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A B S T R A C T

The development of anthropic activities during the 20th century increased the nutrient fluxes in freshwater
ecosystems, leading to the eutrophication phenomenon that most often promotes harmful algal blooms (HABs).
Recent years have witnessed the regular and massive development of some filamentous algae or cyanobacteria in
Lake Geneva. Consequently, important blooms could result in detrimental impacts on economic issues and
human health. In this study, we tried to lay the foundation of an HAB forecast model to help scientists and local
stakeholders with the present and future management of this peri-alpine lake. Our forecast strategy was based on
pairing two machine learning models with a long-term database built over the past 34 years. We created HAB
groups via a K-means model. Then, we introduced different lag times in the input of a random forest (RF) model,
using a sliding window. Finally, we used a high-frequency dataset to compare the natural mechanisms with
numerical interaction using individual conditional expectation plots.

We demonstrate that some HAB events can be forecasted over a year scale. The information contained in the
concentration data of the cyanobacteria was synthesized in the form of four intensity groups that directly depend
on the P. rubescens concentration. The categorical transformation of these data allowed us to obtain a forecast
with correlation coefficients that stayed above a threshold of 0.5 until one year for the counting cells and two
years for the biovolume data. Moreover, we found that the RF model predicted the best P. rubescens abundance
for water temperatures around 14°C. This result is consistent with the biological processes of the toxic cyano-
bacterium. In this study, we found that the coupling between K-means and RF models could help in forecasting
the development of the bloom-forming P. rubescens in Lake Geneva. This methodology could create a numerical
decision support tool, which should be a significant advantage for lake managers.

1. Introduction

The Anthropocene and the phase of great acceleration of this period
are subjects of several debates in the scientific community
(Chernilo, 2017; Crutzen, 2006; Steffen et al., 2007). Despite different
opinions, a consensus was reached about the direct negative effects of
anthropic activities on ecosystems and biodiversity (Halpern et al.,
2008). Aquatic ecosystems and, more specifically, freshwaters are areas
affected by human activities (Dudgeon et al., 2006; Reid et al., 2019).
Typically, the decline of biodiversity in freshwater ecosystems could be
more important than that in oceans or terrestrial systems (Sala et al.,
2000). The increase in nutrient fluxes due, for instance, to intensive
agriculture, and/or insufficient treatment of water or sewage, is one of
the major causes that generate a cascade of negative effects in fresh-
water bodies (Roelke et al., 2011; Smith et al., 2006). This increase in

nutrients causes eutrophication that, in most cases, promotes the pro-
liferation of some phytoplanktonic populations (Camargo and
Alonso, 2006; Schindler, 2006). Commonly referred to as harmful algal
blooms (HABs), the intensity and size of these biological events have
increased continuously over the past decades (Glibert et al., 2005;
Shumway et al., 2018).

The eutrophication of freshwater ecosystems and their associated
HABs are recognized global issues and are often linked to the devel-
opment of filamentous or colonial cyanobacteria (Backer et al., 2015;
Bartram and Chorus, 1999). These photosynthetic prokaryotes, re-
presented by a large variety of genera (e.g. Anabaena, Aphanizomenon,
Cylindrospermopsis, Microcysis, Planktothrix …) can produce toxins,
which are likely to be transferred along the food web and cause fish
mortality (Sotton et al., 2014; Vanni et al., 1997). These toxins can also
directly affect both pet and human health (Briand et al., 2003;
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Codd et al., 2005). Moreover, these biological events can detrimentally
affect economic issues affecting tourism, recreational activities, agri-
culture, fish farms, drinking water supplies … (Carmichael and
Boyer, 2016; Reynaud and Lanzanova, 2017).

This problem directly concerns Lake Geneva, which is the largest
natural deep lake in Western Europe and is characterized by a meso-
trophic state. One million inhabitants use this lake as a drinking water
supply, and it has various linked tourism activities and fisheries linked
to it (Gallina et al., 2017). Lake Geneva, like some other peri-alpine
lakes (e.g., Lake Bourget, France), has been experiencing recurrent
problems with the filamentous toxic cyanobacterium Planktothrix ru-
bescens, for several years, which is particularly well adapted to this type
of environment (Anneville et al., 2015; Gallina et al., 2017;
Jacquet et al., 2005; Jacquet et al., 2014; Kerimoglu et al., 2017;
Oberhaus et al., 2007). This cyanobacterium can produce different
hepatotoxins that could lead to endocrine disruption and, consequently,
favor the development of certain types of cancers (Catherine et al.,
2017; Pearson et al., 2010). Furthermore, numerous studies have shown
that global warming could increase this type of toxic cyanobacteria in
the coming years (Gallina et al., 2017; Paerl and Otten, 2013;
Wang et al., 2015).

HAB forecasting has become critical in environmental sciences and
among the stakeholders (Pennekamp et al., 2019). Although classical
hydro-ecological models can efficiently model the physical processes, a
meta-analysis, which evaluated the performance of 124 such models,
highlighted their difficulties in accurately reproducing the phyto-
plankton dynamics (Shimoda and Arhonditsis, 2016). These decreases
in the predictive performance may be due to the complex interactions
and nonlinear mechanisms that regulate the phytoplankton compart-
ment, which are modeled via mathematical models based on a priori
assumptions (Arhonditsis, 2009; Edwards et al., 2016; Zhao et al.,
2008). In contrast to these hydro-ecological models, one of the major
advantages of machine learning models is that they do not require a
priori assumptions (Breiman, 2001; Tsanas and Xifara, 2012; Zhao and
Zhang, 2008). In the following non-exhaustive list, it is evident that
many studies use this advantage of machine learning to bypass the
prediction difficulties concerning the phytoplankton: (Cho et al., 2018;
Cho and Park, 2019; Du et al., 2018; Kehoe et al., 2015; Lee et al., 2016;
Lee and Lee, 2018; Rivero-Calle et al., 2015; Shamshirband et al., 2019;
Shin et al., 2017; Thomas et al., 2018; Yajima and Derot, 2018;
Zhang et al., 2016).

Regarding restoration, many bio-assessment programs use a class
system to define the healthy ecological state of an aquatic ecosystem
(Poikane et al., 2019). For the European territory, the protection and
restoration of water bodies are supervised by an European directive
referred to as the “Water Framework Directive” (WFD), that aims to
reach a good ecological state (for the ecosystems) in the coming years
(Directive, 2000). This directive is based on five ecological state classes,
namely poor, bad, moderate, good and high. In this context, it is im-
portant to note that these classes are mainly based on biological me-
trics, among which the phytoplankton (Laplace-Treyture and
Feret, 2016; Le Vu et al., 2011; Phillips et al., 2013). Consequently,
forecast models could help lake restoration objectives by testing sce-
narios with some key issues, such as eutrophication and climate change
(Lehmann and Hamilton, 2018; Wang et al., 2018). Such models could
also help in forecasting the HAB events and avoid financial losses by
creating a decision support tool, to determine the fishing periods in
lakes (Gill et al., 2018; Manning et al., 2019).

Long-term monitoring enables us to satisfy bio-assessment program
requirements, such as the European Water Framework Directive (Le Vu
et al., 2011). In addition, this type of monitoring generates large da-
tabases, which can be used as the input for machine learning models
(McGovern et al., 2017). In lacustrine ecosystems, the pairing of long-
term and or high-frequency databases and a random forest (RF) model,
seems to be a good alternative for hydro-ecological models for pre-
dicting the phytoplankton biomass and bloom (Breiman, 2001;

Thomas et al., 2018; Yajima and Derot, 2018). Moreover, some clus-
tering algorithms based on machine learning models such as the K-
means method, enable the creation of classes to address environmental
problems (Derot et al., 2020; Hartigan and Wong, 1979;
Rousseeuw et al., 2014; Solidoro et al., 2007). Furthermore, the pre-
dictive performance of an RF model can be improved by utilizing it in
conjunction with a K-means model (Kwon and Park, 2016; Liu and
Sun, 2019). However, this compels us to use the RF model in the
classification mode; however, this is not inconsistent with bio-assess-
ment programs, which are generally used as a system based on the
ecological status in the form of categorical data.

Our goal was to lay the foundations of a numerical model to forecast
a case study cyanobacterial bloom in Lake Geneva, having in mind it
could be useful for both scientists and lake stakeholders. Therefore, we
explored the capacity of the RF model, often considered as a black box,
to determine the biological interactions that exist in this natural en-
vironment. We also studied the forecast performances of this model by
varying the sliding windows over a year-scale.

2. Material and methods

2.1. Databases and sampling point

Lake Geneva, which lies at an altitude of 372 m, forms the border
between France and Switzerland in the north of the French Alps. It is a
72 km long ecosystem with an area of 582 km2 and a maximum width
of 13 km. Lake Geneva is composed of two basins, namely a deep
central eastern basin called the large lake (Grand Lac), whose deepest
point is 309 m below the surface, and a western and more shallow
basin, at small lake (Petit Lac), with a maximum depth of 74 m. It is a
meromictic lake, never covered by ice, with an average temperature
ranging between 4 and 22°C. It holds an approximate volume of 89
Km3. Lake Geneva was reported as eutrophic during the 1970s and it
changed to a mesotrophic state during the 1990s, following the re-
storation programs in response to the appropriate measures taken to
reduce the phosphorus inputs to the lake (Anneville et al., 2002). In the
early 1980s, the annual average total phosphorus concentration was
approximately 89.5 µgP/L, while, at the present time this concentration
dropped below 15 µgP/L (Salmaso et al., 2018).

The datasets used for Lake Geneva were obtained at a single sam-
pling point referred to as SHL2, corresponding to the deepest and pe-
lagic part of the lake (Anneville and Pelletier, 2000). Data were ob-
tained bi-monthly, except for the winter period, for which sampling is
performed once a month. The first database is a long-term dataset that
starts from 1984 and ends in 2018 (Rimet et al., 2020). Notably, the
phytoplankton data before 2000 corresponded to an integrated water
sample from the surface to a depth of 10 m. After 2000 the sampling
consisted of an extended water column down to 18 m. The phyto-
plankton counts were obtained using the classical Uthermol method,
and the data were presented both as the number of cells per milliliter
(mL) and a biovolume measured in µm3/mL.

For biological purposes, we only used the information available for
Planktothrix rubescens, the sum of cyanobacteria taxa and chlorophyll-a
(Chl-a). The following physicochemical parameters were used: ortho-
phosphate (PO4), particulate phosphorus (Ppart), total phosphorus (Ptot),
dissolved oxygen (O2), sulfates (SO4), chlorides (Cl), sodium (Na),
particulate organic carbon (COP), complete alkalinity titration (TAC),
conductivity (Cond), reactive silica (SiO2), pH (pH), nitrite (NO2),
ammonia (NH4), nitrate (NO3), particulate organic nitrogen (NOP),
total nitrogen (Ntot) and water temperature (T°C).

The second dataset was obtained from a measuring spectro-fluor-
escent device, the FluoroProbe (bbe Moldaenke GmbH, Germany). This
probe provides a concentration estimate for different algal classes (i.e.,
green algae, blue-green algae/cyanobacteria, diatoms/dinoflagellates,
and cryptophytes/PE-rich groups including cyanobacteria) based on the
fluorescence excitation spectra called fingerprints (Beutler et al., 2002;
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Catherine et al., 2012; Kring et al., 2014; Leboulanger et al., 2002). The
sampling began in June 2017; however, to have a complete year dataset
and reduce the computation time, we only used the year 2018. Data
were collected from the surface to a depth of 40 m, along with the
concerned depth (m), temperature (°C), chlorophyll-a (µg/L), chlor-
ophyll-a corrected in lab (µg/L), green algae (µg/L), blue-green algae
(µg/L), diatoms (µg/L), yellow substances (µg/L), and Planktothrix ru-
bescens (µg/L) after specific calibration for the cyanobacterium. For
each profile obtained with the probe that descended into the water
column slowly (approximately 0.1ms−1), data were obtained every 0.1
s.

2.2. Machine learning models

A recent study, performed in another Swiss peri-alpine lake, ob-
tained good results for the forecast of phytoplankton and cyanobacteria
distribution using an RF model (Thomas et al., 2018). On a broader
level, the RF model also yielded good prediction and forecast results in
freshwater environments (Derot et al., 2020; Yajima and Derot, 2018).
These studies indicated that the RF model is well adapted to our current
problem. Furthermore, this model, which is an upgrade of the classifi-
cation and regression tree (CART) model, has suitable properties re-
garding the studied databases that include biological components
(Breiman et al., 1984). This model has no prior assumptions, is not too
sensitive to missing data and is adapted to manage nonlinear processes
(Breiman, 2001; Thomas et al., 2018). The term “forest” in this model is
derived from the numerous CART models that are created during the
learning phase. To decrease the computation time, it is critical to select
an appropriate number of trees using the out-of-bag error. With respect
to the learning phase for the classification mode (long-term database
and Table S1), as evident in Figs. S2-S3 in the supplementary material,
the out-of-bag error becomes more stable after 300 trees; therefore in
this case we performed our executions with 2000 trees. Similarly, re-
garding the learning phase for the regression mode (Fig. S7 and Table
S1), we performed all our runs with 200 trees. For the minimum
number of observations in each node of the RF model, also called the

minimum leaf size (min-leaf), we used the default setup proposed by
MATLAB. This implies that the value of min-leaf is equal 5 and 1 in the
regression and classifications modes, respective (Derot et al., 2020;
Yajima and Derot, 2018).

The individual conditional expectation (ICE) plots, which are an
improved version of the partial dependence plot (PDP), enables the
interpretation of the interactions between the predictors created by the
RF model during the learning phase (Friedman et al., 2001;
Goldstein et al., 2015). These numerical tools allowed us to find some
similarities between the learning phase interactions and biological
processes (Cutler et al., 2007; Derot et al., 2020; Roubeix et al., 2016;
Teichert et al., 2016). To categorize the cyanobacteria into some in-
tensity classes, we used a clustering algorithm called K-means based on
machine learning (Hartigan and Wong, 1979). We used this model at
the default setting, which calculates the distance between the centroids
with the squared Euclidean distance:

=d x c x c x c( , ) ( )( )

where x is an observation and c is the centroid. Here, we used four
centroids to obtain four intensity classes. All numerical analyses in this
study were performed using MATLAB and its Statistics and Machine
Learning Toolbox. Concerning the RF model we used the function
TreeBagger, for the ICE plot, and the functions plotPartialDependence and
kmeans for the clustering model. Moreover, we used the rng function to
obtain reproducible results. This command allows us to specify the
seed, in order to control the random number generation used in the K-
means and RF models (process bootstrap during the learning phase), as
well as the cvparation function (see below in Section 2.3). In other
words, all functions that use a random draw will have the same result
between each new run.

2.3. Forecast and prediction strategies

To apply the forecasting strategy (Fig. 1), we require a long-term
dataset. Therefore, we only applied this strategy to the long-term da-
tabase of Lake Geneva. The RF model can predict a categorical target
with numerical predictors and vice versa; additionally, a mix of

Fig. 1. Conceptual diagram presenting the methodology used to measure the forecast quality, considering all lag times and sampling frequencies.
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categorical and numerical predictors can be used. The first step of our
forecast strategy involved the separation of the target from the pre-
dictors. Here, we used a categorical target in the form of four intensity
classes depending on the cyanobacteria and P. rubescens. We explain
this classification in Section 3.1 (Fig. 1). To build these classes, we used
the sum of the total cyanobacteria and the P. rubescens data, which
enabled us to create our target signal via a K-means clustering model.
Notably, we created two different pools of intensity classes; one was
created with the cell counting and the other with the biovolume. Re-
garding the predictor matrix in both cases, we used all physicochemical
parameters that were presented in Section 2.1 (Fig. 1). It should be also
kept in mind that the predictors were not transformed via the K-means
model. Therefore, this matrix was composed of numerical data.

The second step of our strategy involved the application of a lag via
a sliding window method (Herrera et al., 2010; Yajima and
Derot, 2018). We performed feature engineering on the long-term da-
taset. In other words, we reframed this dataset as a supervised learning
problem with the lagged target signal. To provide a practical example,
when we applied a lag time of one year, this lag was applied to the
target vector (cyanobacteria intensity classes), but not on the predictor
matrix (Fig. S10). Therefore, in this case, the input of the RF model used
the first value of the target signal and corresponded to the first sampling
in 1985. Comparatively, the first values of all predictors correspond to
the first samplings in the year 1984. To run an RF model, the length of
the target vector must be the same as that of the predictor matrix.
Consequently, with this sliding window strategy, we are compelled to
discard some data: we discard the first data record of the target signal
vector, which corresponds to the lag time; and we also discard the last
data record of all predictors, which correspond to the lag time (Fig.
S10). Then, we divided the data into two pools; the train part that
contains 70% of the data for the learning phase; and the test part with
30% of the remaining data.

These splits were realized with the MATLAB function cvparation to
obtain a semi-random draw. Using this function avoids, for example, to
have one pool that only contains all the highest target values and an-
other one with all the lowest values. Consequently, we obtained two
pools with close intensity values. Following this split, we used the train

part to perform the learning phase of the RF model. We then only used
the predictors from the test part with the MATLAB function predict to
get the forecast from the trained RF model. We compared these outputs
with the real target signal from the test part (Fig. 1). As a reminder, we
used the model in the classification mode, because our target signal was
composed of numerical data. Therefore, to compare the forecasted
target signal versus the lagged real classes, we could not use classical
linear regression. Therefore, we compared these two signals with a
confusion matrix (Figs 1, 3, and S4). We calculated the entire confusion
matrix with the MATLAB function plotconfusion. Furthermore, we took
the mean of the good forecasting percentage to compare the outputs of
these matrixes (see the blue boxes in Figs. 3 and S4). It should be noted
that we also explored the performance of the RF model during its
learning phase (test part). The misclassification probabilities in Fig.
S13, were extracted via the MATLAB function oobError. We used the
same function to plot the out-of-bag error for the Figs. S2, S3, and S7.

Concerning the other dataset recorded with FluoroProbe and our
pretests in the supplementary material (Table S1 and discussion part),
we only applied the RF model to obtain a prediction (no lag times). We
just extracted the ICE plot for the FluoroProbe database, to examine the
interactions between the predictors and the target created by this model
during the learning phase (see Section 2.2). In all of these analyses, we
also used the cvparation function to split these datasets between train
(70%) and test (30%) parts. The RF models are still constructed using
the MATLAB function TreeBagger; however, for the analyses with nu-
merical values, we tuned the model in the regression mode. In addition,
when we used this mode the correlation coefficients (R²) were calcu-
lated via the coefficient of determination as follows (Du et al., 2018;
Kehoe et al., 2015; Lee et al., 2016; Lee and Lee, 2018; Shamshirband
et al., 2019):
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where SStot is the total sum of squares, SSres is the residual sum of
squares, n is the number of observations, ŷi is the predicted data, yi is
the observed data, and ȳ is the mean of the observed data.

Fig. 2. Output of the K-means model with four P.rubescens and cyanobacteria intensity groups, based on the counting cells. Each colored area corresponds to an
intensity class: cyan for low concentrations of P.rubescens and cyanobacteria; orange for low concentration of P.rubescens and high concentration of cyanobacteria;
purple for middle concentrations of P.rubescens and cyanobacteria; and green for high concentrations of P.rubescens and cyanobacteria.
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3. Results

3.1. Intensity classes based on cyanobacteria

Fig. 2 reveals four groups created by the K-means method from the
counting cell dataset. On the x-axis, we placed the P. rubescens data and
on the y-axis the total of cyanobacteria. There is a wide range in the
data with a factor of 4 × 105, between the highest and lowest values in
the biovolume of cyanobacteria. Therefore, we applied a log transfor-
mation to reduce this range. We performed the same procedure with the
biovolume database (Fig. S1). It should be noted that the transforma-
tion was realized with the natural logarithm. At the bottom left in the
cyan area, we can find the first group. This class contains a low con-
centration of cyanobacteria and P. rubescens. We found the same pattern
with the biovolume data, except that more points are agglomerated on
the zero. The second group in orange contains a low concentration of P.
rubescens and a high concentration of cyanobacteria. We also found the
same pattern with the biovolume as for the two other classes.

Consequently, the following observations for Fig. 2 are also valid for
Fig. S1. The four groups created by the K-means model are not perfectly
distributed in four squares. The purple area that represents the third
class is composed of a middle-range concentration of P. rubescens and
the sum of cyanobacteria. The last class in green at the top right con-
tains high values of cyanobacteria and P. rubescens. In both cases, for
the cell counting and biovolumes, many points are agglomerated on the
y-axis, corresponding to the samplings where P. rubescens was absent in
Lake Geneva.

3.2. Forecast of intensity classes at a year-scale

Fig. 3 shows the confusion matrix results for the counting cells
without lag. The green boxes show the good predictions. The upper
numbers in bold indicate the number of observations that were well
classified; the percentage below the bold numbers represent the vali-
dation phase that was performed from the test par dataset. For example,
in class 4, 71 observations were well classified, representing 32.1% of
the test part data. The red boxes use the same annotation system for the
wrong classification. For instance, 9.5% of the observations in class 4
were predicted in class 3, for 21 misclassified observations in that
group. The gray boxes show the average percentage for a specific class,
such as class 4, where 84.5% of the data were well classified. We can
find the overall average of good classified observation in green in the
blue box. In that case 62% of these intensity classes were well pre-
dicted. Fig. S4 shows the confusion matrix for the biovolume without
lag. There is more misclassification for class 1, which could explain the
difference of 2% in the overall average of good prediction between
these two cases. Regarding the learning phase, in the supplementary
material (Fig S13), we extracted the misclassification probability from
the train part dataset.

We extracted the percentage of the well-predicted results of the blue
boxes, as shown in Fig. 3, for each lag time to create Fig. 4. Therefore,
on the y-axis that represents the average of good percentage of good
forecast; two values of 60.2% and 62% were observed for the no-lag
cases. The x-axis shows the input lag that was introduced with the
sliding window strategy. To facilitate reading, the x-axis is represented
on a log scale. The red line and green lines denote the results for the
biovolume and counting cell, respectively. With respect to the forecast
of the biovolume, the value of R² starts to decrease from the two-year
lag, but these coefficients always stay above a threshold of 50% of the
good forecast. In the case of the counting cells, even if the no-lag
coefficient is better, the lagged R² decreases quicker than the red line.
Furthermore, these correlation coefficients start to decrease from the
one-year lag. After this point the other R² values fall below the 0.5
threshold. However, the general evolution of these coefficients follows
the same tendency in both cases. In the supplementary material (Fig.
S20 for biovolume and Fig S21. for counting cells), we also extracted

the percentages of good forecast from the output classes for each group.

3.3. Similitude between interactions

We did not implement the transformation via the K-means method
and the sliding window strategy on the FluoroProbe data from 2018.
We only predicted the concentration of P. rubescens using the RF model
in the regression mode. Fig. 5 shows the results of the comparison be-
tween the real data from the test part and the forecast target signal.
Both, standard and adjusted correlations coefficients are extremely high
because they are equal to 0.90. The Kendall and Spearman coefficients
that measure the dynamics of the co-evolution between the two signals
were found to be 0.93 and 0.97, respectively. Thus, it can be elucidated
that there is a strongly correlated dynamic between the prediction and
real data. This is demonstrated in another manner in Fig. S9, which
shows that the dynamic of the red line (prediction) follows the black
line that represents the real concentration of P. rubescens from the test
part. Furthermore, a disparity is evident in the predicted signal between
the 1300 and 1400 points. This irregularity is displayed in Fig. 5, where
the real data above 4µg/L are not well correlated.

Fig. S8 shows the results of the out-of-bag error extraction for this
run. Our findings show that temperature is the most important pre-
dictor with an intensity of over 3.5. The diatoms, which are the second
most important predictor, only reach an importance of 2. Fig. 6 illus-
trates the extraction of the ICE plot from the learning phase for the
temperature. The ICE plots of other predictors are included in the
supplementary material. Thus, we can observe the internal interactions
created by the RF model during its learning phase between the tem-
perature (x-axis) and concentration of P. rubescens (y-axis). The red line
represents the PDP analysis, and the blue points were created by the ICE
method. The highest values of P. rubescens were predicted around 14°C,
and the lowest concentrations of cyanobacteria were predicted for the
lowest temperature under 8°C. Notably, owing to the tree structure, the
interactions created during the learning phase of the RF model are co-
dependent. In other words, each child node in this structure depends on
the previous child node or root node. Consequently, each prediction in
the terminal nodes is dependent on several different predictors. Trivi-
ally, for example, if the temperature is above 10°C (root node), then the
depth of 15m or less (first child node), then the concentration of the
diatoms is above 1.2µg/L (second child node), the RF model would
predict a P. rubescens concentration equal to 2.5 µg/L (one terminal
node). In this example, the influence of the 15m depth is only valid if
the water temperature is greater than 10°C, and so on. Therefore, this
ICE plot is not a perfect tool, but it gives some good indications for the
physicochemical thresholds (Derot et al., 2020; Roubeix et al., 2016).

4. Discussion

In our pretest on this dataset, we first expected to directly forecast
the P. rubescens concentration as numerical data. Unfortunately, the
correlation coefficient between the test part and real data was low
(Table S1). Then, following the same process, we attempted to predict
the chlorophyll-a and cyanobacteria; we even tried to predict the P.
rubescens signal transformed in the categorical data (Table S1).
Nevertheless, none of these tests surpassed a threshold of R² above 0.5,
which is a general consensus where in a model begins to provide ac-
curate prediction. Consequently, using these four groups based on the
sum of cyanobacteria and P. rubescens presented in Section 3.1 (Fig. 2)
enabled us to exceed this threshold for the prediction without lag time
(Figs. 3 and S4). We have highlighted in the introduction that Lake
Geneva is concerned by the European WFD, which uses five ecological
state classes. Accordingly, we also attempted to split our data into five
groups using the K-means model. However, as shown in Figs. S11-S12,
it was difficult to make a clear biological distinction between some of
these groups. Moreover, the average correlation coefficients which in-
cluded lag times was lower. For the biovolume with four groups, an
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Fig. 3. Confusion matrix for counting cells with no lag time with four intensity cyanobacteria classes, between 1984 and 2018. This analysis denotes a validation
phase, which was performed from the test part dataset. The gray boxes show the rate of classification for each group. The diagonal of the matrix represents the well-
classified groups, and the overall rate is presented in the blue box.

Fig. 4. Evolution of the percentage of good forecasting depending on a lag time of up to 5 years. The x-axis represents the lag times from the sliding window in the log
scale. The y-axis shows the correlation matrix average of the good percentage of the forecast from an RF model, for the validation phase (test part). The red and red
lines display the evolution of the biovolume dataset and counting cells, respectively.
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average value of 56.47% was observed in comparison to that of 48.85%
for five groups; for the counting cells with four groups, an average value
of 51.76% was observed in comparison to that of 46.41% for five
groups.

Regarding the biovolume, we obtained an R² of 60.6%; for the
prediction based on counting cells, we obtained a correlation coefficient
of 62.2%. In Table S1, these coefficients lie between 0.031 and 0.47.
This corresponds to a factor improvement between 1.3 and 2000.
Therefore, the use of the K-means model for transforming our target
signal in the four intensity classes enabled us to overcome the starting
threshold of 0.5, considering the correlation coefficient between the
test part and real data. Moreover, the categorical transformation of data
retains the information related to P. rubescens, contrary to the predic-
tion of chlorophyll-a. This class system is not significantly from the
healthy ecological state used in bio-assessment programs

(Poikane et al., 2019). However, the metrics used as the basis for these
ecological states in the WFD are often opaque and do not adequately
represent the different management problems for various water bodies
(Waylen et al., 2019). In addition, this European directive requires only
4 to 6 samples per season to determine these ecological states
(Directive, 2000). This low sampling frequency can bias the determi-
nation of these states in aquatic ecosystems (Bresciani et al., 2011). In
this context, the use of remote sensing data or data from automated
monitoring stations at fixed points could help in preventing this type of
bias (Bresciani et al., 2011; Le Vu et al., 2011). With respect to, the HAB
events directly linked to the cyanobacteria in peri-alpine lakes in par-
ticular, this type of automated sampling station has already presented
valuable results (Le Vu et al., 2011; Pomati et al., 2011; Thomas et al.,
2018). It could, therefore, be interesting to try to develop an ecological
class system, in conjunction with the Swiss and French stakeholders

Fig. 5. Correlation between the real (x-axis) and predicted data for P. rubescens (y-axis) in 2018 from Lake Geneva.

Fig. 6. ICE plots for the temperature. The red line shows the PDP; the gray lines and blue points are derived from the ICE analyses.
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that would respond precisely to problems related to Lake Geneva.
Subsequently, this potential new class system with the methodology
presented here should be re-analyzed, to check whether the forecast
performances of the RF model are still as encouraging as our current
results. To summarize, the creation of these classes based on P. ru-
bescens and cyanobacteria via the K-means method allowed us to drive
the RF model in the classification mode for the forecast tests, while
maintaining the initial R² greater than to 0.5.

In Section 3.2, we wanted to find a way to remain above the
threshold of R² of 0.5 for the forecast over a year-scale. Consequently,
we attempted to transform the information about cyanobacteria and P.
rubescens into categorical data. It can be observed in Figs. 3 and S4 that
the average classes of intensity (see gray boxes) were well predicted.
Although the correlation coefficient without lag was slightly lower for
the target signal from the biovolume, its evolution over a year scale was
more stable than that of the signal from the counting cells (Fig. 4).
Moreover, we extracted the out-of-bag feature importance for our two
cases in Figs S5. and S6. Our results show that in both cases the five
more important predictors include Cl, Na, O2, PO4, and Ntot. The nu-
trients PO4 and Ntot, which are the fundamental resources for growth
and bloom development, are always 30% or 40% more important than
the temperature. Furthermore, our preliminary tests allowed us to re-
move the light from the predictors because this parameter always had
the lowest out-of-bag score. We found some similarities between our
findings and the scientific literature. It has been demonstrated that
ammonium chloride (NH4Cl) and sodium nitrate (NaNO3) could influ-
ence the growth rate of cyanobacteria via a mechanism linked to phy-
cobiliprotein (Khazi et al., 2018). Furthermore, it also seems to have
some links between the salinity (NaCl) and the production of micro-
cystin (Fathabad et al., 2019). Consequently, the use of these intensity
classes based on the biovolume seems to be a good alternative, and the
five most influential predictors are coherent with the literature.

In another study performed in a Swiss peri-alpine lake, where the
authors used an RF model to forecast the cyanobacteria (Thomas et al.,
2018). Notably, they used the pseudo-R² to validate their forecasts
(Breiman, 2001). However, several studies, including this one, know
that the coefficients cannot be accessed directly as a true forecast be-
cause the pseudo-R² measures the goodness-of-fit during the learning
phase (Large et al., 2015; Teichert et al., 2016; Thomas et al., 2018).
Our results can use the R² from the test part instead of the learning
phase. Our findings could be used as a basis for the creation of a nu-
merical model to forecast the HAB risks. Numerical models that can
forecast HAB events can be used as decision support tools for fisheries
to avoid financial losses, by determining the high-risk periods
(Gill et al., 2018). In the case of Lake Geneva, we could define three
fishing period classes, namely: safe, moderate risk, and high risk. This
kind forecast model could be useful to help the local stakeholders with
the preservation and restoration of Lake Geneva. In Section 3.2, we
highlighted that the use of classes based on the biovolume from a K-
means model enabled us to forecast these HAB risks over a year-scale,
while it holds the R² threshold of 0.5. Furthermore, the most important
predictors could be linked to the natural mechanisms of cyanobacteria.

In Section 3.3, the database from FluoroProbe included a matrix of
6902 columns (sampling) and 9 rows. The first row corresponded to the
P. rubescens concentration and the other 8 rows corresponded to the
predictors. For the long-term dataset, we have a matrix of 754 columns
(sampling) and 21 rows (target and predictors). Therefore, we have a
factor of almost 10 between the length of FluoroProbe and the long-
term database. Consequently, we explored whether an increase in the
number of sampling could affect the prediction performance and nu-
merical interactions created by the RF model during its learning phase.
Our results demonstrate that temperature is the most influential pre-
dictor (Fig. S8). After the ICE analysis in Fig. 6, we observed that the RF
model predicted the highest values of P. rubescens for water tempera-
tures around 14°C. This result is consistent with the scientific literature,
which revealed that P. rubescens has a competitive advantage for water

temperatures of 15°C (Oberhaus et al., 2007) and the biomass of the
cyanobacterium is likely to increase in Lake Geneva in the coming years
due to global warming (Gallina et al., 2017).

We also extracted the ICE plots for the other predictors.
Unfortunately, their interpretations were difficult and did not allow us
to observe clear trends. As stated earlier, the interactions created be-
tween the predictors by the RF model during the learning phase are
codependent. Accordingly, in many cases these interactions could be
different from the known mechanisms, such as the biological processes.
Furthemore, the database from FluoroProbe, which contains 10 times of
sampling, enabled us to use the RF model in the classification mode and
produced exceptionally good R² for P. rubescens (Fig. 5).

Our findings suggest that a high number of sampling positively af-
fects the accuracy of the RF model to find a correlation between the
cyanobacteria and temperature. Even if the RF model has no prior as-
sumptions when used with the FluoroProbe dataset (high-frequency), it
could recreate some numerical interactions that are significantly similar
to the biological mechanisms. Furthermore, the positive impact of this
high-frequency database indicates that the development of a sampling
strategy in Lake Geneva, which is based on high-frequency sensors at a
fixed point, could improve the forecast of cyanobacterial concentrations
with numerical data. This analysis, based on the FluoroProbe dataset,
allowed us to highlight the importance of using a high-frequency sensor
to improve the performance of an RF model for biological processes.
Additionally, even if the machine learning models are, in general,
considered as black boxes, our results showed that this model could
recreate biological interactions.

To summarize, we found that the use of a class system can enable us
to forecast the intensity of harmful cyanobacteria in Lake Geneva over a
year scale. Our findings also demonstrated that with a large amount of
input data, even if the RF model has no prior assumption, it could find
an interaction that is significantly similar to the competitive mechanism
of HABs. Moreover, the correlation coefficient obtained with this da-
tabase from high-frequency sensors is higher than those obtained with
the long-term dataset. Consequently, our study suggests that there are
two possible options for improving the forecasting of HABs in peri-al-
pine lakes. The first option involves the use automated system equipped
with high-frequency sensors to improve the sampling strategy to detect
the blooms of P. rubescens and cyanobacteria. The second option in-
cludes re-framing of these numerical data as classification problems
with intensity groups, which allows us to obtain better performance
with an RF model. However, these two options are not incompatible;
therefore, it could be interesting to use them jointly. In this framework,
it would be interesting to develop an ecological index in conjunction
with the local stakeholders, to elaborate a decision support tool adapted
for the preservation and restoration issues of Lake Geneva.
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