

cies than in the single-species networks. This suggests that phylogeny affects patterns of

parasite sharing, which was confirmed in analyses showing that it predicted affiliation of in-

dividuals to modules. We then constructed “potential transmission networks” based on the

host-parasite networks, in which edges depict the similarity between a pair of individuals in

the parasites they share. The centrality of individuals in these networks differed between

multi- and single-species networks, with species identity and individual characteristics influ-

encing their position in the networks. Simulations further revealed that parasite dynamics

differed between multi- and single-species networks. We conclude that multi-host networks

based on parasite sharing can provide new insights into the potential for transmission

among hosts in an ecological community. In addition, the factors that determine the nature

of parasite sharing (i.e. structure of the host-parasite network) may impact transmission

patterns.
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Introduction
Parasites play a major role in the lives of animals and humans. In attempts to understand the
ecological processes leading to infection with a particular parasite, ecologists have investigated
the factors influencing the interaction between the host species and the parasite in question. In
recent years, the limitations of this “single-host-single-parasite” perspective have become ap-
parent due to the wealth of indirect effects that parasites and hosts exert on each other within a
community, and given the recognized importance of understanding cross-species parasite
transmission [1–3]. Specifically, considering a multi-host-multi-parasite system is necessary
because the dynamics of a parasite in one species can depend on its dynamics in another [4],
and because within a host, co-infection can affect the dynamics of the parasites involved [5].

Network analysis offers a new approach to uncover the complexity underlying interactions
among multiple hosts and parasites in an ecological community [6]. The biological interactions
among hosts and parasites are depicted as a bipartite host-parasite network, in which edges de-
scribe infection of hosts by parasites (interactions among hosts or among parasites are not al-
lowed). A network approach elucidates how properties of the whole network emerge from the
properties of its nodes, allowing examination of the system at both the node and network levels
[7,8].

Typically, the units of analysis in host-parasite networks are species rather than individuals.
However, we lose valuable individual-based information by aggregating individual observa-
tions into species-averages [9,10]. The loss of individual-level information is especially impor-
tant in disease ecology because parasite transmission necessarily occurs at an individual level
(individuals are infected, rather than species). In addition, within an individual host, co-infec-
tion with multiple parasites can determine both infection with subsequent parasites and the
transmissibility of parasites to other individuals [4]. The individual level is also important be-
cause large variation exists among individuals in characteristics that promote parasite trans-
mission. Indeed, disease outbreaks may be promoted by a small fraction of individuals who are
responsible for the majority of transmission events (‘super-spreaders’) [11,12].

Unlike host-parasite networks, epidemiological networks attempt to characterize parasite
spread among host individuals of a single species [13–15]. Epidemiological networks are uni-
partite (contain one set of nodes), with edges representing contact patterns or some other type
of individual-based interaction meaningful for transmission of the parasite in question [13]. In
studies of a sexually transmitted disease, for example, an epidemiological network may repre-
sent mating patterns among individuals in a social group or population. This approach is es-
sentially a single-host species-single-parasite species approach.

Previous work has highlighted the importance of considering multiple hosts and host het-
erogeneity in studies of parasite transmission [1–3,16–18]. To date, however, this has not been
applied in the context of epidemiological networks involving multiple species. Most likely, this
absence reflects the challenges of constructing such networks, which requires simultaneous
capture or observation of multiple species in the same time and place [13,19]. We argue that it
is important to explore multi-host networks, especially for understanding the effects of hetero-
geneity at two levels: (i) population-level characteristics shared by all members of a species in
the sampled population (e.g. niche breadth, sociality, and abundance) and (ii) individual char-
acteristics associated with variation in parasite acquisition, such as variation in age [20], sex
[21] or immunocompetence [22]. In contrast, in single-species networks heterogeneity is only
a consequence of individual-level characteristics.

Here, we extend previous studies by investigating multi-host networks using a hybrid ap-
proach. First, we examine structural heterogeneity driven by individual- and population-level
characteristics in host-parasite bipartite networks composed of individuals of the same and
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different species. (Fig. 1A,B). Some of these characteristics, such as sex, may represent contact
parameters in a typical epidemiological network.

Second, we examine structural heterogeneity and parasite dynamics in unipartite “transmis-
sion-potential networks” (TPN) based on parasite sharing. Our general approach is to project
the bipartite host-parasite networks to unipartite networks by connecting two host individuals
if they share at least one parasite species (Fig. 1C,D) [23,24]. Although using networks based
on parasite sharing can yield important insights into the relationship between network struc-
ture and possible transmission patterns [23,24], a complete picture of the system requires an
analysis of both the host-parasite and the (projected) transmission networks, because the struc-
ture of the latter is a direct result of the structure of the former. In addition, the effect of the in-
clusion of multiple hosts in such networks on parasite dynamics has not been investigated.

We used data on south-east Asian rodents and their gastrointestinal helminth parasites. To
assess the value of including multiple species, we compared multi-versus single-species individ-
ual-based networks (Fig. 1) to test two hypotheses. First, we hypothesized that the difference in
individual- and population-level sources of heterogeneity translates to structural differences
between multi- and single-species networks. We examined this hypothesis using modularity,
which is a network property crucial to the ecology and evolution of hosts and parasites [25–
27]. Generally speaking, modular networks (either unipartite or bipartite) are characterized by

Fig 1. Network types used in this study.Host individuals and parasite species are depicted as circles and squares, respectively, with different colors
representing different host species and parasites are represented by numbered red boxes. Networks in A andB are bipartite networks in which an edge
represents infection of a host individual with a parasite species. Examples of modules composed of host individuals are depicted by dashed rectangles.
Networks inC andD are transmission-potential networks created by connecting two individual hosts from the networks in A or B, respectively, if they share at
least one parasite species. The weight of an edge between two individuals is the similarity (beta-diversity) in parasites infecting a pair of individuals,
calculated with the Jaccard index (the thicker the edge, the more similar). The size of the nodes is relative to their position in the network, calculated with
eigenvalue centrality (larger means more central).

doi:10.1371/journal.pone.0117909.g001
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distinct network subgroups (modules) composed of nodes interacting preferentially among
themselves than with other nodes in the network. In host-parasite networks constructed at the
species level, modules may be composed of host species more closely related phylogenetically
[25,26], partly because closely related species are closer in characteristics that determine com-
patibility between hosts and parasites. In individual-based networks, we expect the same phe-
nomenon: the tendency for a pair of individual hosts to occur in the same module (i.e. to be
infected by similar parasites) should increase with phylogenetic proximity and as similarity in
characteristics between individuals increases.

Second, at the node level, we hypothesized that the factors that affect the roles that individu-
als play in potential parasite transmission differ between multi- and single-species networks.
This role can be quantified by indices of centrality where a central node is one that is highly
connected to and reachable from other nodes. In epidemiology, central individuals can be con-
sidered as super-spreaders [13,28], and the same may be true in transmission networks based
on parasite sharing. We therefore used node centrality to capture a node's potential to spread
parasites relative to other nodes in the network. We expected that species identity is a strong
factor influencing centrality because some host species have been shown to be more central
than others [29,30].

Finally, to link network structure to parasite dynamics and to put our results in an applied
context, we simulated the spread of a novel parasite in the transmission-potential networks.

Results

Data set
We used data on 104 individual rodents from six species and their helminths parasites from
three human-disturbed localities: Buriram (14°89’N; 103°01’E; Thailand), Mondolkiri (12°
12’N; 106°89’ E; Cambodia) and Sihanouk (10°71’N; 103°82’E; Cambodia). Our data set was
unique as it allowed us to test our hypotheses in three different communities with similar char-
acteristics and contained information on individual- and population-level characteristics as
well as parasitism. Rodents were parasitized by 13 taxa of gastro-intestinal helminths, identified
to species level (see S1 Methods for details on the study system). For each locality, we built one
multi-species unweighted (the values of the edges were 1 or 0) bipartite host-parasite network
in which edges depicted infection and were drawn between parasite species and host individu-
als (Fig. 1A). We then extracted from that network smaller single-species networks in which in-
dividual hosts belonged to the same species (Fig. 1B).

We selected five individual characteristics potentially associated with variation in parasite
acquisition: sex, age (adult versus young), immunocompetence, body mass and habitat in
which an animal was caught (forest, lowland/upland agriculture and settlement) because the
likelihood of exposure to particular parasites varies with habitat. As a proxy for immunocom-
petence, we used the ratio of spleen mass to body mass (RSM), with a larger ratio indicating
higher immunocompetence [31]. We considered heterogeneity at the rodent species level by
using either phylogenetic distance between species or a factor with species identities as levels.

Network modularity in host-parasite networks
In the host-parasite networks (Fig. 1A,B), we identified modules composed of rodents (rather
than rodents and parasites) that interact with similar parasites with a simulated annealing algo-
rithm that finds the maximization of the modularity functionM (see [32,33] for a detailed ex-
planation). To ensure that the observed modularity is a true biological pattern rather than a
result of a random process, we tested for significance ofM by comparing the observed value to
those derived from 1000 random networks constructed with a probabilistic null model [34]
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that assumed that the probability of drawing an edge between a rodent individual and a para-
site species is proportional to the susceptibility of the rodent to parasites (i.e. it considers the
number of parasites infecting the individual) and to the infection potential of the parasite (i.e.
it considers the number of individuals infected by the parasite).

For host-parasite networks with>10 nodes, all but one single-species network (Bandicota
savilei in Buriram) were significantly modular (Table 1). The three multi-species networks
were evenly fragmented with four modules in each but modularity (M) of the multi-species
networks of Buriram and Sihanouk was�1.8 times stronger than in Mondolkiri. Modularity
was higher in the multi-species than in the single-species networks in Buriram and Sihanouk,
but not in Mondolkiri (Table 1). Differences inM between multi- and single-species networks
were generally not a result of differences between network size or connectance—the proportion
of realized interactions out of all possible ones (S1 Methods).

After determining the modular structure of the networks, we tested the effect of individual-
and population-level characteristics on the affiliation of individuals to modules (module com-
position) with a logistic multiple regression on distance matrices (MRM), following [26]
(S1 Methods). The phylogenetic distance between individuals was a significant predictor of af-
filiation to modules in Buriram and Sihanouk (but not in Mondolkiri): the closer two individu-
als were phylogenetically, the more likely that they occurred in the same module (Fig. 2A,C).
Other characteristics like habitat and body mass were also significant predictors of the affilia-
tion of individuals to modules in the multi-species networks of Buriram (Fig. 2A) and Siha-
nouk (Fig. 2C). The importance of individual-level characteristics became even more evident
when we pre-determined module composition by taxonomy. In that analysis, the value ofM
was much lower than when obtained through simulated annealing (Table 1).

Table 1. Information on multi- and single-host bipartite networks.

# Individuals # Helminth taxa Parasite richness (range, mean ± SD) C M (Number of modules)

BURIRAM

Multi-species 27 10 1–3, 1.63±0.63 16.3% MSA = 0.53 (4) *** MT = 0.22

Bandicota savilei 15 7 1–3, 1.93±0.59 27.6% 0.24 (5)

Mus cervicolor 6 4 1–2, 1.33±0.52 33.3%

Rattus exulans 6 3 1–2, 1.17±0.41 38.9%

MONDOLKIRI

Multi-species 37 8 1–4, 1.95±0.85 24.3% MSA = 0.29 (4) *** MT = 0.06

Bandicota savilei 23 7 1–4, 2.13±0.87 30.4% 0.24 (3) *

Rattus tanezumi 14 6 1–3, 1.64±0.74 27.4% 0.33 (3) *

SIHANOUK

Multi-species 40 6 1–3, 1.32±0.57 22.1% MSA = 0.54 (4) *** MT = 0.26

Rattus argentiventer 5 3 1–3, 1.8±0.84 60%

Rattus exulans 11 3 1–3, 1.45±0.69 48.5% 0.25 (3) **

Rattus norvegicus 9 2 1, 1±0 50%

Rattus tanezumi 15 6 1–2, 1.27±0.46 21.1% 0.52 (4) ***

Parasite richness is the number of helminth taxa infecting an individual rodent. MSA—modularity obtained through simulated annealing; MT—modularity

obtained by pre-determining module composition by taxonomy (one module per species); C—network connectance—is the number of realized interactions

divided by the number of possible ones. Statistical significance of modularity

* P < 0.05

** P < 0.01

*** P < 0.001.

doi:10.1371/journal.pone.0117909.t001
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When considering only single-species networks, none of the characteristics that we pro-
posed was a significant predictor of module affiliation (except sex in B. savilei and body mass
in Rattus tanezumi in Mondolkiri). Looking more closely at the standardized coefficients, a
large difference between the coefficient of the multi-species network and that of a single-species
network indicates that the effect of the characteristic on the probability that two individuals
will co-occur in the same module changes upon inclusion of other species. In Mondolkiri, for
example, the effect of sex was stronger when considering only B. savilei than when considering
all species (Fig. 2B). In contrast, in Sihanouk sex had a relatively constant effect when consider-
ing all species and for each species in particular (Fig. 2C).

Centrality in transmission networks
To examine the factors that affect the roles that individuals play in potential parasite transmis-
sion, we projected each of our single- and multi-species bipartite host-parasite networks to uni-
partite TPNs by connecting two individual hosts in the unipartite network if they shared at
least one parasite species in the bipartite network (Fig. 1). In our parasite-sharing transmission
networks, the meaning of an edge is not equivalent to networks constructed based on contact
patterns. Whereas contact networks represent potential for transmission based on co-occur-
rence in space and time, we follow others [23,24] by assuming that edges in our transmission
networks depict the potential for transmission between a pair of individuals of the same or dif-
ferent host species based on ecological and physiological characteristics that promote parasite
sharing. By transmission potential, we mean the likelihood that a given individual will infect
another individual, relative to other individuals in the network, based on observed parasite
sharing. Thus, connected individuals form part of the same transmission chain [24].

We calculated edge weights using the Jaccard index, which is a measure of beta diversity
[35], assuming a positive relationship between the similarity in parasite infections shared by a
pair of individuals and the likelihood that a novel parasite would infect them both. Thus, an
edge received its minimum value of 0 when the pair of individuals did not share any parasite
and its maximum value of 1 when the pair of individuals were parasitized by the exact
same species.

We used eigenvalue centrality (EC) to quantify the role of a node in terms of promoting par-
asite transmission. With EC, a node's importance is increased when it has more connections to
other nodes that are themselves important [8]; EC thus enables quantification of the transmis-
sion potential of an individual [15,36]. We examined the effect of individual- and species-level
characteristics on EC with a set of linear models for each of the multi-species TPNs and for sin-
gle-species TPNs with>10 individuals. Results of this model selection indicated that species
identity was a strong determinant of the position of individuals in the multi-species TPN in
Buriram but less so in Mondolkiri. In Sihanouk, species identity did not predict centrality at all
(Fig. 2D-F; see S1 Table for detailed results of model selection). This indicated that the effect of
species identity on centrality is strongly network-dependent. We found differences among the
multi-species networks in the importance of characteristics (Fig. 2D-F). For example, in Siha-
nouk the body mass of individuals was an important predictor of centrality whereas in

Fig 2. Differences betweenmulti- and single-species networks. Differences are in characteristics that determine co-occurrence in modules and centrality
of individuals (rows) for three localities (columns). (A-C) The z-score-standardized coefficients of a multiple-regression on matrices procedure. (D-F) The
importance of coefficients calculated from a multi-model inference procedure as the sum of model weights across all the models in which the coefficient
appears (see S1 Table). In A-C ‘phylogeny’ is the taxonomic distance between two individuals. In D-F ‘species’ is a factor depicting rodent species identity.
BM—body mass; RSM—relative spleen mass to body mass. Note that: (i) in Buriram the single-species network was not analyzed because it was not
statistically significantly modular; (ii) RSM was not included in the analyses in Mondolkiri due to an excess of missing cases; (iii) Statistical significance is
relevant only for A-C.

doi:10.1371/journal.pone.0117909.g002
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Mondolkiri sex was important. As with modularity, we found inconsistencies between the
multi- and single-species networks in the importance of individual-level characteristics that af-
fect centrality within a locality. For example, in Mondolkiri, sex was an important predictor of
centrality in the multi-species network and in the single-species network of B. savilei but not in
that of R. tanezumi. In contrast, age was a poor predictor of centrality in the multi-species net-
work but a strong one for B. savilei (Fig. 2E).

The position of specific individuals in the single-species networks in relation to their respec-
tive multi-species networks was maintained for some host species but not for others as indicat-
ed by a correlation between the centrality of individuals in a particular single-species network
and their centrality in the corresponding multi-species network (Fig. 3). For example, individu-
als of Rattus norvegicus in Sihanouk, which were very central in the multi-species network
(high centrality), were peripheral (low centrality) in the single-species network, as indicated by
a negative correlation coefficient.

Parasite transmission dynamics
To link network structure to parasite dynamics and to put our results in an applied context, we
simulated the spread of a novel parasite across the TPNs with a SI (susceptible-infected) epide-
miological model in which an individual can be either susceptible to the parasite or infected
and thus infectious. At the start of each simulation, one rodent individual was randomly select-
ed to be infected. In subsequent time steps, the parasite was allowed to spread across rodents in
the network. The probability of parasite transmission from rodent individual i to its neighbor j
in the next time step was calculated as Pi!j = 1 −(1 − θ)wij, where wij is the edge weight

Fig 3. Centrality in single-versus multi-species networks. Data points depict Pearson correlation
coefficients between the rescaled eigenvalue centrality of individuals of a particular species in the single-
species network and in the multi-species network. Inset: an example for Rattus tanezumi in Sihanouk. Note
that in the inset data points represent individuals, with some overlapping data points (i.e. individuals with
identical centrality values).

doi:10.1371/journal.pone.0117909.g003
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assuming that a stronger weight leads to an increased infection probability [33]. The parameter
θ is a fixed infection probability, characteristic to the novel parasite in the host species to which
the parasite is spreading [33]. We set θs = 0.02 in the single-species TPNs.

In the multi-species TPNs, we set θm = 0.02 � βnk, where βnk is the Jaccard index of shared
parasites between species n and k [37,38], assuming that the infection probability of individuals
of different species was linearly proportional to the similarity in parasites shared by the host
species [37]. Because βnk ranges between 0 (no shared parasites) and 1 (complete sharing), in-
fection probability was at a maximum of 0.02 (the value of θs) for individuals from species with
completely overlapping parasite communities (same species) and 0 for individuals from species
with no shared parasites. Our model thus allowed us to account for parasite sharing both at the
individual and the species levels and took phylogeny into account because closely related spe-
cies tend to share more parasites [37,38]. It also considered the relative contribution of within-
species transmission to cross-species transmission and the common assumption of multi-host
models that within-species transmission is greater than between-species transmission [1,2,16].

To separate the effect of network structure from that of differential infection probability, we
also repeated these analyses with a fixed value of θm = 0.02 in the multi-species networks, simu-
lating a constant infection probability among all species.

The time steps required to infect all individuals in the network was used as a measure of par-
asite spread efficiency that we defined as time to global infection (TGI), sensu [33]. Our final

response variable was the average value of TGI (TGI) obtained from simulations of 250 sub-
TPNs which controlled for the size and connectance of the compared networks.

Overall we made five comparisons of a single-species to a multi-species TPN: B. savilei in
Buriram, B. savilei and R. tanezumi in Mondolkiri, and R. exulans and R. tanezumi in Sihanouk

(Fig. 4). In each of these comparisons, we had three density plots, describing the TGI distribu-
tion, corresponding to single- and multi-sub-TPNs with fixed and varying θm, the infection
probability. The density plots significantly differed among each other in all five comparisons
made: (Kolmogorv-Smirnov test, P< 0.0001 in all cases). This emphasized the differences in
parasite dynamics between single- and multi-species networks.

Looking more closely, In Buriram and Sihanouk (Fig. 4A,D,E) infection occurred at a slower
pace in the multi-species than in the single-species TPNs when infection probability differed

among species (θm was not fixed), as indicated by large deviation of the median TGI (yellow
circles in Fig 4F). This deviation was much lower when infection probability was equal for all
species (i.e. fixed θm; blue circles in Fig. 4F). Continuing this line of evidence for Buriram and
Sihanouk, dynamics were considerably different between single-species and multi-species
TPNs with a varying infection probability, as indicted by a very low overlap index. The similar-
ity in dynamics increased, but still remained<50%, when infection probability was fixed (In-
sets in Fig. 4A,D,E). This indicated that differences in network structure between single- and
multi-species networks played an important role in determining dynamics. In contrast, in
Mondolkiri, the deviation from the median was not high (Fig. 4B,C,F) and the overlap in the
plots between the single and multi-species scenarios was similar regardless of a fixed infection
probability (insets in Fig. 4B,C). These differences between the localities indicated that dynam-
ics, just as modularity and centrality, are context- (and therefore network-) dependent.

For the multi-species scenario, a large overlap between the density plots of the fixed/non-
fixed θm indicates a small effect of species composition on dynamics. This was evident in Mon-
dolkiri (but not in Buriram and Sihanouk; Fig. 4), with an overlap of almost 75%, emanating
from the fact that B. savilei and R. tanezumi, the only two species present in Mondolkiri, are
closely related and thus inter-specific difference had little influence on θm. In Buriram and
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Sihanouk there were more species, which were also more distant, creating larger differences in
θm expressed as a lower overlap (Fig. 4A,D,E).

Discussion
A primary aim of disease ecology is to understand host-parasite interactions and parasite
spread in a particular environment [39]. Using network analysis based on parasite sharing we
find that these two processes are intertwined. In addition, our single-versus multi-species com-
parisons show that considering heterogeneity at both the individual and the species levels gives
a more complete view of the system. Our data and associated results represent just one example
of projecting networks based on parasite sharing; results for other systems may differ. Thus, we
devote much of what follows to consider the broader advantages, assumptions and limitations
of using parasite sharing as a method for constructing multi-species networks.

Single-species versus multi-species networks
We found that the structure of bipartite individual-based host-parasite networks differed be-
tween multi- and single-species networks, partially supporting our first hypothesis that

Fig 4. Density plots depicting the distribution of time to global infection (TGI) for transmission-potential networks (TPNs). TPNs were of equal size
and connectance under three conditions: single-species, multi-species with θm (infection probability) varying among species and multi-species with fixed
θm = 0.02. Each panel describes a comparison of a given single-species network to multi-species networks in a given locality: (A) Bandicota savilei in
Buriram; (B) and (C) B. savilei and Rattus tanezumi in Mondolkiri, respectively; (D) and (E) R. exulans and R. tanezumi in Sihanouk, respectively. Plots
skewed to the left indicate a faster infection and curve height is indicative of the probability that global infection occurs at a certain pace. Insets inA-E show
the overlap between two curves (depicted by the colored circle above the bar) calculated as the integral of the area common to both curves. (F) The deviation
in median TGI of the multi-species networks with fixed (blue circles) or non-fixed (yellow circles) θm frommedian TGI of the single-species network. The
deviation was calculated for each of the panels A-E. Small overlap and a greater deviation of the median between the single-species and the multi-species
plots mean that the inclusion of other species changes the velocity of parasite spread.

doi:10.1371/journal.pone.0117909.g004
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predicted stronger modularity in multi-species networks. This indicates that species-level char-
acteristics shape the structure of individual-based host-parasite networks. Individual heteroge-
neity in some characteristics had similar effects in both multi-and single-species networks,
while other characteristics had different effects in the different networks. When scaling up
from individual to species-level networks, this may affect the structure of the species-level net-
work [9]. In addition, differences between localities point to the context-dependence of the
network itself.

At the node level, the difference between single- and multi-species networks was more strik-
ing, indicating that the potential role that individuals play in parasite transmission is a function
of both sources of heterogeneity. Previous studies have emphasized the importance of trans-
mission heterogeneity and the identification of super-spreaders [12,28]. Our results suggest
that another source of heterogeneity involves differences among species. In support, individu-
als that were more central in the single-species networks were generally also more central in
the multi-species networks.

Parasite dynamics in multi-host systems
Host heterogeneity is known to be important for parasite infectiousness [17,18]. For example,
the introduction of grey squirrels (Sciurus carolinensis) infected with parapoxvirus caused a se-
vere decline in a disease-free population of red squirrels (Sciurus vulgaris) in England [40]. Pre-
vious efforts to understand parasite dynamics in multi-host systems indicated that the ability
of parasites to spread in multi-host systems depends on the relative contribution of within-spe-
cies to cross-species transmission [1,2,16]. Therefore, dynamics is affected by both individual-
and species-level sources of heterogeneity. However, current multi-host models of parasite dy-
namics assume homogeneously-mixed populations. Here, we made a first attempt to quantify
dynamics in a multiple host species transmission network model based on parasite sharing.
This is a natural next step to the study of VanderWaal et al. [24], which identified individuals
and species that are key to transmission in such networks but did not examine transmission
per se.

Our simulations clearly showed that in networks of the same size and connectance, the dy-
namics of parasite transmission differs between single-species and multi-host networks. This
result was not only due to the relative contribution of within-species vs. cross-species transmis-
sion but also due to network structure because it was maintained even when assuming that the
parasite infects different species with the same infection probability. Studies that consider
transmission only within a single species, as is common in current network models, may thus
incorrectly estimate the dynamics of parasite spread, in line with previous studies that demon-
strated a dependence of infection probability upon species richness in the community under
certain conditions [17,41]. This aspect provides a rich area for future studies of wildlife net-
works because incorporation of several host species may have several effects on the system, de-
pending on the particular dynamics of the pathogen in each of the species [17] and species
characteristics related to their potential to encourage transmission [18].

Interestingly, the process of infection was context-dependent, indicating that different net-
works may be affected by different processes even when having similar species composition.
Therefore, a host species which may be central for disease transmission in one site may be less
important in a different site, depending on the ecological context and species community. This
finding is crucial for designing adequate control plans.
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The use of transmission-potential networks
Using network models to study parasite dynamics in multi-host systems is advantageous be-
cause individuals of different species may not be homogeneously mixed, as is commonly as-
sumed (e.g. [2,40]). This effect can be captured by using parasite sharing as a predictor for
parasite spread in TPNs. At the interspecific host level, parasites may be shared through pro-
cesses occurring at different time scales: cross-species transmission (ecological time scales) and
co-inheritance (evolutionary time scales). On the other hand, it can be argued that the mecha-
nisms underlying parasite sharing at the host level may be irrelevant for TPNs because once
two individuals of different species share at least one parasite, it is clear that they possess simi-
lar physiological (e.g. immune response) and ecological (e.g. diet and habitat preferences) char-
acteristics that would most likely allow them to share a novel one.

To date, only one study that we know of has constructed multi-host networks in which
edges represent social contacts [42]. Böhm et al. [42] used proximity collars to record intra-
and inter-species contact patterns of badgers and cows to obtain insights into inter-specific
transmission of bovine tuberculosis. They showed that badgers tended to interact more fre-
quently with cows than with badgers from other social groups. Moreover, those interactions
were with cows with a central position in the herd (more connected). Their study thus empha-
sizes the importance of using a network approach in studies of cross-species disease transmis-
sion. Yet, collecting data adequate for constructing multi-host networks in which edges are
observed contact patterns is in the vast majority of cases difficult. Using parasite sharing as an
alternative method is thus advantageous.

One limitation of this approach is that the inclusion of different parasites may result in dif-
ferent TPNs. However, this is equivalent to obtaining contact networks with different structure
by using different methods (e.g. capture-recapture vs. radio-tracking; [19]). Ideally, the most
complete set of parasites should be included in the analysis. A second limitation is that connec-
tions between individuals that share a widespread parasite may be over-represented but such
an effect can be easily tested for by repeating analyzes with and without the parasite. A third
limitation is that TPNs may not represent true individual contacts. However, a recent study by
VanderWaal et al. [23] showed that a network based on shared Escherichia coli strains co-var-
ied with a network of social contacts in giraffes (Giraffa camelopardalis). This finding supports
the assumption that transmission pathways based on shared parasites can reflect transmission
pathways based on social contacts.

Yet, empirical comparisons between a TPN and a true contact network are needed to further
validate this assumption. We are not aware of any data set that includes both individual con-
tacts and a parasite survey in multiple species, but such data could be collected. For example,
parasite sharing is possible between primate species sharing a physical space [43]. Following
primate groups to document potential transmission edges (e.g. shared space, common food),
while simultaneously collecting their feces for a parasite survey would enable construction of a
multiple-species network based on shared space use and a TPN.

When working with networks based on parasite sharing, several considerations are impor-
tant. First, data collection should occur over a rather narrow time window and limited geo-
graphical space, depending on the species’ life history and the goal of capturing individual
heterogeneity. Second, capture probability should be equal among species—an assumption that
in practice is difficult to achieve—but can be controlled for statistically. Finally, transmission
mode of parasites included in the host-parasite network should be taken into account. For in-
stance, a TPN derived from a host-parasite network in which parasites are sexually-transmitted
is likely to differ from one based on environmental transmission.
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The method chosen for quantifying edge weights can also affect the results. For example,
VanderWaal et al. [24] created a transmission network of individuals belonging to different un-
gulate species by connecting a pair of individuals if they shared at least one genetically-deter-
mined subtype of E. coli. Their networks were unweighted—the values of the edges were either
0 (no subtypes shared) or 1 (at least 1 subtype shared)—and thus important information was
lost in the projection from the host-subtype to the transmission network (e.g. the number of
subtypes shared between individuals). Here, we used quantitative TPNs constructed with one
measure of beta diversity (Jaccard index), but other indices are also available [35]. For many of
these issues, computer simulations can be usefully applied to investigate options for construct-
ing TPNs from patterns of parasite sharing.

Applicability and future directions
To date, only a single study has considered a multi-host transmission network, which was also
based on parasite sharing via projection (although not explicitly stated) [24]. Here, we show
that exploring the original host-parasite network is crucial if we wish to understand the pro-
cesses underlying the TPN, and we take a first step to understand parasite dynamics in multi-
host networks. Further, we identify several future directions that can lead to a better under-
standing of multi-host networks.

From a modeling perspective, applying other structural indices besides modularity will un-
doubtedly provide new insights into individual-based multi-species networks. For example, the
degree of specialization of individuals and parasite species in the host-parasite network can be
measured [44]. From an epidemiological perspective, extensions of the SI model could allow
for recovery or an exposed but non-infectious period.

From a disease control perspective, understanding individual-based multi-species networks
is essential because it provides a way to model the spread of parasites or pathogens that can
switch hosts. Insights from individual-based multi-species models may thus aid disease control
efforts by identifying both individuals and species that require greater control, making the ef-
forts more effective [28]. Furthermore, in systems where individual data has already been col-
lected, such as in many parasite surveys (e.g. [45]), TPNs provide an immediate and cost-
effective method to preliminarily understand the role of multiple species and individual hetero-
geneity in disease transmission.

Conclusion
The use of transmission networks based on parasite sharing can be an advantageous method to
understand parasite dynamics in a multi-host context. However, ecological factors that deter-
mine the nature of sharing (i.e. structure of the host-parasite network) and the analytical meth-
od of network projections should not be overlooked because they can greatly affect the results.
By analyzing both host-parasite and transmission networks, insights can be gained from these
two perspectives alike for a complete picture of the infection process. In this way novel insights
into how parasites are transmitted within a community or assemblage can be gained, thereby
opening a new avenue of research at the interface between ecology and epidemiology.

Materials and Methods

Network modularity
The simulated annealing algorithm we used identifies modules composed solely of host indi-
viduals based on their shared interactions with parasites by maximizing the modularity func-
tionM [32,33]. The functionM, intended specifically for bipartite networks, approximates its
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maximum value of 1 when (i) all host individuals infected by a given parasite species belong to
a single module and (ii) the probability of two randomly picked host individuals being infected
by the same parasite species is low [32,33].

Multiple regression on distance matrices
We tested the effect of individual- and population-level characteristics on the affiliation of indi-
viduals to modules (module composition) with a logistic multiple regression on distance matri-
ces (MRM), following [26]. A visual description of the method is given in S1 Methods. In each
distance matrix in the regression rows and columns depicted rodent individuals and thus ma-
trix cells depicted pairwise differences between individuals. Because pairwise differences are
symmetric, only the lower half of the matrix was used. We defined the response matrix R as a
binary distance matrix where Rij received a value of 1 if rodents i and j occurred in the same
module and 0 otherwise. Each of the explanatory matrices described pairwise differences be-
tween individuals in a certain characteristic (e.g. body mass, sex, etc). For continuous charac-
teristics, the difference was calculated as an absolute difference; for discrete characteristics, 1
was assigned if the two individuals had the same value (e.g. both were males), and 0 if they dif-
fered in the characteristic. In the multi-species networks, we included a continuous explanatory
variable matrix that contained patristic distances (sum of phylogenetic branch lengths) as a
measure of phylogenetic distance between a pair of rodents. The output of the analysis is simi-
lar to that of a ‘classic’ logistic regression and includes a list of coefficients and their statistical
significance (see [46,47] for details on how statistical significance is calculated in MRM).

We only analyzed networks with>10 individuals and omitted RSM from analyses in Mon-
dokiri because data were missing for seven individuals. We standardized the continuous ex-
planatory variables by converting them to z-scores before performing the MRM to avoid
effects of different scales. This allowed for a comparison of the relative importance of the pre-
dictors [26]. Although an information-theoretic based analysis (as with centrality; see below)
was our preferred method, a likelihood function is unavailable for MRM. We thus interpreted
our results based on coefficient values and statistical significance.

In addition to the MRM analysis, we also examined the importance of species identity in de-
termining modular structure by calculatingM (see formula in [32]) in networks that were par-
titioned into modules composed of individuals of the same species. If species identity is the
only, or main, factor affecting module composition we expect the value ofM to be close to that
obtained through simulated annealing.

Network centrality
We projected each of our single- and multi-species bipartite host-parasite networks to unipar-
tite TPNs by connecting two individual hosts in the unipartite network if they shared at least
one parasite species in the bipartite network (Fig. 1). Network projection is commonly used in
studies of ecological networks in general and in studies of host-parasites in particular,
[29,30,33,48]. Here, our motivation for projecting the host-parasite networks was to create uni-
partite networks compatible with unipartite epidemiological networks, but that contain multi-
ple hosts. This approach allows for (i) a theoretical comparison with studies of epidemiological
networks using single-species networks; (ii) applying similar analytical approaches (e.g. cen-
trality) as in those studies and (iii) modeling parasite transmission across individuals of
different hosts.

In projected networks, it is common to set the weight of an edge between two nodes as the
number of nodes from the other set they share (e.g. [30]). However, this method may bias the
results by the total number of parasites. Instead, we used the Jaccard dissimilarity index,
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calculated as a/(a+b+c), where a is the number of parasites infecting both host individuals, and
b and c are the number of parasites infecting either host individuals. The value of the index
scales positively with increase in a [35].

We examined the effect of individual- and population-level characteristics on EC with a set
of linear models for each of the multi-species TPNs and for single-species TPNs with>10 indi-
viduals. Models within a set differed in the characteristics (i.e. sex, age, etc.) they had as explan-
atory factors, and we included species identity as a factor in our models for multi-species
networks (S1 Table). We eliminated factors with no variation (e.g. when all individuals be-
longed to the same sex), or with an excess of missing data (i.e. RSM in Mondolkiri). For each
TPN, we compared models—including a null model with an intercept only—using model
probabilities w based on AIC corrected for small sample size (AICc), which gives a measure of
the plausibility, on a 0 to 1 scale, that a particular model is the best model [49]. We used a mea-
sure of coefficient importance, calculated as the sum of w across all the models in which the co-
efficient appears, to quantify the importance of a characteristic in determining EC.

To quantify the effect of the inclusion of several species on the position of individuals in the
network we correlated the centrality of individuals in a particular single-species network with
their centrality in the corresponding multi-species network using a Pearson correlation for net-
works with>5 individuals. A positive correlation indicates that individuals with a more central
position in the multi-species network are also more central in the single-species network.

Transmission in multi-host networks
A SI model is particularly suitable for helminths because rodents usually carry the helminthic
infection throughout their lives or at least for very long periods. Our model assumed that the
novel parasite has similar characteristics to the parasites shared between the individual hosts,
and that population densities of the rodent species were equal, although we considered the rela-
tive proportion of species abundances in the community (S1 Methods).

We emphasize that the exact value of the infection probability θs is unlikely to affect our
conclusions because we observe the system from a relative point of view (single vs. multi-spe-
cies TPNs). Our preliminary sensitivity analysis indeed showed that the results remained quali-
tatively similar for different values of θs.

To eliminate the effects of network size and connectance when comparing TGI between a
multi-species TPN and a single-species TPN within the same locality, we created 250 multi-
and single-species sub-TPNs of equal size and connectance derived from the original TPNs
within a locality (S1 Methods). We ran the algorithm 250 times per sub-TPN, totaling to

62,500 simulations, and used the average value of each sub-TPN (TGI) to obtain a distribution

of 250 TGI values corresponding to 250 sub-TPNs.
We compared the distributions (density plots) of single- and multi-species sub-TPNs using

a Kolmogorov-Smirnov test. However, the test only indicates if the TGI values originate from
the same distribution. It does not pin-point in which way the distributions are different neither
does it quantify their degree of similarity. Hence, we also calculated the deviation of the median
of the distributions of the multi-species density plots from the median of the single-species

density plot as ð ~Mm � ~MsÞ= ~Ms where ~Mm is the median of the density plots of multi-host sim-

ulations run with fixed or non-fixed theta and ~Ms is the median of the single-species plot. We
preferred the median over the mean due to the skewed shape of the distributions (Fig. 4). A
large and positive deviation of the median points to a slower rate of infection in the multi-spe-
cies TPNs.

In addition, to quantify the degree of similarity between the distributions we calculated the
integral of the area common to two plots as an index of overlap. The index gets its maximum
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value of 1 when the two distributions are identical and its minimum value of 0 when the distri-
butions are completely segregated. We expected a difference in infection patterns (shape and
position of distributions) between multi-species TPNs and each of the single-species TPNs due
to the greater individual heterogeneity in the multi-species networks and the heterogeneity in θ
in individuals from different species.

Code and data
Analyses were performed using R (version 3.1.1; [50]) within the Linux environment with aid
of the ‘bipartite’ package (version 2.04; [51]). We calculated EC with the ‘evcent’ function from
the igraph package (version 0.7.1; [52]). Multi-model inference was done with package MuMIn
(version 1.10.5) in R [53]. Modularity analyses were done with software bipartmod (http://
seeslab.info/downloads/bipartite-modularity/). MRM analysis was done with a modified ver-
sion of the ‘MRM’ function from the ‘ecodist’ package (version 1.2.9) in R [54]. We provide the
R code and data in S1–S4 Data. Matrix data and original files and code to assemble the phylo-
genetic tree are also available at Figshare http://dx.doi.org/10.6084/m9.figshare.1210724.
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University, Bangkok, Thailand, number 0517.1116/661 based on the validation of the rodents
trapping book protocols of CERoPath. Cambodia has no ethics committee overseeing animal
experimentation. Additional approval was obtained from the regional Head of Veterinary Ser-
vice (Hérault, France), for sampling and sacrificing rodents and harvesting rodent tissues (ap-
proval no. B 34-169-1). The field studies in all localities (Buriram, Thailand—14°89’N; 103°
01’E; Mondolkiri, Cambodia—12°12’N; 106°89’ E and Sihanouk, Cambodia—10°71’N; 103°
82’E) did not involve endangered or protected species and none of the rodent species investi-
gated were on the CITES list, nor the Red List (IUCN). Trapping methods included live cage
traps. Euthanasia was performed with enflurane or isoflurane and followed guidelines of the
American Veterinary Medical Association Council on Research and the Canadian Council on
Animal Care.
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